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Abstract 

Background The increasing availability of electronic health system data and remotely-sensed environmental 
variables has led to the emergence of statistical models capable of producing malaria forecasts. Many of these 
models have been operationalized into malaria early warning systems (MEWSs), which provide predictions of malaria 
dynamics several months in advance at national and regional levels. However, MEWSs rarely produce predictions 
at the village-level, the operational scale of community health systems and the first point of contact for the majority 
of rural populations in malaria-endemic countries.

Methods This study developed a hyper-local MEWS for use within a health-system strengthening intervention 
in rural Madagascar. It combined bias-corrected, village-level case notification data with remotely sensed 
environmental variables at spatial scales as fine as a 10 m resolution. A spatio-temporal hierarchical generalized linear 
regression model was trained on monthly malaria case data from 195 communities from 2017 to 2020 and evaluated 
via cross-validation. The model was then integrated into an automated workflow with environmental data updated 
monthly to create a continuously updating MEWS capable of predicting malaria cases up to three months in advance 
at the village-level. Predictions were transformed into indicators relevant to health system actors by estimating 
the quantities of medical supplies required at each health clinic and the number of cases remaining untreated 
at the community level.

Results The statistical model was able to accurately reproduce village-level case data, performing nearly five 
times as well as a null model during cross-validation. The dynamic environmental variables, particularly those 
associated with standing water and rice field dynamics, were strongly associated with malaria incidence, allowing 
the model to accurately predict future incidence rates. The MEWS represented an improvement of over 50% 
compared to existing stock order quantification methods when applied retrospectively.

Conclusion This study demonstrates the feasibility of developing an automatic, hyper-local MEWS leveraging 
remotely-sensed environmental data at fine spatial scales. As health system data become increasingly digitized, this 
method can be easily applied to other regions and be updated with near real-time health data to further increase 
performance.
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Background
Data systems play a key role in malaria control initia-
tives. Indeed, malaria surveillance is one of three pillars 
of the World Health Organization (WHO) Global Tech-
nical Strategy for Malaria 2016–2030 [1]The strategy 
stresses the need to strengthen local health management 
information systems (HMISs) to better track progress 
towards elimination and heterogeneity within a country. 
In addition to surveillance, malaria early warning systems 
(MEWSs), which use statistical and mathematical mod-
els to forecast malaria dynamics up to several months 
in advance as a function of environmental variables, can 
aid health systems in preventing malaria outbreaks and 
improving system reactivity [2, 3].Because malaria is a 
vector-borne pathogen, it is sensitive to environmental 
variables, particularly climatic variables such as tem-
perature and precipitation [4], facilitating the creation 
of accurate early warning systems [5]. Relevant environ-
mental variables, such as temperature, precipitation, and 
vegetation indices, can be derived from satellite imagery, 
whose resolution, frequency, and accessibility are con-
tinuously improving [6]. With the evolving capabilities 
of health and environmental data systems, it is increas-
ingly feasible to link these two data systems and create 
disease forecasts. However, while several MEWSs have 
been developed at global, regional, and national scales, 
the routine integration of environmental data in MEWSs 
remains rare [7].

The spatial scale at which MEWSs are developed 
determines the potential users of the tool for decision-
making. While current MEWSs can effectively inform 
international organizations and national programme 
managers, few MEWSs have been developed at local 
scales (<  1km2) relevant for operational use by health 
actors implementing malaria control activities within 
a health district. Combined with increased ownership 
over local budgets and policies, increasing the reso-
lution of MEWSs could allow district managers and 
medical teams to adapt interventions to the village or 
local level, such as hotspot targeting, last mile delivery, 
and community health worker (CHW) programmes. 
Malaria hotspots (zones with consistently high inci-
dence rates) have been proposed as an appropriate unit 
to target with vector control or human health interven-
tions, such as mass drug administration [8], although 
the ability of these interventions to impact regions 
outside of hotspots is limited [9, 10]. Last mile delivery 
interventions support the management and distribution 
of medical stocks, such as anti-malarials and bed nets 
at the lowest scale of the health system, often the CHW 
or the household [11]. By delivering medical products 
and services to remote populations, these programmes 

aim to remove geographic barriers to prevention and 
treatment of malaria within a medically-relevant time-
frame. CHW programmes provide basic health services 
to local communities of several hundred to several 
thousand people [12]. While their focus has tradition-
ally been maternal and child care, the professionali-
zation of CHWs and an associated expansion of their 
responsibilities to include non-communicable diseases, 
immunization, mental health, and epidemiological sur-
veillance is being implemented in many countries [13]. 
In Madagascar, CHWs traditionally diagnose and treat 
malaria in children under 5  years of age, and recent 
pilot programmes have demonstrated the success of 
expanding responsibilities to include additional malaria 
interventions, such as the provision of intermittent pre-
ventive treatment to pregnant women [14] or proac-
tive screening and treatment [15]. These programmes 
are generally planned and overseen by the heads of 
primary health clinics (PHCs), who oversee commu-
nity programmes for their communes. The successes of 
community-targeted programmes have prompted calls 
for the increased development of digital health tools for 
programmes implemented at local scales, especially in 
sub-Saharan Africa [16, 17].

In order for a MEWS to be usable by programmes 
at the local-scale, it must not only provide predictions 
at a relevant spatial scale, but it should also be timely 
(i.e. little delay between the availability of input data 
and availability of predictions) and contextually rel-
evant. This presents challenges as HMIS data are rarely 
reported at the scale of individual villages or communi-
ties, and when they are, tend to suffer from substantial 
data quality issues and biases [18–20]. In addition, the 
predictive variables used in the MEWS statistical model 
must also be at finer spatial scales than typically availa-
ble, necessitating the pre- and post-processing of satel-
lite imagery in continuous time [21]. Finally, outputs of 
a MEWS should be made contextually relevant by inte-
grating predictions with existing HMIS data, such as 
historical case burdens, information on diagnostic and 
treatment supplies, and ongoing programmes. It should 
be noted, that even with a local, timely, contextually-
relevant MEWS, broader health system interventions, 
such as the distribution of decision-making power to 
local actors and training in data literacy, are neces-
sary for disease forecasts to translate to programmatic 
adjustments. In consideration of these challenges, this 
project developed SMALLER (‘Surveillance and con-
trol of Malaria At the Local Level using E-health plat-
foRms’), a hyper-local MEWS specifically for use in the 
context of a health-system strengthening intervention 
in a rural district of Madagascar.
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Fig. 1 Schema of SMALLER MEWS web application architecture. The workflow is divided into three modules: Extract-Transform-Load, 
Analysis, and Visualization. (1) Extract-Transform-Load: Incidence data are created from digitized health register data that has been treated 
for under-estimation via the ZERO-G method. Temperature data are treated via the Climate Forecast System Version 2 (CFSv2) gapfill method 
in Google Earth Engine. Precipitation data are sourced from the Africa Rainfall Climatology Version 2 (ARC2) model housed on a NOAA server. 
Indicators derived from the Sentinel-2 satellite are processed via the Sen2Chain python framework on a server at Surveillance de l’Environnement 
Assistée par Satellite pour l’Ocean Indien (SEAS-OI) and further transformed into indicators representing rice field dynamics. (2) Analysis: Data 
sources are combined via an INLA model to create forecasts of reported symtomatic case rates at the community scale. Forecast case rates 
are back-transformed into stock needs at the PHC and cases remaining to be treated at the community health site using the ZERO-G method 
to account for care-seeking rates. (3) Visualization: Predictions are made accessible in an interactive dashboard via a Shiny application. The full 
workflow is updated on a monthly basis via a semi-automated process using the targets package
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Methods
First, an overview of the MEWS workflow (Fig.  1) is 
provided to orient the reader before entering into a 
detailed discussion of each step below. HMIS data and 
socio-environmental variables were collected at the 
spatial scale of community health catchments, ensuring 
data quality by treating HMIS data with a zero-
adjusted, gravity model estimator [22] and correcting 
satellite imagery with multiple treatment and gap 
filling processes, retaining the original scales of the 
data. These data sources were paired with a geographic 
information system of all the residential areas and 
rice fields in the district collected via a participatory 
mapping project [23] to extract data from sentinel 
zones that represent where malaria transmission is 
likely occurring. Geostatistical models were trained 
using a Bayesian framework that allowed for spatio-
temporal random effect structures to leverage 
information across community health catchments. 
Finally, the full workflow was integrated into a web 
application architecture that updates predictions 
continuously and provides information to local health 
actors in formats directly applicable to decision-making 
processes within the district (Fig. 1).

Study area
Madagascar has seen an increase in malaria burdens 
since the beginning of global elimination efforts in the 
early 2000s [24], and is one of six countries in the WHO 
Africa region where malaria case incidence has increased 
by over 25% since 2015 [25]. The southeastern part of 
Madagascar experiences unimodal seasonal cycles of 
malaria [26], with overall higher prevalence rates than 
the central plateau regions [27–29]. Ifanadiana is a rural 
health district located in the Vatovavy region of south-
eastern Madagascar. The district’s population is approxi-
mately 200,000 people, the majority of whom live in rural, 
isolated villages over 1 h from a health centre [23]. The 
district is divided into 15 communes and 195 fokontany 
(the smallest administrative unit comprising one or sev-
eral villages amounting to about 1000 individuals, which 
represents the community health catchment). Each com-
mune contains at least one major primary health centre 
(PHC), and six of the larger communes contain a sec-
ond, basic primary health centre that do not have medi-
cal doctors and provide more limited services (Fig. S5.1). 
Beginning in 2014, Ifanadiana has benefitted from a 
health system strengthening (HSS) intervention at all lev-
els of the health system, from community health to the 
regional hospital, via a partnership between the Mada-
gascar Ministry of Public Health (MMoPH) and the non-
governmental organization Pivot [30].

Ifanadiana contains a variety of ecoregions, including 
a protected tropical rainforest in the west and warmer, 
humid zones near the eastern coast. There is an east–
west elevational gradient from an altitude of 1400  m in 
the west to 100 m in the east. The dominant land covers 
are savanna and agricultural land for rice production. 
This diversity of ecoregions and climates translates into 
spatio-temporal heterogeneities in malaria burden in the 
district [4, 31].

Data collection and treatment
Health data
The monthly number of malaria cases per community 
were collected from consultation registries at all primary 
health centers (PHCs) across the district, from Janu-
ary 2017-December 2020. Handwritten registries from 
each PHC were digitized, with each de-identified patient 
geolocated to the precision of a ‘fokontany’ (e.g. the 
catchment of one community health site). The number of 
malaria cases (both uncomplicated and severe), as con-
firmed by rapid diagnostic test (RDT), were aggregated 
by month for children under 5  years old, children aged 
5–14, and adults aged 15 years and above. Because these 
data are collected at PHCs, they are passive surveillance 
data and contain primarily symptomatic cases. These raw 
data were adjusted for underascertainment due to spa-
tial bias in healthcare access using the ZERO-G method 
[22], which accounts for whether the PHC benefitted 
from a long-term health system strengthening interven-
tion, whether point-of-care user fees had been removed 
for the PHC, the number of staff at the PHC, the level of 
the services, and the distance from the PHC to the dis-
trict office. The method also included additional identi-
fiers of false-zeros based on the geographic coverage of 
the HSS intervention (see Supplemental Materials for 
more details). The ZERO-G method was applied sepa-
rately to each age class due to age-specific care-seeking 
and symptomatic rates, using fokontany with annual 
consultation rates over 2 consultations/year as a refer-
ence. This translated the reported case numbers, which 
showed strong evidence of geographic bias, into esti-
mated incidence rates of symptomatic malaria cases. The 
final data used in the model were the ZERO-G adjusted 
monthly case rates, aggregated across all ages, which rep-
resent reported cases assuming all fokontany had health-
seeking rates equal to the reference fokontany (Fig. S5.2). 
While this does not account for asymptomatic cases as 
an active surveillance study would, it allows for the use 
of passive surveillance data by correcting for prominent 
data-quality issues.

Information on historical quantities of malaria diagnos-
tics and treatment were used to validate model predic-
tions and provide additional context for decision makers 
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in the web application. These data were provided by the 
Madagascar Ministry of Public Health (MMoPH) at the 
monthly level for all major PHCs in the district beginning 
in 2017 and are updated continuously. This includes the 
number of febrile patients seen at the facility, the number 
of febrile patients tested via RDT, the number of malaria 
positive RDTs, and the number of RDT-positive patients 
treated with artemisinin-based combination therapy 
(ACT).

Environmental indicators
The surrounding environment can greatly influence 
the ecology of Anopheles mosquitoes, and, therefore, 
malaria dynamics themselves. A past study in Ifanadiana 
District identified variables related to forest and rice 
cover, elevation, and climate as potential drivers of 
malaria dynamics [4]. Data were therefore collected that 
described environmental dynamics, such as landcover, 
hydrology, and vegetation from the zones surrounding 
residential areas. Residential zones were located using 
a comprehensive dataset of the district of Ifanadiana 
collected via participatory mapping and available 
on OpenStreetMap [23]. This dataset includes over 
25,000  km of roads, tracks, and footpaths, 20,000 rice 
fields, 5000 residential areas, and 100,000 buildings. 
The dataset used for this study was accessed on Nov 30 
2021. Due to the size of this dataset and the processing 
time and resources it would require to extract data 
for all of these zones, sentinel sites of villages and rice 
fields were chosen to represent overall environmental 
conditions of a fokontany. Briefly, four sentinel villages 

of each fokontany were identified, determined by the 
number of buildings and field-based knowledge of 
communities. These sentinel zones contained on average 
40% of buildings in a fokontany and 60% of all buildings 
within residential zones, with the remaining buildings 
usually standalone structures such as small houses or 
shelters used during the agriculture season, rather than 
residences. The analysis focused on the environment 
within 1  km of the centroid of these residential zones, 
assuming that mosquitoes’ flight distances were limited, 
following previous work in this region [32]. In addition, 
the largest rice fields adjacent to each sentinel village 
were identified, creating a dataset of potential larval 
habitat closest to human settlements. Sentinel rice fields 
are meant to represent the average rice field dynamics in 
a fokontany, and do not mean that those rice fields are 
necessarily an important source of mosquito populations. 
In instances where there were fewer than four villages or 
four rice fields near the sentinel villages in a fokontany, 
all of the available sentinel sites were used. This resulted 
in a total of 775 sentinel villages with a 1  km buffer 
and 769 sentinel rice fields that were used to extract 
environmental variables (Fig.  2). The representativeness 
of these sentinel sites were assessed and they were 
found to be very highly correlated (Spearman’s rho > 0.89 
for all variables) with more complete spatial datasets 
(Supplemental Materials).

Landcover variables were calculated from a dataset 
derived from OpenStreetMap and Sentinel-2 satellite 
imagery, as described in Evans et  al. [33] This dataset 
classified landcover into residential, rice field, savanna, 

Fig. 2 Process of extracting environmental indicators at a fine-scale from satellite imagery for sentinel villages and rice fields. Indicators 
at the sentinel village level are extracted using a 1 km buffer surrounding the village (red-dashed line), while indicators at the sentinel rice field level 
are extracted within the boundaries of the sentinel rice fields (black dashed line)
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forest, and open water at a 10  m resolution. The 
proportion of landcover that was a rice field within 
the 1  km buffer of the sentinel villages was estimated. 
This value was aggregated to the level of the fokontany 
by calculating a mean weighted by the population size 
of each sentinel village, multiplying the values by the 
proportion of the buildings in the residential area out 
of all buildings in all four sentinel residential areas (i.e. 
a building-weighted mean).

Two metrics representing spatial patterns in hydrol-
ogy and standing water were derived from the SRTM 
30-m digital elevation model (DEM). Because these 
metrics are derived from a static elevation model, they 
are constant over time. Topographic wetness indices 
(TWIs) estimate predicted water accumulation as a 
function of an area’s upstream catchment area and 
slope, and have been shown to predict malaria risk in 
regions with highly varied topologies [34, 35]. The TWI 
was estimated as ln

(

a
tan(β)

)

 , where a is the surface 

catchment area of that pixel and β is the local surface 
topographic slope. The TWI represents, were it to rain, 
the combination of the amount of water expected to 
pass through each pixel following the topography of the 
area and the relative flatness of the pixels (with flatter 
pixels corresponding to areas where water is expected 
to pool or flow more slowly).

The spatial mean of the TWI at each sentinel village 
and rice field within a fokontany and the mean TWI at 
the village and rice field levels within a fokontany were 
calculated by taking a building-weighted and stand-
ard mean, respectively. From the same DEM, cells that 
served as sinks, or pixels with no outflow where water 
is likely to accumulate, were identified. The proportion 
of pixels that were sinks within a 1  km buffer of each 
sentinel village were extracted and aggregated to the 
fokontany-level value using a building-weighted mean. 
All topographic analyses were done using GRASS GIS 
[36] via the rgrass package in R [37].

Vegetation and water indices (EVI, MNDWI, GAO-
NDWI) were derived from Sentinel-2 satellite imagery. 
These optical satellites have a revisit time of 5  days 
and a 10  m spatial resolution. The Sen2Chain Python 
tool [38] was used to download and process the Sen-
tinel-2 imagery to level L2A before calculating three 
radiometric indices: the Enhanced Vegetation Index 
(EVI) [39], the Modified Normalized Difference Water 
Index (MNDWI) [40], and Gao’s Normalized Difference 
Water Index (GAO-NDWI) [41]. Each of these indi-
ces represents different aspects of rice field land cover 
relevant for Anopheles habitat. EVI is a function of the 
near-infrared (B8), red (B4) and blue (B2) bands of the 
Sentinel-2 imagery and represents vegetation health 

and vigor. MNDWI is a function of the green (B3) 
and shortwave infrared (B11) bands of the Sentinel-2 
imagery and identifies areas of standing water. NDWI-
GAO is a function of the near-infrared (B8) and short-
wave infrared (B11) bands of the Sentinel-2 imagery 
and estimates moisture in the vegetation. Images with 
greater than 25% cloud cover were removed and indices 
were extracted at the sentinel villages and rice fields as 
described above (Fig. 2). Each sentinel zone (e.g. village 
or rice field) was less than 3  km2 and, therefore, very 
susceptible to measurement error and random fluc-
tuations. To reduce this stochastic noise and interpo-
late measurements for dates with high cloud cover, the 
time series for each zone was smoothed by applying a 
cubic-spline to the series, using leave-one-out cross-
validation to select the optimal number of degrees of 
freedom. This cubic-spline was then used to predict 
values on a weekly frequency for each index. Monthly 
means were calculated from these weekly values for 
each fokontany as follows: village-level indicators were 
aggregated by the building-weighted mean described 
above, and rice field indicators were estimated as the 
mean value of all sentinel rice fields in the fokontany. 
The final result was a monthly time series at the fokon-
tany level for the three environmental indices at both 
the village and rice field sentinel zones.

Principal component analysis was used to create indi-
ces of rice field dynamics from EVI, MNDWI, and GAO-
NDWI extracted from sentinel rice fields. First, the 
difference in each index at the rice field level from the 
index extracted at a buffer of 1  km surrounding senti-
nel village zones (Δvill-rice) was estimated to categorize 
dynamics specific to rice field environments. Second, the 
indice extracted at rice fields (EVI, MNDWI, and GAO-
NDWI) was transformed into seasonal anomalies by 
standardizing each index within each calendar month 
(e.g. January, February, etc.) following Kaul et  al. [42]. 
This seasonal anomaly represents how conditions differed 
in that year compared to the same calendar month over 
the long-term dataset. Third, the original three environ-
mental indices extracted at the sentinel rice field zones 
were included. All three forms of the three indicators 
(Δvill-rice, seasonal anomalies, and original mean; 9 vari-
ables total) were used in the PCA, after having centred 
and scaled each one. The first three components, which 
contained over 74% of the overall variance, were selected 
to represent three indices of rice field dynamics (Tables 
S2.1, S2.2, S2.3). Rice Index 1 was strongly influenced by 
all three forms of the MNDWI indicator, and was posi-
tively associated with the amount of standing water in 
rice fields, representing wetter periods. Rice Index 2 was 
more strongly associated with EVI and NDWI-GAO and 
represented the vegetation dynamics of the rice fields, 
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with higher values associated with greener vegetation 
in rice fields compared to the surrounding village. Rice 
Index 3 was most strongly associated with anomalies in 
the vegetation indices and represented anomalies in veg-
etation phenology (specifically increased vegetation) and 
the timing of the agricultural season (Table S2.3).

Climate data
Meteorological stations are limited in Madagascar, with 
fewer than 30 stations across the country [43]. Satellite-
derived climate data at resolutions less than 5  km are 
equally limited and, when present, suffer from cloud 
obstruction, particularly in the humid southeastern 
region. One solution is to aggregate data to a coarser 
resolution or over multiple time periods, but this results 
in spatial scales too coarse to accurately represent hyper-
local conditions. This lack of fine-scale, accurate data was 
considered in the choice of data sources and processing 
of both temperature and precipitation data. Land surface 
temperature (LST) was estimated via a gap-filling algo-
rithm that combines climatology from fine-scale MODIS 
imagery with modelled surface temperature from the Cli-
mate Forecast System Version 2 (CFSv2) to create daily 
estimates of LST at a 1 km resolution [44] This method 
has been validated globally and performs well in this 
region of Madagascar, with a Root Mean Square Error of 
less than 2 °C. The analysis specifically used the MODIS 
Aqua Daily Land Surface Temperature, which was aver-
aged to a monthly value after gap-filling. This represents 
an improvement in resolution over the 8  km resolu-
tion corrected data available directly via MODIS at the 
monthly level. Precipitation data was obtained from the 
NOAA Africa Rainfall Climatology v2 (ARC2) daily pre-
cipitation dataset via the rnoaa package in R [45]. This 
dataset was selected for its high reported accuracy for 
this region of Madagascar [43]. The daily precipitation 
was summed by month to obtain the total monthly pre-
cipitation for each 0.1 × 0.1 degree (~ 10 km) pixel. Both 
climate variables were extracted using a sentinel village 
1 km buffer and aggregated to the fokontany-level via a 
building-weighted mean, as described above.

Socio‑demographic data
Socio-demographic data were collected from 2014–
2021 via the IHOPE cohort, a longitudinal survey based 
on the Demographic and Health Surveys, conducted in 
about 1600 households of Ifanadiana district distrib-
uted across 80 spatial clusters [46]. Briefly, a two-stage 
sampling design was used to sample 40 clusters at ran-
dom within each of two strata, the initial HSS inter-
vention catchment and the rest of the district. Twenty 
households per cluster were then randomly selected to 
be surveyed. Further details on the IHOPE longitudinal 

survey can be found in Miller et al. [46, 47]. The IHOPE 
cohort collects information on household-level socio-
demographic, health, and socio-economic indicators. 
Household wealth scores, calculated following standard 
DHS methods, have historically been stable over time, 
and are not expected to shift drastically between sur-
vey years [48]. Data on household wealth scores were 
extracted to the fokontany level following Evans et  al. 
[48].

In addition to household-level demographic data, the 
model included variables representing the geography of 
each fokontany, specifically the distribution of houses 
and the distance to primary health centers. Residen-
tial areas are clustered within Ifanadiana district and 
a fokontany-wide estimate of building density does 
not accurately represent the population density expe-
rienced by an individual. Therefore, a relative build-
ing density was calculated by estimating the density 
of buildings within 100  m of a building for all build-
ings within each fokontany. The median of this value 
was used to obtain fokontany-level estimates. The dis-
tance to a primary health centre was estimated for each 
building over the full transport network using the Open 
Source Routing Machine (OSRM) routing algorithm via 
the osrm package in R [49], and the average distance 
was calculated for each fokontany.

Health intervention data
The study period intersected with a time of on-going 
health system interventions known to impact malaria 
dynamics. Over the past decade, Madagascar has con-
ducted a mass long-lasting insecticide-treated bed net 
(LLIN) distribution every three years beginning in Octo-
ber 2015. The effect of bed nets decreases over time due 
to waning bioefficacy and functional integrity [50–52]. 
Therefore, a variable was included in the model to repre-
sent this waning over time by calculating the number of 
months since the most recent bed net distribution. This 
variable is referred to as the months since LLIN distri-
bution. From October 2019 thru December 2021, a pilot 
proactive community care intervention was implemented 
in one commune in the district, increasing treatment 
rates of malaria by nearly 40% [53]. This heterogeneity in 
treatment rates caused by interventions was accounted 
for by including a binary variable for months and fokon-
tany when the proactive care intervention was in place. 
Finally, although the data were already adjusted for geo-
graphic bias in health-seeking behaviours via ZERO-
G, an artifact of this bias remained. The distance to the 
nearest PHC was therefore included in the model, allow-
ing for a non-linear relationship via a penalized smooth-
ing spline.
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Statistical model
The analysis implemented a Bayesian spatio-temporal 
model via an Integrated Nested Laplace Approximation 
(INLA) model that included hierarchical random effects 
[54]. Bayesian hierarchical models are particularly useful 
for analysing spatio-temporal data because of their abil-
ity to leverage random effects across space and time to 
account for spatio-temporal correlation and more accu-
rately estimate random effect coefficients when data are 
of low quality or missing. The spatio-temporal covariance 
in the data was accounted for in two ways. First, a cycli-
cal temporal term by month of the year was included via 
a first order random walk, estimated for each commune. 
Second, spatial covariance by fokontany was included via 
the Besag, York, and Mollie spatial model [55, 56], which 
includes an unstructured random effect for each fokon-
tany in addition to a Besag model for the spatial struc-
ture. Predictor variables were inspected for normality 
and log-transformed when necessary, then scaled and 
centered to aid with model convergence.

Dynamic variables were lagged by 3  months to 
account for delays in the effect of environmental and 
climatic variables on malaria transmission and to 
allow for predicting malaria trends into the future. A 
supplementary analysis explored including non-linear 
effects of predictor variables via penalized splines, but 
found that it performed similarly to a model including 
only linear effects while requiring a significantly longer 
computation time (details reported in the Supplementary 
Materials). The more parsimonious linear model is 
presented here. This resulted in a total of fourteen 

covariates in the model, six of which are lagged, dynamic 
variables updated monthly (Fig. S5.3, Table 1). The INLA 
model was fit to ZERO-G adjusted, monthly case rates at 
the fokontany level via a zero-inflated negative binomial 
distribution using a log-link. It was trained on data from 
January 2017 thru December 2020 and used to predict 
future disease incidence for the MEWS.

Out-of-sample prediction tests were performed across 
both space and time to assess the model’s predictive 
capabilities via leave-one-out cross-validation. Spatial 
out-of-sample assessment was done by commune, leav-
ing one commune out of model training and predicting 
incidence in that commune, resulting in 15 separate tests. 
Temporal out-of-sample assessment was done by year, 
where each sample omitted from model training corre-
sponded to a year of data from 2017 to 2020. The model’s 
predictive ability was assessed via the IQR of the abso-
lute error, which is more robust to outliers than the Root 
Mean Square Error (RMSE), and the Spearman’s correla-
tion coefficient (ρ) between the predicted and estimated 
incidence rates.

A motivation for the creation of this dashboard was 
the high frequency of disruptions to diagnostic and 
medical stocks (“stock-outs”) observed in malaria-
endemic regions of Madagascar, and the need for 
better guidance to plan future stock use. Therefore, a 
rudimentary, complimentary exercise was conducted 
to demonstrate how malaria forecasts could be used to 
inform decisions surrounding medical commodities. This 
exercise retroactively compared malaria treatment needs 
(i.e., ACT) estimated by the model to those estimated 

Table 1 Predictor variables used in the INLA model to forecast malaria incidence

Variable Temporal 
Frequency

Spatial Resolution Temporal Lag Source

Building Density Static Fokontany NA OpenStreetMap

Months since LLIN Distribution Monthly Fokontany 0 months MMoPH

Proactive CHW Monthly Fokontany 0 months Pivot

Proportion Ricefield Static 10 m (Village Extraction) NA Pivot

Proportion Sink Static 30 m (Village Extraction) NA SRTM

Topographic Wetness Index (Ricefield) Static 30 m (Village Extraction) NA SRTM

Topographic Wetness Index (Village) Static 30 m (Ricefield Extraction) NA SRTM

Wealth Static Fokontany NA Pivot

Enhanced Vegetation Index (Village) Monthly 10 m (Village Extraction) 3 months Sentinel-2

McFeeter’s Normalized Difference Water Index 
(Village)

Monthly 10 m (Village Extraction) 3 months Sentinel-2

Precipitation Monthly 0.1 degree (Village Extraction) 3 months ARC2

Rice Index 1 Monthly 10 m (Ricefield Extraction) 3 months Sentinel-2

Rice Index 2 Monthly 10 m (Ricefield Extraction) 3 months Sentinel-2

Rice Index 3 Monthly 10 m (Ricefield Extraction) 3 months Sentinel-2

Land Surface Temperature Monthly 1 km (Village Extraction) 3 months MODIS
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following standard stock ordering protocol. The standard 
MMoPH protocol uses the following formula to order 
four months of stock every two months (e.g. the two-
month order quantity), with the four month estimate 
serving as a buffer [57]:

A key number in the commodity ordering process is 
the value used to represent the average monthly cases, 
which is then multiplied by four. Two ways of calculating 
this value were compared: 1) using the MMoPH formula 
based on the total use during the prior three months and 
2) using the SMALLER MEWS to estimate the average 
monthly cases over the next two months.

The expected ACT use based on the MMoPH formula 
and the SMALLER model for each two month period 
were calculated and compared to actual ACT use from 
January 2017–December 2020. To do this, the number of 
cases per fokontany expected to seek care at a PHC were 
back-calculated by rescaling the total number of cases per 
fokontany. This assumed a binomial probability of obser-
vation of each case at a PHC equal to the sampling inten-
sity estimated via the ZERO-G method. The cases that 
did not seek care were assumed to remain at the commu-
nity health catchment, where they may seek care at the 
community health site, be treated via an advanced strat-
egy, or remain untreated. The proportion of cases attend-
ing each PHC from each fokontany were then predicted 
based on the historical distribution of consultations from 
each fokontany to each PHC from 2018–2019. This sub-
set of the data was chosen in order to use the most recent 
and most complete consultation data that did not suffer 
from bias due to the COVID-19 pandemic which began 
in 2020. These numbers were then aggregated to the level 
of the PHC, resulting in the number of malaria cases pre-
dicted to seek care at each PHC during each month, or 
the predicted monthly ACT need. The average of these 
two months were multiplied by four, following the equa-
tion above, to calculate the SMALLER two-month ACT 
order quantity. To calculate the estimated ACT order 
quantity via the MMoPH protocol, the equation above 
based on the stock use during the prior three months was 
followed. The two-month order quantities calculated via 
the SMALLER MEWS were compared to those estimated 
via the MMoPH protocol, and both were compared to 
the historical ACT requirements for 15 major PHCs 
from January 2017–December 2020. The historical ACT 
requirements corresponded to the number of positive 
RDT tests seen by the PHC over that two month period 
(e.g. positive cases in need of treatment). The relative 

Expected stock use =

(

Total stock use during prior three months × 30
)

90−
(

days with stock out or facility closure
) × 4

performance of the SMALLER and MmoPH estimations 
were assessed by estimating the median absolute error 
and under-estimation rate of the two estimations when 
compared to the historical ACT requirement.

Automating the workflow for a MEWS web application
The remote sensing and statistical model workflow for 
a MEWS web application were automated via the tar-
gets package [58], which creates a Make-like pipeline for 
R scripts. The use of a Make-like workflow is especially 
beneficial for deploying a MEWS in a resource-limited 
setting because only those data sources and tasks that 
are not up to date are rerun in the monthly update, con-
serving computational and network resources. The tar-
gets pipeline “backend” is linked to an R shiny “frontend”, 
which contains the web application user interface (Fig. 1). 
The workflow updates monthly, collecting new environ-
mental variables and creating updated forecasts that are 
then available online for use by local health actors.

The targets pipeline contains the Extract-Transform-
Load and Analysis modules of the application (Fig.  1). 
Static data are loaded into the project one time, pre-
processed and formatted for the model. Dynamic data 
are then updated monthly on the tenth day of the month, 
to allow for latency in data collection, before being 
combined with the static data to use in prediction. A 
combination of tools were used to collect this data semi-
automatically. Google Earth Engine scripts, which pro-
cess temperature data, are manually run via the Online 
Code Platform, and processed data are added to the pro-
ject, where they are tracked via the targets workflow. Sen-
tinel-2 indices are updated monthly via the Sen2Chain 
tool implemented on servers hosted at SEAS-OI Station 
at Université de la Réunion, where the data are then pro-
vided through HTTP. The data source url is added to the 
targets workflow, which then observes the HTTP file for 
changes. If a change is made to the file, the new data are 
automatically included in the next update. Because the 
targets workflow tracks the downstream flow of data, 
when the raw index data are updated, all downstream 
features derived from this, such as the rice indices, are 
also updated. The workflow is semi-manual, in that the 
automatic pipeline is run under supervision, so that the 
input data and resulting predictions can be validated by a 
subject expert before being made publicly available. This 
is done via a quarto document that automatically renders 
after the workflow is completed, providing information 
on the environmental input data and output predictions.
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Results
Malaria case data
In total, there were 107,739 reported malaria cases in 
Ifanadiana district from January 2017–December 2020. 
Missingness of data (i.e., registers not available) was 
2.21%, or 207 of 9360 total month by fokontany samples. 
The median annual fokontany-level reported case rate 
was 68.8 cases per 1000 individuals (95% CI: 0 – 445). 
Variance was high in the initial dataset, with a standard 
deviation of 17.1 cases per 1000 per month, nearly 
twice the mean of 9.6 cases. After applying the ZERO-G 
method, which adjusts for underascertainment due to 
spatial bias in healthcare access, the estimated total 
number of symptomatic malaria cases was 377,211, 
with a median annual estimated case rate per fokontany 
of 357 cases per 1000 individuals (95% CI: 4.40–1621). 

The highest estimated case rate was observed between 
the months of November – April (i.e. the warmer, 
rainy season), ranging from 37.2 – 77.1 cases per 1000 
individuals per month (Fig.  3, Fig. S5.6). The median 
of the average annual estimated case rate from 2017–
2020 was 1626 cases per 1000 in the 25% of fokontany 
experiencing the highest rates and 272 cases per 1000 
in the 25% of fokontany experiencing the lowest rates.

Model performance and results
The INLA model was able to accurately reproduce 
community-level malaria incidence rates based on 
ZERO-G estimated case rates (Fig.  3). When applied to 
the full dataset, it achieved a median absolute error of 
16.99 cases per 1000 individuals per month (IQR = 7.30 
– 38.93), equivalent to less than 1% of the variance of 
the estimated rates. The predicted and estimated case 

Fig. 3 Comparison of SMALLER predicted incidence rate (line) and estimated case rate (points) per 1000 population at the District level. Shaded 
area represents 95% CI

Table 2 Performance metrics of the predictive model when assessed via leave-one-out cross-validation across time and space

The null model corresponds to a model that only estimates a district level mean without any covariates. Values are the mean performance metrics with the range of 
metrics in parentheses. Median absolute error (MAE) represents the median absolute difference between model predictions and the true values, with lower values 
representing better model performance. Spearman’s ρ represents the correlation between the model predictions and the true values, with values closer to one 
representing better model performance

Temporal cross‑validation (by year) Spatial cross‑validation (by commune)

Null Model Full Model Null Model Full Model

In-Sample MAE 36.23 (35.64–36.5) 15.93 (15.46–16.69) 36.24 (35.22–37.82) 15.93 (15.35–17.03)

Out-of-Sample MAE 36.26 (35.6–38.13) 15.91 (14.03–17.25) 40.39 (22.75–67.25) 18.55 (9.53–48.72)

In-Sample Spearman’s ρ 0.10 (0.09–0.12) 0.66 (0.63–0.69) 0.10 (0.07–0.13) 0.66 (0.65–0.68)

Out-of-Sample Spearman’s ρ 0.10 (0.05–0.13) 0.66 (0.54–0.74) 0.05 (− 0.12–0.27) 0.67 (0.41–0.84)
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rates were significantly positively correlated (Spearman’s 
p = 0.647, p-value < 0.0001, Fig.  3, Fig. S5.6). Similarly, 
the model performed well when assessed via cross-
validation across space and time (Table  2). Predictive 
ability was similar across communes, with the exception 
of one commune in the south of the district (Fig. S5.4), 
where accuracy was much lower than in the other 14 
communes. The model performed well at predicting 
incidence in out-of-sample years. In particular, the full 
model performed better on out-of-sample data in 2020 
than on in-sample data, evidence of the models’ ability to 
forecast forward in time (Fig. S5.5).

Commodity quantification using the SMALLER 
MEWS were compared with existing MMoPH processes. 
This involved estimating the two-month order quantity 
of ACTS based on the predicted malaria incidence 
(SMALLER method) or the ACT use over the prior three 
months (MMoPH method). Both methods were then 
compared to true historical ACT needs. Reporting of 
historical stock requirements was incomplete, with 13 
of 15 PHCs missing the number of positive RDTs during 
at least one month. However, only 2 PHCs were missing 
more than 5  months of data over the 48  month period. 
All comparisons between the MMoPH and SMALLER 
method were only done for complete pairwise sets. 
The reported historical ACT requirement ranged from 
15,624 to 38,154 annually across the whole district, 
increasing overtime (Fig.  4). The reported average two-
month ACT requirement for a PHC was 292 (median: 
138, range: 2–2066). Following the MMoPH method, 
the average two-month order quantity of ACTs was 549 
(median: 290, range: 6–2973). Following the SMALLER 
method, the average two-month order quantity of ACT 
was 508 (median: 240 range: 6–3974). The median 
absolute error between the calculated two-month order 
quantity and the reported two-month need was 113 for 
the SMALLER method and 286 for the MMoPH method, 
an improvement of over 60%. While the average two-
month order quantity was similar, the seasonality of two-
month order quantities varied greatly between the two 
methods, with the SMALLER method better tracking the 
seasonality of the reported two-month ACT use (Fig. 4). 
In addition, the SMALLER method under-estimated the 
ACT need 14.2% of the time, compared to 33.8% of the 
time with the MMoPH method.

While the objective of this model was to predict future 
malaria cases based on established relationships with 
environmental variables, and not draw inference about 
these relationships, this does not preclude the exploration 
of these relationships established via the statistical model. 
The time since the previous LLIN distribution was 
strongly associated with higher estimated incidence rates 
of malaria (Fig.  5, Table  S6.1). Fokontany with higher 

socio-economic levels tended to have a lower estimated 
incidence rate of malaria (Fig. 5, Table S6.1). The majority 
of the 3-month lagged dynamic environmental variables 
were significantly associated with estimated malaria 
incidence (Fig.  5, Table  S6.1). Malaria incidence was 
strongly associated with temperature and MNDWI at 
the village-level (Table S6.1, Fig. 5). It was also associated 
with EVI at the village-level, rainfall, and Rice Indices 
2 (vegetation dynamics) and 3 (seasonal anomalies), 
although these coefficients were smaller than for 
temperature and MNDWI (Table S6.1, Fig. 5).

SMALLER MEWS web application
The INLA model was integrated within the automated 
workflow to predict malaria incidence three months 
in advance for each fokontany. These predictions are 
accessible via a dashboard-style web application which 
provides hyper-local information relevant to programme 
managers and personnel working across the health 
system in Ifanadiana district. The landing page of the 
application provides an overview of malaria burden 
across the district over the next three months (Fig.  6). 
This includes alert buttons displaying four key indicators 
for district health personnel: the total number of cases, 
the total incidence, the malaria burden compared to the 
prior year, and the number of health clinics expected 
to receive more cases than the prior year. Also on this 
landing page is a map of the incidence in the district, 
displayed at the spatial scale of the community health 
catchment. Selecting a fokontany on this map opens 
a window which displays a time series of the forecast 
malaria incidence, with historical time series included 
for context. These data can be explored further via a table 
that displays these values by month and fokontany. The 
table can be subset interactively and all of the data are 
available for download as a csv file.

One objective of this dashboard was to address health 
actors’ concerns regarding disruptions to diagnostic and 
medical stocks. Modules help inform the risk of stock 
disruptions for each major PHC and the expected num-
ber of cases requiring treatment at the community health 
catchment. The module displaying stockout risk for each 
PHC compares the predicted number of cases expected 
to seek care at a PHC with the historical ACT use over 
the past two years. The number of malaria cases not cap-
tured by PHCs and remaining at the community health 
level were estimated, presented in a separate module. 
These cases could seek care at a community health site, 
be identified during proactive community health visits, 
or remain untreated. These functionalities are meant to 
provide granular information for district managers and 
health workers for context-specific decision-making.
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Discussion
Advances in disease analytics and forecasting, coupled 
with the increased availability of timely health data and 
fine resolution remotely-sensed satellite information, 
promise a new era of precision public health which will 
allow the delivery of “the right intervention to the right 
population at the right time” [59]. Yet, there is currently 
an important gap between the spatio-temporal scales at 
which these tools are available, and the much finer scales 

necessary to inform local programme implementation for 
improving disease surveillance and control. This study 
developed a hyper-local malaria early warning system 
(MEWS), SMALLER, for use by a health system strength-
ening programme serving a rural health district in south-
eastern Madagascar. SMALLER combines fine-resolution 
information on static hydrological and socio-demograph-
ics with fine-resolution dynamic data derived from 
satellite imagery and climate models that are updated 

Fig. 4 Two-month ACT order quantities based on the SMALLER MEWS more closely matched reported two-month use than order quantities based 
on the MMoPH calculation. Reported historical ACT use is compared with hypothetical ACT order quantities based on two calculation methods 
for the 15 advanced PHCs in Ifanadiana District
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on a monthly frequency. SMALLER forecasts malaria 
incidence at the community scale (a village or group of 
villages) up to three months in advance, improving corre-
lations with out-of-sample data by nearly 500% compared 
to a null model. When compared to existing methods 
for calculating ACT order quantities, it reduced the fre-
quency of underestimating the true need by more than 
half, demonstrating the potential utility of the SMALLER 
MEWS for decision making. Integrated into a web appli-
cation, SMALLER provides real-time access for local 
health actors to the MEWS predictions to aid in context-
specific decision-making.

SMALLER contributes to a rapidly growing ecosys-
tem of disease forecasting tools developed to aid in 
decision making. A recent review found that of the 37 
existing tools used for the modelling of climate-sensi-
tive infectious diseases, 16 of them focused exclusively 
on malaria [60]. The sensitivity of malaria to climate 

and environmental variables makes it an ideal can-
didate for disease forecasting efforts [6]. Indeed, this 
study found that ecological variables related to tem-
perature and vegetation dynamics were strongly asso-
ciated with malaria incidence, in agreement with past 
work [4, 32, 61, 62]. Interestingly, after accounting for 
seasonal dynamics via a cyclical temporal structure, 
MNDWI was more strongly associated with malaria 
incidence than precipitation. This variable was col-
lected at a finer spatial resolution (10 m vs. 10 km) that 
represented local standing water dynamics. Weather 
stations are rare across the African continent, resulting 
in downscaled gridded precipitation data of low-quality 
[63]. This suggests that indices derived from satellite 
imagery may be more useful than those from coarser 
precipitation models for malaria prediction at local 
scales in areas with poor weather station coverage.

Fig. 5 Model coefficients of the primary INLA model. Static variables are colored in purple and dynamic variables, which are lagged by 3 months 
and updated monthly, are colored in blue. Points represent the median value of the coefficient and error bars the 95% confidence intervals (CI). 
Those points whose CI overlaps 1, and therefore do not exhibit a statistically significant relationship with malaria incidence, are represented in faded 
colors. TWI: Topographic Wetness Index (a measure of likelihood of standing water based on topography), EVI: Enhanced Vegetation Index, MNDWI: 
McFeeter’s Normalized Difference Water Index (a measure of standing water). The three Rice Indices are a composite measure of EVI, MNDWI, 
and NDWI-GAO (a measure of humid vegetation)
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A feature unique to the SMALLER MEWS is its abil-
ity to integrate disease forecasts with information on 
historical stock quantities and disruptions. The ability of 
stock-outs to hinder progress towards malaria elimina-
tion has been highlighted since the introduction of ACTs 
nearly fifteen years ago [64, 65]. A stock-out not only pre-
vents an individual patient’s treatment, but can increase 
healthcare costs when patients must seek treatment at 
private facilities [66]. Lower or delayed treatment rates 
can, in turn, allow for increased severity, onward trans-
mission, and higher population-level prevalence rates 
[67]. A multinational study of eight sub-Saharan African 
countries found that, in contrast to the other seven coun-
tries in the region, Madagascar experienced a decrease in 
malaria diagnostic availability in public health facilities 
from 2010 to 2015 [68]. Both RDTs and ACTs are deliv-
ered to public health facilities via a “pull system”, where 
health facility managers manually fill in quarterly orders 
for medicines and supplies, which are delivered from the 
capital to district depots and eventually individual pub-
lic facilities’ pharmacies. Per national policy, the quantity 
requested is a function of the amount of materials dis-
pensed during the prior quarter. Given the strong season-
ality of malaria in Ifanadiana, particularly its exponential 
growth between the months of October–January, basing 
future needs on recent use can result in both under- and 
over-estimation of the quantities needed, depending 
on the season (Fig.  4). Although the SMALLER MEWS 

offered a significant improvement in performance over 
existing methods of calculating two-month stock orders, 
it continued to overpredict stock needs with a median 
error rate of over 100 doses. While the objective of the 
SMALLER MEWS is to predict incidence rates at the 
fokontany, this limitation does highlight the difficulty 
in transforming and aggregating incidence rates at the 
community level into expected intake rates at PHCs. 
Health-seeking behaviours and stock requirements are 
determined by complex economic and behavioural pro-
cesses that govern the health system, and therefore fluc-
tuate greatly from month to month. Particularly at the 
hyper-local scale, relatively small stochastic events, such 
as an impromptu active surveillance campaign under-
taken by a PHC manager or a several-day disruption 
of a transportation route, can drastically influence the 
number of cases seen at the health centre that month. 
SMALLER MEWS was unable to capture these months 
with uncharacteristically high or low requirements for 
the season, particularly in more recent years during the 
COVID-19 pandemic, but predictions could be improved 
through the integration of more recent health system 
data to inform the back-calculation or by modelling 
reported case rates directly.

Limitations to the scaling-up of SMALLER are primar-
ily related to data constraints. An ideal MEWS would be 
directly connected to an electronic HMIS, such as DHIS2 
in the case of Madagascar and many other countries, 

Fig. 6 Screenshot of the landing page of the SMALLER MEWS web application. The side panel serves to navigate between the pages of the site, 
including a page to download the data and explore predicted needs at the community and primary health centre level. The web application can be 
accessed at https:// small er. pivot- dashb oard. org/

https://smaller.pivot-dashboard.org/


Page 15 of 18Evans et al. Malaria Journal           (2025) 24:30  

to facilitate the timely incorporation of the most recent 
disease and stock data. However, HMIS data are often 
reported at the scale of the PHC catchment, which 
comprises dozens of villages across hundreds of square 
kilometres, and rarely at spatial scales relevant to local 
targeting by community health workers and mobile 
teams. Handwritten PHC registries were manually digi-
tized to obtain the granular dataset needed to train the 
statistical model in the SMALLER MEWS, a resource- 
and time-intensive process that is not scalable at a 
national level for routine surveillance. In addition, this 
resulted in a relatively short time series on which to train 
the statistical model. However, the expansion of eHMIS 
systems and mobile technology such as commCare or 
DHIS2 tracker, which include information on patient 
residences, will make the integration of HMIS data into 
a national, highly granular MEWS more feasible in the 
future. Indeed, an electronic data collection programme 
at PHCs was established in the district of Ifanadiana in 
October 2023, and will be integrated into a MEWS in the 
coming years as it expands to cover the entire district. 
Environmental data can also be limiting, not necessarily 
due to their availability but rather to the computational 
and technical resources required to access and process 
datasets at local scales [6]. For example, a day of Senti-
nel-2 imagery for the country of Madagascar contains 
over 60 images, each 500–700 MB in size. Downloading 
this volume of data would be difficult with limited inter-
net connectivity and the treatment and processing of 
the images would require a high-processing computer, 
given their quantity and size. Services which process sat-
ellite imagery on a remote server, such as Google Earth 
Engine, AWS, or MOSAIKS [69] provide access to pro-
cessed data without downloading the images themselves, 
but still require paid accounts and geospatial expertise to 
use. The on-going push for building disease forecasting 
capacity among public health actors and organizations 
will require further investment to make these data avail-
able in regions with low connectivity and computational 
resources for a successful and timely integration into 
health information systems.

The SMALLER MEWS demonstrates the feasibility of 
predicting malaria incidence rates at the community-
level, using fine-scale environmental data, and this study 
offers an example of how this data could be used be health 
actors, specifically heads of PHC who oversee primary 
care and community programmes. However, the imple-
mentation of such a MEWS in the field would necessar-
ily require additional policy changes and support in order 
to be successful. First, lack of internet connectivity could 
limit access to the MEWS, particularly in remote areas. 

Second, local health actors may not have the agency nor 
the budget to make programmatic decisions in response 
to this data [70]. In Madagascar, community programmes 
are planned and managed by the PHC and District teams, 
with CHWs serving primarily as implementers. While 
the District office has some programmatic freedom, they 
are necessarily limited by budgets and policies defined at 
the regional or national level. For this reason, the imple-
mentation of a MEWS should involve actors at multiple 
levels of the health system and the tool itself should be 
accredited by the Ministry of Health and integrated with 
existing health and logistics management information 
systems. A participatory approach, which involves mul-
tiple health actors in the co-creation of the model and 
decision support tool, offers one way to surmount many 
of these obstacles [71, 72]. Indeed, an in-progress contin-
uation of the SMALLER MEWS project uses a participa-
tory approach to co-create an EWS for multiple diseases 
with MMoPH partners that will ultimately be integrated 
into an application for DHIS2, the HMIS used by the 
MMoPH.

Conclusions
While recent advancements in data availability and sta-
tistical modelling have led to rapid growth in the devel-
opment of MEWSs, few have been developed at the 
community scale required by certain public health 
interventions. This study combines fine-resolution rou-
tine health data and environmental data from satellite 
imagery into a MEWS capable of generating predictions 
at a hyper-local scale. Cross-validation exercises revealed 
that the statistical model on which the MEWS was based 
had high predictive capacity across both space and time 
when applied to out-of-sample datasets. An additional 
exercise demonstrated how this information could be 
used to inform one example of decision making: quan-
tifying ACT needs. While this relatively simple exam-
ple offered an improvement over existing methods, 
it over- and under-predicted ACT needs by over 100 
doses on average. This highlights a limitation of both 
the SMALLER MEWS and MEWSs in general regarding 
their ability to adequately account for the complex pro-
cesses determining medical stock requirements and their 
integration with stock management systems. Future work 
should focus on how to integrate the already highly-
predictive environmentally-driven MEWS into more 
complex models of health system functioning and exist-
ing HMIS architectures to better understand and predict 
resource needs.
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