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Abstract. For branched and non-branched cata-condensed
benzenoid polycyclic hydrocarbons (catafusenes) algebraic
expressions for the Kekulé structure count K are obtained,
depending on the numbers of condensed hexagons in the linear
segments composing the catafusene.Irrespective of the direc-
tion of kinks,catafusenes with the same sequences of segments
(which we call "isoarithmic catafusenes") have the same
structure count.The procedure takes into account the parity
of the paths between segments: odd paths in the associated
tree lead to incompatible pairs and on this basis formula
(3) is obtained and demonstrated for K,

A numerical triangle,derived by following a zig-zag path in
Pascal's triangle,gives the number of terms in the algebraic

expression of K for non-branched catafusenes.



NOTATION

G = catafusene graph,with vertex set { vi} (4 = Ll;sdaidnsd)

and edge set {el""'ep’El""'En-l}

6® - dualist graph of G,with n vertices correaponding to the

b

n hexagons
Aj = number of hexagons in linear gegment j (} = 1,...,r)
of G
T(G®) = "isoarithmicity tree" - because isomeric catafusenes
with isomorphic associated trees T,such that corres-
ponding linear segments of the catafusenes contain
the same number of hexagons are isocarithmic,i.e.
they have the same number of Kekulé structures.This

tree hag r + 1 vertices labelled x4 and r edges

labelled aj

K or K(G)}=Kekuléd structure count of catafusene

K2 and Ki g = complete graph of order 2 and complete biparti-
.

te graph,respectively
P(u,v) = path between edges u and v in T(G¥®)
P(T;al,....ar) = polynomial (1) associated to tree T
RI(T;al.....ar) = polynomial in terms of a,'s possibly con-
taining redundancies
R(T;al,...,arj = the above polynomial from which redundan-
cies were eliminated
¢ = isomorphism between treesg T
I(T) = set of pairs of incompatible edges in T
wr.k = number of terms in R(G) containing exactly k variables

ay for tree T{G®) with r edges



r Kk 292 r,k

th
F‘ixi

Fibonacci number

f(r,k) = binomial coefficient appearing in (5)
Li = linear segment of G

B(T) = the set of edges in tree T

‘E(T)] = cardinality of the above set

% = set of labels associated with the edges of T



INTRODUCTION

The enumeration of Kekulé structures for benzenoid poly-
cyclic hydrocarbons is important because the gtability and
nany other properties of theame hydrocarbons have been found
to correlate with the number of Kekulé structures.Starting
with the algorithm proposed by Gordon and Davi:onl.many pa-
pers have appeared on the problem of finding the "Kekulé
structure count" X for such hydrocerbons.A whole chapter in
a recent book on chemical graph theory is devoted to this
topicg.

We can mention here only a few authors who contributed to
thias topic: Hosoya's group who introduced the gextet polyno-

6 (8410 B-12

mia13'4(see alsos),Herndon ,YenT,Cvetkovi ,Gutman”

rrinajsticlO, Polanskyl?,Rand1413, schmtatl4, £1-Bas111%,

Cyvinlﬁ.

DEFINITIONS

Polycyclic benzenoid systems (polyhexes) are classified
into cata-condensed (catafusenes) and peri-condenased (perifu-
genes) according to the acyclic or cyclic nature of their
characteristic (or dualist as we now prefer) graphslT_lg.

The present paper will discuss only catafusenes.

411 catafusenes with the same number n of hexagons are
igomeric i.e. they all have the same molecular formula
CAn+2H2n+4'The molecular graph of a cata-condensed benzenoid

hydrocarbon (abbreviated by Gutman as CCB graphll)'will be

named here catafusene graph.Bvery such graph G with n hexagons



- 160 -

has precisely p = 4n+2 vertices and q = 5n+l edges.The ver-
tices of G will be labelled by vl,v2,...,vp and the edges
by °1""‘°p'El""'En—1 such that ey = V4Vyoq for 1 £ 1 ¢

p-1l, e = vpvl and the p-cycle of G: vl‘v2'v3""'vp'v1 is

the pezimeter of G.

The edges el,e?,...,ep of G will be called external and
the remaining n-1 edges El....,En_1 are sald to be internal;
the latter represent the bonds between neighbouring hexagons
of the structure,and are intersected by edges of the dualist
graph.

Dualist graphs of catafusenes are trees whose vertices re-
present centres of hexagons and whose edges link together
vertices corresponding to condensed hexagons,i.e. vertices
sharing two adjacent carbon atoms in the original hydrocar-
bon.In dualist graphs of catafusenes angles are important:
condensation can occur only linearly (at 180°,coded by digit
0) or at angles of 120° and 240° (angular or kinked conden-
sation,coded by digits 1 and 2.respectively)}7'18

A vertex in a dualist graph can have degree one (endpoint
or terminal vertex),two,or at most three; in the latter case

this is a branching point.

We introduce the term "isoarithmic® " catafusenes for non-

isomorphic systems having the same K value as a conaequence

of differing in the topology of annelation only by the direc-

tion of kinks (i.e. only by interchanging some angles of 120°

* Meaning "with the same number",or "with the same count"(of

Kekulé structures)
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with 240°) but leaving unaffected all linear annelations.
Such gystems also have the same sextet polynomial and the

ZO.This is equiva-

pame L-transform of their three-digit code
lent with replacing both digits 1 and 2 in the three-digit
code by letter 1,and leaving zeroces in the code as they
were.Three isoarithmic examples follow with their three-digit

codes; their L-transform is 111.

R WP §

Code : 112
1 1Y 111

For the following two iscarithmic catafusenes the L-trans-

form is 01001.

Code 01001 Q1002

v V

Thus,isomeric catafusenes with the same number n of hexa-
gona are further partitioned into groups of isoarithmic cata-

fusenes.
Let Aj = 4; + 1 denote the numbers of linearly condensed

hexagons in each linear portion (segment) of the catafusene:
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kinks and branching points are counted twice and three times,
regpectively,in Ai + 1 values for each of the branches having
a common vertex of the dualist graph.In the triad I-III of

igoarithmic catafusenes 11 +1 = A2 + 1= A3 + 1 = A4 +1 a2,
and for the subsequent pairs IV and V, A + l= 3,A2 +1 =4,

A, +1 = 2.

3
ALGEBRAIC EXPRESSIONS FOR THE KEKULE STRUCTURE
COUNT OF CATAFUSENES

To every catafusene graph G containing n hexagona we have
associated its dualist graph G® which is a tree having n ver-
tices and n - 1 edges.Now we shall associate to G* another
tree,denoted T(G*),which represents each linear segment of G*
by a unique edge.Hence T(G*) has r + 1 vertices and r edges,
it ¢® contains exactly r linear segments.

Whereas dualist graphs G® are trees with geometric con-
straints (bond angles are important),the derived trees T(G¥)
are normal labelled trees,with the only restriction that their
vertex degrees are at most three.For example,if G and G* are

shown in VI, then T(G¥®) is the tree VII,

VI VII



We shall denote the vertex set of a tree T of order r + 1
by {xl,xz,...,xr+l} and its edge set by E(T); hence iE(T)!
= r.Define an injective function f: E(T) —»A = {a;,a,,...
,ar} which assoclates every edge u of T with a variable
f(u) € /4 ,such that different edges of T receive distinct
literals from set # ,as shown in VII.The function f is a
labelling of the edges of T with labels from 4 .

Any two edges u and v of T having the property that the
unique path P(u,v) of T between u and v has an odd length
(number of edges) will be called incompatible; otherwise u
and v are said to be compatible.

Por the tree VII edges X %, and X4Xg5 are incompatible
since the path P(xlx2.14x5) = X51%, is odd;also XX and
XyXgs XoXq and X4Xg,0T X,Xg and XgXq are examples of incompa-
tible pairs of edges.

Note that the incompatibility relation on the edge set
E(T) of T 18 a binary relation which is symmetric but not
transitive.For example x) %, is incompatible with XyXg § XyXg
is incompatible with xSxT,but XX, and XgXqg is a compatible
pair.

For a tree T denote by I(T) the set of all pairs of incom-
patible edges of T.An edge w is said to lie on the path P(u,v)
if both extremities of w belong to P(u,v).If w does not lie
on P(u,v) we shall write w¢ P(u,v).

For any tree T of order r + 1 we shall define the following
polynomial:

Rl(T;al....,ar) = flu)f(v) wd P(u,v) (f(w) + 1),

w#£u,v

(u,v)€1(T)
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where f: E(T) —» {al,...,ar} »
Now develop Rl(T;nl....,ar) ags a sum of products of varia-
bles 8148py 00058, and apply the following idempotency rule
for the addition:
p+p=0p

for any p = 811812 mp—_— ais,i.e. if two or more identical
producte appear,only one of them is taken into account.

Denote by R(T;al....,ar) the sum of producte derived from
Rl(T;sl.....ar) after eliminating all redundant products with
the idempotency rule and define the polynomial associated
with T as follows:

P(T;81400.,8,) = (f(u) + 1) +1 - R(T;84,...,a,) (1)

u€ E(T)
In order to reduce the amount of computations when we com-
pute R(T;al.....sr) we shall use the following two rules:
15 rule: Let u and v be two incompatible edges of T and
Plu,v) = Y1+¥pseeer¥y-If the degree of y,,denoted deg(y,) is
equal to 2 and deg(yi) = 3,let w be the edge incident to Vi
such that w ¢ P(u,v).It follows that {u,w} 1s also an in-
compatible pair and the contribution of the pairs {u,v} and

{u,w} to RI(T;aI,....ar) equals

£ [£(9) + £0w) + 2(v)E(w) ] [ (I (£(z) + 1)
P(u,v
: # u?v,w

znd rule: Let u and v be two incompatible edges of T and
P(u,v) =y eTpee ¥y I deg(y,) = deg(y;) = 3,1let t be the edge
incident to ¥y and w be the edge incident to yi.such that
t,w ¢ Plu,v).It follows that {u,w}, {t,v} and {t,w} are

also incompatible pairs of T and the contribution of these
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four pairs of incompatible edges to Rl(T;al...¢.ar) equals
[reectrreen) [smsrremzm] [ 1 (eeare)
:E;Pi?ért.w

For example,for the tree VII we find the following pairs

of incompatible edges: 885, 818,, 8585, apa4. 3386, 3436'1‘3'
{xlxe,x4xs} i {1112,1416} " {x2x3.x4xs} i {x2x3,x4x6} .
[x2x4,x5x7} 5 {x4x6,x5x7 1.

In order to obtain all pairs of incompatible edges of T
without repetitions we may first consider an edge u contai-
ning a vertex of degree one of T and complete the liat of
edges incompatible with u.After this we shall delete u from T
and we shall perform the same procedure.

For the tree VII by applying the second rule for the firast
four pairs of incompatible edges we obtain

(a)+ayt+a,8,) (8, +85+a,8;) (ag+l)
Similarly,the last two pairs generate by the first rule
the product
(a1+1)(a?+1)(33+a4+a3a4)36
hence RI(T=BI""'a6) is equal to the sum of these two
products,or
Ry (T3m7,.0008g) = (al+32+alaz)(a4+as+a‘as)(55+1) +
+(a)+1)(a,+1)(ay+a,+aq8, ag .

The development of R, as a sum of products has thirty

productes,but three of them are redundant,namely 818,8¢,8,8,8¢

and a,8,8,8, .In conclusion we obtain:

P(T;al.....ae) = (a1+1)(a2+1)(53+1)(a4+1)(35+1)(a6+1) +1 -



= 166 -

- (315?333436*3132545556+313253“6*31323435+°132a436+3152‘536
+81848,8p 488,858, 48,848, 80 +8,8, 8580481 8,8, +8)8,85+8 88, +
+818,85+818, 808, 8gRc 8,880 48,8, R +8,8,8,+8, 85854898, 80 +
+ala4+alas+32a4&3235+3336+a4as) (2)

It is not difficult to prove in the general case the sim-
plification rules given above.Indeed,for the first rule the
contribution of the incompatible pairs {u,v} and {u,w}
to R1 is equal to
Fu)F(v)(£(w)+1)S; + F(u)f(w)(£(v)+1)S; = f(u) [f(v)+f(w)+
+f(v)f(w)] S;, where S5, = . P(u,v)(f(2)+1) ,8ince

z # u,v,w
£(v)f(w) + £(v)E{w) = £(v)f(w)
by the idempotency rule,

Similarly,for the second rule the contribution of the
incompatible pairs {u,v}, {u,w}, {t,v} and {t,w} to Ry
is equal to
£LE(V) (F(w)+1)(£(£)+1)8, + L)L (W) (£(v)+1)(£($)+1)S, +
+ f(t)f(V)(f(u)+1)(f(w)+1)32 + f(t)f(w)(f(u)+1)(f(v)+l)52 =
[fwseerez@z) ] [£(vI+en+£(N2(0) ] 5,,where

8, = (£(z)+1) ,taking into account the idempotency
e z¢ P(u,v)
z £ u,v,t,w
law for addition.
Theorem.For every catafusene graph G the number K(G) of
Kekulé structures of G is equal to
K(G) = PAT(G®);A; 45,000 04,) (3)

where the expression of P is given by (1),i.e. to the
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numerical value of the polynomial associated with T(G®) for
8y = Ay a, = 12, ces 4B, = Ar,if every linear segment of G

with label ay contains Ai + 1 hexagons for 1s1ic<r,

Proof. Every Kekuléd structure of a catafusene molecule is in
a one-to-one correspondence with a selection of % independent,
i.e., mutually non-adjacent,edges in the corresponding molecu-
lar graph.Any subset of g independent edges in a graph with

p vertices is called a perfect matching of this graph.

Hence every Kekulé structure of a catafusene molecule cor-
responds to a selection of 2n+l independent edges in its as-
soclated catafusene graph.

We shall enumerate the perfect matchings of a catafusene
graph relatively to the possibilities of choice of internal
edges in the matchings.

As ghown by Gutman14,every catafusene graph has exactly
two perfect matchings containing external edges only,namely
{91,93,....ep_1 } and {°2’°4”“’ep } .Let E, = VY4 be an
internal edge of G.Then both paths P1 and P2 connecting vy
and vr:l on the perimeter of G (composed from external edges
only) are odd.Indeed,conasider a hexagon corresponding to a
terminal vertex of the graph G®.If we delete this hexagon
from G,exactly one of the paths Pl and P2 decreases its
length by 5-1=4,hence it conserves its parity.We may repeat
this procedure until we find a graph composed from 2 hexagons
only,and EB is the unique internal edge of this catafusene

graph,hence the two paths between v, and \£ have both a length

equal to 5.
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Since both paths P, and P, have odd length,it follows
that both have a unique perfect matching Ml,reapectively 12.

Therefore there exists a unique perfect matching of G con-
taining edge E_ and 2n external edges,namely Ml""a"{Es} .

Now if we conaider two internal edges EB and Et of G,
there exist exactly two paths P1 and P2 on the perimeter of
G connecting the extremities of Ee to those of Et and having
in common with EB and Et only their extremities.We shall
prove that Pl and P2 are both odd or both even paths of G.

Indeed,EB and E, correspond to two edges of the dualist
graph G®,hence to two edges uy and uj of the tree T(G™).

We have 1 = j if and only if E! and Et belong to the same
linear segment of G.If one of the paths P, or P, contains 5
edges of a hexagon corresponding to a terminal vertex of the
dualist graph G‘.we have seen that this hexagon can be dele-
ted without changing the parity of P1 or PE.Then we may sup-
pose that P1 and P2 do not contain such edges,hence they cor-
respond to the unique path between u; and uy in T(G¥®),

Let Gst be the catafusene graph obtained from G by dele-

ting all terminal hexagons on the paths P1 and P,.It is clear

2
that P1 and P2 contain the same even number of aedges on each
linear segment of Gst and when these patha turn to left or to
right the number of edges of P1 and P2 increases by 1 or by

3, i.e. they change the parity.Hence Pl and P2 have the same

parity in G,opposed to the parity of the unique path Pu -
173
between edges u, and uy in T(G%).

Hence the perimeter of G is decomposed by EB and Et into



four paths: P1 and Pp,havlng the same parity,P3 between the
extremities of Es,and P4 between the extremities of Et.We have
proved in the case of a single internal edge that P3 and P4
are both odd.

In conclusion,there exists a unique perfect matching of

G containing both Es and E_. if and only if Pl and P, are

t 2
both odd,or Es and Et belong to linear segments of G which
correspond to compatible pairs of edges in T(G¥),

We can use a pimilar argument for a set of k < n-1 inter-
nal edges El'Ez""'Ek of G.By deleting the vertices of the-
ge edges we obtain a subgraph H of G and the perimeter of G
decomposes into a collection of pathsa.If the length of every
path in this collection is odd,there exists a unique perfect
matching in H which together with El""’Ek yields a unique
perfect matching in G containing El""‘Ek'

If at least one path from the above collection has even
length,then a perfect matching of G containing the edges
El""’Ek can not exist,.

Any choice of k 2 2 internal edges which decomposes the
perimeter of G into pathes such that at least one path from
these has even length will be called a bad choice.

It is clear that we must reatrict ourselves to choices of
internal edges having the property that no two edges belong
to the same linear segment of G,since otherwise we shall
find bad choices.

The number of all choices of k > 1 internal edges such

that every linear segment of G contribute by at most one



edge to every choice is equal to
A1+A2+ see +Ar+A112+ cee +Ar_1Ar+ e +A1A2...Ar =
= (A1+1)(A?+1) e (Ar+1) = 3L

Since there exist two perfect matchings of G containing
no external edge (case k=0),it follows that the number of
perfect matchings of G is at most equal to (A1+1)(A2+l)...
(A,#1) + 1,i.e. the value of the polynomial I T _ (ewe

u €E(T(G™))
+1)+1 for alzil"“'arzhr'

Because by definition P(T;al,...,ar) ig given by (1),it
remains to prove only that the number of bad choices of in-
ternal edges,such that at most one edge is chosen on every
linear segment of G,is equal to R(T(Gx);kl....,nr).

It is clear that the decomposition of the perimeter of G
contains at leaat one path of even length if and only if the
choice of the internal edges of G has at least two internal
edges E8 and Et that belong to linear segments Ll and L2 of
G,corresponding to a pair of incompatible edges u,v in T(G¥)
and this choice doea not contain any edge lying on a linear
segment of G,which corresponds to an edge of the path Pu,v
between u and v in T(G®).It follows that the labels of the
edges of T(G“),correSponding to the linear segments of G,on
which we can select internal edges such that the resulting
choice ig a bad choice (containing one edge on Ll,ono edge

on L2 and no edge on the segments between Ll and L2) are given

by the development of the polynomial

f(u)t(v) I I (£{w)+1)

weg P(u,v)
w £ u,v
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as & sum of productas of labels,Denoting by
{e(u)e(v) I 1 (£(w)+1) }
w¢P(u,v)
w#£u,v
the set of elementary products of labels of the edges of
T(G®) obtained in this way,it follows that

ko {£(u)E(v) [ I (f(w)+1)} (4)

(u,v) €I(T(G™)) weP(u,v)

w # u,v
will represent all sets of labels assoclated to the edges of
T(G*).corresponding to all sets of linear segments of G which
gensrate bad choicea of internal edges.
Since R(T(G‘);al.....ar) is obtained from Rl(T(G‘);al.....
ar) after the elimination of all redundant products,it results
that the union (4) is precisely [R(T(G‘);al....,ar)} .

But for every bad choice {ai 3By sseayBy } of linear
1 2 k

gegments of G,the number of choices of internal edges on

these segments is equal to the product Ai Ai ...Ai ,8ince
1 2 k

each segment with the label 8y has Ai internal edges for
8 8
any 1<me <k,
Hence the number of bad choices of internal edges with

the aspecified property equals R(T(G®);A .,Ar) and the

19e-
theorem is proved. 1
Corollary. The number of Kekuléd structures of any catafu-
sene graph G satisfies the inequality

K(G) < Cn1+1)(A2+1) ces (A#1) + 1 (5)

This inequality is an equality if and only if: r = 1 and
T(6*) = Ky 3 r=2and T(6¥) = Kyporr=3and TG®) =



= Kl.} ,where graphs K2. K1,2 and K1,3 are shown below.

la_ h],; KI’B

(Note that in this case Ka denoctes complete graph of order

s and not a number of Kekulé structures).

Proof. It is clear that T(G*) does not contain any pair
of incompatible edges if and only if T(G*) is one of the
trees K2, Kl,? or KI.B o

If two catafusene graphs G1 and G2 have isomorphic trees
T(GT) and T(Gg) with r edges,by this method the problems of
finding the number of Kekulé gtructures K(Gl) and K(G2) are
similar,since by a permutation of the variables the polynomi-
al P(T(GT);al,...,ar) is equal to the polynomial P(T(G;);al.
PRRRT- N0

Since the polynomial P(T(G!);al.....ar) depends only on
the tree T(G!),it follows that two catafusene graphs Gl and
G2 lead to isoarithmic catafusenes if there exists an isomor-
phism Y between their assoclated trees T(G?) and T(G;) which
maps every edge u of T(G;) into an edge Y (u) of T(G;),auch
that linear segments of G1 and G2 corresponding to u,respecti-
vely w(u),have the same number of hexagons.

By using this property it follows immediately that the ca-
tafusene graphs VIII and IX are isoarithmic,which is not an

obvious fact by other means.
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VIII IX

Algo,we can easily compute the asasociated polynomial of a
subgraph of G by letting some variables ay vanish in the poly-
nomial P(T(G‘);al,...,ar),see example 5 below.

However,the maximum number of elementary products of varia-
bles in the development of Rl(T(G!);al,...,ar).obtained by
developing each product of parentheses increases exponential-
1y with r,being equal to 27> , 3:27°% (when we apply the
firet rule of simplification for three pairs of Iincompatible
edges such that Puv has length one), or 9.2r—5 (when we apply

the second rule and P,y has length one also).
EXAMPLES

1.For an acene consisting of a single rectilinear segment
with m vertices (4] = m hexagons in the catafusene),formula
(3) affords K = m + 1,a well-known result (cf. tree T = K,).

2.For a phene consisting of two segments with Ai = Al + 1



and A; = A, + 1 hexagons each,one obtains (c¢f. tree T = Kl 2)
d L)

2
K = (A1+1)(12+1) +1
3.For a linear catafusene with three segments,e.g. IV and

V one obtains
K = (A1+1)(A2+1)(A3+1) + 1 -AjAq

E.g.for the pairs IV,V:
Kiy = Ky = 3°4:2 + 1 =(3-1)(2-1) = 23.
4 ,For a branched catafusene with three gsegments conasisting
of the branching hexagon plus AI’AE and AB hexagona,we obtain
K = (A1+1)(A2+1)(A3+1) + 1 (see tree K1'3),
This result was described by Biermann and Schmidt14.
5.For a non-branched catafusene with four segments,formula

(?) yields for 8; = Ay,8, = 0,s3 = As,8, = 0,85 = A3’36 = Ay
K o= (Ag+1)(Ap+1) (Aq+1) (A +1)+1-AAh,-AyAqh,~A  Ay-Roh,
E.g. for the three systems I-III:
By = Bpr e Kppr=le2¥ =1l c21=13,

It can be easily demonstrated that for isocarithmic helice-
nes or zig-zag catafusenes with all Ai = 1 the numbers of
Kekulé structures form the Fibonaccl series,as mentioned by
Cyvinls,and earlier both by Gordon and Daviaonl,and by YenT.

The same expressions are obtained by means of the Gordon-
Davison algorithml for all cases above,but for more complica-
ted systems that algorithm leads to very complicated algebraic
expressions.Nevertheless,the numerical application of the

Gordon-Daviaon algorithml

is fairly simple,and can be imple-
mented by means of a computer program.

Finally,K for VI is calculated to be 456 from (2) and (3).



KEKULé STRUCTURE COUNT IN NON-BRANCHED CATAFUSENES,
AND A NUMERICAL TRIANGLE OBTAINED FROM PASCAL'S
TRIANGLE

By means of the Gordon-Davison algorithml,or using combi-
natorial formulaa7,one may compute rapidly the Kekuld struc-
ture count.However,the algebraic formulas have the advantage
of revealing connexions with other branches of mathematics.

This is illustrated by the Kekulé structure count for
non-branched catafusenes,where the algebraic expression
leads to a numerical triangle which may be obtained from
Pagcal's triangle,

The expression resulting by applying the preceding Theocrem
to non-branched catafusenes,i.e. for examples 2, 3 and 5 and
beyond,has the form:

2y
X = I—I(ai+l) +1 - RG),
i=1

where R{G) is a polynomial expression involving products of
ai's.asaociated with the catafusene graph G.By grouping
these producte according to the number k of ai's,one obtains
Table 1.It can be observed that on going from r to r+l,all
products with k < r-1 appear again,and that new products (all
containing ar+1) appear,

It was shown earlier that R(G) = 0 only for the three
graphs K2, K1'2 and K1'3.

Thue,the problem of the Kekulé structure count for non-
branched catafusenes has a purely combinatorial character,To

gee this,denote by W the number of products containing

rk
exactly k variables a, in the development of R(G),when the



thick line) are denoted by W

values 1s denoted by Wr

i and their sum for
H

TABLE 1. The terms of R{G), above the thick Line, and the num-
bers of such terms fov given r and k (below the thick line) ™
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The numbers in the lower part of Qable 1 (below the

all k



associated tree T(G®) has r edges and by W, = ;Z;z wr,k .
Since every product of R(G) corresponds to a bad choice of

internal edges in the catafusene graph G,it follows that the-

re exists an one-to-one mapping between the set of all pro-

ducte 84 By ..o8y in the development of R(G) and the set of
172 k

all sequences of k natural numbers

3 2 11 < 12< ves < 1k sy
such that at least one of the differences 1a+1 - 13 (1 <8¢
k-1) is an even number,

Thie property of indices of a's may be verified directly
from Table 1.

The lower part of this Table 1 is a numerical triangle of
the numbers Wr'k.We propose to show that it can be easily
constructed from Pascal's triangle of binomial coefficients
presented in Table 2 in a slightly modified form: its last
column of 1's has been deleted,and zig-zag lines have been
marked.All entries in Pascal's triangle are bracketed in

order to distinguish them from the entries of Wr in Tables

Wk
1 and 3,

Table 3 shows how one can obtain the entries of Table 1
from the bracketed binomiml coefficients displayed in Table
2.Fach non-bracketed number in Table 3 is the sum of one or
two non-bracketed smaller numbers (directly above and/or
above-right) and of one bracketed number (directly above).

The bracketed numbers are those following the zig-zag

lines in Table 2 (for illustration purposes,the same types



= 178 =

TABLE 2. Pascal's triangle of binomial ceefficients

depleted of the last column of 1's

(1)
J()E===(2)
" (1):""—";(5)-'-/—(3)
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IV s AV A G
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." /,
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TAZLE 3. The numericzl triangle for the number of terms in
R(G) Lrom 'able 1 (non-bracketed values)
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of lines have been employed in Tables 2 and 3).Thus each
non-bracketed term in Tables 1 or 3 is the sum of one bra-
cketed term (i,e. of one binomial coefficient) with one or
two non-bracketed terms.This property may be expressed as

followa:
wr,k = wr-l,k + wr-l.k-l + f{r,k) (6)
where f(r,k) ie a binomial coefficient,namely

(L(r+k-3)/2j) and |x| denotes the integer part of x.
k-1

The numberg f(r,k) for k > ? generate the zig-zag lines

in Table 2; note that their sum is 0. f(r,k) = Fo1 -1,
k=2

where Fr are Fibonaceci numbers.
The total number of terms wr in Rr(G) displayed on the laat
column at the right of Table 3 obeys the recurrence relation-

shipa:
N LR ("

-1 (8)

Wr = Wr_l + wr_z

W.o=oW, .+ P

The complete proofs of these combinatoriaml properties will
be published elsewhere,

As a final application,let all gegments be compoaed of two
hexagons (A1+1m2).leading to a helicene,or to an isoarithmic
non-branched catafusene,e.g. a zig-zag catafusene.In this
cage,all productas in Table 1 are equal to 1l,so that

K.o=2" +1-W, (9)

where Wr obeys the above recurrence relationships,

Let us calculate with the help of (9) the sum

T+l

r
Kenrthp = (2 *1-Wp ) + (2 W) =2 & g2 -(Wr+1+Wr)

and by virtue of relationship (7) we obtain
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o r _ aTH+2
K + Kr =2 4+ 32" - W + 2 =1 =2 + 1 - Wr+ =

T+l r+2 2

= Krio

i.e. we have demonstrated that in this case we obtain the
same recurrence relation as for Fibonacci numbers Fi;since
KO = 2.K1 = 3 and K? = 5 for benzene,naphthalene,and phenan-
threne,respectively,the correaspondence is

Kp = Frin



—_
B

e A8 e

REFERERNCES
M. Gordon and W.Il.T. Davison, J. Chew. bPhys. 20, 428 (1952).
N. Trinajslié&, "Chemical Graph Theory", The Chemical ubber

Company Press, Doca Raton, Florida, 1982, chzpter 10.

. Li. Losoya and T. Yamzguchi, Yetrahedron Lett. 46%9 (1975).

. N. Ohkami, A. Motoyams, I'. Yamaguchi, H. Hosoyz and

I. Gutman, Tetranedron, 37, 1113 (1981).

. G. W, Wheland, J. Phys. Chem. 3, 356 (183%) ; 1. Gutuan,

lheoret. Chim. Acta, 45, 305 (1977} ; 2. Nzturforsch.

31 a, 69 (1982) ; J. Aihara, Bull. Chem. Soc. dapun, 50,
2010 (1977) 5 51, 2729 (1978;.

W. C. kerndon, Petrahedron, 29, 3 (19Y73) ; J. Chem. Eduec.
51, 10 (1979) ; lsrael J. Chem. 20, 270 (1980) ; W. C.
Herndon and M. L. Ellzey, J. Amer. Chem. Soc. 96, 6631
(1974)

T. ¥. Yen, Theoret. Chim. Acta, 20, 399 (1471).

1. Gutman and D, Ovetkovié, Croat. Chim. Acta, 46, 15
(1974) ; 1. Gutman, ibid., 55, 371 (1482).

1. Gotman and 1. illosoysa, Theoret. Chim., Acta, &ﬁ, 274
(1978).

D. Cvetkovit, 1. Gulman and N. Irinajstié, Theoret. Chim.
Aeta, 34, 129 (1974) ; B. Dzonova-Jerman-Blazil and
N. Prinajsti&, Croat. Chem. Acta, 55, 347 (1382) ;
Computers and Chem. 6, 121 (1882).

I. Gutman, Hathk. Chem. 13, 173 (1982) ; 11, 127 (1981}.

0. L. Polansky and I. Gutmun, Wath. Chem. 8, 269 (1980).
li. Randi&, J. Chem. Soc. laraday 11, (2, 232 (1376) ;

Chen. Phys. Lett, 38, 68 (1376) ; ietrshedron, 31, 1477



20.

= 182

(1575} ; Fure appl. Chem. 52, 1987 (1480).

V. Biermarn and . Schmidbt, lsrzel J. Chem. 20, 312 (1380);
F. kilfeld and %. Sehmidt, J. Klectron Speclr. Helated
Tnenom. 24, 101 {1y81}).

5. Bl-Basil, Caem. Phys. Lett. 89, 145 (1982) ; S. El-DBasil
and i. Gutman, ibid. {in press).

S. J. Cyvin, wath. Chem. 13, 167 (1982).

A. T. Balaban and F. ilaravy, Tetrahedron, 24, 2535 (1968).

. A. T. Bulaban, letrahedron, 25, 24944 {1969).

A. I'. Balaban, TPure Appl. Chem. 54, 1075 (1982].

4. . Baluovan, Rev. Zoumzine Chim. 22, 45 (197().



