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RENORMALIZATION AND RESOLUTION OF SINGULARITIES

C. BERGBAUER, R. BRUNETTI AND D. KREIMER

ABSTRACT. Since the seminal work of Epstein and Glaser it is well
established that perturbative renormalization of ulwkati divergences
in position space amounts to extension of distributions alidgonals.
For a general Feynman graph the relevant diagonals formtaiviahar-
rangement of linear subspaces. One may therefore ask ifimatiaation
becomes simpler if one resolves this arrangement to a namoss$ing
divisor. In this paper we study the extension problem ofrifigtions
onto the wonderful models of de Concini and Procesi, whictegaize
the Fulton-MacPherson compactification of configuratioacgs. We
show that a canonical extension onto the smooth model at#aaiith
the usual Epstein-Glaser renormalization. To this end veeansanalytic
regularization for position space. The 't Hooft identitiekating the pole
coefficients may be recovered from the stratification, amaridérmann’s
forest formula is encoded in the geometry of the compactifina Con-
sequently one subtraction along each irreducible comparfehe divi-
sor suffices to get a finite result using local counterternssa &orollary,
we identify the Hopf algebra of at most logarithmic Feynmaapips in
position space, and discuss the case of higher degree ofdiee.
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1. INTRODUCTION

The subject of perturbative renormalization in four-dirsienal interact-
ing quantum field theories looks back to a successful hist@tyanks to
the achievements of Bogoliubov, Hepp, Zimmermann, Epstelaser, 't
Hooft, Veltman, Polchinski, Wilson — to mention just sometioé most
prominent contributors —, the concept seems in principli-wederstood;
and the predictions made using the renormalized pertubatipansion
match the physics observed in the accelerators with tremendccuracy.
However, several decades later, our understanding ofteainteracting
quantum field theories is still everything but satisfyingotMnly is it ex-
tremely difficult to perform computations beyond the verwést orders,
but also the transition to a non-perturbative framework @gdincorpora-
tion of gravity pose enormous conceptual challenges.

Over the past fifteen years, progress has been made, amarg,adththe
following three directions. In the algebraic approach tamum field the-
ory, perturbation theory was generalized to generic (ajrgpace-times by
one of the authors and Fredenhagen [17], see also [29]. Qutliee hand,
Connes and one of the authors introduced infinite-dimeasidopf- and
Lie algebras [19, 34] providing a deeper conceptual undedshg of the
combinatorial and algebraic aspects of renormalizatitsg beyond per-
turbation theory. More recently, a conjecture concernimg appearance
of a very special class of periods [3, 15, 16] in all Feynmaagrals com-
puted so far, has initiated a new area of research [10-1Zwadtudies the
perturbative expansion from a motivic point of view. The maurpose
of this paper is to contribute to the three approaches meedioby giving
a description of perturbative renormalization of shodtaince divergences
using a resolution of singularities. For future applicatido curved space-
times it is most appropriate to do this in the position spaeenéwork of
Epstein and Glaser [17,23]. However the combinatorialfiesst of the res-
olution allow for a convenient transition to the momenturacppicture of
the Connes-Kreimer Hopf algebras, and to the residues ofLPlin the
parametric representation. Both notions are not immegliata/ious in the
original Epstein-Glaser literature.

Let us present some of the basic ideas in a nutshell. Congideuclidean
space-time\/ = R*, the following Feynman graph
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The Feynman rules, in position space, associatedalistribution

up(zy, x2) = u%(azl — I3).

whereu(z) is the Feynman propagator, in the massless e¢gse = 1/2?,
thex are 4-vectors with coordinate$, . . ., 23, andz? the euclidean square
2 = ()% + ...+ (). Note that since:r depends only on the difference
vectorz; — x5, we may equally well consider. () = ur(z,0). Because of
the singular nature afy atz = 0, the distributionur is only well-defined
outside of the diagonaD;» = {z; = z»} C M?. In order to extendir
from being a distribution od/? — Dy, onto all of M2, one can introduce
an analytic regularization, say

u () = ug*(2).
Viewing this as a Laurent series inwe find, in this simple case,

1 coo(x
uix) = =2
with ¢ € R, , the Dirac measure & ands — R, a distribution-valued
function holomorphic in a complex neighborhoodsof= 1, the important
point being that the distributioR, is definedeverywhereon A/2. The usual
way of renormalizing.. is to subtract from it a distribution which is equally
singular atr = 0 and cancels the pole, for example

Up p = (ur — up[woldo)|,—, -
Herewy is any test function which satisfies,(0) = 1 for then-2-[w,] =
—L-. Consequently
Ur p = Ry — Ri[wodo

which is well-defined also @t The distributionu. ; is considered the solu-
tion to the renormalization problem fér, and different choices afy, give
rise to the renormalization group. Once the grépk renormalized, there
is a canonical way to renormalize the graph

1 3
2 4
which is simply a disjoint union of two copies bf Indeed,

ure (21, T2, T3, 04) = ug(11 — T2)ud (03— 14) = (up Qup) (21 — T2, T3 — Ty).

In other wordsy~ is a cartesian product, and one simply renormalizes each
. 2 .
factor of it separately(ur g)(x1, ..., z4) = uf (21 — 22,23 — x4). This
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works not only for disconnected graphs but for instance faso

1 3

F// —

2 4
which is connected but (one-vertex-) reducible, to be ddfiater. Indeed,

upn (11,9, w3, 04) = ud(z) — 22)ug(ze — T4)ud(T3 — 24)

— ®3
= Ur (371 — X2,T2 — Ty,T3 — .T}4)

Again, one simply renormalizes every factorgf on its respective diago-
nal. This is possible because the diagonais, D,4 and D3, are pairwise
perpendicular inV/4. Consider now a graph which is not of this kind:

1 3

" —

29 4

upm (21, . .., 4) = uo(21—20)uo(21—23)uo (2o —23)ug (2o —4 )ud(T3—14).

By the usual power counting we see that. has non-integrable singular-
ities atD34 = {.Tg = .T}4}, at D234 = {.TQ = X3 = .T}4} and atD1234 =

{z1 = w3 = x3 = wx4}. These three linear subspacesidf are nested
(D123s C Da3y C Da3y) instead of pairwise perpendicular. In the geometry
of M* it does not seem possible to perform the three necessaryastbt
tions separately and independently one of another. Foe$t&ftnction has
support on some of sai 234, its support intersects alsBss4 \ Di234 and
D34 \ Dos4. This is one of the reasons why much literature on renormaliza
tion is based on recursive or step-by-step methods. If steanl transforms
M* to another smooth manifold: Y — M* such that the preimages under
[ of the three linear spacdssy, Ds34, D1234 00K locally like an intersec-
tion of three cartesian coordinate hyperplapggys = 0, one can again
perform the three renormalizations separately, and préjecresult back
down to M*. For this procedure there is no recursive recipe needed — the
geometry ofY encodes all the combinatorial information. The result is
the same as from the Epstein-Glaser, BPHZ or Hopf algebraadst and
much of our approach just a careful geometric rediscoveexisting ideas.

In section 2 the two subspace arrangements associated yman&e graph
are defined, describing the locus of singularities, and toeid of non-
integrable singularities, respectively. In section 3 aalyic regularization
for the propagator is introduced. Some necessary techprieedquisites for
dealing with distributions and birational transformasare made, and the
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important notion of residue density for a primitive graptdefined. The
rest of the paper is devoted to a more systematic developneattion
4 describes the De Concini-Procesi "wonderful” models for subspace
arrangements and provides an explicit atlas and stratdicdbr them in
terms of nested sets. Different models are obtained by vgityie so-called
building set, and we are especially interested in the mihand maximal
building set/model in this class. Section 5 examines thibadk of the reg-
ularized Feynman distribution onto the smooth model andisturelations
between its Laurent coefficients with respect to the reguldh section 6
itis shown that the proposed renormalization on the smoattiatsatisfies
the physical constraint of locality: the subtractions meade be packaged
as local counterterms into the Lagrangian. For the modedtcacted from
the minimal building set, this is satisfied by constructidfrom the geo-
metric features of the smooth models one arrives quickly aralogy with
the Hopf algebras of Feynman graphs, and a section reldismgwo ap-
proaches concludes the exposition. As a technical sintgitan the main
part of the paper only massless scalar euclidean theoresamsidered,
and only Feynman graphs with at most logarithmic singuégitThe gen-
eral case is briefly discussed in section 6.4. Questionsrafrnealization
conditions, and the renormalization group, are left foufatresearch.

This research is motivated by a careful analysis of Atiygiaper [1] — see
also [9]; and [4] for a first application to Feynman integialthe parametric
representation — the similarity of the Fulton-MacPhergaatigication with

the Hopf algebras of perturbative renormalization obsing6, 35], and
recent results on residues of primitive graphs and periddsixed Hodge
structures [10, 11]. Kontsevich has pointed out the relegari the Fulton-
MacPherson compactification for renormalization long &8j,[and a real
(spherical) version had been independently developed toy(Ahd again
independently by Axelrod and Singer [2]) in the context oe@hSimons
theory, see for example [33]. In the parametric represiemamnany related
results have been obtained independently in the recent papg which

provides also a description of renormalization in termsimiting mixed

Hodge structures. That is beyond our scope.

An earlier version of this paper has been presented in [5].
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2. SUBSPACE ARRANGEMENTS ASSOCIATED TAFEYNMAN GRAPHS

Let U C R* be an open set. BP(U) = Cg°(U) we denote the space of
test functions with compact support &i with the usual topologyD’ (U)
is the space of distributions iri. See [30] for a general reference on distri-
butions. We work in Euclidean spacetimé = R? whered € 2 + 2N =
{4,6,8, ...} and use the (massless) propagator distribution

1 1
1 U\ T) = - d—2
@ (@) =2 (02 + ...+ (z¥1)?2) =

which has the properties

(2) up(Ar) = N "up(z), N e R\ {0}
and
(3) sing supp uo = {0}.

The singular support of a distributianis the set of points having no open
neighborhood where is given by aC'* function.

Let nowI' be a Feynman graph, that is a finite graph, with set of vertices
V(TI") and set of edge&'(I"). We assume thdt has no loops (a loop is an
edge that connects to one and the same vertex at both en@slreJhman
distribution is given by the distribution

(4) UF(Jfl, e ,.T}n) = ]‘_[uo(ﬂ?Z — .T}j)nij

1<)
onM™\U,-;D;; whereD;; is the diagonal defined by, = =; andn,; is the
number of edges between the verticesd; (For this equation we assume
that the vertices are numberédl’) = {1,...,n}). A basic observation
is thatur may be rewritten as the restriction of the distribut'mﬁ{E(F)| €
D'(M'EMI) to the complement of a subspace arrangement, contained in a
vector subspace df/'*("! as follows.
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2.1. Configurations and subspace arrangements of singularitieslt is
convenient to adopt a more abstract point of view as in [1Ht £ be a
finite set andR” the real vector space spannedylf V is a vector space
we write V'V for its dual space. Similarly, it € V we write z" for the
dual linear form. An inclusion of a linear subspage: W — R¥ is called

a configuration SinceR” comes with a canonical basis, a configuration
defines an arrangement of up|t@| linear hyperplanes i’ : namely for
eache € FE the subspace annihilated by the linear farfiy,, unless this
linear form equals zero. Note that different basis vectoes £ may give
one and the same hyperplane.

Given a connected gragh temporarily impose an orientation of the edges
(all results will be independent of this orientation). THisfines for a ver-
texv € V(I') and an edge € E(I') the integer(v : e) = +1if v is
the final/initial vertex ofe, and (v : e) = 0 otherwise. The (simplicial)
cohomology ofl" is encoded in the sequence

(5) 0—R-SRVO 2, REO) _ FYT,R) — 0
with c(1) = 3° cy v, 0(v) = 3 c pry(v : €)e. This sequence defines two
configurations: the inclusion @bker ¢ into R”(™) | and dually the inclusion

of H,(T',R) into R¥(MY . We are presently interested in the first one, which
corresponds to the position space picture.

It will be convenient to fix a basij of coker c. For example, the choice
of a vertexvy, € V(I') (write V; = V(I') \ {vo}) provides an isomorphism
¢ : RY — coker ¢ sending the basis elementc 1} to v + im c. We then
have a configuration

(6) ir =06 : RV — RFM),

Eache € E(T') defines a linear form"ir € (R'?)Y. It is non-zero sinc&
has no loops. Consider instead (&'°)" the vector spacé)M ')V where
M = R? For eacte € E(T") there is ad-dimensional subspace

(7) A, = (spaneVip)®?

of (M"°)¥. We denote this collection aFdimensional subspaces(df/*°)"
by

(8) C(T)={Ac:e€ E(I)}.

Note that thed. need not be pairwise distinct nor linearly independent. By
duality C(T") defines an arrangement of codimensisubspaces in/"°

9) Mpb Ty = ) AL
)

ecE(T
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where A is the linear subspace annihilated Hy. The image ofc®? in
MV ™) is the thin diagonalA. It is in the kernel of all the:Vir, and there-
fore it suffices for us to work in the quotient spaager c. By construc-
tion AL = D;; + A wherej and! are the boundary vertices ef In par-
ticular, if ' = K, is the complete graph on vertices, then it is clear
that M,? (K,) is the large diagondl); ; D;; + A. The compositionb :
MY®) — MV /A — MY isgivenby®(zy, ..., 2,) = (T1—Tn, .- ., Tpo1—
xn), x; € M, where again a numbering(I') = {1,...,n}, vy = n, of the
vertices is assumed.

For a distributionu on MY constant along\ we writeu = ®,u for the
pushforward ontd/"°. We usually writgzy, . . ., z,,) for a pointin/ {1},
wherexz; is ad-tuple of coordinates?, ... z¢~! for M. Similarly, if f €

(RY)V then f°,..., f~! are the obvious functionals oi/"® such that

fEr=(f0 .

2.2. Subspace arrangements of divergence®Now we seek a refinement
of the collectionC(I") in order to sort out singularities whetg is locally
integrable and does not require an extension. In a first seegtabilize the
collectionC(I") with respect to sums. Write

(10) Csz‘ng(r) = {Z Ae; 0 - E'C E<F>} :

ecE’

This is again a collection of non-zero subspace&\éf?)'. A subset?’ of
E(T") defines a unique subgraptof I' (not necessarily connected) with set
of edgest(v) = E’ and set of vertice¥ (v) = V(I'). Each subgraph of

' determines an element

(11) A=) A
e€E(y)
of Csing(I'). The mapy — A, is in general not one-to-one.
Definition 2.1. A subgraphy C T'is calledsaturatedf A, C A, for all
subgraphsy’ C I' such thatE(y) € E(v').
It is obvious that for any givery there is always a saturated subgraph,
denotedy,, with A, = A, . Also, A.NA,, = {0} foralle € E(I')\ E(vs).

Definition 2.2. A graphT is called at most logarithmidf all subgraphs
v C I satisfy the condition dim H;(y) — 2|E(v)| < 0.

Definition 2.3. A subgraphy C TI' is called divergentif ddim H; () =
2|E(y)|.
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Proposition 2.1. LetI" be at most logarithmic. H C T is divergent then it
is saturated.

Proof. Assume thaty satisfies the equality and is not saturated. Then
there is are € E(v;) \ E(y). Sincey andvy U {e} have the same num-
ber of components but U {¢} one more edge, it follows from (5) that
dim H, (y U {e}) = dim H; () + 1. Consequentlyd dim H,(y U {e}) =
2|E(yU{e})| + 2 in contradiction td" being at most logarithmic. O

LetI" be at most logarithmic. We define
(12) Cain(I') = {A,; 0 C v C T, ~ divergen}
as a subcollection d;,,,(I"). It is closed under sum (becausen H; (v, U
v2) > dim Hy(y1) + dim Hy(72)). It does not contain the spa¢e}. In the
dual, the arrangement
(13) Myb,(T) = U Ax
0CHCr
ddim Hy (7)=2|E(7)]

in M"Y describes the locus where extension is necessary:

Proposition 2.2. LetI" be at most logarithmic. Then the largest open subset
of MY ¢ MP® to whichul'"™)' can be restricted is the complement of
M° (T). The restriction equalg. there, and the singular support af. is

the complement of/;2 (') in M,?, (T).

Proof. Recall the map defining the configuration (6). It provides
an inclusioni® : MY — MF®) Wherever definedy, may be written
up(@1s - o) = [eepey o (2, (v e)zy) with Vo = {1,....n — 1}.
Sinceir(v) = > (v : e)e,in coordinatesr (&, ..., &—1) = (>, (v: e)fv)eeE(F),
it is clear thatu, = (z’l@d)*u?'E(F)l wherever it is defined. As by (3),
sing suppug = {0}, the singular support ott?'E(F” is the locus where
at least onel-tuple of coordinates vanishesg! = ... = z%~! = ( for some
e € E(T). Its preimage undei? is the locus annihilated by one of thg,
whence the last statement. For the first statement, we hawothat for a
compact subsek” C M0 the integraluy|x[1] = [, up(x)dx converges if
and only if K is disjoint from all thed, for v C T such thatl dim H, () =

2|E(v)]. Assume thats N <A$ \U,.cy Ai) # () for somey. Write uy. =

HeEE(’ys) u0(2v<v : €).Tv)f Wheref = HeEE(F)\E(’yS) u0(2v<v : €).Tv).
The distributionf is > on A2 \ U, .., A5 sinceA. N A, = {0} for all
e € E(I')\ E(vs). The integralf,. up(x)dx is over ad(n — 1)-dimensional
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space. The subspaeﬁs is given bydim A, equations. Each single (z)

is of ordero(z?~%) asz — 0, and there arek (v, )| of them in the first factor
of up. Hence the integral is convergent onlyiin A, > (d — 2)|E(~s)|,
which is the same &3 E£/(v;)| > ddim H;(~,). Conversely if this is the case
for all v, C ~, then the integral is convergent. Our restriction to satdat
subgraphs; is justified by Proposition 2.1. O

From now on through the end of sectionl5is a fixed, connected, at most
logarithmic graph. The general case where linear, quaxratc. diver-
gences occur is discussed in section 6.4.

2.3. Subspaces and polydiagonalsLet againy C T, that is F(y) C
E(I'") andV(y) = V(I'). Recall from the end of section 2.1 that

(14) o' (A = () D.
e€E(y)

with the diagonald. = D; for j andl boundary vertices of. An inter-
sectionﬂeeEm D, of diagonals is called polydiagonal

Just as in (5) we have an exact sequence

(15) 0 — H(7,R) <5 RY® 24 REG) — [1(4,R) — 0

with ¢, sending each generator &°(v, R) (i. e. , a connected component
C of v) to the sum of vertices in this compo.nem, — ZUEC’ vandd,(v) =
> _ecr(y (vt e)e. Itis then a matter of notation to verify

Proposition 2.3.

(16) (A7) = ker s,
O

A polydiagonal® ' (A7) corresponds therefore to a partitio(y) on
the vertex se¥/(I") as follows: ce(vy) = {Q1,. .., Qx} with pairwise dis-
jointcells@, ..., Qr C V(I') such that the vectors
(17) wi=1,..k

veEQ;

generateker o,

In other words,cc(v) is the equivalence relation/partition "connected by
~" on the setV(I'). If I' = K, is the complete graph on vertices, this
correspondence is clearly a bijection

(18) {AL 5y C K,} = { Partitions ofV/(K,)}.
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The next proposition refines this statement. Recall ounimagation from
the end of section 2.1.

Proposition 2.4. Let~, ¢ C I". Then the set

(19) B={(e"ir) :ec E),j=0,...,d—1}

is a basis of4,, if and only ift is a spanning forest fafc(y),
where a spanning forest is defined as follows.

Definition 2.4. Let~,¢ C I". Thent is aspanning forest foc(~y) if the map
5 : RV — RP® asin (15) is surjective anller §; = ker d.,.

Definition 2.5. Let~,¢ C I" andt be a spanning forest fatc(y). If t C
thent is aspanning forest of. If v is connected (consequently sa@)shen
t is called aspanning treef .

In other words, a spanning forestofs a subgraph ofy without cycles
that has the same connected components. A spanning fores{f9 has
the same property but needs not be a subgraph of

Proof of Proposition 2.4. By Proposition 2.3,4, = A, if and only if

ker d, = ker ;. It remains to show that the set (19) is linearly independent
if and only if 4, is surjective. Sinc&er or C ker o, the map), is surjective

if and only ifi, = 6,¢ : R — RF® (see (6)) is surjective, which in turn is
equivalent to (19) having full rank, as'ir = e"i, fore € E(t). O

We also note two simple consequences for future use. Regaliefini-
tion of a subgraph of I" : If " is a graph with set of verticdg(I") and set
of edgesE(I"), a subgraphy is given by a subsef(y) C E(I") of edges.
By definition V' (y) = V(I'). However, we defind.«() to be the subset
of vertices inV/(y) which are not isolated — a vertexis not isolated if it

is connected to another vertex throughBy abuse of language we say a
proper subgraph of I' is connectedf it is connected as a graph with ver-
tex setV.¢(~) and edge sek(), in other words, not taking the isolated
vertices into account.

Proposition 2.5. Let~;,v, C I', and assume; connected. Then

(20) Ay NAy, = A,
for any subgraphy of I" satisfying
(21) ce(y1) Nee(re) = ce(y).

The intersection?, N P, of partitions P;, P, on the same sét'(I) is
defined by, N P, = {Q1 N Q2 : Q1 € P1,Q2 € P}. Itis easily seen
that this is a partition orV/(I") again. We write0 for the full partition
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{{v}:veV(I)}.

Proof. It is clear from Proposition 2.3 that
O ((Ay, NAy,)T) = ker 629 + ker 627

Y2 ?
and one needs a partition(~) whose cells provide a basis as in (17) but
now for the spacker d,, + kerd,. Letce(v;) = {Q1,...,Q; }. Since

ZUESpaH( Z v,.. ., Z v),

vEQ} vEQLNQ? veQ}chIQQ

and similarly forl and2 interchanged, the vectols, . ;1. v generate
ker d,, + kerd,,. Consequentlyker d,, + kerd,, C kerd,. In order to have
equality, it suffices to show that the dimensions of bothsiaatch. Since
71 is connected, we canassu@e= {1,...,i}, Q3 = {i+1},...,Q}_, ., =
{n}. In that case clearlflimkerd, = dim Hy(y) = |cc(y1) N cc(y2)| =
|ce(71)|+|ec(v2)1,...iy | —1 whereP|; denotes the partitiofQNI, Q € P}.
On the other hand one verifies thi (ker d.,, + ker d.,) is the same. O

Apart from the intersection of partitions as defined abovés useful to
have the notion of a union of partitions. Let(v,), cc(+2) be partitions on
V(T"). One defines most conveniently

(22) ce(m1) Uee(z) = ce(y U ).

From the description before (18) it is clear that the rightdaide in this
definition depends only onc(y;) andcc(v:) but not ony; and~, them-
selves. We immediately have

Proposition 2.6. Lety;,v2,v C I'. Then

(23) A, +A,=4,
if and only if
(24) ce(y1) Uee(72) = ce(y).

O

It will be convenient later to have an explicit descriptidritee dual basis
BV, for B as in Proposition 2.4, that is the corresponding basig tf. Re-
call our choice (above equation (6)) of a verigxn order to work modulo
the thin diagonal. Recall also that the edges are oriente@n@ spanning
treet of I', we saye € E(t) points tov, if the final vertex ofe is closer
to vy in ¢t than the initial vertex oé. Otherwise we say that points away
from vy. Furthermore, erasing the edgdrom ¢ separates into two con-
nected components. The onet containingu, is denoted, and we write
Ve.0 = Ver(t1) for the set of its non-isolated vertices.
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Proposition 2.7. Let BY = {b : ¢ € E(t),j = 0,...,d — 1} be the
basis of M"* dual to a basisB of (M"?)" as in Proposition 2.4 , that is
(€Vir)j(b§/) = 56’6/ .k Then

(Vz0, being a subset of the basi§ of R'?, is also contained iR'?). We
define(). = +1 if e points to/away fromy,.

Proof. Write by = °, .y, 55 v. We require

Ser = (€"ir)(be) = (760)(be) = > B (v:e)

veVy

Now fix ane. Write v;,,(e), vt () for the initial and final vertex oé, re-
spectively. We haves; ., —0; () = landg; ., =0, . forthe
other edgeg’ except the one;, leading tov,, for WhICh ﬁim(eg) =0or

Sout(eg) = 0, depending on the direction ef. Thus starting from, and
working one’s way along the trekin order to determine thg, all the
B¢ = 0 until one reaches the edgewheres: jumps up or down td or —1,
depending on the orientation efand stays constant then all beyand O

Let us now describe the mag® : MY — M1 in such a dual basis
BY. Letz € RY, write v = 37y webe With b, = (=1)% 37 . v asin
Proposition 2.7. Writév;, v;] C E(t) for the unique path i connecting
the vertices); anduv;,. It follows that

Z Z Z )9 20 (v : e)e.

e€ E(T") vEVh €/ €[vg,v]

For a givere, only two vertices contribute to the sum, namely the bound-
ariesv;,(e) and v, (e) of e. All the terms(—1)% z. for ¢’ on the path
from v, to v;,(e) cancel since they appear twice, once with a negative
sign (vin(e) : e), once with a positive sigriv,.:(e) : e). What remains
are the terms on the path infrom v;,,(e) t0 v, (e). We writee’ ~ e if

e € [vin(e), vour(€)] C E(t). Then

(25) ir(z Z Zaze/e— Z Te€ + Z er/e.

e€E(T) e/~e e€E(t) e€E(T)\E(t) e'~e

Note that in the second sum there may be terms with onlyrprneontribut-
ing, namely whemd, = A..
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3. REGULARIZATION, BLOWING UP, AND RESIDUES OF PRIMITIVE
GRAPHS

The purpose of this section is first to review a few standactsfabout
distributions and simple birational transformations. $&@ for a gen-
eral reference on distributions. In the second part, theomapt notion
of residue of a primitive Feynman graph is introduced byingis- to a
complex powes in the neighborhood of = 1 and considering the residue
ats = 1 as a distribution supported on the exceptional divisor dbavbp.

3.1. Distributions and densities on manifolds. We recall basic notions
that can be looked up, for example, in [30, Section 6.3]. Wiea wants
to define the notion of distributions on a manifold one hasdthoices: The
first is to model a distribution locally according to the idbat distribu-
tions are supposed to generalizé® functions, so they should transform
like u; = (¢;; ') u; wherey;, ¢; are two charts. On the other hand, dis-
tributions are supposed to be measures, that is one wamgoheansform
like @; = | det Jac ;a0; (b0 1) i;. The latter concept is called a distri-
bution density.

By a manifold we mean a paracompact connectéd manifold through-
out the paper. LetM be a manifold of dimensiom with an atlag«;, U;)
of local charts); : M; — U; C R™.

Definition 3.1. A distributionu on M is a collectionu = {u;} of distribu-
tionsu,; € D'(U;) satisfying

wi = (Y7 ')
inv;(M; N M;). The space of distributions ol is denoted’ (M).

Definition 3.2. A distribution densityz on M is a collectionz = {u;} of
distributionsu; € D’'(U;) satisfying

?ji = |d€t Jac Q/JJQ/JZ_1|(1/JJQ/JZ_1)*?EJ
in;(M;NM;). The space of distribution densities s is denoted’ (M).

A density is called”* if all u; are U, The space of*° densities onM
with compact support is denotég°(M).

Proposition 3.1.
(i) C5' (M) = D'(M).
(i) ¢G5 (M) = D'(M).
(iii) A nowhere vanishing densitya provides isomorphismsi— ua
betweenD’(M) and D'(M), and C§°(M) and C5° (M), respec-
tively.
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O

C* densities are also callggbeudan-forms If the manifold is oriented,
every pseuda:-form is also a regulatn-form, and conversely am-formw
gives rise to two pseuda-forms: w and—w. In a nonorientable situation
we want to work with distribution densities and write therkelipseudo
formsu(x)|dx|.

3.2. Distributions and birational transformations. Let M be a manifold
of dimensionn andz € M a point in it. We work in local coordinates and
may assumeM = R™ andz = 0. Blowing up0 means replacing by a
real projective spacé = P™~*(R) of codimension 1. The result is again a
manifold as follows.

LetY = (M \ {0}) U & as a set. Tangent directions(ashall be iden-
tified with elements of. Let thereforeY”’ be the subset oM x £ defined
by ziu; = zju;, 1 <i,5 < mwherez, ..., z, are the affine coordinates of
R™ anduy, . .., u,, are homogeneous coordinatesfsf—! (R). The sety”’

is a submanifold o\ x £. On the other hand, there is an obvious bijection
A:Y — Y’ whose restriction ontdA \ {0} C Y is a diffeomorphism onto
its image. Pulling back along the differentiable structure induced &f
defines a differentiable structure on allXafThe latter is called thblowup
of M at {0}. The submanifold€ of Y is called theexceptional divisor.
There is a prope€’ > map( : Y — M which is the identity onM \ {0}
and send< to 0. Viewed as a map frony’ ¢ M x &, (§is simply the
projection onto the first factor.

Note that ifm is even (which is the case throughout the paper) tfign
not orientable bu€ is. If m is odd thenY” is orientable buf is not. Indeed
Y is a fiber bundler : Y — &£ over & with fiber R — the tautological line
bundle. For example, fon = 2, Y is the open Mobius strip.

Let m be even from now on. Fal/; = R™, ¢ = 1,...,m, one defines
mapsp; : U, — M x 5,

(Y1 Ym) — ((21,...,%1),[zl,...,zm])
(26) zi = (—1)"y;,
2k = Yilk, kb #i

wherez; are coordinates oMM and at the same time homogeneous coor-
dinates for€. Clearly p; maps intoY” and onto the affine chart ¢f where
2z #£ 0. Lety; = p;1 on p;(U;). Then (v, U;) furnish an atlas fol’. We
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note for future reference the transition maps
Pt Ui\ {y; = 0} = U; \ {y; = 0}
Wi ym) = (W YUm)

(27) vi = (=)™ /y;,

v = (=1Yyy;,

= (=17uk/y;, k #i,j
and the determinants of their derivatives
(28) det Jac ¢yuh; ! = (=1 1y 7

Note that the atlagy;, U;) is therefore not even oriented on the open set
Y \ € diffeomorphic toM \ {0}. For the exceptional divisdf = P~ (R),
which is given inU; by the equationy; = 0, we use induced chartg;, V;)
with coordinatesyy, ..., ¥, ..., yn (in this very order) wherg;; means
omission. The transition map

Gi; Vi {y; = 0} — Vi\{y; = 0}
Yty s Uiy ooy Ym) (yi,,y?,,y;n)
(29) yi = (=1)"" y;,
= (=1 u/y;, k#1i,j
has Jacobian determinant

(30) det Jac g, 1 = y;™ > 0.
The induced atlagV;, ¢;) is therefore an oriented one. The tautological bun-
dleris giveninlocal coordinatesby: (y1,...,4ym) — (Y1, -+, Yis- -+ Ym)-

Similarly one defines blowing up along a submanifold: Thensabifold
is replaced by its projectivized normal bundle. Assume thmnsanifold is
given in local coordinates by, = ... = z; = 0. Then a natural choice of
coordinates for the blowup is given again by (26), applielg tmthe subset
of coordinates, . . ., z;. See for instance [39, Section 3] for details.

Theblowdown maps : Y — M is surjective, proper an@d> everywhere
but open (i. e. has surjective differential) only away frdme exceptional
divisor. It is called the blowdown map. It will be useful to bble to push
distributions forward along and to pull distributions back alongjy-¢.

Ingeneral, letf : U — V be a surjective prop&r™ map between open sets
U of R™ andV of R™2. Let u be a distribution ori/. The pushforward of
u by f, denotedf.u, is the distribution ori” defined by( f.u)[¢] = u[f*¢]
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whereg is a test function o andf*¢ is its pullback along : f*¢ = ¢o f.

If u has compact support the requirement thaie proper can be dropped.
Similarly, for f : M — N a surjective propef’> map between manifolds
M and N with atlasegv;, U;) and(6;,V;), let u be a distribution density

on M. Then f,u defined by

(few)i = (Oufri ) sun

inV; N (0, 1, ')(Uy), is a distribution density o Let now f : M — A
a surjectiveC'™ map between manifold$t and V. It need not be proper.
Letu € D'(M) andg € C5°(M). The densityu[¢]; € D'(N) is defined
by

(31) ulg]y = fu(gu).

Note that¢u has compact support so the pushforward is well-defined al-
though f is not necessarily proper. if is given by a locally integrable

functionu(z) on M = R™ and f is the projection ontdV' = {zy,...,2; =
0} € R™, ¢ < m, this notion corresponds to integrating out the orthogonal
complement z;1,..., 2, =0} of Vin R™ :

B (Zins s 2m) = /(u¢)(z1, e d

The reverse operation of pulling back distributions al6ffg maps is only
possible under certain conditions, see [30, Sections 62,,e8c.] for a
general exposition. Here we only need the following simmsec Let
U,U, € R" open andf : U; — Uy aC*™ and everywhere open map.
Then there is a unique continuous linear nfap D'(U;) — D’(U;) such
that f*u = wo fif u € C°U,). See [30, Theorem 6.1.2] for a proof of
this statement. It can obviously be generalized to the chaesobmersion
f: M — N of manifolds.

M = R™ and its open subsets being orientable, distributions caddre
tified with distribution densities there, see Propositioh @ii). If 5 is
the blowdown map, by the pullback*z of a distribution densityu €
D'(M \ {0}) obviously the pullback along the diffeomorphissiy. ¢ is
understood. The result is a distribution density}on .

3.3. Analytic regularization. As a first step toward understanding as a
distribution-valued meromorphic function ein a neighborhood of = 1,
we study distributions, onR \ {0} of the formu(z) = |z|~* wherea € Z.
Clearly ifa < 1 thenu € L, (R). The case: > 1 can be handled using

analytic continuation with respect to the exponent: d.et N be fixed. We
extendu® = |z|~** meromorphically to the are®s > 1 as follows. Let



18 C. BERGBAUER, R. BRUNETTI AND D. KREIMER

n=la/2].
el = [ e e [ el
(32) — /01 2o <<z><z> +(—z) —2 <¢(0) - %)) a:

L g
a2 s

This holds forRs < 1+ é See [26, Section 1.3] for the complete argument.
There will be more poles beyond the half-plane < 1+ é but they are not
relevant for our purposes.

Definition 3.3. The canonical regularizationf |z|~* is the distribution-
valued meromorphic function ine (—oo, 1 + 1) + iR given by

) n 55%)
(33) |2leat’ =2 Z (2k)!((2k + 1) — as)

k=0

+ |zlfin

wheren = |a/2]| and

il = [ o (s o2 -2 (60 +r 1O )
(34) + /R - 2|~ (2)dz.

The functions — |[z[ ;" is holomorphic in(—oco, 1 + 1) +iR. When the
context allows, we simply writ¢z|~%* for |z|_5" again. Letf € C*°(R).

Sinces — f*[¢] is holomorphic, it makes sense to define the canonical
regularization folz| = f also:

(35) (7)o = 12leat” - 7

This does not work fof € L. (R). For example|z| "™ +# | 2|24 2|2k
Unfortunately, the term "regularization” is used for twdfdrent notions in
the mathematics and physics literature, respectivelyy fgst be carefully
distinguished. While in the mathematics literature, thegirarized” distri-
bution is usually understood to be ./ , a physicist calls this the "renormal-
ized” distribution, and refers to the mappiag— |z|~** as a regularization
(in fact, one out of many possible regularizations). Theelais also our
convention.
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We finally note the special cage= 1,
_s 200

ext s—1

(36) 2|

+ 215

@) |elnld) = / 2 (6(2) — $(0))dz + / 26 (2)d=.

1 R\[-1,1]
And, for future reference, in the aré& < w,
2 9
D—DS—l o 0 D—Ds—l
(38) leat ™ = =557 + #lsin

whereD < 2N.

3.4. Primitive graphs, their residues and renormalization. We consider
the blowups : Y — M of M at 0 as in section 3.2 where now = A/"°
for our Feynman graph' (see section 2 for notation). Lét = d|Vp| =
dim M. In this section we continue to use the coordinatgs. ., z4. On
MY andyy, . .., ya. On the chartg/; for Y. They are related to the coordi-
natesr’ of section 2 byr’ = zq(i-1)+;- Recall that sinc&” is not orientable
(and the induced atlas ori \ £ is not oriented), top degred.},.) forms
and distribution densities can not be identified. We only fasms on the
oriented submanifold, where the two notions coincide. We wriié:| for
the Lebesgue measure an.

Definition 3.4. A connected Feynman graptis calledprimitive if Cy;, (I') =
{Ar}.

Recall the notion of saturated subgraph from Definition 2d Rroposi-
tion 2.1.

Lemma 3.1. Let " be primitive. Lett be a spanning tree for andt¢’ a
subgraph of. Then
dE@)| < (d=2)(IED)] = [E((t\1):)])
and equality holds if and only if = ¢.
Proof. Clearlydim A, = dim Ay + dim Ay anddim Ay = d|E(t)].
Sincel is divergent,(d — 2)|E(I")| = dim A;. Sincel’ has no proper di-

vergent subgraphsd — 2)|E((t \ t'),)| < dim Ay, = dim Ay for all
proper subgraphs of ¢. O
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Lemma 3.2. Let d¢ (resp. ;) be collections of distributiortsin the U;
given by(dg); = do(y;) and (1/|yel); = ﬁ in U;. Letw be a locally inte-
grable volume fornw on£. Thenwds andw/|ys/|, locally
(wég)l = wl(ég)l = wi<y17 s 73//;7 s 7ydr)50<yi>7
W/lyel)i = wi/lyeli = wilyr, - %is -, Yar) /|yl
define densities on.

Proof. By (28) and (30)| det Jac ¢;1; | = det Jac ¢;¢; ' - [1/y;| and

bothd, and1/|y;| transform with the factoll /y;| under transitio/; — U;.
O

Theorem 3.1. LetI" be primitive.

(i) By pullback along the diffeomorphisty ¢, the distribution den-
sity ur = urp|dz| furnishes a strictly positive density onY \ &,
given in local coordinates df; by

. 1
(39) (Wr)ildy| = —
|yl
where(fr); € L*(V;). The(fr)idyi A ... A dyi A ... A dyq. in each
V; determine an integrable volume forfn on £. We may therefore
write wr = fr/|yel.
(i) The meromorphic density-valued functior- wf = g*uf.,

s (fr);|dy
(wp)ildy| = Tgp|dre— (1)

)iy, i - - yar) [y

has a simple pole at = 1. Its residue is the density
2
(40) ress— Wp = ——1aogfr,
dr

supported on the exceptional divisor. Pushing forward glgh
amounts to integrating a projective integral over the eximamal di-

visor:
(41)
s 2 2 —
5*(I'€S5:1 wr) = ——50|d2| / fr‘ = ——50/ (fp)zdyl e dyZ e dydp
dr‘ £ dr‘ ‘/z
for anyi.

(i) Lety € D(R) with ;2(0) = 1,andv = 3*u. LetT : Y — & be the
tautological bundle. Then

(42) Wp g = Wp — Wp[v]-0¢

We do not claim that they are distributions or densitie§othemselves as they do not
transform correctly.
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defines a density-valued function rholomorphic in a neighbor-
hood ofs = 1. Also 3.7 = (uf — up[u]do)|dz| = ut g|dz|.

The density (40) is callecesidue densitythe volume formfr residue
form, and the complex number

2
(43) res' = —E/gfp

residue ofl". The distributioru. , = uf |.—: is defined on all of\/** and
said to be theenormalized distribution.

Proof of Theorem 3.1(i) For (39) observe that in local coordinated gfthe
map 3 is given byp;, see (26). The Lebesgue measlitgl on M*° pulls
back tol|y; |4 ~!|dy| in U;. By (2), u scales likex?~)IFM asz; — Az, for
all i. Sincel is divergentdr = (2 — d)|E(I")|, which explains the factor
1/]y;] in (39) and thaf fr); does not depend op. That (fr); € L}, .(Vi)
follows from Proposition 2.2, wher&/)° = A} = {0}, and3|y¢ being a
diffeomorphism. In order to show théfr); € L'(V;) one uses Lemma 3.1
as follows: Choose a spanning trefer I' such that the coordinatg equals
(eyir)’ for someey € E(t) andjy € {0,...,d — 1} (see Proposition 2.4).
Write 27 = (eVir)/ fore € E(t),j =0,...,d — 1. In this basisu. is given
by ur({21}) = [Leepr uo(X o zl) (se€ (25)). Therefore, if the coordi-
natesy), e € E(t')j =0, ...,d— 1defined byt a proper subforest gfnot
containingey go tooo, then there are exactly(¢5) \ E((t\ t')s) factors of
up the argument of which goes to. Lemma 3.1 shows that the integration
over that subspace converges. One verifies that all subspaseeptible to
infrared divergences are of this form. Therefdfe), € L'(V;). Finally,
the (fr); produce a factoy; r ynder transition between charts. By (30)
this makesfr a density orf. Sincef is oriented, a strictly positive density
is also a strictly positivel;,.) volume form.

(i) The simple pole and (40) follow from (39) by (38), the &expres-
sions matched together using Lemma 3.2. For (41pletD(M"?). Then
Bi(ress—1 i) [p] = ress—1 Wi [F*¢|. The distribution densityes,—; w;., be-
ing supported org, depends only o*¢|s = ¢(0). By the results of (i),
¢ fr is a projective integral and it suffices to integrate inside ohart, say
Us. Thereres,—y @3 [3°¢] = — 2 [ 00(y:) fr(y)d(pi(y))dy = = 76(0) [, fr(y)dy
= —% (0) fs fr.

(iii) There is no pole ats = 1 sincev|s = 1. The (@} z); furnish a
density by Lemma 3.2: The Jacobian &f cancels the one df . .|,. For
the last statement, let agafth;, U;),—1.._ 4. be the chosen atlas faf and
(¢i, Vi)i=1...a the induced atlas fof. Since& is compact, there exists a
partition of unity (§;¢;):=1._a4. 0N E subordinate to th&; such that;, €

-----
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D(V;), & > 0and) ,(&¢i)(x) = 1forallz € £ LetT : Y — £ Then
(&iT)i=1...4p IS @ partition of unity onY” subordinate tqv;, U;)i—1... 4y
(however not compactly supported). We fix such a partitionraty (¢;).
In U; we writey for (v, . .., ya.) andy; for (y1,..., 4, ..., ya.), for exam-
ple & (y) = &(y:) since it is constant along. We also writeu(y;, y:y;) =
w(yiyt, - Yi, - - -, Yiyar ) for convenience. Lef € D(M"0).

Bu(wp g)[f] = Bu(wp — wp[v]-0¢) f]
= > (@} — wp[v]-0¢)il& 8" f]

= 3 [ @)~ [ e Bt )
x&(y)f (i, yiyi)dy
= 3 [ aws s

—wr(y) (i, vi9i)&i (0, i) £ (0)dy
— Z(g;@; — By [&iv] o) f]-

(2

O

The following corollary concerns infrared divergences gfaphl’. Those
are divergences which do not occur at m¢ but as the coordinates of
MV"o approachso, in other words, if one attempts to integrate against a
function which is not compactly supported.

Corollary 3.1. LetI" be at most logarithmic and primitive. The# is not
(globally) integrable onM/"o \ M0 (T). However(yur)[1, ® yu] is well-
defined, ifi: is a test function on a non-zero subspacélff, 1, the con-
stant function on the orthogonal compleméntand y the characteristic
function of the complement of an open neighborhoat/$f (') in 1",

Proof. This follows from part (i) of Theorem 3.1. O

The renormalized distribution. , = uf. |.—1 obtained from the theorem
depends of course gm Write ur.  for one usingu andur. , for another
one usingu’, then the differencer. , — uy.  is supported o) and of the
form ¢y with ¢ € R. This one-dimensional space of possible extensions
represents the renormalization ambiguity.
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Here is an example. Let/ = R*. For

we have
ur(w) = up(z) = 1/a*,
the latter a distribution on/" \ {0} = M \ {0}. Pulling back along?,
|dy|
lyal (1 + Zj;éz‘ 3/]2)2
inU; \ {y; = 0},7=0,...,3. Asar was not defined &, (5*ar); is not
defined at, given locally by{y, = 0}. Raising to the powes gives
|dy|
|yi|*=3(1 + Zj;éz‘ yJQ‘)QS
—00(y:) 0) |dy|
+o(s—1
(5o =) e
Therefore the residue densitysat 1 is given, in this chart, by
1 1
s= “ur)i|dy| = — =4 4
rese—1 (3 ar);|dy| o(y:) (ED R

2
The residue is given as a projective integral by

1 (=1)YdYy A ... AdY; A ... AdY,
resF:_§/ZZ< ) [RARERYA ARSRVALAS
£

(Bar)ildyl = (v;)"B*ar|dy| =

(B up)ildy| =

Y4

whereYi, . .., Y, are homogeneous coordinates. In any of the charend
for the integration one chart suffices,

1/ dyy A .. Ady; A ... A dys
res' = —— g .

2 )y, (L4232 v7)

As mentioned before, there is a 1-dimensional space of lplessktensions
ur,r due to the choice qgi that needs to be made. There is no canonical

However from practice in momentum space the following caascuseful.
In momentum space, the ill-defined Fourier transformjis

d*k
*2
(fUQ) : p'—>/7]{;2(/{;—p)2.
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A regularization or cutoff is now being understood in theegral. It can
be renormalized, for example, by subtracting the valug’ at m? where
m > 0 has the meaning of an energy scale.

2 d*k d*k
Fwit: v [ i [ wy
This prescription has the advantage that it is useful farwations beyond
perturbation theory. The Fourier transform of the disttimid(p? — m?)
is a Bessel functiop(x) (with noncompact support), which can be approx-
imated by a sequenge, — . of test functionsu,, with compact support.
Sincem > 0, u # 1, and infrared divergences do not occur (as long as the

position space test function has compact support, i. e. oaes dot evaluate
the Fourier transform at® = 0).

p2=m2

In the case of primitive graphs, the renormalization openatlescribed
above can be performed, and the residue be defined, whilé¢'onwithout
blowing up. For general graphs however blowing up provisesdvantage,
as will be shown in section 6: All divergences can be removetdeasame
time while observing the physical principle of locality. iSttoncludes our
discussion of primitive divergences, and we start with theegyal theory for
arbitrary graphs.

4. MODELS FOR THE COMPLEMENTS OF SUBSPACE ARRANGEMENTS

In section 2 a description of the singular supporupfand of the locus
whereu fails to be locally integrable was given as subspace arrarges
in a vector space. In general boths‘fgg(l“) andM° (T") will not be carte-
sian products of simpler arrangements. In this section werdee birational
models for)/"° where the two subspace arrangements are transformed into
normal crossing divisors. For this purpose it is convenienise results of
De Concini and Procesi [22] on more general subspace amags. See
also the recent book [21] for a general introduction to tHgestt. Although
for the results of the present paper only the smooth modelthédiver-
gent arrangements/)° (T') are needed, it is very instructive, free of cost,
and useful for future application to primitive graphs, tovelep the smooth

models for the singular arrangememéégbg(l“) at the same time.

4.1. Smooth models and normal crossing divisorsConsider for a finite
dimensional real vector spadé a collectionC = {A4,,..., A,,} of sub-
spacesA; of V¥ and the corresponding arrangemént= J ;. Atin V.

In order to explain our language, let us temporarily alsosater the corre-
sponding arrangement #(C) = V ® C, denoted/(C). The problem is
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to find a smooth complex variely-(C) and a proper surjective morphism
B :Ye(C) — V(C) such that

(1) B is an isomorphism outside of ' (Vz)(C).

(2) The preimage(C) of 1,(C) is a divisor with normal crossings,
i. e. there are local coordinates . . . , z, for Yz(C) such that3—!(1;)(C)
is given in the chart by the equatien- . .. - z; = 0.

(3) B is a composition of blowups along smooth centers.

Such amag : Y-(C) — V(C) is called asmooth model fof(C). Since

(3 is a composition of blowups, it is a birational equivalenBg.the classi-

cal result of Hironaka it is clear that for much more genelgéhraic sets
such a model always exists in characteristic 0. For the apease of sub-
space arrangemenits a comprehensive and very useful treatment is given
in [22]. It will be instructive to not only consider one smbanodel, but a
family of smooth model§’» constructed below along the lines of [22].

The arrangemenit; is defined ovelrR (in the case of the graph arrange-
ments even ovef) and therefore the real locy% (R) a realC> manifold.
We will only be working with the real loci in this paper and simwrite Y

for Yp(R), € for £(R) and so on. Also in the real context we simply cégH

the smooth model the exceptional divisor, and speak of birational maps,
isomorphisms etc. without further justification.

By abuse of language, a smooth model may be seen as a "cofigaacti
tion” of the complement of the arrangement, fokifC V' is compact, then
Bls-1(x) is @ compactification ofV” \ V¢) N K sinceg is proper.

In the following we construct the smooth models of De Conamd Procesi
for the special case af = M"* andC = Cg;y(T') or C = Cyirs(T).

4.2. The Wonderful Models. For a real vector spadé write P(V) for the
projective space of lines il. For any subspacE of V' there is an obvious
mapV \ U — V/U — P(V/U). The smooth models of De Concini and
Procesi, called "wonderful models”, are defined as the ¢co3p of the
graph of the map

(44) VA\Ve — H P(V/AL)
AeP

(the closure taken it x [, P(V/A+)) whereP is a subset of, subject
to certain conditions, to be defined below. The Betontrols what the
irreducible components of the divis6rare, and how they intersect. In other
words, one gets different smooth models as one varies theesib We
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assume that the collectighis closed under sum. The following definition
describes the most basic combinatorial idea for the wonterddels.

Definition 4.1. A subsefP of C is abuilding setif every A € C is the direct
sumA = @, B; of the maximal element8; of P that are contained i,
such that, in addition, for everg' € C withC' C A alsoC = ,(C N B;).
Elements of a building set are callédilding blocks

Our definition is a slight specialization of the one in [22gbrem (2) in
2.3]. In their notation, our building sef® are those for whicl® = Cp (see
[22, 2.3]). Note that a building set is not in general closedar sum again.
Definition 4.1 singles out subsef3 of C for which taking the closure of
(44) makes sense. Indeed one has

Theorem 4.1(De Concini, Procesi)If P is a building set, then the closure
Yp of the graph of (44) provides a smooth model for the arrangervie Its
divisor £ is the union of smooth irreducible componeéts one for each
AeP. O

4.3. Irreducibility and building sets. Let us now turn toward the building
sets and the wonderful models for= MY andC = Cs;,y(T') OF Ci (T).
We review some basic notions from [22] and apply them to tleeisp case
of graph arrangements.

Definition 4.2. For an A € C a decompositiorof A is a family of non-zero
Ai,...,Ap €Csuchthatd = A, ®...® A, and, foreveryB C A, B € C,
alsoBNA;,....,.BNA,eCandB = (BNA)@...® (BN Ag). If
A admits only the trivial decomposition it is call@geducible The set of
irreducible elements is denot&(C).

By induction on the dimension eachh € C has a decomposition into
irreducible subspaces (This decomposition can be seen tmigee [22,
Prop. 2.1)).

It is easily seen thatl is irreducible if and only if there are né;, A, € C
suchthatd = A A; andB = (BNA;)+(BNAy)forall BC A, B e C.
Forif A = A, ® A, ® Al is a decomposition ofl, thenA = A, @ (A, AY)
is a decomposition ofA into two terms sinc§ B N A,) @& (BN A}) C
Bn (A, @ A)). This observation can be improved as follows.

Lemma 4.1. For A € C to be irreducible it is

(i) sufficientthat for all A;, A, € C one of which idgrreducible sat-
isfyingA = A; ® A; thereis aB € C, B C A, such thatB #
(BNA;)+(BNA,y),and

(i) necessaryhat for all A;, A, € Cwith A = A; & A, there is an
irreducibleB € C, B C A, such thatB # (BN A;) + (BN As).
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Proof. (i) This follows from the existence of a decomposition int@}
ducible elements (remark after the definition).
(i) Let A = Ay d Ay and B C A,B € C. Let us sayB disturbsif
B # (BN A;) + (BN Ay). AssumeB disturbs. LetB = B’ @ B, be
a decomposition wittB’ irreducible. If neitherB’ nor B, disturbed, then
neither wouldB, for B = B’ + B, = (B'N Ay) +(B' N Ay) +(B, N Ay)
+(B,NA) C (B+B,)NA + (B +B,)NA;= BN A+ BN A,.
Consequently3’ or (using inductionB — B,) an irreducible component of
B, is an irreducible disturbing element. O

We now describe the irreducible element£gf,, (I'), Ca:» (I'). Recall from
section 2.3 that a subgraphis called connected if it is connected with re-
spect to the set of non-isolated vertidgg(). For two partitionsP;, P, on

a given set writeP?, < P, if Q € P, implies@ C Q' for someQ’ € P.
WriteP1 <P2|fP1 ngandPl;éPg.

Definition 4.3. Let G be a collection of subgraphs ®f A subgraphy of

' is calledirreducible wrt.G if for all subgraphsy;,~v. € G, one of them
assumed connected, — defining partitiohs = cc(v1), P, = cc(v2) on
V(vy) —such thatP, U P, = cc(y) and P, N P, = 0 there exists a connected
subgraphy € G with cc(g) < cc(y) which is not the union of a subgraph in
P, with a subgraph inP,. (A subgraph inP; is a subgraphy; of I such that
cc(g;) N P; = ce(g;).) Otherwisey is calledreducible

It follows from the definition that all subgraphs with onlydwonnected
vertices(|Ves ()| = 2) are irreducible (because there are no séctand
P, at all). Also, every irreducible graph is connected. Inddety be ir-
reducible wrt.G and~ have for example two componen{s= ~; U 7.
Taking P, = cc(v1) and P> = cc(v2) one arrives at a contradiction (See
also Proposition 4.3 later for a reason why this argumenksvéor G the
set of divergent graphs). Note that the notion of irreduityoof ~ wrt. G
depends only onc(v) andg.

It turns out that the irreducible graphs are exactly thosehvprovide irre-
ducible subspaces:

Proposition 4.1.

(45) F(Ciing(I)) = {Ay € Ciing(I') : vy irred. wrt. all subgraphs of '},

(46) F(Cuin(T)) = {A, € Cyin(T') : v divergent and irreducible wrt.
all divergent subgraphs df},

(47) F(Caing(Ky)) = {A, € Cuing(K,) : v connected.
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Proof. (45)-(46): Using the fact that irreducible graphs are cater
and Lemma 4.1, one can apply Proposition 2.5 and Propo&této trans-
form the statementd, = A, ® A,, and4, = A, N A, + A, N A,, into
ce(y) = ce()Uce(2), ee(y1)Nee(v2) = 0 andee(g) = (cc(g)Nee(yr))U

(ce(g) Nee(r2)).
(47): Since the connectedness-ofs necessary forl, to be irreducible,

we only need to show sufficiency. Let thereforey, , 72 be connected sub-
graphs ofi,, such thatc(v) = cc(y1)Ucc(72) andec(y1)Nee(y2) = 0. Pick
an edge: € E(K,,) which joins a vertex inVeg (1) with one in Vg (72).
This gives anA, € Cyy(K,) such thatd. N A,, = A. N A,, = {0}. Con-
sequentlyA, is irreducible. O

Recall the definition of a building set, Definition 4.1, whiale can now
rephrase as follows: All € C have a decomposition (in the sense of Defi-
nition 4.2) into themaximalbuilding blocks contained inl.

The irreducible element® (C) of a collectionC are the minimal building
set for the compactification 6f \ |J .. A*.

Proposition 4.2. The irreducible element&(C), andC itself, form building
sets inC, and F(C) C P C C for every building seP in C.

Proof. (see also [22][Proposition 2.1 and Theorem 2.3 (3)]) Evéry C
has a decomposition into irreducible elemeBts Assume one of them is
not maximal, sayd = €, B, with By C B € F(C). LetC € C, C C B,
thenB = @,(BNB;) withC' = P,(CNB;) = P, CN(BNB;) would be
a nontrivial decomposition aB. ThereforeZ (C) is a building set. Let now
P be an arbitrary building set, andl € F(C). There is a decomposition of
A into maximal building blocks, but sincé is irreducible the decomposi-
tion is trivial and A is a building block itself. Consequentl§(C) C P.
The remaining statements are obvious. O

We conclude this section with a short remark about redudilblergent
graphs.

Proposition 4.3. Lety C I" be divergent, and lel, = A,, @ ... ® A,, be
a decomposition i€, (I"). We may assume that theare saturated, that
isy; = (7i)s- Then ally; are divergent themselves.

Proof. Using (15), we need to concludé — 2)|E(~;)| = dim A, from
(d — 2)|E(v)] = dim A,. Since they; decomposey and are saturated,
we have a disjoint unio(y) = E(y;) U ... U E(y). Also dim A, =
> .dim A,,. Consequently, if we had ahsuch that(d — 2)|E(v;)| <

—
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dim A,,, then there would be g such that(d — 2)|E(y;)| > dim A,
in contradiction td" being at most logarithmic (see Definition 2.2). O

4.4. Nested sets.Let P be a building set ig. We are now ready to describe
the wonderful model3’. Note thatlz = V() since(A; @ Ay)*= = Af N

Ay . Consequently, using Proposition 412, = Vp. The charts foiy, are
assembled fromestedsets of subspaces, defined as follows (see also [22,
Section 2.4])

Definition 4.4. A subset\ of P is nested wrt. P (or P-nestedl if for any
Ay, ..., A, € N pairwise non-comparable we ha\Ef:1 A; ¢ P (unless
k=1).

Note that in particular thé=(C)-nested sets are setsiakducible sub-
spaces. We now determine tiienested sets of = Cging(I"), Cain(I),
Csing (K, for the minimal and maximal building se8 = F(C) andP =
C, respectively. Lety be a subgraph df. Recall from section 2.3 that,,
depends only on the partitiamn(~) of the vertex set/(I').

Proposition 4.4. A subsetN' = {A,,,..., A, } is nested irC = Cy;n,(T)
(resp.Caiu(I))

(i) wrt. P = C if and only if the sef{cc(v1),...,cc(yx)} is linearly
ordered by the strict ordeg of partitions,

(i) wrt. P = F(C) if and only if the~; are irreducible wrt. all (di-
vergent) subgraphs df, and for all I C {1,... k}, |I| > 2,
the graphlJ,., v is reducible wrt. (divergent) subgraphs, unless
ce(7y;) < ce(y;) for somei, j € I.

Recall that a unioth J, 7; is reducible for example if the; are pairwise
disjoint.

Proof. Straightforward from the definitions. O

Proposition 4.5. A subset = {A,,,..., A, } is nested inCg;,y (K5)
wrt. the minimal building set if and only if thg are connected and far#£ j
if either Ve (vi) C Ver(7;), Ver(7;) C Verr(7i), or Ve (7:) N Ve (75) = 0.

Proof. Straightforward from (47). O

We recall further notions from [22, Section 2]. L&t be a building set
and N a P-nested set foC. For everyz € VV \ {0}, the set of sub-
spaces iV’ = N U {V"} containingz is linearly ordered by inclusion
and non-empty. Write(x) for the minimal element ioV’. This defines a
mapp : VV\ {0} — N
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Definition 4.5. A basisB of V'V is adaptedo N if, for all A € A the set
B N A generatesd. A markingof B is, for all A € N, the choice of an
elementr4, € Bwithp(za) = A.

In the case of arrangements coming from graghs; Cs;ny ('), Cain (),
particular bases are obtained from spanning forests, epd3ition 2.4.

Proposition 4.6. Lett be a spanning tree df. Then the basi = {(eVir)’ :
e€ E(t),j=0,...,d—1} of (M")" is adapted to\V' = {A,,,..., A, }

if and only if the graph with edges: € E(t) : e < cc(v;)} is a spanning
forest force(y;) foralli = 1,. .., k.

Proof. Straightforward from Proposition 2.4. O

We call such a spanning forest adapted spanning foresflso, a marking
of the basis corresponds to a certain subfofggt,) C E(t) with £ + 1
edges, and a choice of one outddipper indices for each edge.

Proposition 4.7. Let N be aP-nested set faf = Cj;, (') OF Cyi (I'). Then
there exists an adapted spanning tree.

Proof. By induction on the dimension: Let, ..., A, be the maximal
elements inV contained in a givenl,. Assume an adapted spanning for-
est (see Proposition 4.6) for each of the is chosen. The union of these
bases is then a basi for @, A, (the sum is direct becaus¥ is nested
and theA.,, maximal). The se{(eVir)? : e € E(y)} is a generating set
for A,. Extending the basiB’ to a basis ford., using elements of this gen-
erating set provides, by Proposition 2.4, an adapted spgroiest fory. O

Let us now return to marked bases in general. A marking of aptad
basisB provides a partial order o8 : y; = y2 if p(y1) € p(y2) andys is
marked. This partial order determines a mapV" — V as follows. Con-

sider the elements @8 = {yi,...,y»} as (nonlinear) coordinates on the
sourceV. The (linear) coordinatesy, . . ., x,,) of the imagep(y1, - - ., Ym)
are given by

(48) . H yi— { Yi Hp(yi)CAyA if y; is not marked,
1T J

i Y5

The mapp, and already the partial ordet, determine implicitly a sequence
of blowups. Indeed
Proposition 4.8. (see[22, Lemma 3.1)

(i) pis a birational morphism,

(i) p({ya =0}) = A+ and
(iii) p restricts to an isomorphisti \ | 4o\ {ya = 0} = V\U e AL
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(iv) Letz € VY \ {0} andp(z) = A € N. Thenz = 24P, (y;), where
TA= Hijyi y; and P, is a polynomial depending on the variables
yi < xa, and linear in each variable, that i8? P, /0y? = 0.
O

4.5. Properties of the Wonderful Models. Recall the definition (44) of
the wondeful modelsYy is the closure of \ Vp in V' x [],.p P(V/AL).
The birational mag : Y — V is simply the projection onto the first factor
V. Let N be aP-nested set i, and B an adapted, marked basis B .
Both determine a birational map: V' — V' as defined in (48). For a given
building blockB € P setZp = {P, = 0,2 € B} C V. The composition of
p with the rational map/ — V/A+ — P(V/A')isthen defined as a regular
morphism outside o . Doing this for every factor i ] ,., P(V/A*),
one gets an open embeddiffy: UF = V\Uzp Z5 — Yp [22, Theorem
3.1]. WriteY£ = j5&(UE). As N and the marking oB vary, one obtains an
atlas((j%)~1, UE) for Yp. Note that the sign convention of (26) in order to
make the orientation of the exceptional divisor explictiscontinued from
here on. Itis shown in [22, Theorem 3.1] that the divi§oe 571 (Vp) is
given locally by

(49) G THENYY) = {HyA—O}
AeN

Remarks.In the case of the complete graph,, the minimal wonderful
modelYzc,,,(x.) IS known as the Fulton-MacPherson compactification
[25], while the maximal wonderful modél. ,  (x,) has been described in
detail by Ulyanov [43]. For any graph, the benefit of the miairmodel
is that the divisor is small in the sense that it has only a maiinumber
of irreducible components, whereas the actual constnudtjoa sequence
of blowups is less canonical. On the other hand, for the makimodel,
which has a larger number of irreducible components, ongpcaceed in
the obvious way blowing up the center and then strict trans$édy increas-
ing dimension. See figures 1, 2, 3 for an example whdrés supposed
one-dimensional in order to be able to draw a picture. Alsorésolution
of projective hyperplane arrangements described in [2d]raferred to in
[11, Lemma 5.1] proceeds by increasing dimension but cpomds to the
minimal wonderful model nonetheless. This is a specialctffieie to the
fact that the strict transforms of hyperplanes, having matision 1, do not
need to be blown up. If the subspaces in the arrangement igiver ltodi-
mension, the blowup sequence will be different. See [25a48][22, The-
orem 3.2] for details.
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FIGURE 1. A picture ofRY" (K,).

sing

4.6. Examples. For the fixed vertex set’ = {1,2,3,4} we consider a
series of graphs ol with increasing complexity. Only some of them are
relevant for renormalization.

1 3 !

'y = Iy =
2 4 4
1 3 I} 3
I'y = I's =
2 1, 2 4
1 J ;
I's = I's =
2 4 2 4

For these graphs, we examine the arrangemeflfs, and M,;" . the irre-
ducible subspaces and nested sets for the minimal and mialuit@ing
set, respectively. Writel;; for A. with e an edge connecting the vertices
1 andj. Note thatA,s + Ay3 = A3+ Ayz3 = A + Az etc., and in the
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FIGURE 2. (Spherical) blowup of the origin iRZ.Ong(KLL),
where projective spaces are replaced by spheres. The maxi-
mal wonderful model would proceed by blowing up all strict
transforms of lines incident to the exceptional divisord an

finally the strict transforms of the planes.

examples a choice of basis is made.

Csz'ng Fl) = {Alg, Agg, A34, and sums there@f

(
Csing(I'2) }
Csing(I's) = {Ajg, Ass, Aoy, Az, and sums theredf
Csing(I'4)
Csmg(r5) = {Alg, Alg, Agg, A24, A34, and sums there@f
Csmg(rﬁ) = {Alg, Alg, A14, Agg, A24, A34, and sums there@f



34 C. BERGBAUER, R. BRUNETTI AND D. KREIMER

FIGURE 3. Minimal (spherical) model ORZ.O,LQ(KLL), cor-

responding to the Fulton-MacPherson compactification of
the configuration space of 4 points [ After the central
blowup, only those strict transforms of lines are blown up
which are not a normal crossing intersection in the first
place.

The divergent arrangements are determined by the followatigctions of
dual spaces:

) =0

(T2) = {Aw}

(I's) = {As4, Aoz + Ass}

Cain(Ta) = {A1a, Asy, Aoz + Aszy, Arp + Aszy, Arg + Az + Azy}
(I's) = {Ass, Aog + Asy, Aro + Aog + Asy}

(T's) = {A2+ Aoz + Az}
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The irreducible singular subspace collections are

{A12, Ags, Ags}
{A12, Ags, Aoy, Asa, Aoz + Asa}

{A1a, A1z, Agg, Aoy, Asy,

Ajg + Az, Aoz + Aoy, A1 + Aoz + Ass}
{A1a, A1z, Avy, Aoz, Aoy, Asy,

Agg + Ays, Arg + Ary, Arg + Ay, Aoz + Asg,
Ajg + Agz + Ass}

Remark.Note that these irreducible single subspace collectiomsaone-
to-one correspondence with the terms generated by the cogpédipebra
[12,37] if one takes into account the multiplicities geriedaby a labeling
of vertices. A detailed comparison is left to future work.

The irreducible divergent subspace collections are

=0

= {Awn}

= {Asy, Aoz + Azy}

= {Ai2, Asy, Agz + Asy}

= {Asy, Aoz + Asy, Arp + Aoz + Ass}
= {Ajp+ Aoz + Asq}

The maximal nested sets of the divergent collection wrtnti@mal build-

ing set:

forT'; :
forT'y :
forI's :
forTy :
forI'; :
for Iy :

0

{Aw}

{Ags + Asy, Azy}

{A1a, Aoz + Asg, Asu}

{A12 + Aoz + Asy, Aoz + Agy, Az}
{A12 + Ags + Ass}
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The maximal nested sets of the divergent collection wrtntlagimal build-
ing set:

forTy: 0

forT'y : {A12}

forTs:  {Ags+ Asg, Ass}

forTy:  {Aix+ Ags + Asg, Aro + Asa, Ara},
{A1s + Aos + Asa, A1o + Asy, Asu},
{A12 + Aoz + Asy, Agz + Agg, Az}

for I's : {A12 + Agg + Asy, Agz + Asg, Az}

forTe:  {Aip+ Aoz + Asu}

5. LAURENT COEFFICIENTS OF THE MEROMORPHIC EXTENSION

5.1. The Feynman distribution pulled back onto the wonderful mocel.
Recall the definition (4) of the Feynman distribution = [, _; uo(z; —
xj)"i. We writeur = ®,ur where® is the projection along the thin di-
agonal defined at the end of section 2.1. It is clear from teeusision in
section 2 that,, = (i%)*uy”") where defined. Le : Yp — M"Y be a
wonderful model for the arrangemeht;” (') or ngbg(F). The purpose of
this section is to study the regularized pullbati]. (as a density-valued
meromorphic function of) of 4. ontoYp \ £.

Theorem 5.1. Let A/ be aP-nested set i€y, (I') (Csing(T)), and B =
{y.: ec E(t),i=0,...,d— 1} an adapted basis with marked elements
y'{', A€ N.Then,inthe chart/Z,

(50) Brup({ye}) = frllyid) T (i)

AeN

wherefr € L} .(US) (C>(U%)),andn, € —2N. More precisely

loc
(51) na, = (2 —d)|E(y)].
In addition, fr is C* in the variableg)’s!, A € \V.

Note: ~; is the subgraph defined in Definition 2.1. Divergent subgsaph
are saturated (Proposition 2.1). We wrfig{y.}) for fr(y2,... ,yg‘;t)‘)
etc.

Proof. Recall from section 4.5 that the mabis given in the chart/5
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by p (see (48)):

S e Y Y TT

J=0 ecE(t) J=0 e€E(t) 4 <y*,
—“e

where =< is the partial order on the basi& = {y’} of (M'0)" adapted to
N. Consequently, using (25),

Fur({yl}) = ug"Migp({yl})

d—1
<52> o E(CS

ecE(T")

By Proposition 4.8 (iv), eaclyy = >, . 2/, = Yo I ,{/jy;?”yfﬁ is a
product;z:i{‘P,é({y;i}) where A = p(¢&2) € N (Special casse'arii4 = 1if
p(&) ¢ N). As uy is homogeneous (2), the factof; = [[,cpcn vB',
can be puIIed out, supplied with an expongatd. Sincer’; = ]:[AQB yB'"E,

the factor(yA )*~4 occurrs once for each € E(I') such thatd, C A,
in other words for each < cc(v). Hence (51). We finally show that the
remaining factor

(53) frulh) = T w(Ps(wih}is)

ecE(T)

of 3*uy satisfiesfr € L}, (UF) if the divergent arrangement was resolved
or fr € C=(U%) if the singular arrangement was resolved, respectively.
The setU§ contains by definition (see section 4.5) no point with coor-
dinatesy’ such that for any building bloclB € P all P.({¢y/}) =

x € B. In the case ofC;,,(I'), all A. € P, (e € E(I')), since they
are irreducible, see Proposition 4.2. On the other hahdis spanned
by the¢/, j = 0,...,d — 1. Therefore for nce € E(T') all d of the P
(j=0,...,d—1)in (53) vanish or/§. Hence, using (3)fr € C>(U%).

In the case o€, (I"), let v be divergent. By Proposition 4.3 we may as-
sume without loss thad, is irreducible. Thereforel, € P as in the first
case. By the same argument as above, not aIngén the arguments of
[L.c () uo can vanish at the same time b, whence this product is now

locally integrable. In order to see th#t is C™ in they 4 it suffices to
show that not alli of the P, ({y}) — 0 (for j = 0,. d — 1) as the
y4 — 0 while the other coordinates are fixed. From Proposition We (
we know that everyP, is linear in they'{, if therefore allP,; vanished at

somey’s = 0 they would have)’s as a common factor. This contradicts
Proposition 4.8 as thep(¢.) C A. O
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In the preceding theorem;. was pulled back along as a distribution. The
next corollary clarifies the situation for the densititur = 5*(up|dz|). We
write |dy| for [dy? A ... Adylt.

Corollary 5.1. Under the assumptions of Theorem 5.1,

(54) grar({yildyl = fr(yid) T Wit ldy|
AeN

where
(55) ma, = 2|E(ys)| —ddim Hy(y,) — 1 > —1.
In the case of the divergent arrangeményt, (1), all m 4, = —1, and more-
over
(56) g ({yldyl = i) TT i -4 dyl

AeN

whered, = dim A.

We also writed, = d, .

Proof. Formally,

dzel = | AN dell=1\d [T ¥

e€E(t),j=0...,d—1 vl =",
= T Wil N\ dvll
AeN
where they, are determined as follows. Since thg (j = 0,...,d — 1)

spanA., the 1‘actoryiﬁ7 appears from altiz? such thate < cc(v), except
one, namel)d:ci’{‘j itself which corresponds to the marking. Sincis an
adapted spanning tree, the gete E(t) : e < cc()} defines a spanning
forest of+, and one concludes using Proposition 2.4 that = d, — 1.
Finally note thatlim H, (v,) = |E(~s)| —d,/d andI is at most logarithmic.
O

5.2. Combinatorial description of the Laurent coefficients. Let V' =
V(I), E = E(I')andp : V — V' a map of sets which is not injec-
tive. In the dual this defines a map : R — RY sending}", . a.sv' to

Y v Opw)v- Let E(v) € E(I'). Then the graph, with vertex set/(v,) =
V' and set of edgeB (v,) = E(v) suchthat, = §,0p* : RV(») — RFO»)
(see (15)) is callethe graphy contracted along p
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FIGURE 4. The edges of are broken lines, the edges of
t\ s full lines. p;s({vo,v1,v2,v3}) = wvo, Prs(vs) = vy,
pt,s({v57 Vg, U7}) = Us, pt,s(US) = Us, pt,8<U9> = Ug.

Note: The graph contracted alopgmay have loops. It is not necessar-
ily a subgraph of* anymore.

We assume, as in (6), a distinguished vertgxe V(I') such thatV, =
V(T') \ {vo}. Let nowt be a spanning tree @f ands C ¢ a subforest of.
This definesamap,  : V(I') — V(T') as follows: Letv € V(I") be given.
Sincet is a spanning tree df, there is a unique path in ¢ from v, to v.
Let p; s(v) be the unique vertex which is connected tby edges of only
and is nearest toy on the path,. See figure 4 for an example. This gives
us a grapt’,, .. Itis obvious from the construction that, s is a spanning
forest ofl",, , whereas all edges efare transformed into loops.

Let NV ={A,,..., A, } be aP-nested set i€, (") or Cu;,(T'). Let t be

an adapted spanning tree. Allare assumed saturated. We define the graph
i/ /N as follows. Letd,, ..., A, be the maximal elements A,,. Let

s be the forest defined b¥(s) = E(t) N (E(yj,) U... U E(y;)). Then
~://N is the graph with edgeB(v,) \ U'._, E(y;,.) contracted along the
mappy,s-

The graphy;//N obviously depends on although only up to a permu-
tation of the vertices, as is easily verified.

Lemma 5.1. Under the assumptions above:

(i) The graphy;//N has no loops.
(i) If ~; is connected, so is;/ /N (wrt. Vg (vi//N)).
(ii) In the case of the divergent collectiGp;, ('), let ' be a maximal
nested set. Ify; is connectedsy;//N is at most logarithmic and
primitive. Thereforeres(v;//N) is defined (see (43)).
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(iv) In this caseres(v;//N') does not depend upon the choice of an
adapted spanning trefe

Note that forP = F(C) every~; is connected (as it is irreducible). For
non-connected;, the statements hold for each component.

Proof. (i) Suppose: were a loop iny;//N at the vertexv. Since~,; has
no loops,|p; . (v)| > 1. However,p, , moves only the vertices adjacent to
edges ofs. We conclude: € E(v,,,) as they; are saturated, and have a
contradiction.

(if) By constructions” (3. ey qy/ /a0 V') = P (Lwrevinian V) = 2ivevin ¥
since the sum is ovell vertices oft.(7;) (the vertices not ifv,z map to0).
On the other handy”(z) of a sumz = ) , ., v whereU C Veg(y://N),

is not contained iBpan » .y, v. Write § = d,, andd, = ),

H(y,) d

0 RV () RE()

0 HO(y; ) JN) — RYer e/ IN) O, REONU 1B (iym)

Note thats, as a map int®”(?)») is the same as as a map iRg//V)
since the missing edges are all loops. Consequently, 4f ker d,, then
p’(z) € kerd, by definition of (v;),. However, because; is connected,
kerd = span} i, v. Thereforedimkerd, = 1, if 4, is restricted to
Vet (7i//N), and hencey; / /N connected.

(iii) By definition, a graphy on V(I is divergent if and only iflim A, =
(d—2)|E(7)]. Itis convergent ilim A, > (d — 2)|E(y)|. We may restrict
ourselves to saturated subgraphs because the number sfiadgEases the
susceptibility to divergences, and every divergent grapsaiturated. Let
v < 7v//N be saturated as a subgraph~ef/N. ThereforeE(y,) C
E(%)\Uﬁn _, E(v;,.)- Letnow~, be the saturated graph foy as a subgraph
of ;. Sincep maps each component ¢f , to a single vertexy;//N has

Zﬁnzl dim A,, components more thap. More generally,
dim A, =dimA, —dim As,,.
On the other hand,
[E(w)l = [E(ys)] = [E((s N 7s)s)l-
Therefore(d — 2)|E(v,)| < dim A, , and equality only ify, = ~; (equiv-

alentlyy, = ~;//N) by the maximality of\. It follows that~;//N is
divergent, and proper subgraphs of ~,//N are convergent, divergent,
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worse than logarithmically divergent if and only if they a®subgraphs of
vi; whencey; / /N is also at most logarithmic and primitive.

(iv) Let ¢,t' be two choices of an adapted spanning tree. Ther and
"\ s are spanning trees of//N, and by the argument in the proof of
Theorem 3.1 (iixes~;//N is independent of the basis chosen. O

We will shortly use this lemma in connection with the followjitheorem,
which helps understand the geometry of the divisam Yp.

Theorem 5.2. (see[22, Theorem 3.9|Let 5 : Y — V be a wonderful
model.

(i) Thedivisoris€ = J 4. £4 WithE4 smooth irreducible and(£4) =

At
(i) The component§y,, ..., 4, have nonempty intersection if and
onlyifthese{ Ay, ..., A;} isP-nested. Inthis case the intersection

is transversal.
O

We also write€, for £4. .
We consider only the divergent caSg, (I") with arbitrary building set?
and conclude for the Laurent expansiors at 1 :

Theorem 5.3. Letwi = *uf as a density.

(i) The density?;. has a pole of ordetV,,,, ats = 1, whereN,,,, Is
the cardinality of the largest nested %et

(i) Let
(57) W= Y ark(s — DN
k:_Nmaac

Then, fork < —1,

suppary = () [ &

|N|=—k AyeN
which is a subset of codimensierk. The union is oveP-nested
sets\.
(iii) LetP = F(Caiv(I")). Recall thatl denotes the constant function 1.
Then
(58) aF,_Nmaac [l] = Z H res(V//N>

|N|:Nmaac A'y EN

2We suspect, but this is not needed here, that in the diveayesmigement all maximal
nested sets have (equal) cardinaliy,,,...
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where ally are assumed saturated.

Recall from Theorem 5.1 that is C> in they'{*. Therefore the canon-
ical regularization can be used consistently (see (35)& idlantity (58) is
known as a consequence of the scattering formula in [20] ioenemtum
space context. More general identities for the higher caefits can be ob-
tained but are not necessary for the purpose of this paper.

Proof. (i) From (56),@3|dy| = f& [Lacn [y @4~ =44%|dy| in local co-
ordinates. By the results of section 3.3, in particular (38)

y . 26 Z .
(59) wwmzhll(—i@ﬁ+|ﬂ%1‘“)@h
AeN dA(S )

whence the first statement. ‘

(i) This follows from (59), using tha£, is locally given byyia7 = 0. The-
orem 5.2 (ii) shows that the codimensiorkis

(iif) Throughout this proof we assume alldefining the nested set are sat-
urated. By Theorem 5.2 (ii), fotN'| = Nyaz, the setn, o &, intersects
no other€,, v ¢ N. Using (ii), ar —n,,.. IS in fact supported on a disjoint
union subsets of codimensioW,,..., and we may computér _y,,..[1] on
each of them and sum the results up. It suffices, therefosfhidw

(60)

(2% [ fo T] aotwi)/drlayl = TT westa//n) - U8

AyeN AyeN

for all maximal nested setd’. Integration inside one chart suffices since
there is no other nested skt such thatj(Uy~) coversny ex&, and charts
from another choice of marked basis need not be considezedhs argu-
ment in the proof of Theorem 3.1 (ii). Recall (25) 8"° and (52)

we({yl)) = Fur)({wih) = [ wo {Z IT iy

eEE(F) e'~e yé jye”

in UE.. In order to studyfr| S ,one observesthatallproducﬁ[sj <k, y*
A'Y -

vanish atij = 0, oncee’ € E(y). If all d components?,, ..., 24 24" of

all ¢ ~ e vanish at the same time, this does not affgctas it is taken

care of by a power of’{* pulled out ofur in (50). Consequently, for a fixed
eec EI),

wl > I vy I i IT st

e/ el~e yi/jy];” Ay e/\/,eeE('y) AyeN
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=w({ ) I v I wi

e/;/e/r\»e and VAyEN o7 <k AyeNe€E(y)
e'€E(y)=e€E(Y)

On the other hand, consider the graph\” wherey € V. Writep = p;_ .
whereE(t,) = E(t)NE(7y), tis the chosen adapted spanning tred fand
s~ the subforest defined by the maximal elements of the nestedis&ined
in . Sincey is connected;, is a spanning tree of. A vertexuvy , € Veg(t)

is chosen. For each componerf s., there is a unique element € Veg(c)
which is nearest to, ., in ¢,. By definition,

Zv/eveg(c) v if o= Ve,
p(v) =4 0 if v e Verr(sy) \ Ufvet,
v if veV(I)\ Ver(sy).

Let z = ZeeE(tw) zcbe With b, = (=1)%< 3" . v as in Proposition 2.7.
One findsp" (be) = (—1)%° > vevi\Vinvia(e) U Wherec is the component of
s, which contains:, andc = () if e € E(¢, \ s,). In particularp” (b.) = b,
if e € E(t, \ s,). Consequently

iyyn(x) = op'(x)

= Z Z (=1)9 z, Z (v:e)e

EEE(’Y//N) e/eE(t'y) UEVl\Vlﬁ‘/;g(C)
Y Y
e€E(y//N) /Eg(je\w

wheret, \ s, is a spanning tree foy/ /N . Therefore

Ay/IN—1 = H uo({ Z H yf”})

E ~
e€E(y//N) o eg‘(t—ye\s—y) ye/<y "

X H “/ ) @=DIEQ/ /A gy |

YEY'EN

In a final step, define for each e E(T") the minimal element,, € N
such thate € E(v.). We haveE(I') = [, cpfe € E(T) : 7 = 7}
= |_|AW6NE(7//N) as is shown by a simple induction. Similamy(t) =
Lla,ente € E(t) 2 7 = 7} = Ua, e E(ty) \ E(s,) is a decomposition
into spanning trees sinaeis adapted. Writgdy| = |/\7_ ecn) dy!| and
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0] = | Acertosmo.ar dy]. Then, inU.

y‘é#ylAA
ir N = r({yl}) JT i 160 ldyl
AveN
= J] w¢ > IT #5b [1 wi*21dgl
ED) e, o
(61) = JT @i @2 IT wd Yo [T vhoeilasl
AWEN ﬁssE(’l;) 'Ys,/’:;e yé/jye//

= ® Gy /N -1

AveN

Consequently (61) integrates to the product of residuetaamed. O

Theorem 5.2 and Theorem 5.3 (ii) implicitly describe a dicattion of Y.
In the next section we will show that all the information kelat for renor-
malization is encoded in the geometry)of.

6. RENORMALIZATION ON THE WONDERFUL MODEL

In this section we describe a map that transforiis = 5*af into a
renormalized distribution densityy. ,, holomorphic ats = 1, such that
lr,r = (.0 p|s—1 is an extension ofir onto all of M/ and satisfies the
following (equivalent) physical requirements:

(i) The terms subtracted from- in order to getur  can be rewritten
as counterterms in a renormalized local Lagrangian.

(i) The ur r satisfy the Epstein-Glaser recursion (renormalized equa-
tions of motion, Dyson-Schwinger equations).

One might be tempted to simply defing by discarding the pole part in
the Laurent expansion af} ; ats = 1. However, unles§' is primitive, this
would not provide an extension satisfying those requiresjeand the re-
sulting "counterterms” would violate the locality printgp See [18, Section
5.2] for a simple example in momentum space. In order to gek&mnsion
using local counterterms, one has to take into account thmgey ofYp.

The equivalence between (i) and (ii) is adressed in the malgivork of
Epstein and Glaser [23], see also [14,17,42]. We circumaenimber of
technical issues by restricting ourselves to logarithmierdences of mass-
less graphs on Euclidean space-time throughout the paper.
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6.1. Conditions for physical extensions.In this section we suppose as
given the unrenormalized distributions € D'(M"° \ M (T)), and ex-
amine what the physical condition (ii) implies for the remalized distri-
butionuy, , € D'(M") to be constructed.

Let V = {1,...,n} be the vertex set of all graphs under consideration.
The degree of a vertex is the number of adjacent edges. Inréwops
sections,I' was always supposed to be connected. Here we need discon-
nected graphs and sums of graphs. Therefore all graphspgpesed to be
subgraphs of théV-fold complete graphs”’ on n vertices withN edges
between each pair of verticed! can always be chosen large enough as to
accomodate any graph, in a finite collection of grapten V, as one of its
subgraphs.

We writely = ({4, ...,1,) for anNy- multiindex satisfying) " [, € 2N.
Alsoly—ky = (h—ki, ..., Li—ka), (V) = (1) - (1) etc. LetV = TLLJ.
Let Bip(ky, k) be the set of, J)-bipartite graphs of, where the degree
of the vertexi is given byk;. Finally, let (pr,s)scrcv be a partition of unity

subordinate to the open covgl;,, C; of A" \ {0} with
Cp =M™\ M2 (Krng)

where K ; is the completé ], .J)-bipartite graph (i. e. the graph with ex-
actly one edge between each I and eacly € J). The setzwgf;bg(KLJ) is

therefore the locus where at least ane- x; = 0fori € I, j € J.

The Epstein-Glaser recursion for vacuum expectation gatieme-ordered
products (see [17, Equation (31)]) is given, in a euclidearsion, by the

equality
(62)
Iy Iy
ly * kr kg
W= e Y (V)i Y W
V=IJ ky =0 reBip(ly—kr,ly—ky)

Yierli—ki=Xjeglj—vj

on MV \ A = & '(M" \ {0}). The distributions!¥ therein, vaccuum
expectation values of time-ordered Wick products, relatbe single graph
distributionsur and their renormalizations- i as follows:

tl‘}’ = Z crur an)_l(MVO\Mx%g(Kn))
r'eGr(ly)
63 & = 3 aurn onM’

reGr(ly)
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Gr(ly) is the set of all graph§ with given vertex sel/(I") such that the
degree of the vertekis /;. There are no external edges and no loops (edges
connecting to the same vertex at both ends). The combiaatmnstants

cr = % wherel;; is the number of edges betweémnd j, are not
needed in the following. See [31, Appendix B] for the comglatgument.
Proposition 6.1. On the level of single graphs, a sufficient condition for
equation (62) to hold is, for any,

(64) ur g = Uy, R Uy, R * U\ (41L172) ON (I)_l(MVO \ Mx%g@ \ (11 U"2)))

whenevery, , v, are connected saturated subgraphd'o$uch that/,g ()N
Veff(%) = 0.

Note thatu.,, r-u-, r iSin fact a tensor product sinee(;) Nee(y2) = 0.
The locus where the remaining factaf (., ,) is notC'* is excluded by re-
striction toMVO\Ms‘fgbg(F\(% LIv2)). The productis therefore well-defined.
Note also that (64) trivially holds on/*o \ M}° (T') by the very definition
(4) of ur. Proposition 6.1 implies, in particular, thatlifis a disjoint union
(T' =y U andVeg(m) N Veg(72) = 0), thenur g = ., g ® ., g €VEry-
where.

The system of equations (64) is called the Epstein-Glasersen forur p.
Recursive equations of this kind are also referred to agnealized Dyson-
Schwinger equations (equations of motion) in a momenturnespantext
[8,36].

Proof of Proposition 6.1. Let all ur ; satisfy the requirement of (64). We
only need the case whefé, J} with I = Vig(71), J = Veg(72) is a parti-
tion,i.e.JU.J = V.SinceM)? (I'\ (71 U72)) C M2 (K;,;), (64)is valid
in particular onC'; O supp p; ;. Furthermore, since, and~, are saturated,

T'\ (11 Un) is (I, J)-bipartite. Thereforet¥ as in (63) with (64) inserted,
provides one of the terms on the right hand side of (62). Ceelg ev-

ery graphl’ with prescribed vertex degrees can be obtained by chosing a
partition/ U J = V, taking the saturated subgrappdor I and~; for J, re-
spectively, and supplying the missing edges from(the/)-bipartite graph.

O

6.2. Renormalization prescriptions. We consider the divergent arrange-
mentC = Cqu;,(I") only, with building setP minimal or maximal, that is

P = F(C) or C. Let N be a nested set which, together with an adapted
spanning tree and a marking of the corresponding baSigrovides for a
chartU§: for Yp.
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By Theorem 5.3 (ii) the subset of codimension 1 whefehas only a sim-
ple pole ats = 1 is covered by those chart& where N = {A,} with ~
any divergent (and irreducible® = F(C)) graph. From (59) one has

20(y)) |
~ _oes | v 1Ay ((dy—1)—dys
wr|dy| = f¢ d(s—1) + |3/Aj|fz‘; "] ldyl

In these charts, one performs one of the following subwastin order to
get a renormalized, i. e. extended, distribution. In the Giese, only the
pole is removed

~3 ~3 s b d~rs—(d~y—1
(65) aldy| = @, dy] = filya (Fn " dy)
One might call thidocal minimal subtractionOther extensions differ from
this one by a distribution supported é&n. Here is an example of another
renormalization prescription, producing a different esien:

Foreachd, e NletA,, ..., A, € N bethe maximal elements contained
in A, (where all graphs are assumed saturated). Choose a C'*(Yp)
such thatqu|yiA7 = 1 andv,, depends only on the coordinatgs
A
e € E(t)n (E(jy) \ E(UE_ 7)) in U}, and has compact support in the
associated linear coordinates e € E(t) N (E(y) \ E(U_,v;)). Theva,
are calledrenormalization conditionsIn practice, the 4, will be chosen
as described at the end of section 3.4.

The second renormalization prescription is then
wp|dy| wls",Ry|dy|
(66) = @} — [y |9 wa ], S0y ) fildyl,

which is calledsubtraction at fixed conditionsThe notatiorjv4],, means
integration along the fiber of the projection
pA<y2177yg‘;§t)‘>|_><ygl77yf41477yg‘;3t)‘>

defined in (31). Both prescriptions provide us local expoess holomor-
phic ats = 1in all chartsU§- whereA contains a single element. It remains
to define them in the other charts.

In the chartd/%, for a general nested sa&f, where

wpldyl = f2 ][

AeN

e
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one applies the subtraction (65) in every factor (local maiisubtraction)

(67) gl = S T sl ™" 1dyl.
AeN
Similarly, by abuse of notation, in the same chart,
(68) @i g ldyl = @p T (1= alpado(yi)) |dy]
AeN

generalizing the subtraction at fixed conditions (66). Acpse notation for
(68) — which disguises however the multiplicative naturéhes operation —
is

1
~ _ k k
wr g, |yl = Z (=1) H [y | das—(da=1) [Hﬂ’ilyAJpA AAAAAA A
{A1ea ALY N aen 1Y |

k A
(69) x [Joo(wa?) fildyl

j=1
wherepy, .. 4, is the projection omitting the coordlnat;@g, ,i=1,... k.

Corollary 3.1 shows that there are no infrared dlvergendesm\pushlng
forward alongg.

Note thatwy . |—1|dy| defines a density oip, but this is not true for
generals :

Proposition 6.2. The local expressions;. . |.=1|dy| given by (67) define a
density onYr. Thewy. , given by (68,69) define a density-valued function
on Yy, holomorphic in a neighborhood af= 1.

Proof. Note thatwy is by construction a density for all Local minimal
subtraction: Thdy';! |f1 transform like|y'*|~! under transition between
charts. Subtraction at fixed conditions: Each term in the ¢@) differs

fromw; by a number of integrations in t@éfj and a product of delta distri-

butions in the samgA .7 Under transition between charts, the contribution
to the Jacobian from the integrations cancels the one frendétta distri-
butions. It remains to show that} , has no pole at = 1 : Using that
uA|yj-4A:0 = 1, we have in local coordinates

iAi)

~ ia. da.—1—dy.s
Wy R, = Z kH + | A7|fm " [valpa

i, 260(y4") yida-i=das | ps
o)) 1 }(m” J )fr-
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Combining this to a binomial power finishes the proof. O
Theorem 6.1. Let P = F(Cy,) for all graphs. Then both assignments
' — dr g, = Blp gy|s=1,

I' — aF,R,, = ﬁ*@fﬂ,RJSﬂ

(with consistent choice of the,) satisfy the locality condition (64) for
graphs.

The proof is based on the following lemmata. All buildingssgt are
minimal. If A, € P theny is always supposed saturated.

Lemma 6.1. Under the assumptions of Proposition 6.1, lef € P and
ce(y) £ ee(y1 Uys). Then

Ey CATHME (TN (m U7))).

Proof. If cc(y) £ cc(y1U72), theny contains an edgee E(I'\ (71L2)).

1%
Consequenthyls = M) Ae S Ueenm (ramey Ae = Mang (TN (71 U
72)). Sinced ' (A5) 2 &,, the result follows. O

Under the assumptions of Proposition 6.1, let
G={A,€P:ce(y) < ce(nUm)}.

Lemma 6.2. A subsef\/ C G is nested wrt. the minimal building set if and
only if V' = N; U N3, where); is a nested set wrt. the minimal building
set for the connected graph with vertex seV.q(7;).

Proof. Let P(G) = F(Cun(G)) for a graphG. First, sinceVog (1) N
Ve (72) = 0, every connected subgraphof v, LI 1, is either contained in
71 Or in ;. Let now N C G be nested wrtP(T"). All irreducible graphs
are connected. We can therefore wille= N; U N, where the elements
of \V; are contained iny;. Since~; is saturated, a subgraph of is irre-
ducible as a subgraph of if and only if it is as a subgraph df. Conse-
quently theN; areP(~;)-nested becausB(y;) C P(I'). Conversely, sup-
poseN; = {A,,,i € I} andN; = {A, ,j € J} are given. Let some
Yirs - % € v andy;,, ..., 7., C 72 be pairwise noncomparable. Then
the sumy_%_, Ay, + 021 Ay, isinfact a decomposition into two terms
and therefore not contained #A(I"), unless one of the two terms is zero.
But in this case, the other term is a nontrivial decompasitiself, for it is
not contained irP(+;). Therefore it is not contained iR(T"), and\; U Ns
is nested wrtP(I'). O

Proof of Theorem 6.1Let T, y;,7» as in Proposition 6.1. Let € D(M'0)
such thatupp ¢ N M2 (T'\ (y1 LU 72)) = 0. In a first step, we study the

sing
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compact setX = supp vy wherey = (*¢. By Lemma 6.1,X does not
intersect anyt,, wherey € P\ G. Therefore

X NN (UR) € jnng(Unng)
(where at the right hand side the marking®fs restricted ta\V' N G). In
order to test (64), it suffices thus to consider tg where N € G. Fix
now such anV" € G. In a second step, assume for simplicity that(y,) =
{1,...0i}, Veg(e) = {i+1,...,i+j}and writeV, = n — (i + j) + 1
(By the remark in the proof of Proposition 6.1 we really onged the case
whereV, = 1). Now consider the mag » : Yp(,) X Yp(y,) x MV" — M
which is the cartesian product of two wonderful models (vt minimal
building sets) for the graphg and~,, and a factor corresponding to the
remaining edges of an adapted spanning tred farthere a spanning tree
for v andw have been removed. The map is the identity on this third fac-
tor. If UN is a chart forY,,), thenUg! x U x M"" is a chart for the
product. As the nested set\él and\; and the markind3; and BB, of the
basis vary, one obtains an atlas 165(,,) X Yp(,,) x M"". Similarly, let
qf}l ﬁz qf}l ® qffz ® id be a subordinate partition of unity with compact
support for the compact s&t’ = supp 57 ,¢ IN Yp(,,) X Yp(y,) X MVr,
In a third step, we use Lemma 6.2 to identfyI')-nested setd/ C G with
N1 U N3, and to show that there is a partition of unjif, for X C Yp

subordinate to the atlggg, which looks locally likegy! ' . SinceUN =

U b X U 2 x MY\ Ugep\gZa, (See section 4.5), withf = gN XJN xid,
the qu BQ ' provide indeed such a partition of unip, with compact sup-
port, because a small enough neighborhood afoes not intersect any 4,
AdQg.

Finally in a chartU%, identified with U5} x U2 x MY, by definition
(67,68), the renormalized distributions satisfy

wr r(Y)|dy| = Wy, R~y RO (y,02) (¥) | Y|

where on the right hand side pullbacks alomg, are understood. Let
Y19 = (7 ,0¢. Since alsg3 = [ in this chart, we have) = v, in lo-
cal coordinates. This finishes the proof. O

Remarks Local minimal subtraction is easily defined, but dependshen
choice of regularization in a crucial way. The subtractibiid conditions
is independent of the regularization and therefore the okt choice for
the renormalization of amplitudes and non-perturbativeatations.

If one extends the requirement (64) to general decompasitlp = A, ®
A, into connected saturated subgraphs (the proof of Theoréns éasily
adapted to this), then itis obvious that the minimal ma@ek F(Cy;, (1))
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provides exactly the right framework for renormalizatio®n the other
hand, on the maximal modéP = Cg,(I")), for which Lemma 6.2 usu-
ally fails to hold, unnecessary subtractions are requirdtere are disjoint
or, more generally, reducible divergent subgraphs. Locatust then be
imposed by additional conditions. It can be shown that loeabrmaliza-
tion schemes such as local minimal subtraction can also jpieedpn the
maximal (and all intermediate) models, as will be reportedwhere.

6.3. Hopf algebras of Feynman graphs.In this section we relate our pre-
vious results to the Hopf algebras introduced for renormagiton by Connes
and Kreimer [19, 34], and generalized in [12]. This is noirety straight-
forward, see also the remarks at the end of this sectionatlagl suitable
polynomials in masses and space-time derivatives, pas#igace Green
functions can be chosen to have a perturbative expansiarnmstof log-
arithmic divergent coefficients. Thus, in summary, as losgvarse than
logarithmic divergences are avoided, the Hopf algebrasgioormalization
in momentum space [12] and position space are the same.

Only the divergent collectio@,;, (I") and the minimal building seP =
F(C4,(I")) is considered at this stage, aimgducible andnestedrefer to
this setting.

Definition 6.1. Two Feynman graphE,, I'; are isomorphicif there is an
isomorphism between their exact sequences (15) for a $aitalentation
of edges.

Lemma 6.3. Lety C T be divergent graphs wherg is connected and

at most logarithmic. Let be an adapted spanning tree for the nested set
N = {T',v}. Then the isomorphism class6f /N is independent afand
I'//N connected, divergent and at most logarithmic.

In this case we writ&'//~ for the isomorphism class &f//N.

Proof. Follows from Lemma 5.1 (ii),(iii) and the definition of the gient
graph using; . O

Let Hr¢ be the polynomial algebra ové€r generated by the empty graph
(which serves as unit) and isomorphism classes of conneateabst loga-
rithmic, divergent graphs. There is no need to restrict &pgs of a specific
interaction, but this can obviously be done by introducirggmal (half-)
edges and fixing the degree of the vertices. All subgraphshawe un-
derstood to have vertex skty. Products of linear generators fr are
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identified with disjoint unions of graphs. One defines

(70) AM) =) yaT//y

~yCT
where in the sum only divergent subgraphare understood, including the
empty graph. The quotient graplf /v is well-defined and a generator of
Hre by Lemma 6.3. One extends as an algebra homomorphism onto all
of Hre.

By the analysis of [12, Section 2.2], the m&p: Hre — Hrc @ Hra
is coassociative. Note that divergent and at most logardghmplies one-
particle-irreducible (core) as in [12]:

Definition 6.2. A graphT is called core (one-particle irreducible) dim
Hi(I'\ e) < dim Hy(I") for anye € E(I').

Proposition 6.3. A divergent, at most logarithmic graghis core.

Proof. If dim H(I' \ e) = dim H,(I") for somee € E(I') thenT \ e
would be worse than logarithmically divergent. O

One can dividé+ ¢ by the idealZ generated by all polynomiats— [] v;
whereA, = A, ®...®A,, isanirreducible decomposition, asin [12, Equa-
tion (2.5)]. Indeed, ify is connected and., = A, @ A., a decomposition
theny is a join: E(y) = E(y1) U E(y) and Veg(71) N Veg(12) = {v}.
We refer then to [12, Equation (2.5)] for the complete argnimbatZ is

a coideal. The quotient Hopf algebra is denctég; = Hrc/Z, and we
will use only this Hopf algebra in the following. It corregmis to the min-
imal building set. The antipode is denot8dand the convolution product
of linear endomorphismg x g = m(f ® g)A. Note that a connected di-
vergent grapH" is primitive in the sense of Definition 3.4 if and only if
AD) =0T +T ®0.

Theorem 6.2.1f I is irreducible,
SIC) = Y )M T /N,
AreN AyeN
where the sum is over nested s&fswrt. F(Cy, (T)).
Proof. Since the antipode satisfi€4() = () and
S(L) == SMT//7,
7GT

for T" irreducible, divergent, one has(I') = —I'if I is primitive. Let
now I be general irreducible. The sum over nested Aétsrt. 7 (Cy;, (T'))



RENORMALIZATION AND RESOLUTION OF SINGULARITIES 53

containingAr can be written as a sum over proper divergent subgrajuifis
I" and nested set8” wrt. F(Cq:, (7)) containing the irreducible components
of A, such thatN- = N' U {Ar}. By Lemma 6.3]'//y =T'//N, and the
statement follows by induction.

By Theorem 5.3 (ii)-(iii), the antipod#® describes thus the stratification of
the divisor€ of Yp. A similar (but weighted) sum is given by x Y where
Y is the algebra homomorphisi : Hre — Hre, Y (I') = dim H; ()T,
see for example [20]. This provides the link between thetedag formula
of [20] and Theorem 5.3 (iii), and we refer to future work foetdetails.

In the case of dimensional regularization and minimal sdtion, one con-
siders algebra homomorphisms fr@ii¢ into an algebra of Laurent series
in the regulator, and a projector onto the finite part of théesein order
to describe the renormalization process [19, 20, 34]. Inflamework, the
Hopf algebra is encoded in the geometry of the divisor. Themaal-
ization process is simply to approach the divisor and perftre simple
subtraction along the irreducible components, and to ta&@toduct of the
subtracted factors where the components intersect. Tdrerdfe renormal-
ization schemes studied here (67)-(69) can again be deschy the an-
tipode twisted with a subtraction operator. The latter dejsehowever on
local information as opposed to global minimal subtracti@comprehen-
sive discussion of the difference between local renorraibn schemes as
described here and (global) minimal subtraction is resefeefuture work.

RemarksThe role of the Connes-Kreimer Hopf algebras in Epsteins&la
renormalization was previously discussed in [27], [41] énid The third
paper, which is about entire amplitudes and uses rooted, trekes on a
quite symbolic notation which is now justified by the resultshe previous
sections. A general flaw in the first paper [27] is revealedh@inhtroduc-
tion of [41]. On the other hand the coproduct in the seconcepfl]
does not seem to be coassociative the way it is defined. Asrder@xam-
ple consider the cycle on four vertices plus two additionigles between a
pair of vertices. This can be repaired by introducing iredle, core or at
most logarithmic and saturated subgraphs as it is done Bee[12, Sec-
tion 2.2] for a general discussion for which clasge®f graphs the map
AT) = ng v ®T'//~ has a chance of being coassociative.
Y

6.4. Amplitudes, non-logarithmic divergences and regulators.In this
section we briefly sketch how to extend our previous resultsch are so
far confined to single graphs with at most logarithmic diesrces, to a more
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general class of graphs. Indeed, if one considers amp$juwiteyacuum ex-
pectation values of time-ordered products in the Epstdas€ framework,
one wants to regularize and renormalize sums of Feynmanmbdigons si-

multaneously, and some of them will obviously have worsa thgarithmic

singularities.

For an introductory discussion of non-logarithmic diverges the reader
is referred to [12, Section 7.4], [18, Section 5]. The gehghdosophy is
to reduce seemingly non-logarithmic (quadratic etc.) jeaces to loga-
rithmic ones by isolating contributions to different termghe Lagrangian
(such as wave function renormalization, mass renormaizgt and by
projecting onto a subspace of distribution-valued mergrhior functions
where local terms with infrared divergences are discardéds shall only
be sketched at the example of the primitive graph

|d°x|

I'= o

. up(@)]dz| =

in d = 6 dimensions, which is quadratically divergent. By (38}, has
relevant pole$at s = 3 ands = 1. Indeed, by (33),

(71)
ffyldyl (50(3/0) )
|y0[8s=5 4s—3  8(s—1)

ldy| = _ |y°|§;§8) fa(y)ldyl.

Note that neither the residue at= 3 nor [y°[3," /i is globally defined
as a distribution density. One would like to work in a spacelistribu-
tions wherewr is equivalent to a linear combination of distribution densi
ties with at most logarithmic singularities, having only @elgats = 1. If
one disposes of an infrared regulation such that the seetalliabatic limit
vanishes

(72) up[l] =0

3Just as in dimensional regularization, the (linear) dieege at = 7/8 is not detected
by the regulator.
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one can subtraat?.[1]d, from (71) without changing it:

Bildyl = wp - Go(y”) / (2)|dz]

Sn(2/° 5" (1,0
B (42<g ; " 8@(3 i) - |3/°|?Zfs) fEw)ldyl

—do(y") <—481_ 3

which kills the pole at = 2 and leaves a linear ultraviolet divergence. Us-
ing similar subtractions of zero the linear divergence nientbe reduced
to logarithmic ones and convergent terms, again at the egpeinintroduc-
ing infrared divergent integrals which vanish however inustient space
whereu;[1] = 0 for all I'. We have not worked out the general case, but di-
mensional regularization suggests that it can be done stensly. Indeed,
the idea (72) can be traced back to the "identity”

+ holomorphic term} ,

(73) / dkk** =0, o arbitrary

in momentum space dimensional regularization, see alsd®§d&ions 4.2,
4.3], [12, Remark 7.6]. Equation (73) is a consequence ofdbethat di-
mensional regularization balances ultraviolet and irgdedlivergences, us-
ing only one regulatod.

A complete treatment of non-logarithmic singularities antdre amplitudes

is reserved for future work, as well as a more general studggnflarization
methods, such as dimensional regularization, in positpats. Whereas
the analytic regularization used in this paper is based mmgathe prop-
agator to a complex power, dimensional regularization woeplacel by

d —2s,s € Cin (1). This can be seen to lead to very similar expressions,
simplifying the constants in (43), (56) etc.

7. FINAL REMARKS

Pulling back the Feynman distribution onto a smooth mod#i wormal
crossing divisor seems an obvious thing to do for an algelgaometer.
Less obvious is maybe the question which kind of smooth mdete-
ful and how renormalization depends on the choice of a moéelfore
addressing this question let us first point out what chaniggshierical in-
stead of projective blowups are used (as in [2] and in the digjim section
4) — this choice is possible since we are only interested awinlg up a
real locus. In a spherical blowup of a point in SOIR&, the exceptional
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locus is a codimension one sphere instead of a codimensierpjec-
tive space. In order to adjust to this different situatione @imply intro-
duces for example around equation (26) twice the number aftghsay
pf  UX — M x S™ ' where nowU:= C U, is the half-space; > 0
resp.y; < 0, and replace$z,, ..., z,] by [z1, ..., z,]+ which means that
only an action ofR, is divided out. (In fact, the choice of sign made in
(26) is exactly the one obtained from identifying two antipbcharts of the
spherical blowup in the right way so as to haveriented.) This makes the
spherical blowuy” a manifold with boundary.

As is well-known, the spherical De Concini-Procesi modatg] in partic-
ular the spherical Fulton-MacPherson compactification §2¢ manifolds
with corners since they are submanifolds of a product of folds with
boundary (compare (44)). Equations (44), (48) etc. haveetonbdified
accordingly. The corners are the expense to be paid in oodgett ori-
entability, and one does not seem to gain or lose much bynigaale for
the other. For the simple kind of propagatey studied in this paper the
analysis is more or less the same, taking into account the¢ $he sphere
is the double cover of the projective space, the spherisadues come with
a factor 2 compared to the projective residues.

It is obvious that the Fulton-MacPherson compactificatiéf] (minimal
De Concini-Procesi model fdwxgbg(f(n)) is good for all Feynman distribu-
tions at the same time, and therefore for entire amplitudbgsh are sums
of Feynman distributions. The combinatorics of the nestgd for M [n]
resemble the Hopf algebra of rooted trees [34, 35]. We chmamtk with
the graph-specific models because we wanted to make theatmmi® the
Hopf algebra of Feynman graphs and to Zimmermann'’s foresttita ex-
plicit. One difference in renormalizing a Feynman grapbn A/[n] and on
the other hand o'z, ) is that in the first case (64) really holds only
for disjoint unions of subgraphs, 72, whereas in the second case an im-
plicit renormalization condition "(64) also for more geakdlecompositions
(joins) Veg (1) N Ve (12) = {v}"is introduced. See also the corresponding
remark (v) in [12, 1.3]. If one does not like this conditiomeocan use in-
stead a non-minimal, intermediate building set where gerducibilities
are allowed.

In the recent paper [12], which studies the Schwinger panarnepresen-
tation of Feynman integrals, a toric compactification of tbenplement of
certain coordinate linear spaces is used in order to uradetshe renormal-
ized Feynman distribution as a period of a limiting mixed gedtructure.
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We also mention [13,38] for recent related research in tihampatric repre-
sentation, [28] with regard to the operator-product expansand [40] for
cohomological aspects.

Beyond the open problems already mentioned there arise ihmaediate
questions. The first is to find the right analytic frameworkider to gener-
alize our results to arbitrary propagators on manifold#h)@imore versatile
notion of regularization than the ad-hoc analytic reguktion used here.
The second question is how the motivic description of reradization in
[12] is related to our approach. And finally it remains to gasut a gen-
eral study of finite renormalization and the renormalizatgyoup in the
geometric context we have introduced.
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