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El-Basil‘s concept of parity of Kekulé structures
of benzenoid hydrocarbons is analysed. A more precise
formulation of this "parity" is given. General formulae
for El-Basil’s "algebraic structure count" (which we
call here the EB-index) for several series of cata-con-
densed benzenoid molecules are derived. The ZB-index
may coincide with the number of Keiulé structures, may
be slightly smaller than this number, but can have also

zero or negative wvalues.
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Recently El-Basil® introduced a new concept in
the topological theory of benzenoid hydrocarbonse’5,
namely a novel "parity" of the Kekulé structures.

Vihereas the classical parity concept of Dewar and
Ionguet—Higgins4 predicts equal parity for all Kekulé
structures of a benzenoid system, El-Basil permits
structures of both parity. Whereas the Dewar - longuet-
-Higgins parity concept results from a subtle algebraic
analysis (of the adjacency matrix of the molecular graph
and its determi.nantB as well as of the relations between
Kekulé structures and permutations6), the parity of El-
—Basil is just an ad hoc definition. FEl-Basil’s parity
(in its present formulation) can be applied only to ben-
zenoid hydrocarbons, while no such limitation exists
in the case of Dewar - Longuet-Higgins” concept. The
novel parity concept has certainly some advantages, but

its usefulness in practice remains still to be verified.

The aim of the present work is to offer a more
precise approach to El-Basil’s parity concept and to
try to avoid some of its ambiguities. Since the actual
computation of Zl-Basil’s algebraic structure count is
a rather cumbersome task, we shall present a few general

formulae for certain series of cata-condensed benzenoid



systens.,

Iet B be a benzenoid syste:n5 having ¥ = 4(B)
Kexulé structures. According to Ref. 1, an integer
p = p(k) can ke associated to each Kexulé structure
k of B, such that either p =+1 or » = -1 or
p = C. Although the name "parity" has been vroposed
for p, the mere fact that p can have three different
values indicztes that this name has not been chosen
in a most appropriate manner. A detailed analysis
shows that p should be understood rather as a weight
than as the parity of the corresponding Kekulé struc-—
ture.

The set of the Kekulé structures of B can be parti-
tioned into "dezenerate subsets" according to a const-
ruction which was described in Ref. 1. Iet Dj symbol-
ize a degenerate subset and let dj be its cardinality,

d = 1,24004,m. Then, of course,

dl + d2 + see + dm =K

Now, according to Ref, 1, if dj:> 1 then
p(k) = +1 for all k éDj. If, on the other hand,
dj = 1 then either p(k) = -1 or p(k) = O for the
(unique) Kekulé structure k, Xk éEDj.

In order to distinguish between the cases p(k) = -1
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and p(k) = 0, BEl-Basil uses the count of conjugated

7

circuits’ of the corresvonding Kekulé structure. He

defines that

p(k) = =1 for Kekulé structures "that have identi-
cal counts of conjugated circuits", and
p(k) = 0 for Kekulé structures "with different

conjugated circuit count than the rest

of the set'.

Since "the rest of the set", i.e. the Kekulé structures
belonging to degenerate subsets need not necessarily
possess equal conjugated circuit count, the above defi-

nition requires a slight modificaticn.

ILet ce(kx) be the number of conjugated circuits
in the Kekulé structure k. Then we determine the weight

p(k) as follows.

Definition 1.

(a) If k€& D:i and dj'>l then p(k) = +1.

(b) If x € Dj and dj = 1 and there exists a Kekulé

structure k, & D;, such that 4;7>1 and cclk)) =
= ce(k), then p(k) = -1.

(¢) If x& 1:-j and dj = 1 and there exists no Kekulé

structure k, having the properties described in (b),

then p(k) = O.



Definition 1 is a mabtneratically unambigous re-
formulstion of #l-3asil”s criginal parity concept. In
a similar manner we can now introduce nis "algebraice
structure count™. However, since the name "algebraic
structure count"” and its abbreviation ASC are nowadays
used to denote a different, but related quantityg, in
order to avecid ccnfusion, we propose an alternative

terminology.

Definition 24

The EBR-index of a benzencid hydrocarbon B is

E plk)

k
with the summation going over all Kekulé structures of

EB = EE(B)

the benzenold system B.

The "stability index" 5, proposed in Ref. 1, is
simply the product of K and the EB-index. Since topo-
logical considerations are usually concerned with tne
number of Kekulé structures rather than with its squareB’B,
there seems to be no reason tc prefer the use of the
stability index S over the EB-indeX.

In Ref. 1 arguments are given showing the advan-

tace of the EB-index over the simple structure count K.

It is clear that EB is necessarily smaller than or at



least equal to K. nence =B may be a useful topologi-
cal index in the cases where the structure count crite-
rion provides an overestimate of the actual chemical
stability of the benzenoid hydrocarbon consideredg.
Further work should answer to the question whether or
not tne BB-index correctly reproduces tihe chemical be-
haviour of all (or at least of the majority of) vpenzeno=-
id hydrocarbons.

In the following we determine the EB-index of the
cata~-condensed benzenoid systens Ih' Mh' Nh and 4, ,
where h denotes the number of hexagons. The chemical
formula of all the above four types of cabta-condensed
benzenoid hydrocarbons is Cuh+2H2h+4' Hence Ih, M,

Nh and Ay represent isomers.
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Tt is long known that5’lc

5 A

h +1 1)

1

(L)

K(iy,)

I

(A1) + K(4 5) (23

with K(Ao) =1 and K(4;) = 2. The corresponding

formulae for the number of Kexulé structures of the

molecules Mh and Nh arell

K(lg) =2h -1 (3)
and

K(Nh) =16 h-"72 ()

Theorem 1. If h7>>»3, then

BE(Ly) = 7 - » )
In addition, EB(II) =2 and EB(I?) = 3.

Pr oo f. All the h + 1 Kekulé structures of I
have equal number of conjugated circuits, namely
ce{k) = h for all Kekulé structures. dence n(k) # C.
There are only two pairs (= 4) of degenerate and
{(h + 1) - 44 non-degenerate Kekulé structures. There-
fore EB(L,) = 4(+1) + (h - 3)-(-1).

Bg. (5} follows.

e B dl
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Corollary l.l. Heptecene (h = 7) has zero

ZB-index. The higher homologues of the polyacene series
Lh have negative EB~indices. The chemical meaning of a

negative "algebraic structure count" needs explanation.

Theorem 2, If h?.s,then

EB(Ay) = EB(A ;) + EB(4, ,)

with EB(AB) =4 and EB(AQ) = 8. In addition, A = Ll

and A, = L, and thus EB(Al) =2 and EB(Ae) = 3.

Pr oo f, Theorem 2 is an immediate consequence of the

recursion relation (2) and the following Lenma.

Lemma 2.1. If h>5, then

Pr oo f, We will distinguish three types of

Kekulé structures of Ay, viz. k;, k, and k5.
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Since the double bonds in the last twe hexazons in kl
are fixed, there are just K(Ah_2) Kekulé structures
of the type k;. Tor same reasons there are K(Ah_a)
structures of the btype k2 and K(Ah—i) structures of
the type k;.

The structures X, and k2 belong to the same dese~
nerate subset. Hence p(kl) = p(k2) = +1.

The remaining K(Ah~5) Kekulé structures can be

further classified into three types, viz. kEl’ k32 end

k55'

In k51 and k52 the double bonds in the first two (as
well as in the last three) hexagons are fixed. Conse=-

quently, there are K(Ah—B) Kekulé structures of the



= ]"]8_

type k3l and the same number of Kekulé structures of
the type k52. ivery structure of the type kBl belongs
to the same desenerate subset as the corresponding
structure of the type k52. Hence p(k3l) = p(sz) =

= +1.

The structures of the type k53 have a fixed con-
figuration of double bonds on both ends. Therefore
they cannot have degenerate pairs. This means that
it must be either p(k35) =0 or p(k55) = =1,

Now, an inspection of k3 and k55 shows easily
that the structures of the type k53 have more conju-
gated circuits than the Kekulé structures of A, be-
ing of any other type. This means that cc(k53)2>
> ce(k) for k being of type ki, ko, kz) O Kype
Therefore by Definition 1 (e¢), p(k55) = 0.

We conclude that only the structures of the type
Ky, ¥y, kﬁl and k52 contribute to the BA-index of A, .
Since their numver is K(4, ), K(4y ,), K(Ay o) and

K(Ah-s)’ respectively, we reach formula (7).

gq. €. d.

Corollary 2.2. From (2) it follows

K(ay) = 2 K(&y o) + 2 K(ay o) + K(hy o)
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Hence

Theorem 3. If h»3, then

EB(l,) =2 h -2 ()

Proof. Te 2 h -1 ZXexuléd structures of M.,1 can

be classified into three types, viz. kl, k2 and k5.
-

The number of Kekulé structures of the types kl and k2
is equal and is equal to K(Lh-a)‘ (According to eq.
(1), K(Ih;a) =h -1,) 'fhere is obviously only one
Kexulé structure of the type kj' It is easy to see

(using the techniques of Ref. 1) that kl and k, belong
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to the same dejenerate subset. Consequently, p(ky) =
= p(ka) = +1.

For all Kexulé structures of the type ky and Koy,
cc(k) = h. On the other hand, cc(kB) =2h - 2.
Since cc(kl) £ cc(k5) and cc(ka) £ cc(ka), we con-
clude that P(ki) = 0.

Eq. (9) follows.,

Corollary 3.1, Comparing (3) and (9) we get

EB(I,) = Ic(r.-:h) -1 (10)

From Corollaries 2.2 and 3.1, eas. (8) and (10),
one can see that the difference between the ZB-index
and the Kekulé structure count is negligible in the
case of the compounds A, and V. In the following
theorem we point out a case where the EB-index and the

Kekulé structure count fully coincide.

Theorem 4, If h}S,then

EB(Ny) = K(IN) (11)

Pr oo f is analogous to that of Theorems 2 and 3.
The Kexulé structures of Nh are classified in several

groups and then one verifies that every Kekulé
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structure has a dezenerate pair. ‘his aszns that

p(x) = +1 for all k.

de €. 4Q.

Coroll asny 4,1,

EE(E"‘—h) =16 h - 72

As a concluding remark we would like to emphasize
the following. XZgs. (5) and (9) show that the sB-indices
of the molecules Ih and Hh (i.e. of linear polyacenes and
their monobenzo derivatives) differ drastically. Whereas
EB(Ln) vanishes with increasing h and then becomes nega-
tive (!), ZB(ly)) is only slightly different than K(Mh)
and increases as a linear function of h. This means
that the EB-index, used as a criterion of stability of
benzenoid hydrocarbons, predicts a dramatic difference
in the chemical behaviour of the isomers L and M,
especially when the number of hexagons is sufficiently
large (h = 5 or more), This prediction may serve as an
illustration of the practical value and predictive power

of the novel EBE-index.
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