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Abstract

The Kekulé VB structures of a group of benzenoid hydro-
carbons containing four-membered rings are transformed into
the subspace of their double bonds Lo produce the corres-—
ponding submolecule graphs/. Spectral moments are computed
for these graphs up to eighth power. Comparability condi-
tions of Miurhead are usced to order the partial sums result-
ing from spectral moment codes. The resulting orders re-—
produce orders of Kekulé siructurcs based on their Kekulé
indiccsz, and conjugatcd circuits® within certain defined
intervals of submolccules. Mathcematical properties of
spectral moments of this eclass of comgounds are introduced
and a relation to Clar sextet theory!™s 13 is given.

INTRODUCTION

At the beginning of (his century, Fries1, on purely
empirical grounds, formulated his famous qualitative rule
which states that the most stable Kekulé type structures are
those with maximum number of benzencoid rings. Many years
later, a group of graph—theorist52 assigned indices to the
individual Kekulé structures, called Kekulé indices, K(L),
by projecting occupied MO's on a space definced by functions

which characterize individual C=C bonds, selected to

*
Author to whom correspondence is made at: Faculty of

Pharmacy, Kasr LEl-Aini Street, Cairo, Lgypt.



- 192 -

correspond to formal valencce structure to be weighed rela-
tive to other Kekuld structures in the set. Let N be the
number of €=C doublc bonds in a particular VB Kekulé struc-

ture, then its K(L) is approximately given by cqn. (l),

viz.,
. 1 - 5 3
k(L) = 35 1 (a; + a4+ 2p, ;) (1)
(i,Jj)eL
where 's are charge densities and p's arc bond orders. The

summation includes only atoms i and j which are juined by
double bonds in the given Kekulé structure, L. This index
has so far proved consonant with Fries rule1 and with
experimental Fuctsz’J; furthermore it illustrates an overlap
between MO and VD theories . Since graph-theoretical,
G.T., invariants are c¢ssentially VB characters, one is
tempted to associate a G.T. invariant to setl of Kekulé
structures and sec if it reproduces the same order as pre-
dicted from their K(L) indices. There arc threc interest-
ing aspeccts of this problem, viz. i) Its MO-VB implications,
ii) 1t deals with the subjcct of ordering of graphss and
iii) It requirecs certain novel codings of the individual VB
struclures. The revival of interest in VB methodsh using
powerful mathematical apparatus of graph theory, together
with the importance of ecyclobutadiene derivatives from both

3

theorelical and experimental inlerests” justify this work.

GRAPH-THEORETICAL METHOD

1. Codification of Kekuld structures:

Ordering a set of graphs rcquires carrying out certain
comparability testss (see later) on certain sequences of
numbers which might be associated with cach graph. Since
Kekulé structures arc no more than double bond permuta-
Lionsh, one way to codce them is to list a series of numbers
representing the positions of double bonds in the relevant
structurej, E.g. the following VB structure would have the
code (1-2, 3-4, 5-6, 7-8, 9-10, 11-12). Such a code,



however will depend on the way of labeling of the Kekulé
structure and so cannot be regarded as an invariant of the
permutations of double bonds. Another approach to coding
Kekuld structures makes use of the theory of conjugated
circuits of Randiéé. To do this, however, one must deal
with Kekuld structures having only one type of conjugated
circuits, e.g. Rm’ standing for ecircuit sizes ol 4m+2 pi
electrons or Qm for 4m-circuits. In either case cone lists
the numbers of circuits of different sizes in an ascending
order. Since our cyclobutadienes possess two Lypes of
circuits, viz. Rm and Qm this method cannot be adopted.
Therefore one must look for a way of converting double-bond
permutations into connected graphs; in which case the topo-
logy of the resulting graphs, representing the set of VB
structures of a hydrocarbon, will be invariant of the
particular permutation. A simplec way of doing so is to
replace double beonds by vertices, annihilate single bonds,
and connect any two vertices thal correspond Lo two double
bonds scparated by one single bond in the original L(:K).

Thus, c.g.

It scems that JoeJ_a7 was the first to generate these graphs

Hw

s(K)

and called them submolecule graphs, S(K), sinece they result
when a Kekulé structure is transformed into the subspace of
its double bonds. A relation has been recently established,

by one of the authorss, between connectivities9 of such
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S(K)‘s wnd K(L) valucs of the corresponding VD siructures.

We now postulate that the MO charactlers of the individual

Kekulé siructures arc reproduced by the G.T. characters of

S(K) graphs associated with them. Naturally the S(K)'s

are quitc convenient rvepresentatives ol Lhe mathematical
states which the VB structures deserihe, and thus any code

which might be associated with an S(k) will also represent

the individual L which generated that S{K). We choose in
this work gelf-returning walks to code ouvr 5(K)'s (and
whenee Lheir corresponding Kekuld VB structurcs). There

are at least two reasons for ouY choice, viz., a) Random
walks arc easy quantities to compute, since they involwve
only matrix multiplications, b) These quantities have been
extensively used in physics and biologylo, but so far only

5 o 11
Onc.: (as far as we are Conterﬂﬂii) in chemistry .

2. Computation of self-rclurning walks of S(K)'s:

First we define1l a random walk in a graph as a
sequence of edges which can be continuously traversced,
starting from any vertex and ending on any vertex and allow-
ing repeated use of thc same edge or edges. When the
random walk starts and ends at the same vertex it is called
a self-returning walk. Such walks are easy to enumcrate by
considering different powers of the adjacency matrix, A of
the S(K) graph. Thus the elcments of the matrix ﬁk are
interpretced as walks of length k. In this work we computed
A, gg. senn A (il = 18 The trace of Ak, Ezgk, (i.e. sum
of its diagonal elements, k being an integer) are called

spectral moments of the graph and will be designated herc as

Sl' Sps emaes B (Where s, = tr &1, 40 o iy W s ).
Thus every S(K) will be coded by a sequence of integers:
(sl, Sy e 58) which we will assume to reflect the mathe-

matical state represcnted by the corresponding L.

3. Comparability tests of S(K) egraphs:

Let S(K) and S(K') be two submolecule graphs to be

compared and ordered; and let their spectral moments be
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defined by the sequences:

(sl, Sps wree 58) a?d (s;, sé, e Sé) respectively.
According to Muirhead” S(K) is comparable with and precedes
S{K') only if:

ETE C

s+ 8, 285

i-1 i-1
2 ; : sl
The last cquality, however, is optional 7.

RESULTS

FIG 1 shows S(K)'s studied in this work.

TABLE 1 contains the ldirst eight spectral moments of the
S{K)'s, molecular resonance energies of the individual VI
structures bascd on conjugated circuits, and their K(L}
indices. The table also lists number of edges, e, in each

S(K).

To discuss some of the mathematical properties of Lhis class
of benzenoid hydrocarbons containing four membered rings we

introduce Lhe conceptl of a degenerate transformation within

a set of S(K) graphs:

Definition
An edge in an S(K) is characterised as an (i,j)-edge
where i and j are degrees|3 (i.e. valencies) of ils two
~

vertices. A degenerate transformation, T is defined here

as rearrangement of an (i,j)-edge from vertex j to an
adjacent vertex k to produce another S(K) belonging to the
same hydrocarbon. (a vertex j is one the degree of which
is j, and so on). A ¥ which changes an (i, Jj)-edge into
an (i,k) edge will be denoted as [j,k] transformation.
Examples of degenerate transformalions in naphthola] eyclo-

butadiene are the following;
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1b 14 1d

where the alphanumerics of the S(K)'s correspond to thosc of
F1G 1. One observes that la is not related to any of the
rest of S(KYf's of this hydrdtarbol ‘,{ o> e

MATHEMATICAL PROPERTIES OF SPLCTRAL MOMENTS OF BENZENOID
HYDROCARBONS CONTAINING FOUR-MEMBERLD RINGS:

First we observe that the set of S(K)'s belonging to a
particular topology i.e. corresponding to the VB states of a
hydrocarbon may be, arbitrarily, subdivided into subsets,
such that the members of each subset are interconvertivple to
one another by an [i,j] "‘E' . We illustrate this observation

using the graphs studied and shown in FIG 1.

Oﬁ —>  {1a} , {ib, 1c, 14}

— {21, 2b} ; {2¢, 2d, 2¢}

?Ig — {3a, 3} {3c, 34, 3¢}

N {ha, b, 4y {ha, be, uf};

{hg, 4ny; {ui}

The members in braces are interconvertible to one another

by degenerate transformations. Within our limited sample



of studied S(K)‘s one obscrves that members which are dege-
nerate transformates of one another have ideantical number
of edges and their corresponding VB Kekuld structures have
identical numbers of conjuguated circuits (C.f. Table 1).
The above observations arc uscful in siudying the mathema-
tical propertics of Lhe spectral moments of this class of
hydrocarbons. First we list and prove some properties of
the self returning walits that are general to all graphs
(propertics 1-4) and then we cite three properties specific

to this class of Kekulé structures (properties 5—7).

2 gi_ii Z 1) is always an even number. This property
might be proved by considering the sum oi the diago-
nal elcments of matrices raisced to various powers.

k . .
Let a?i = (A )ii be a diagonal matrix element in ék
(i.e. a?i is the number of self returning walks from
vertex i to itself possessing length k). As an
illustration we consider k = 2. The following
expressions might be written for the diagonal elements
2

in A%:

2 2 2 2
Pl = Byl & gl™ & v o

2 2 2 2
(A )22 = (a21) + (a22) ey (a2n)

2 2 2 2
(a )nn B (an1) ¥ {anz) T e 3 (dnn)

where n is the dimension of A. Furthermorc since A is a

symmetric matrix in which, by definition, aii = 0; 1€i<n,

the above equations when summed take the following form:

n

2 (2 2 2
tr 52 =8, = ? 1 (a )ii - 2(a|2) + Q(alj) + o + 2(a1n) +
i=

2(&23)2 . o+ 2(a )2 & oo F

)2
i

2n

2(an~1,
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Thus 52 is the sum of pairs of terms, whence it should be
even. This re¢sult is general and might be proved for

higher values of k in a similar way.

20 é?i is always even for odd values of k

The reverse is not true, however, i.c. afi is not
necessarily odd for even values of k. To illustrate
this property we list aii values for the first eight

powers of A for graph Z2a:
5
3 4
2
1 7 ®
2a

i 245 “ii i a:i azi ii; i “_E;

1 0 2 2 11 20 79 178 616

2 0 5 4 17 Lo 127 344 1025

3 O 3 2 20 26 145 260 1102

4 0 3 0 14 b a4 68 571

5 & 1 0 3 o 14 4 8l

0 2 0 11 6 72 82 513

74 0 4 4 26 Ik 193 408 1503

Y:o 18 12 102 140 714 1344 54k
where the last row is the sequence of si's, T €18 i.e.

thce code of this submolecule.

To prove this conjecture we consider cach of two possible
cases scparately. In the first casc S(K) contains no odd-
membered cycles, and consequently aii = 0 for k odd. In
the second case, S(l\) contains some¢ number of odd-membered

cycles. A self returning walk of the odd length k starting
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from vertex i and ending at Lhe same vertex implies il goes
over some {odd) number of odd-membered cycles. As any
cycle could be passed in two opjpositely oriented ways the
above self returning walks appear alvays in pairs. This

proves the conjccture for both cases.

3 Lel ¢ = number of edges in the graph, then 8, = 2e.
This fact results because cvery edge has Lwo vertices,
and every vertex contributes onc sclf returning walk
of length two per edge , thus cvery cdge contributces
two such walks.

Llo Let an be the number ol F-membered cycles in the
graph, then s, = 6nC3. E.g. nC3 (2b) = 2,

Sy (2b) = (6)(2) = 12.
This property is proved as follows: Consider a C') in
an arbitrary graph
1
3 2
First one observes that Sj results only if the graph
contains one or morc CB'S. Lach C3 leads Lo six
sclf returning walks of length thrce cach, viz.
(123), (132); (213), (231); (312) and (321). This
demonstrates the properiy.
o v .
5 The values of 55 arc always integral multiples of

ten.

Proof: First we observe that 35 results from one or
more of the following graphs:



ANA A

. = £ 3 5
1t can easily he shown that each of the above subgraphs
leads to a number of s_'s which is a multiple of 10. Thus
cach of the vertices in C3 contributes 10 se¢lf returning
walks of length 5 cach. These walks for v1, e.g., are:
(r29397), (i32as1), (U31231), (i3i821)s (123921), (i),
(t21321), (121231), (123231), and (i132321).  Thus each c,

denotes 30 s_'s., Similarly v, in g,l contributes 14 self
5 !

|
returning walks to 55. Ten of these walks are the
"endocyeclic" ones of the C, in addition to 4 other walks,
viz. (41h234), (414324), (423414%), and (432414).  EBach of

v, and V3 donates 12 walks of lenglh five. Thesce are 10

endocyelic ones and two others involving v c.g. these two

1
walks for vy are (341423) and (324143). The exocyclic

vertex, v givus two walks of length 5, viz. (lh23h1) and

(143281). Thus g, contains a total of 1Hh+12+12+2 = 40
walks of length 5 each = 55. We can casily compute self
returning walks of length 5 for each of o gB and 05.

Such walks arc assigned to relevant vertices as shown

below
2 2
16 18
16 £ 2
14 2
18 18
sy = 2(2) + 14 + 2(16) = 50 B, = 3(2) + 3(18) - 60
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These walks might be computed by considering the diagonal
elements of the corresponding §5 matrices or inferred
directly from the relevant graphs. E.g. v, in g, is
involved in 16 self-rcturning walks of length 5 each. Ten
of these walks are Lhe endocyclic ones, while the addi-
tional six walks are: (212342), (212432), (2u4s54732),
(234212), (243212) and (234542). Thus, since each of the
subgraphs involved in 55 generate numbers of self returning
walks of length five which are multiples of ten, the pro-

pery is proved.

6° Lct{ S(Ki)’ S(Kj)‘ S(Kk), ...-} be a subsct of degenerate
transformates i.e. each S(X) is transformable to any othcr
member of the subset by one or morc i; operations.
Let IA&H} = absolute wvalue of difference betwecn any two
s, values of two S(K)'s of the same subsct. The following
observatioh is conjectured:

[Asil =in; (n =0, 1, 2, .o 34 =1, 2, cee. 5 7)

We might illustrate the above relation by examining the

subsets of 1, 2, 7, 8-dibenzobiphenylene, (4a-li) of F1G 1

and TABLE 1. Spectral moment codes are given below:
S1 :52 53 54 55 56 ‘7-7

fa: 0 26 24 122 220 746 1708
4 ¢ } ¢ i

94x2 4 5x10 6 7x50
t * ! t

hb: 0 26 18 126 170 752 1330
4 ) + 4

3x2 4 5% 10 6 7x54

_ t t t

Lot 0 26 12 130 120 758 952



s s, s s s s s
! 6

1 2 3 il 5 7
hd: 0 26 12 138 100 890 784
L SO S
x 5x2 x2h 7x14
t .
he 0 26 12 126 110 7h6 882
+ t
hx3 5?2 6x22 7x10
4r: 0 26 12 114 120 G1h 952
; ;
(4x11.5) (63:97‘- 333)
: i
hg: 0 28 2h 160 2%? 1198 2786
+
4 5x12 6x2 7x80
t t t t
4h: 0 28 18 164 220 1186 2226
{hi: 0 28 12 164 180 1162 1988 }

The above typce of relation is sympltomatic of otiher
relations between code integers of other S(K)'s

studied in this work.

Spectral moment of S(K) and Kekulé index of the
corresponding Kekuld VB structurc:

Investigation of Table 1 makes il clear that the order
of' spectral moment codes reproduces the order of K(L)
values within subscts of degencrate transformates.

FIG 2 is a hierarchical diagram of the S(K)'s defining
compound 1, when conditions of Muirhead are applied to
their spectral moment codes. The resulting order
also reproduces the order of molceccular resonance energy

: ; O -
per Kekuld structlure (hascd on conjugated circuits ).
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80 Relation to Clar's scxtet tlleory14

Recently, Hosoya et a1.15

presented a graph-theoretical
analysis of Clar's scxtet theory. Their analysis was, how-—
ever, confined only to polyhex graphs. We introduce the
following definitions to include benzenoid hydrocarbons con-

taining four-membered rings:

R transformation (n =6, 4):
TL

H R,
—_—
T
Ry

Superposition of two Kekulé slructures

In a set of Kekulé structures belonging to a hydrocarbon two
structures might differ only in the oricntation of just one
sextet or one quartet of clcetrons. According to Clar one
can draw a circle representing the scxtet or quartet in the
hexagon or sguare (respectively) concerncd. If furthermorc
double bonds arc converted into single bonds one obtains

various scxlet and quartet patterns. L.g.

(7

(2¢ + 24) —
ot .e
(2a + ze) _— gﬁ

Q
(2¢ + 2e) S @)..



(4a + bb) —_—

(a + ha) —_—

One observes that when two Kekulé structures are related to
one another by an RG or Rh (oz‘ the inverse operators, RG’ Rh)’
their submolecule graphs will be degenerate transformates of

one another i.e.

if RK, = K. ; K, = K, (n = 4; 6)
n i J n j i

then  S(K,) —  g(K,)
i e — J

-~

where T is a degenerate transformation operator defined in

terms of the Rrl (ancl Rn) operators as follows:

S—1
e e
(1) S(Ki) - K,
Hn or Rn
(2) Ki e KJ_ i (n =14, 6)
S
K. —r SkK,
CIE'S (x,)
wherc S_1 converts an S{K) into its corresponding K. i.e.
T = (S‘_1; Rn (or R“); s). As an illustration we consider

the following transformations:

o8 == @

Al !

P P

R
r
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Conjecture
When Lwo Kekulé structures are related by an Rn or Rn

(n =4, 6) they will have adjacent characters (i.u. adjacent
values of K(L) and conjugated circuits), in which case, their
submolecules will be degenerate transformates of one another

and will have adjacent spectral moment codes.

Illustrations:
The following T operations are defined among the sub-

molecules of hydrocarbon 4 (FIG 1),

(4a) Lu,51, (1) Lu,31 e

{

(ue) <R3l ) L3l (4

g) L3l n)  —e= 4(s)

One obsecrves that the values of K(L) and conjugated circuits
of Kekulé structures corresponding to {(lla), (4b) ana (16(:)}
are adjacent (C.f. Fig 2). A similar situation occurs with
subsets of {llf, he, 1Hi} and {iog‘ 141'1.}. The eclements of
each subset generate adjacent codes. Furthe rmore, two
adjacent VB structures of cach subsel gives rise to a Clar

formula with one circle when superposcd, thus:

(4a + hb) e o

but (4a + fic) —= .-.



So we conclude a hierarchy of characters 4a —= Ub —=kc
(but not 4a —= hc -—= 4b). Thus the number of Clar's

circles resulting when two VB states are combined gives an

indication of their relative positions. Thus two adjacent
slates lead to only one circle. Other illustrations might

be infered from TABLE 1 and F1IG. 1.
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Fig. 1
Submolecule graphs studied in this work. They are heavily

drawn inside the molecular gra;hs of the corresponding hydro-

carbons. Relevant graph-thcoretical data arc found in Table 1.
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