mafeh no. 14 pp. 213-233 1983

THE SMALLEST GRAPHS, TREES, AND 4-TREES WITH DECENERATFE
TOPOLOGICAL INDEX J

Alexandru T. Balaban Louis V. Quintas*
Department of Organic Chemistry Mathematics Department
The Polytechnic, TCH Pace University

Spl. Independentel 313 New York, NY 10038
76206 Bucharest, Roumania U.S.A.

N—— (Received: licbruary 1983)

The degeneracy, i.e., equal values for non-isomorphic graphs,
of the topological index J is explored systematically. J-equivalent
non-isomorphic graphs have at least six points, in which case these
graphs are tri- or tetra-cyclic; for mono- or bi-cyclic J-equivalent
graphs, the smallest order is eight. The unique smallest order pair
of trecs having the same J-value (and the same distance sum sequence)
consists of trees with ten points. There are six pair of smallest order
J-equivalent Y-trees. These are realized as 4-trees on twelve points.
Theorems are presented for constructing these graphs and other J-equi-
valent graphs of higher orders. A comparison with Randid's molecular
connectivity shows that J has lower degeneracy.

1A. Chemical Introduction

Topological indices (reviews [1- 3]) are used to convert the
structure of a molecule (symbolized by a graph) into a numerical value.
This value ecan then be used for correlating this molecular structure
with its chemical, physical, or biological properties. Such an approach
is particularly useful in drug design [1 - A
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The current best and most used topological index, the molecular
connectivity X, was propesed by Randié [4] and is based on point degrees
(see graph-theoretical definitions below).

A general problem of topological indices is that the structure
of a molecule cannot be retrieved from the topological index, i.e.,
the conversion of structure io topological index works only in one di-
rection. One of the reasons is that topological indices are degenerate,
i.e., two or more non-isomorphic structures may lead to the same value
for a given topological index.

A new, highly discriminating topological index, denoted by J, was
recently described [5, 6]. Since the discriminating ability of an index
is inversly related to its degeneracy, we present here a systematic ex-
ploration of the degeneracy of J. A comparision with Randié's molecular
connectivity shows that J has lower degeneracy.

1B. Graph-Theoretical Introduction

Let G denote a connected graph with q lines, n points, and cyclo-
matic number u = q - n + 1; E(G) the line set of G and s, the sum of the
distances from the point a to all other points of G. We call s, the dis-

tance sum at a. Then,

q 1
IO =51 ¥e) 5,5,

)
a

where {a,b} € E(G), is called the J-Index of G.

If J(G) = J(H), then the graphs G and H are said to be J-equivalent.

We are interested in determining how effective the J-Index is in
distinguishing between graphs.

The order of a graph is its number of points. The number of lines
incident to a point is called the degree of that point. If each point of a
graph has the same degree r, the graph is called r-regular.

A tree is called a 4-tree if it does not have any points of degree
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greater than 4. We have found that 12 is the least order for which there
exists a pair of J-equivalent non-isomorphic #-trees (see Section 4).

In passing we note that if there are no restrictions on the class
of graphs being considered, then 6 is the least order realizable by a
pair of J-equivalent non-isomorphic graphs (see Section 2). However, graphs
of chemical interest are those with specified constraints and in particular
those with bounded degree. Thus, investigations of the type considered here
are always carried on within a given class of graphs.

Included in what follows are descriptions of some general methods
for constructing J-equivalent graphs (see Scction 3).

2. Observations and Examples

If G has point set [vl,vz....,vn} and dij is the number of points

in G at distance j from v,, then the sequence (diO'd

" i1,a12,...,dij,...)

is called the dislance degree sequence of Vi in G. Note that diO = 1 and

dil = deg Vi the degree of vy The n-tuple of distance degree sequences
arranged in lexicographic order is the distance degree sequence of G.

These sequences are denoted DDS(vi) and DDS(G) respectively.

Note 1. We use { ] to denote sets, i.e., unordered collections of
distinet objecis, and [ ] to denote multi-sets, i.e., unordered collections
of objects in which repetitions are allowed (see [7; p. 60]). Ordered
collections of objecls in which repetitions arc allowed are called sequen-
ces and arc denoted by using ( ). If an entry s is repeated t times in a

sequence, the subsequence s,s,...,s (t terms) is replaced by st.

As an illustration of these concepts consider the three isomeric

pentanes:
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& z 2
For 1 we have: mps{a) = DDS(e) = (1,1,1,1,1)
h pps(v) = pps(a) = (1,2,1,1)
pps(e) = (1,2,2)

and DDS(1) = L, ) L, 2 0P, e

1]

Graph 2 yields: nps(a) = (1,1,1,2), ops(v) = (1,2,2), bos(e) = (1,3,1)
pos(d) = ops(e) = (1,1,2,1)
and DDS(2) = ((1,1,1,2),(1,1,2,1)%,(1,2,2),(1.3,1)).

pps(b) = pDS(c) = ppS(a) = (1,1,3}
(1,4)

The sequences for 3 are: DDS(a)
DS (e)
v{1,4)).

Hl

and DDSQQ) = ((l,l.B)Q

The distance sum sequence of G, which we demote by D(G), is the

sequence of distance sums of the points of G arranged in increasing
magnitude.

The distance sum sequences of }, %. and 2 aret D(i} = (6,?2,102)
D) = (5.6,8,97) and D() = (7", .

&

Theorem 1. If G and H are connected graphs having the same
distance degree sequence and e w—w8(e) is a onc-to-one function of
() onto ®(H) such that

(ups(a),pDps(p)] = [DDS(u),D0S(v)]
for cach e = {a,b} and 8(e} = {u,v}, then

G and H are J-equivalent.
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Proof. Mirst, if DDS(G) = DDS(H), then G and H have the same
number of points n, the same number of lines q, and conseguently the
same cyclomatie number p. Thus, q/(u + 1) is the same for G and H.

Second, if a point x has distance degree sequence (l'dxl'dxz'

.yd_.y...), then it has distance sum s, =% jdxj' Thus, not only do G

and Hxﬁave the same distance sum sequence, but because 0 is a one-to-one
correspondence from E(G) to B(H) preserving the associated pairs of dis-
tance degree sequences for each line, © induces a one-to-one correspon-
dence between the two multi-sets of products L...,sas g i) T
E...,susv,...ﬁ where 8({a,b}) = {u,v}.

By definition

B(G ﬂ il _ () 1.
U = EI(E%_%LI E(c) 45, and I8 = LRy + 1 B(i) Ve s,

We have already noted that |E(C)]/{(n{G) + 1) = |2(H)/(u(8) + 1). From

the observations of the preceding paragraph we have
-1 — -1

¥, WY =% LEsy.

E(C) a b F(H) u"v

b

Therefore, G ard H are J-equivalent.[]

Note 2. Since the graphs ﬂ and 5 shown below each have 6 points,
9 lines, and the same distance degree sequence at each point, namely,
(1,3,2), the conditions of Theorem 1 are trivially satisfied. Thus, 4

and 5 are J-equivalent and because there are no J-equivalent pairs of

graphs on 5 or less points, we have that 6 is the least order for which

a pair of non-isemorphic graphs can be J-equivalent.

An



Graph j is the non-planar Kuratowski graph K and the graphs
ﬂ and 5 are Bzregular graphs with u = 4 (tetra—cyclié). Two other pairs
5?‘ .J-e;uiva]ent tetra-cyclic (non-regular) graphs on 6 points are shown
below (see 6 and 7, 8 and 2) The points of the graphs are labelled by
the dista.nc; sum ;.t. ;he point.

9 Q
6 7
7 6
% 3
: s
6
7 7
? 8
? ? 7 7
g 5

For the pair of smallest order J-equivalent tri-cyclic (1 = 3)
graphs we exhibit the two 6-point graphs 10 and 1l.

7 7 9

?

10 u
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The smallest order pairs of bi-cyclic and mono-cyclic (u = 2 and
pn = 1, respectively) J-equivalent graphs have 8 points. There is one
pair of each type (see 12 and },\3,- 14 and 15).

17 17 17 4
\ 11 11 11 Il
17 .

W 1
i [
¥ 7 = ‘
18 12 3 18
18 18 18 ¢
12 12 >
I 12
12 T2 s i
18 o 18 15 o183

A graph is called distance degree regular (DDR) if each point in

the graph has the same distance degree sequence (see [8]).

Corollary la. If G and H are connected DDR graphs having the same

distance degree sequence, then G and H are J-equivalent.



Proof. Since G and H have the same number of lines and the distance
degree sequence is constant and equal for all points in both graphs any
one-to-one function of E(G) onto E(H) is of the form 6. Thus, by
Theorem 1, G and H are J-equivalent.[]

Note 3. Same distance degree sequence (Hhich implies same dis-
tance sum sequence) does not imply same J-Index. E.g., the following
graphs lé and 17 have the same distance degree sequence. Namely,
DDS(%Q)N: DDS(ii) = ((1,3,1)2,(1,2,2)3). However, these graphs are not
Jueqazvalent . o

3(16) = %(% + % +3) = 2.19%
= 5.6 = --6—- = see : Figure n
J(_};) = §(JT_0) 2(J§6) 2.1909  (see [5; Figure 1] and [6])

This example simultaneously illustrates that 5 is the smallest
order for which there exists a palr of connected non-isomorphic graphs

having the same distance degree sequence or the same distance sum sequence

(see [9]).

6
6
5 5
[
5 - 5
€ é 6

16 17



Corgllary 1b. All r-regular, diameter 2, graphs of order n are

J-equivalent.

Proof. The distance degree seqguence of an r-regular, diameter 2,
graph of order n is ((1,r,n - r - 1Y), Thus, every such graph is DDR
with the same DDS. By Jorollary la, all such graphs are J-equivalent-ﬂ

Corellary lc. The complements of all r-regular graphs of order n

having diameter > 3 are J-equivalent.

Proof. The complement of an r-regular graph of diameter > 3 is
an (n - r - 1)-regular graph of order n having diameter 2 (see [10;
Theorem 2, p. 2]). Thus, by Corcllary 1lb, all such graphs are J-equiva-
lent.D

Wote 4. Same distance sum sequence does not imply same distance
degree sequence. E.g., the graphs 18 and MQ shown below have the same
distance sum sequence. As was noted by Z. Miller ([11; p. 316] and [12])
these form the unique smallest order pair of trees having the same dis-
tance sum sequence. However, %2 has a point of degree 5 whereas 18 does

not, consequently, DDS(}B # DDS(19)

23 23 29 23 23
2L
29 21 1s Ty Bl 29 15 15
23 23 29 23 23
18 19



Corollary 1d. [t +. and H are connected graphs having the same
distance sum sequence and ¢ —8(e) is a one-to-one function of E(G)
onto B(H) such Lhat e

Lsav '-'*b] = Lsunsv,J
for vach e = {a,b} and 8(e) = {u,v}, then

G and H are J-equivalent.

Troof. See the proof of Theorem 1. If hypothesis is satlsfied,
then 0 and H have the same number of points n, the same number of lines
q, and consequently the same q/ﬁl + 1) value. Furthermore, 6 induces a
one-to-one correspvondence between L...,sasb,...] and L...,susv,...j.

“hus, J(G) = J(H).[

Note 5. Applying Corollary ld we observe that the trees of Note 4
are J-equivalent. Furthcermore, by checking all trees of order <9, it is
found that tiesc 10-point trees Torm the unique pair of smallest order

J-equivalent trees.

3. Some Construction FMethods

Thers are methods for constructing pairs of non-isomorphic graphs
havirg the

(1) same distunce degrec sequence
or

(ii) seme distance sum sequence.
Such pairs of graphs are good candidales for having the same J-Index.

Althous. (1) implies (i1), the two corstruction methods, which
are descrived below (see Theorems 2 and 3), yield different types of
grarhs, Thus, both methods should be considered if one is interested in
Tirving J-equivalent graphs.

Tnzorems 2 and 3 are obtained from P, J. Slater [117.



Theorem 2. Let A be a graph such that points a; and ay in A
have the same distance degree sequence. Let hl be a point in a graph B1
and h2 a point in a graph B2 such that bl and b, have the same distance

2

degree sequence in Bl and B2 respectively.

If G is the graph constructed from A, Bl’ and B, by identifying

2
2y with b1 and identifying a, with hz and H is the graph constructed
from A, Hl, and BZ by identifying a, with b2 and identifying a, with bl'

then G and H have the same distance degree sequence and consequently the

same distance sum sequence.

Note 6. As an application of Theorem 2 consider the following
graphs:

20

bl
&

Since DDS(al) = DDS(az) = (1,3,4,2) and DDS(bl) 2 DDS(bz) = (1;2,2)
we can construct graphs gg and 24 as instructed in Theorem 2. The open
points clearly indicate the locations of graphs 21 and 22 Thes graphs,
originally constructed by P. J. Slater [12], have the same distance degree
sequence. In addition, they determine 18 to be the smallest order example



found to date of a pair of non-isomorphic trees having the same dis-

tance degree sequence.

& %

2 2
Theorem 3. Let A be a graph such that points ay and a, in A have
the same distance sum. Let hl be a point in a graph Bl’ b2 a point in a
graph BZ' and such that Bl and E2 have the same number of points.
f G is the graph constructed from 4, Bl’ and B2 by identifying
ay with hl and identifying a, with b2. and H is the graph constructed
from A, By, and B, by identifying a, with b, and identifying a, with bl’

then G and H have the same distance sum sequence.

Note 7. If in Theorems 2 -and 3, the points aq and az are non-
equivalent and the graphs (Bl.bl) and (BZ’bZ) are non-isomerphic as

rooted graphs, then G and H are non-isomorphic.

Hote 8. Since same distance degree sequence implies same distance

sum (see proof of Theorem 1) the graphs 59 through g& also provide an



illustration of Theorem 3. However, a sharper illustration is obtained

if one uses the graphs:

54
o . 2 a,
B
by
25 26 2

R

Since D(al) = D(a2) = 8, we can use Theorem 3 to construct graphs 5,@
and 29.

28 22

[

These graphs are precisely graphs 18 and 19 of Section 2 and, as noted
there,the unique smallest pair of trees having the same distance sum

sequence.
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h. Least Order Pairs of J-Equivalent Non-Isomorphic 4-Trees
We have determined by calculation of the J-Index that there are

no J-equivalent pairs of 4-trees on < 11 points.

By applying Theorem 3 we have obtained six pairs of 4-trees which
pairwise have the same distance sum sequence. Then, noting that a function
© of the type required in Corollary ld is readily obtained for each of
these pairs, it follows that these trees are pairwise J-equivalent. That
there are no other minimal order J-equivalent 4-trees was confirmed by
calculation of the J-Index of all 4-trees with up to 11 points (no de-
generacy found) and of the 355 U-trees on 12 points (six degenerate pairs
found).

Starting with the six 4-trees 30 through 35, we use Theorem 3,
Corollary 1d, and graphs g@ and 27 to“';btain theM;bove mentioned six pairs
of J-equivalent U-trees on 12 po;ats (see 36 through 47).

=S



19 20 18
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43 '3 51 51 4l
33 41 13 3 3
us 35 27| 2 29 33| &3 w5 35 22| 2 29 BVM
b2 43

48 38 30 40 40

48 38 30 24 26 30 40

4¢

85

Note 9. The trees constructed a.bSVe are not arrived at uniquely.
For example, using the same method, trees 38 and 39 can be derived from

L8

2§. and 27 or from 25, 49, and 50.

23
\1? 15 L5 lZ 2].. ZZ
/ 2 25

23

48
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48 comblned with 26 and 27 yields:

>7q—//\

Combining 25,




%. Comparision with Randid's Molecular Connectivity

The topological index X, introduced by M. Randid [3,4] and called
the molecular connectivity, had the lowest degeneracy among all previous
single topological indices [13]. This index X is based on point degrees

deg a, deg b of adjacent vertices a, b, and is defined

1
&) =2 —
x( ) E(C) J{deg a.ﬂdeg )
where {a,b} € B(G).
In order to make comparisions with J, we recall from the litera-
ture [4,13] or we determine for the purpose of this paper the following:
The smallest order ¥ -equivalent trees have 8 points (see 2,]5, and

52, 53 and 54). There are just two such pairs among the 23 trees of order

8 and as can be seen these are 4-trees.



Among the 29 mono- or bi-cyclic graphs on 6 points and degree no
greater than 4, there exist two pairs of X -eguivalent mono-cyclic graphs
and three X-equivalent bi-cyclic graphs (see 55 and 56, 2,5, and 58; 95»,2'
gg, and N@;L)

55 %
[ ] L 2
57 58

59 0 61



il

By way of comparison, J starts to become degenerate for trees of
order 10 (one pair out of 106 such trees), for L-trees of order 12 (six
pairs out of 355 4-trees), and for mono- or bi-cyclic graphs of order 8
{two pairs out of 250 such graphs).

¢learly, J is mich less discriminating than X. It should be recalled
that, according to a comparison between all previously defined topological
indices [13], Randid's index X was among those with the lowest degeneracy.
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