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1 Introduction

®0000000000

The golden number or golden ratio ¢, the positive
number defined by the equation

1+v5
2

pp—1)=1, ¢ = =1,618033... (1.1)

is widely known in relation with many different areas:
mathematics and geometry, natural sciences, art, archi-
tecture, music, etc. The wikipedia article on the golden
ratio is a good source of information on these many ap-
pearances of ¢.

In this note we will present another look to the golden number from a
calculus point of view. More precisely we will be dealing with the power
functions z® and z~¢, for z > 0, where @ = ¢ — 1 = ¢~ '. The motivation
comes from the so-called power laws. Power laws are ubiquitous in different
areas of social sciences under different names, Zipf laws in linguistics, Pareto
laws in economical sciences, etc. To the best of my knowledge, these laws
play in social sciences a role similar to normal laws in statistics, but well
funded mathematical statements to explain this are not so widely known.

When listening to a number of talks in linguistics in which power laws 2~
appear modeling different aspects, I often ask the speaker about the exponent
7, to find out that values close to a are most common. Understanding
whether the power law, with exponent «, has some intrinsic meaning seems
to be an appealing research project, although not precisely defined.

In this note, as a first step and in a completely deterministic setting, first
we ask ourselves whether the power functions z® and 2~® have some special
property. In the second section we show that indeed they enjoy a character-
istic property among all self-homeomorphisms of the positive real line. In

x4 te )
A PROPORCﬂO DOURADA

"vevvevvvvUvsUTIITEIPIOIOERES

ey o

T


http://www.mat.uab.cat/web/matmat
https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Golden_ratio

2 The golden ratio from a calculus point of view

the third section we show that in fact they are attractor points of a certain
transformation 7' acting on self-homeomorphisms of (0,400). These two
facts are just easy consequences of interpreting the defining equation (1.1)
in terms of the power functions.

In the last section we will describe an integer sequence, that may be
viewed as a discrete version of the power law 2. This integer sequence
turns out to be a known sequence, the Golomb sequence quoted as sequence
A001462 in the On-line encyclopedia of integer sequences, https://oeis.
org. We introduce a discrete analogue Ty of the transformation 7', acting
on integer sequences, and show that the Golomb sequence is a fixed point
and an attractor for Ty. The transformation T} is related to the operation
of extracting frequencies. The fact that the golden ratio has some relation
with frequencies was hinted to me some time ago by Alvaro Corral.

2 The golden diffeomorphism

We start by noticing that the defining equation (1.1) means that the deriva-
tive of the power function z? equals, up to a constant, its inverse. This turns
out to be a characterization:

Theorem 2.1. The function fo(z) = a®z®, > 0, is the unique solution
of f' = f=1, £(0) = 0. More precisely, if f : [0,+00) — [0, +0c0), f(0) =0,
f(+00) = 400 is strictly non-decreasing, differentiable and f' = f~', then
f = fo.

As a restatement, the function ho(x) = (fo) 1(z) = fi(z) = pa®2z® =
#1722 is then the unique self-diffeomorphism & of the positive real line such
that h = (h=1)". We call fo, ho the golden diffeomorphisms.

Proof. Computation shows that fy is a solution, since a(av + 1) = 1. Now,
if f is as in the statement, (f(z) —z) = f/(z) — 1= f~1(x) — 1 grows from
—1 to +o00, whence f(x) — = decreases from 0 to an absolute minima and
increases thereafter. Therefore, the graph y = f(x) meets y = x at a unique
point (a,a), and f maps (0,a) onto (0,a) and (a,+o0) onto (a,+00). Now
we argue separately in (0,a) and (a, +00).

In (0,a) one has f/'(f(z)) = 2 > f(z), that is f'(t) >t for t € (0, a), since
f(x) fills (0,a). Thus, integrating we get f(t) > %, that is, ¢ < /2 f(t).
Then f'(f(x)) = z < V2 \/f(z), that is, f'(t) < V2 V/t, implying f(t) <
%t%. Thus we get for some constants as, as

F8) <t f(8) > ast?, £(1) < ast?, ...
and so on. Assuming inductively that f(t) < a, t’, one has

F@) =2 > () (fa),
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that is, f'(t) =2 > (=

— Qn,

1\ 1 ) Ll
a = _— 5 == —_—.
n+1 an 1 T i n+1 bn

)bntbn implying f(t) > an41tP»+ with

Similarly, if f(t) > a,t’" we get f(t) < any1tP»+1. Now, the sequence defined
inductively by by =1, b1 =1+ i has limit ¢, because it is bounded and
every limit L of a convergent subsequence satisﬁes L(1+ L) = 1. Similarly,
the sequence a,, has a limit L, with L? = ¢ so L = a®. Thus f(z) = a®z?
n (0,a). Since f(a) = a, it follows that a = ¢.
For x € (¢, +00), f'(f(x)) =z < f(z), that is, f'(t) < t for t > ¢, since
f(z) fills (¢, +00). This implies by integration

F1) = 6= ()~ (6) < 5 &), F(1) < 6~ 36>+ 1

Notice that ¢ — %(;52 = %(qﬁ — 1) > 0. Here and later we will bound from
above every expression A+ Bt%, A > 0,t > ¢, with A+ B¢® = ¢ as follows:

A+ Bt = (ﬁ +B> < (;5 +B> 0 = ¢!, (2.1)

Thus f(t) < ¢~ 12 if t > ¢, that is, ¢ > (¢f(¢))2. Then

N

F(f@) =2 > ¢3f(x)3, ['(t) 213 13,t> 6.

This implies by integration

N[
[MJ[eV)

2 (% - b “ 2 2
f) - 6263 2 (= 63), f(t) 20— S0+ oh ek,
Notice that ¢ — 2(]52

+(¢ —2) < 0. Similarly, we bound from below every
expression A+ Bt®, A <0,t

> ¢, with A+ B¢® = ¢ by
A A
A+ Bt = <t5 +B> > <¢5 +B> = i (2.2)

Thus f(t) > gb*% t%,t > ¢. This proceeds inductively as follows.

1
Assume f(t) < ¢'7bntbn for t > ¢, b, > ¢, that is t > (¢b"*1f(t))m
Then

1

FH@) =2 675 (F@), f1(2) 2 675 oo
leading to
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and )
2 1‘% 1
26—+
bn 1+bi
Here 9
—b,

Sl g T4b,
whence by (2.2) we get f(t) > ¢! 70nt+1 thnt1 with b, = 1 + i < @.

In the other direction, starting from f(t) > ¢'=b= t¥n for t > ¢, b, < ¢,
one obtains in the same way

¢_bn ! —
< n

which by (2.1) is bounded by ¢! ~bn+1 tbn+1,
Since b, — ¢ it follows that f(t) = ¢'~?t® = a®t? too. O]

In a similar way one can prove that if f : [0, +00) — [0, +00), f(0) = 400,
f(+00) = 0, is strictly non-increasing, differentiable and f’ = —f~!, then
f(x) = a®2~®. The derivative —a!*?27% is then the unique strictly non-
increasing h such that h = — (hil)/.

3 The golden homeomorphism as an attractor

In this section we seek for another description of the golden homeomorphisms
within all non-decreasing homeomorphisms of the positive real line.

By theorem 2.1, the equation f’ = f~! characterizes fy among all dif-
feomorphisms of the positive real line. Write I for the operation of taking
inverses, If = f~', Df for f' and D! for the integration operator

Y
1 .
D () = / f(t) dt.

Indeed, Df = g and f = D~!g are equivalent statements for functions van-
ishing at zero. From D fy = I fy we may say that fy is a fix point of S = 1D
and of DI, or that (f) ! is a fix point of DI and ID~'. Of those transfor-
mations, the ones involving D are not defined for all homeomorphisms and
cannot be iterated. That’s why we choose working instead say with 7D™!,
For a non-decreasing homeomorphism h : [0, +00) — [0, +00), h(0) = 0,
h(+00) = 400, we define Th = ID~1'h, that is the map defined by the

equation
Th(z)
/ h(t)dt = x.
0
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Clearly Th is well-defined and it is a non-decreasing homeomorphism too,
the inverse of D~'h. We consider T as a self map in the class of all non-
decreasing homeomorphisms of [0,400). In fact Th is differentiable and
(Th) (x) h(Th(x)) =1, whence (Th)" strictly decreases and so T'h is strictly
concave. Notice too that if hi(x) < ha(z), then Thy > Tha.

Theorem 3.1. The golden homeomorphism ho(t) = ¢'=*t% is not only a
fix point but an attractor for T, that is T*(h) — hg point-wise for all non-
decreasing homeomorphisms h.

Proof. Let us first estimate T'h when h = hg ¢4 has the specific form
h(t) =atl, t <e¢; h(t)=dt®, t >,

with ac® = dc¢. Then

z a
h(t) dt = b 2 < 3.1
| har = g atta < (3.1)
and
z d a d
h)dt = ——zlte 4+ A A=clte(—— — > c.
[ b= et A A=ty - T o2

If A <0, similarly as in (2.2), we bound the last quantity from below as
follows

z d A
h(t)dt = Ie (2 _
/0 (t)di == <1+e+x1+€>

d A d
> I+e [ % ) e P )
>z <1+e+cl+e> LA (3.2)

where we have used ac® = dc®. Now (3.1) says that = Th(s) for s =

a .. 1+4+b a_ . 1+b :
5% < 1qpc 7, that is

a U T S T
Th(c) = c.

_1
Th(s)=d's", s <¢ a’:<1+b>1+b b ! r= b

In the same way (3.2) implies that for s > ¢/, that is for z = Th(s) > ¢, one

has
d

= h(t)dt > 2tte——
y /0 (8)dt > 140’

which amounts to

1+b\T , 1
d €=

z=Th(s) <d s, d = <
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Thus Tha,b,c,d,e < ha’,b’,c’,d’,e’ if A<0.
In a similar way we see that Thopcae > ha' o arer if A > 0. Notice

that A = ac't? (l%_b — l%re) has the sign of e — b.

Now we can prove that T%(h) — hg for an arbitrary h. By the remark
before the statement we may assume that h is strictly concave. Then there is
¢ > 0 such that h(c) = c and therefore h > hy = hy 11,0, defined hy(t) =t
for t < cand hyi(t) =cfort > c. Let hyy = ha, b cnidmien, Withar = 1,01 =1,
cp =c¢,dy =1, ey =0 and the a,, b,, c,, dy,, e, recursively defined by the
map (a,b,c,d,e) — (a', 0/, ,d',€), that is

1
1 + bn 14+bn 1 an 1+b
— b — —__m  l4bn
An+1 < an > s Un+1 1 n bn7 Cn+1 1 T bnc )
. 1+ b, Ten 1
= (& = .
n+1 dn sy En41 1+ en

Notice that the recursion formula for b,, e, is the same and b1 =1, e; = 0,
es = 1 = by whence e,4+1 = by,. Since Th,, — hy11 has the sign of e, — b, =
en — en+1 and this keeps alternating we see that

Thy < ha, Thy > hs, Thy < hyg,---,

and so on. Then, h > hy implies Th < Thy < ho, so T2h > Thy > hs, and
in general
T%*h > hopr1, T h < hogyo.

Now, it is plain that (ey), (b,) have limit &« = ¢ — 1. Then (a,), (d,) are
easily seen to converge to ¢!~ and (c,) to ¢, and the theorem is proved. [

4 The Golomb sequence as a discrete analogue

Given a finite set M of non-negative integers, possibly with repetitions, we
define its frequency content F(M) as the set of observed frequencies, that
is, the set consisting of the frequencies f, (M), the number of elements in
M equal to n. For instance, M might consist of the observed frequencies of
words in a book, and now we would be looking at frequencies of frequencies.
We are just interested in the values f, (M) of the frequencies, and not in n
or in general the objects having those frequencies.

One can visualize both M and F(M) as monotone sequences. For in-
stance in linguistics, frequencies are ordered in non-increasing order. It is
intuitively clear that the size of F'(M) is generally much smaller than that
of M and that iteration of F' leads to a singleton in a fast way. For in-
stance, if M consists of K numbers selected at random between 1 and N,
with K > N, F(M) will consist of N numbers from 1 to K, that most likely
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would be all different, so that F?(M) would consist in N ones and F3(M)
is a singleton.

To avoid that one might consider countable sets M instead, presented
as a non decreasing sequence by convenience, M = (m,). Of course, then
F(M) is not defined in general. If say m, — o0, then F(M) is defined,
but F2(M) is not in general. In fact, there is no natural choice of a sequence
space S in which F' acts.

For a sequence M, we can view its frequency sequence as

fa(M) = #{j :mj <n} —#{j:mj <n—1} (4.1)

Now let us consider again the operator 7' = I D~ of the previous section.
A formal inverse of T is then T~! = DI. Now notice that at a formal level
the operator F in (4.1) is the discrete analogue of T~! = DI. Indeed, for a
non-decreasing sequence M = (m,,),

IM(n) = #{j : mj <n},
is a sort of inverse and
DM (n) = my — mp—1

is the discrete derivative.

Therefore, at a formal level the discrete analogue of T is the inverse of
F, that we may call the deploying operator defined as follows. Given a non-
decreasing sequence M : m; < mg < ---, we produce another sequence E
such that F(E) = M by including m; terms equal to 1 in E, mgy terms
equal to 2 and so on. This inverse or deploying operator makes sense for in-
finite non-decreasing sequences. We denote by S the space of non-decreasing
sequences of positive integers

M:1=m <my<---<mp < -+

and by Ty : S — S the deploying operator just defined: starting from M,
Ty(M) is the non-decreasing sequence consisting in one 1 followed by mg 2's
and so on.

Now think in a sequence G = (Gy,) such that T4(G) = G, or G = F(G),
that is, for all n, G,, equals the number of n’s in the sequence. This sequence
is unique, namely

G:1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7,7,7,7, -

In fact, notice that since G; = 1, G9 cannot be one, so G2 = 2; this implies
G35 = 2 and so on. This is a known sequence, called the Golomb sequence,
sequence A001462 in the On-line encyclopedia of integer sequences, https:
//oeis.org. It is immediate to realize that G is an attractor for Ty, that is,
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starting from an arbitrary M the sequence TF(M) stabilizes to G. In fact
the n-th term of the sequence stabilizes to GG, in at most n iterations. In the
OEIS web page one can find references dealing with the asymptotic behavior
of GG, as stated in the next theorem. The result confirms that the Golomb
sequence is the discrete analogue of the homeomorphism hg in theorem 2.1.
We provide a proof for completeness (notice that the constant is the same
as in theorem 2.1).

Theorem 4.1. G = (G,,) behaves like ' ~*n®, that is, li_)m Gpn=% = ¢l=2,

Proof. Set ¢, = Gp,n~%. We show first by induction that choosing a small
enough and b big enough one has a < ¢, < b. So we assume a < 1 < b.

IfY, = > Gi=#{j: Gj <n}, one has G, = m for YV;,,_1 < n < Yp,.
i=1

It is clear that m < n, that is, GG,, depends just on G;, i < n. Assume
a<c, <bmn<N. Then

n+1
(n + l)a—l—l’
1

n
b
YngbZz’as/ £ dt <
— a+1

and similarly Y;, > —%-n®*t1 IfY,,_1 < N <Y,,, then

a+1
a
_1a+1<N< 10£+1'
a+1(m ) - _a+1(m+)
Therefore
a \° b \¢
—1) < N <L 1
(5) m-n=ne<(G5) e+,
(07 (e}
g a+1 NC <m<2 a+1 N,
3 b a
and

2 (a+1\“ m a+1\*
— < =—<2 .
3(b>—cN Na—<a)

Thus it is enough to choose a, b such that 2 (C‘Tﬂ)a <b, % (O‘TH)Q > a, that

isSkia *<b<k a_i, which is indeed possible for a small enough because
é > .

To prove the more precise statement about ¢, we need exploiting the
fact that in the above argument the tails are most important. Set L =
limsup ¢, = lim, d,, d, = supcg, | = liminf¢, = lim,e,, e, = inf ¢;. If

k>n k>n
N, m are as above and p = [m®] < m we use in the induction argument

that a < ¢, <bforn <pande, <c, <d, forp<n <N to get

1 d 1
P (1~ m®T —O(m) < N < —L— (14 =) m* +0(m).
a+1 P a+1 D
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Therefore
ep 1\ \“ o
1— - < N9(1 1
(3511 me v
d, 1\ \¢
- > N1 —o(1
(5% (143)) m=ve-o,
that is

() () s () (1)

Taking limit as N — +00 (so p — oo as well) gives

a+1\° a+1\°
<[, L<|——
(*77) =ees(T)

which implies L =1 = (1 4 a)!7®. O

Computer assisted generation of the sequence G, shows that the conver-
108 Gn i very slow, see next figure. In fact, after n = 108 terms,

gence to a of

logn

1085 — o & 0.00999
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