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Abstract 

Background The availability of many tools for malaria control leads to complex decisions regarding the most cost‑
effective intervention package based on local epidemiology. Mosquito characteristics influence the impact of vector 
control, but entomological surveillance is often limited due to a lack of resources in national malaria programmes.

Methods This study quantified the monetary value of information provided by entomological data collection for pro‑
grammatic decision‑making using a mathematical model of Plasmodium falciparum transmission. The 3‑year impact 
and cost of various intervention packages was simulated in different sub‑Saharan African settings, including combina‑
tions of scaling‑up insecticide‑treated nets (ITN), switching to next‑generation ITNs, and a treatment and prevention 
package. The DALYs averted and their net monetary benefit were compared at different cost‑effectiveness thresholds 
and the value of resolving uncertainty in entomological model parameters was calculated.

Results Across transmission settings and at cost‑effectiveness thresholds over US$170 per DALY averted, the most 
cost‑effective intervention package was switching to and scaling up pyrethroid‑pyrrole ITNs combined with the treat‑
ment and prevention package. The median expected value of perfect information on the entomological indicators 
was US$0.05 (range 0.02–0.23) and US$0.17 (range 0.09–1.43) per person at risk at thresholds of US$75 and US$1000 
per DALY averted, respectively. This represented less than 2% of the net monetary benefit of implementing the most 
cost‑effective intervention package. Value of information estimates at cost‑effectiveness thresholds over US$250 were 
higher than current investments into entomological monitoring by the US President’s Malaria Initiative.

Conclusions These results suggest that entomological data collection should not delay implementation of inter‑
ventions with demonstrated efficacy in most settings, but that sustained investments into and use of entomological 
surveillance are nevertheless worthwhile and have broad value to national malaria programmes.
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Background
Large-scale deployment of insecticide-treated mosquito 
nets and other control measures over the last two dec-
ades has substantially reduced malaria cases. However, 
progress has stalled since 2017 and malaria still consti-
tutes an important cause of mortality, especially in sub-
Saharan Africa [1]. Possible contributing factors to this 
include the widespread resistance to pyrethroid insec-
ticides in mosquitoes [2], residual transmission due to 
vector behaviours not targeted by standard vector con-
trol products such as biting outside of the time when 
people are indoors and in bed [3], and gaps in effective 
coverage and durability of insecticide-treated nets (ITNs) 
[4]. Novel tools have been developed to counter these 
emerging threats. In areas with pyrethroid-resistant 
mosquitoes, the World Health Organization (WHO) 
has recommended the use of new classes of ITNs, first 
pyrethroid-PBO nets treated with a pyrethroid and the 
synergist piperonyl butoxide and, since 2023, the dual-
active-ingredient pyrethroid-pyrrole nets [5]. Next-
generation long-lasting insecticides have also become 
available for indoor residual spraying (IRS) [6], and the 
first vaccine against malaria, RTS,S/AS01, is being rolled 
out in moderate and high transmission regions of sub-
Saharan Africa [1].

With the availability of more tools, resource allocation 
decisions and selection of the most appropriate inter-
vention package in a given setting have become more 
complex [7, 8]. The WHO recommends that interven-
tion use should be optimized based on effectiveness and 
value for money, and tailored to local settings [9]. A good 
understanding of all aspects of the local epidemiological 
context is therefore essential and surveillance systems, 
including entomological surveillance, are considered 
a core intervention in malaria control and elimination 
programmes [9]. Entomological surveillance involves 
regular collection of data on mosquito characteristics 
and the effectiveness of vector control: key entomologi-
cal indicators include vector species identification, their 
relative abundance, anthropophilic blood feeding habits, 
vector biting behaviour (e.g. the propensity to blood-feed 
at a time when people are outdoors), the level of insec-
ticide resistance, malaria infection rates, larval habitats 
identification, and the coverage, durability and efficacy 
of vector control interventions [10]. Data on these indi-
cators can then be used to make decisions, for example 
for risk stratification and on subnational allocation of 
different classes of ITNs, or selecting districts for IRS 
implementation that have greater densities of mosquito 
species which rest indoors [11, 12]. Vector bionomics are 
highly diverse, sometimes varying substantially across 
small geographical scales, and changing over time. Nev-
ertheless, published entomological data on mosquito and 

human behaviour are sparse [8] and entomological sur-
veillance is often not prioritised due to a lack of resources 
in national malaria programmes [13].

Two randomized controlled trials have demonstrated 
the efficacy and cost-effectiveness of dual-active-ingre-
dient relative to pyrethroid-only ITNs in areas with 
pyrethroid-resistant mosquitoes [14, 15], but the level of 
protection can vary due to local factors and it is not fea-
sible to conduct randomized controlled trials across all 
settings [16]. Uncertainty persists about the relationship 
between phenotypic resistance levels and the epidemio-
logical impact of ITNs [12, 17]; use of pyrethroid-only 
ITNs delivers some protection against malaria even in 
the presence of resistance [18], which could complicate 
decisions to adopt more expensive new nets. Addition-
ally, while ITNs have traditionally represented the most 
cost-effective intervention, insecticide resistance could 
also affect the relative cost-effectiveness of interventions 
other than vector control [19]. Previous cost-effective-
ness analyses have often considered individual inter-
ventions as opposed to intervention packages [6, 14, 20, 
21]. The uncertainty underlying decisions between vari-
ous combinations of interventions, including scale-up of 
existing interventions, and the local epidemiology has, 
therefore, not been fully characterized [12].

In using entomological data to inform the optimal 
selection of interventions, its value for money and poten-
tial delays in deployment of effective tools whilst ento-
mological data is collected need to be considered. Value 
of information (VOI) analysis is a technique to estimate 
the value of collecting additional information to reduce 
the uncertainty surrounding decision-making [22–24]. 
In this paper, this method is applied together with a pub-
lished mathematical model of malaria transmission to 
determine the most cost-effective intervention package 
and quantify the potential monetary value of entomologi-
cal data collection for programmatic decision-making in 
different African settings. The aim was to determine to 
which settings and which entomological indicators sur-
veillance should be targeted and  to compare the esti-
mated value of information to current investments into 
entomological monitoring.

Methods
Mathematical model and interventions
A previously developed individual-based mathematical 
model of Plasmodium falciparum malaria transmission 
was used to simulate the impact of various interventions 
in a wide range of transmission settings across sub-Saha-
ran Africa (Appendix pp.3–18) [25, 26]. The model was 
parameterized using parasite prevalence and clinical and 
severe disease incidence data from different sub-Saharan 
African settings, by accounting for the acquisition of 
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immunity, seasonality in transmission, mosquito popu-
lation dynamics and biting behaviour. The model rep-
resents the infection process in humans, including the 
development of asymptomatic infection and clinical 
disease, and treatment with first-line artemisinin-based 
combination therapy (ACT). It also incorporates the 
mosquito life cycle through a compartmental model 
from egg to adult. Adult female mosquitoes can acquire 
malaria infection when biting an infectious human. In 
addition to treatment, population-level interventions rec-
ommended by the WHO were modelled, including the 
different classes of ITNs, IRS, seasonal malaria chemo-
prevention (SMC) and age-based vaccination with the 
RTS,S vaccine.

Transmission settings and model scenarios
36 baseline settings were modelled to represent the vari-
ety of transmission settings across Africa, focusing on 
those with population-wide pyrethroid-only ITN usage 
(Appendix p.19). Baseline settings comprised four trans-
mission intensities (mean P. falciparum parasite preva-
lence in 2–10  year olds (PfPR2-10) over a 3-year period 
of 5%, 10%, 20% and 40%), three seasonality profiles 
(perennial based on Central Africa, seasonal based on 
West Africa coastal regions and highly seasonal based 

on the Sahel region) and three baseline pyrethroid-only 
ITN usage levels (20%, 40% and 60%). All settings were 
assumed to have 45% treatment coverage, and SMC at 
85% coverage was in place in highly seasonal settings at 
baseline per WHO recommendations [5, 27].

In each setting, the effect of 17 different intervention 
packages were simulated over a 3-year time horizon to 
align with funding periods [28] and to capture a full ITN 
distribution cycle, during which ITN use and efficacy 
wanes over time after mass distribution (Table 1). Inter-
vention options were based on WHO recommendations 
[5], and consisted of all possible combinations of switch-
ing from pyrethroid-only to pyrethroid-PBO or pyre-
throid-pyrrole nets at the baseline usage level, increasing 
ITN usage by 20%, implementing a setting-specific treat-
ment and prevention package, and introducing IRS at 
80% coverage. The treatment and prevention package 
includes an increase in diagnosis and treatment coverage 
to 65%, introduction of SMC at 85% coverage (in seasonal 
settings) and introduction of age-based RTS,S vaccina-
tion at 85% coverage (in settings with PfPR2–10 ≥ 10%). 
Details are provided in the Appendix p.19 and previous 
publications [19].

Introduction of IRS was considered as an alternative to 
ITN scale-up [5]. IRS is usually targeted to more localized 

Table 1 Overview of intervention scenarios

The intervention packages comprise combinations of switching the insecticide in insecticide-treated nets (ITNs) from pyrethroid-only to pyrethroid-PBO or 
pyrethroid-pyrrole, scaling up ITN usage by 20 percentage points, and implementing a setting-specific treatment and prevention package (case A: package 1–11). 
Case B (packages 1–17) additionally includes introduction of indoor residual spraying (IRS) at 80% coverage. The treatment and prevention package is tailored to the 
specific setting and includes increased access to diagnosis and treatment (from 45% to 60% coverage), seasonal malaria chemoprevention (SMC) (85% coverage, in 
seasonal settings) and RTS,S vaccination (85% coverage, in settings of PfPR2–10 ≥ 10%). All intervention scenarios were compared to the corresponding baseline setting 
with existing ITN use, 45% treatment coverage, and, for highly seasonal settings, SMC at 85% coverage

Component interventions

ITN switch to 
pyrethroid-PBO

ITN switch to 
pyrethroid-pyrrole

ITN scale-up Treatment and 
prevention package

IRS

Intervention package 1 X

2 X

3 X

4 X

5 X X

6 X X

7 X X

8 X X

9 X X

10 X X X

11 X X X

12 X

13 X X

14 X X

15 X X

16 X X X

17 X X X
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areas because of logistical and affordability challenges 
[7]. Due to its much higher cost (Fig. S2.1), the analysis 
was divided into two decision cases: case A for a decision 
between all interventions packages except those includ-
ing IRS (1–11), and case B for all interventions including 
IRS (1–17).

Sources of entomological parameter uncertainty
VOI analysis estimates the value of eliminating uncer-
tainty in model parameters through further data collec-
tion. Uncertainty in four key entomological parameters 
influencing the impact of interventions in model simu-
lations was accounted for: pyrethroid insecticide resist-
ance, the entomological efficacy of ITNs in relation to 
resistance levels, and the propensity for anthropophagic 
and endophilic biting behaviour in the local mosquito 
population (Table 2, Fig. 1).

Monitoring of physiological insecticide resistance relies 
on standardized discriminatory dose bioassays, which 
quantify the proportion of mosquitoes that die after 
exposure to a discriminating concentration of insecticide 
[10]. The human blood index is measured by analysing 
mosquito blood meal sources, while data on indoor bit-
ing activity comes from human landing catches or CDC 
light traps together with surveys on human sleeping hab-
its [29, 30]. These indicators are routinely monitored and 
often part of broader entomological surveillance studies, 
where mosquito collections also allow estimation of vec-
tor species composition, mosquito density and entomo-
logical inoculation rates [30]. Conversely, entomological 
efficacy of ITNs against mosquitoes is typically estimated 

using more complex and costly experimental hut tri-
als [31]. Experimental huts allow to evaluate the effect 
of ITNs on blood-feeding and mortality of host-seeking 
mosquitoes under controlled conditions similar to those 
under which mosquitoes typically enter houses, following 
an assessment of susceptibility of the wild vector popula-
tion to the active ingredient. Statistical models have been 
used to synthesize entomological trial data and local 
resistance profiles, and this relationship can be incor-
porated in mathematical models to project the potential 
impact of ITNs in various locations [7, 16]. In the model, 
ITNs are modelled probabilistically via their effect on the 
probability of a mosquito being killed, repelled from the 
ITN, or biting successfully. The entomological efficacy 
of the different classes of ITNs on these outcomes over 
time at different levels of pyrethroid insecticide resist-
ance, as measured in bioassays, was previously estimated 
by fitting the model to experimental hut trial data [7, 32]. 
The analysis assumed no prior knowledge of pyrethroid 
insecticide resistance in the modelled generalized set-
tings; this was varied uniformly between 0 and 100%. For 
entomological efficacy, 10 posterior parameter sets were 
randomly sampled conditional on the level of insecticide 
resistance to represent the uncertainty in ITN effective-
ness (Table  2) (Appendix pp.20–22). For vector behav-
iour parameters, ranges for the proportion of bites taken 
on humans (74%–92%) [33] and for the proportion of 
bites taken indoors (78%–97%) or in bed (69%–90%) were 
based on the interquartile range in a systematic review of 
all common vector species in Africa [3].

Table 2 Sources of entomological parameter uncertainty in the analysis

All parameter draws were assumed to have equal probability and all uncertainty in identifying the optimal intervention was assumed to come from the four 
entomological indicators. Values for pyrethroid resistance and vector behaviour parameters were chosen to represent a uniform distribution between the indicated 
range. Rather than assigning these characteristics to individual vector species, uncertainty was represented in the average pyrethroid resistance and biting behaviour 
for all vectors participating in malaria transmission in the given setting

Entomological 
indicator

Model parameters Description Data source Modelled values

ITN effectiveness Pyrethroid insecticide 
resistance

dN0, rN0, Hpy Combination of 3 
parameters for the prob‑
ability of a mosquito 
being killed, probability 
of being repelled and ITN 
half‑life. Entomological 
efficacy is conditional 
on pyrethroid resistance 
level and varies by ITN 
insecticide

Discriminatory dose 
susceptibility bioassays

20% increments 
between 0–100%

Entomological efficacy 
of ITNs

Experimental hut trials 
and statistical modelling

10 parameter draws 
from fitted posterior distri‑
bution for each resistance 
level [7, 32]

Vector behaviour Proportion of mosquito 
bites taken on humans 
(human blood index)

Q0 Vector behaviour influ‑
ences the impact of vec‑
tor control interventions 
and residual malaria 
transmission that can 
occur even with universal 
ITN and IRS use

Field studies on mosquito 
blood meals

74%, 92% [3]

Proportion of mosquito 
bites taken indoors 
and proportion of bites 
taken in bed

�I and �B Field studies using 
human landing catches 
or CDC light traps

78% and 69%, 97% 
and 90% [3]
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Cost-effectiveness and VOI analysis
All analyses were conducted in R and model simulations 
were performed using the malariasimulation package 
(v1.3.0) [34]. The modelled age-specific incidence of clini-
cal and severe malaria for each scenario were used to derive 
the number of malaria-related deaths (assumed to repre-
sent 21.5% of severe cases) and disability-adjusted life years 
(DALYs) (Appendix p.23). Estimated costs for each inter-
vention, derived from secondary data sources, are shown in 
Appendix pp.23–26, and were varied in sensitivity analyses. 
Costing of ITNs accounted for increasing marginal costs of 
ITN distribution as population coverage increases [35, 36]. 
Health economic methods are reported according to the 
CHEERS-VOI statement (Table S1.6) [37].

Firstly, to identify the optimal intervention package in 
each setting in the presence of uncertainty, the incremental 
cost and DALYs averted in each scenario compared to the 
baseline of maintaining existing interventions over 3 years 
were calculated. All intervention scenarios were compared 
to their corresponding baseline setting with existing ITN 
use, 45% treatment coverage, and, for highly seasonal set-
tings, SMC at 85% coverage. From this, the net monetary 
benefit (NMB) of each intervention package i in each set-
ting at different cost-effectiveness thresholds was derived 
according to the following equation:

The NMB gives a measure of the value of an interven-
tion in monetary terms at the given cost-effectiveness 

NMBi =
(

DALYs avertedi × cost - effectiveness threshold
)

− incremental costi

threshold. Cost-effectiveness thresholds represent the 
maximum amount a decision-maker would be willing to 
pay for an averted DALY. Estimates of health opportu-
nity costs suggest values of less than 1 times the GDP per 
capita in almost all low- and middle-income countries 
[38]. Based on these estimates (Appendix p.23), the NMB 
was calculated at cost-effectiveness thresholds between 
US$75 and US$1000 and results are presented at thresh-
olds of US$75, US$250, US$500 and US$1000, summa-
rized as the median and 95% credible interval (CrI, 2.5th 
and 97.5th percentile). The optimal intervention package 
was defined as the package with the highest median net 
monetary benefit.

Secondly, to quantify the decision uncertainty in the 
choice of optimal intervention and estimate the potential 
value of data collection for all four entomological indica-
tors, the expected value of perfect information (EVPI) 
was calculated in each setting as the difference between 
the expected value of an intervention package under 
certainty and the expected value under uncertainty, as 
implemented in the voi R package (v1.0.2) [39]:

V(i,j) refers to the NMB of intervention package i under 
parameter set j. The expected value Ej

[

maxiV
(

i, j
)]

 rep-
resents the mean of the highest NMB for each parameter 
set j. The expected value Ej[V

(

i, j
)

] is the mean NMB 
of each intervention package i across parameter sets j, 

EVPI = EVcertainty − EVuncertainty

= Ej
[

maxiV
(

i, j
)]

−maxiEj
[

V
(

i, j
)]

Fig. 1 Schematic of entomological indicators in the model and potential data sources. Uncertainty in the four entomological indicators 
affects the impact of different classes of ITN and IRS relative to all other interventions in the model. Data on these indicators can be obtained 
through routine entomological surveillance and other sources like experimental hut trials and statistical modelling, while the setting‑specific impact 
of vector control can also be assessed directly using (post‑implementation) impact evaluations. Estimates of indoor biting behaviour also require 
data on human activity in addition to entomological field studies
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where  maxi indicates that the intervention with the high-
est expected value is chosen under uncertainty. A worked 
example of calculating the EVPI in terms of the oppor-
tunity cost associated with a decision is shown in Panel 
A [40, 41]. The population at risk of malaria in the area 
in which the intervention package is implemented would 
benefit from reduced decision uncertainty. The EVPI was 
therefore calculated per person at risk, and summarized 
as the median, interquartile range (IQR) and range across 
settings. The EVPI can be interpreted as the theoretical 
maximum that a decision-maker should be willing to 
invest into data collection on the entomological param-
eters for a decision on these specific interventions.

The expected value of partial perfect information 
(EVPPI) was also calculated on the two groups of param-
eters governing ITN effectiveness and vector behaviour 
in the model (Table  2). The EVPPI represents the value 
of eliminating uncertainty in a subset of parameters while 
the other parameters remain uncertain. It was calculated 
using the Gaussian process regression method in the voi 
package [42]. Model fits were assessed by plotting the 
residuals against fitted EVPPI values.

Analysis of funding for entomological monitoring
The US President’s Malaria Initiative (PMI) is the larg-
est funder of entomological monitoring for malaria [43]. 
To estimate current PMI investments into entomologi-
cal data collection in Africa, budget data for 2021–2023 
was extracted from annual country-specific malaria 
operational plan funding tables on the PMI website [44]. 
Funding for the “Support Entomological Monitoring” 
and “Support ITN Durability Monitoring” categories 
were included. The total budget for the 3-year period was 

divided by the population at risk of malaria in each coun-
try to compare investments per person at risk with esti-
mates of the VOI.

Panel A: Cost‑effectiveness and value 
of information analysis: definitions 
and examples
Cost-effectiveness threshold
Represents the maximum amount a decision-maker 
would be willing to pay for an averted DALY, which 
depends on the setting. Cost-effectiveness thresholds 
represent health opportunity costs of investment in 
a new intervention, i.e. the improvement in health 
that would have been possible if these resources were 
instead invested in other healthcare activities

Net monetary benefit
The net monetary benefit (NMB) of an intervention 
is an outcome measure of its value for money and 
combines information about its effectiveness and 
costs relative to current practice. It is calculated as:

As illustrated in the following diagram, the inter-
vention with the highest net monetary benefit rep-
resents the most cost-effective option at a given 
cost-effectiveness threshold. Below the black hori-
zontal line, neither intervention would be cost-
effective (NMB < 0) and both would be dominated by 
current practice.

NMB =
(

DALYs averted × cost-effectiveness threshold
)

− incremental cost
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Value of information analysis
Enables estimation of the value of eliminating uncer-
tainty through further data collection before making 
a decision on intervention selection. The value of 
information is obtained by quantifying the probabil-
ity and magnitude of the potential opportunity cost 
associated with a decision. The value of information 
represents the monetary value of removing uncer-
tainty in all (expected value of perfect information, 
EVPI) or a subset (expected value of partial perfect 
information, EVPPI) of the model parameters that 
influence the optimal intervention choice. It can be 
interpreted as the theoretical maximum amount 

that might be worth investing into data collection to 
reduce uncertainty in these parameters.

Expected value of perfect information
Calculation of the EVPI is illustrated in the following 
hypothetical example, where the net monetary ben-
efit (NMB) of two interventions (or two intervention 
packages), A and B, is compared to current practice. 
The expected value of perfect information in decid-
ing between these three interventions is calculated, 
assuming that uncertainty in their NMB arises from 
only three different parameter sets (rows) with equal 
probability. The EVPI quantifies the uncertainty in 
which intervention has the higher NMB.
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Fig. 2 Impact and cost‑effectiveness of the different intervention packages relative to the corresponding baseline setting with existing 
interventions, stratified by seasonality. Bars represent the median across settings (including PfPR2–10 5% to 40% and ITN use 20% to 60%), with error 
bars indicating the 95% credible interval (across settings and parameter variation). Points represent the median value in each prevalence 
and baseline ITN use setting (12 for each intervention per seasonality panel). The “treatment and prevention” package consists of a combination 
of treatment scale‑up, SMC and/or RTS,S vaccination depending on the setting. A DALYs averted by the different intervention packages over 3 years. 
In seasonal settings, intervention packages including treatment and prevention avert more DALYs than in other seasonality settings because of the 
inclusion of SMC (not applicable in perennial settings and assumed to be already implemented at baseline in highly seasonal settings). B Net 
monetary benefit (NMB) of the different intervention packages over 3 years at cost‑effectiveness thresholds of US$75, US$250 and US$1000 
per DALY averted. A positive NMB indicates that the intervention is cost‑effective compared to existing interventions at baseline; the optimal 
intervention package is the one with the highest average NMB. Calculation of the NMB depends on assumptions about the value of an averted 
DALY, therefore NMBs are higher for a cost‑effectiveness threshold of US$1000 per DALY averted than the US$250 threshold
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Model outputs consist of the NMB of each inter-
vention for each parameter set. The first step in the 
value of information analysis is to calculate the mean 
NMB of each intervention across parameter sets. 
Both interventions are on average cost-effective com-
pared to current practice (NMB > 0). In the presence 
of uncertainty, intervention B is considered to be the 
most cost-effective based on having the highest mean 
NMB ($150 vs $116.7). The second step is to calculate 
the potential opportunity cost for each parameter set 
when choosing the most cost-effective intervention, 
B. This involves subtracting, in each row, the NMB of 
intervention B from the highest NMB. For parameter 
sets where intervention B has the highest NMB, hav-
ing selected this intervention incurs no opportunity 
cost ($0). The EVPI is defined as the mean opportu-
nity costs across parameter sets, which in this deci-
sion problem equals ($0 + $300 + $0)/3 = $100. This 
EVPI for the varied parameters represents a sizable 
proportion, $100/$150 * 100 = 67%, of the expected 
value (NMB) of immediately implementing the opti-
mal intervention, B.

Results
Cost-effectiveness analysis
Across the range of settings explored, the modelled inter-
vention packages without IRS (case A) averted between 
365 (95% CrI − 48–1050) and 3,581 (95% CrI 1774–8854) 
cases per 10,000 persons at risk of malaria over a 3-year 
period compared to existing interventions at baseline 

(Fig. S2.2). The incremental costs of their implementa-
tion were estimated at between US$3,496 (95% CrI 1903–
5201) and US$83,890 (95% CrI 19,272–116,650) per 
10,000 persons at risk. These costs were partially com-
pensated by savings due to reduced treatment need of 
between US$1,372 (95% CrI − 377–4523) and US$19,922 
(95% CrI 10,332–41,395) per 10,000 persons at risk.

Figure  2A shows the DALYs averted by the interven-
tion packages compared to existing interventions at base-
line in perennial, seasonal and highly seasonal settings, 
which was highest for the combination of switching 
to pyrethroid-pyrrole ITNs, scaling-up ITN usage and 
introducing the treatment and prevention package. The 
net monetary benefit considers the DALYs averted as well 
as the incremental costs of an intervention package, with 
the highest average NMB representing the optimal inter-
vention package at a specific cost-effectiveness threshold 
(Fig. 2B). For cost-effectiveness thresholds ≥ US$150 per 
DALY averted, all interventions were likely to be cost-
effective compared to existing interventions at baseline 
(median NMB > 0). Without IRS, switching to pyrethroid-
pyrrole ITNs with ITN scale-up represented the optimal 
intervention package across settings at the threshold of 
US$75 per DALY averted, while intervention packages 
including the treatment and prevention package were 
not cost-effective in perennial and highly seasonal set-
tings. At higher cost-effectiveness thresholds (≥ US$170), 
switching to pyrethroid-pyrrole ITNs with ITN scale-up 
and the treatment and prevention package was the most 
cost-effective intervention package across settings, with a 

Table 3 Expected value of perfect information on entomological indicators

The expected value of perfect information applies to a 3-year period, is summarized across settings, and expressed in 2023 US dollars per person at risk and relative to 
the net monetary benefit provided by the optimal intervention package in each setting. Cost-effectiveness thresholds are expressed in US dollars per DALY averted. 
Assumptions on entomological parameter uncertainty are detailed in Table 2

IQR interquartile range

Cost-effectiveness threshold Expected value of perfect information

Absolute value (US$ per person at risk) Relative value (percentage of net monetary 
benefit provided by optimal intervention 
package)

Median [IQR] Range Median [IQR] Range

Case A: all interventions excluding IRS

 75 $0.05 [$0.03–$0.08] $0.02–$0.23 1.8% [0.9%–3.5%] 0.5%–30.6%

 250 $0.07 [$0.05–$0.19] $0.03–$0.53 0.5% [0.4%–2.1%] 0.2%–7.6%

 500 $0.12 [$0.08–$0.24] $0.05–$0.80 0.4% [0.3%–0.9%] 0.1%–3.7%

 1000 $0.17 [$0.12–$0.43] $0.09–$1.43 0.3% [0.2%–0.5%] 0.1%–2.7%

Case B: all interventions including IRS

 75 $0.03 [$0.01–$0.05] $0.00–$0.29 1.0% [0.1%–2.0%] 0.0%–10.9%

 250 $0.06 [$0.02–$0.15] $0.00–$0.41 0.2% [0.1%–0.3%] 0.0%–3.8%

 500 $0.15 [$0.09–$0.19] $0.03–$0.42 0.2% [0.2%–0.3%] 0.1%–0.4%

 1000 $0.28 [$0.25–$0.32] $0.20–$0.75 0.2% [0.2%–0.3%] 0.1%–0.4%
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NMB of US$10.6 (95% CrI 4.0–33.6) and US$56.9 (95% 
CrI 31.0–156.0) per person at risk at cost-effectiveness 
thresholds of US$250 and US$1000 per DALY averted, 
respectively.

NMBs varied across transmission settings (Fig.  2B), 
but “ITN switch to pyrethroid-pyrrole + ITN scale-
up + treatment and prevention” had the highest prob-
ability of being the most cost-effective intervention 
across settings (47–87%) for cost-effectiveness thresh-
olds between US$170 and US$1000. This intervention 
package also had the highest probability of being most 

cost-effective in 81% and 100% of 36 transmission set-
tings at cost-effectiveness thresholds of US$250 and 
US$1000, respectively (Fig. S2.3). However, there was 
uncertainty about the optimal intervention package in 
each transmission setting: the most common optimal 
alternatives to “ITN switch to pyrethroid-pyrrole + ITN 
scale-up” were “ITN switch to pyrethroid-pyrrole + ITN 
scale-up + treatment and prevention” and “ITN switch 
to pyrethroid-PBO + ITN scale-up”, and the most com-
mon optimal alternatives to “ITN switch to pyrethroid-
pyrrole + ITN scale-up + treatment and prevention” 

Fig. 3 Expected value of perfect information (EVPI) by prevalence and seasonality setting for the set of interventions A without IRS and B 
including IRS. The EVPI is shown for cost‑effectiveness thresholds of US$75, US$250 and US$1000 per DALY averted and averaged across ITN use 
levels in each setting
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were “ITN switch to pyrethroid-PBO + ITN scale-
up + treatment and prevention” and “ITN switch to 
pyrethroid-pyrrole + ITN scale-up”. The optimal inter-
vention package included changing from a pyrethroid-
only ITN in at least 93% of cases.

Intervention packages including IRS (case B) had con-
siderably higher impact [11,033 (95% CrI 4256–21,825) 
cases averted per 10,000 for IRS alone] but were also 
much more expensive than other interventions [incre-
mental cost of US$137,456 (95% CrI 97,401–167,438) 
per 10,000 for IRS alone after accounting for cost sav-
ings] (Fig. S2.4). IRS accounted for 70% (95% CrI 59–98) 
of total incremental programme costs of the “ITN switch 
to pyrethroid-pyrrole + treatment and prevention + IRS” 
intervention package. IRS was not cost-effective across 
settings at the cost-effectiveness threshold of US$75, 
but had the highest probability of being the most cost-
effective intervention at cost-effectiveness thresholds 
of US$250 and US$500 (53% and 38%, respectively). At 
higher cost-effectiveness thresholds, switching to pyre-
throid-pyrrole ITNs together with IRS had the highest 
probability (38% at US$1000 per DALY averted). Overall 
there was more decision uncertainty when considering 
intervention packages including IRS (Fig. S2.5).

VOI analysis
Table  3 shows the expected value of perfect informa-
tion on the entomological indicators for cost-effective-
ness thresholds between US$75 and US$1000 per DALY 
averted. When considering all interventions except for 
IRS (case A), the median EVPI associated with resolving 
uncertainty in all entomological indicators ranged from 
US$0.05 (IQR 0.03–0.08) to US$0.17 (IQR 0.12–0.43) per 
person at risk at cost-effectiveness thresholds of US$75 
and US$1000, respectively. On average, this represented 
0.3–1.8% of the benefits achieved through immediate 
implementation of the optimal intervention package 
(Table 3). The EVPI on entomological indicators was sim-
ilar if IRS was considered as a possible intervention (case 
B). When varying assumptions on intervention costs in 
sensitivity analyses, EVPI estimates were most sensitive 
to the relative costs of pyrethroid-PBO and pyrethroid-
pyrrole ITNs (Appendix pp.35–36). Decision uncertainty 
was significantly reduced if the cost of pyrethroid-pyrrole 
ITNs was halved while other costs stayed constant, but 
increased if the cost of pyrethroid-PBO ITNs was further 
reduced compared to that of pyrethroid-pyrrole ITNs.

The EVPI varied widely across settings, with esti-
mates as high as US$0.23 (30.6% of intervention net 
benefits) and US$1.43 per person at risk (2.7% of inter-
vention net benefits) at cost-effectiveness thresholds of 
US$75 and US$1000, respectively. Where the VOI was 

Fig. 4 Value of information on different groups of entomological indicators for the set of interventions A without IRS and B including IRS. The 
distribution of value of information estimates across settings is shown when eliminating uncertainty in pyrethroid resistance and ITN entomological 
efficacy combined (expected value of partial perfect information (EVPPI) on ITN effectiveness), in the proportion of mosquito bites taken 
on humans and taken indoors/in bed combined (EVPPI on vector behaviour parameters), and the expected value of perfect information (EVPI) 
on all four entomological indicators combined. The last column for all indicators corresponds to the EVPI values in Table 3
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highest depended on the cost-effectiveness threshold 
and the interventions under consideration. Without 
IRS, the settings with the highest VOI estimates had a 
parasite prevalence of 20% or 40% and highly seasonal 
transmission (Fig. 3A). At a cost-effectiveness threshold 
of US$75 per DALY averted, the VOI was also high in 
the 5% prevalence setting with perennial or highly sea-
sonal transmission. At higher cost-effectiveness thresh-
olds, high-prevalence settings also had the highest VOI 
when IRS was considered, but mainly with perennial 
transmission (Fig.  3B). However, this was not the case 
at lower cost-effectiveness thresholds; the VOI was 
lower in high-prevalence settings because decision 
uncertainty was reduced through intervention packages 
containing IRS having a substantially higher net mone-
tary benefit than other interventions. With IRS and at a 
cost-effectiveness threshold of US$75 and US$250, the 
EVPI was highest in perennial and highly seasonal set-
tings with 5% prevalence. At the US$75 threshold, the 
EVPI was lowest in the 40% prevalence setting. In all 
other cases with and without IRS, the EVPI was low-
est in settings with a lower parasite prevalence of 10%. 
Baseline ITN use did not strongly affect estimates.

Figure  4 shows the expected value of partial perfect 
information on two subsets of the entomological indi-
cators. Without IRS, the EVPPI on the vector behaviour 
parameter group was 0 in all but one setting (Fig.  4A), 
meaning that additional information on these parameters 
currently adds no benefit in selecting the optimal inter-
vention. Including IRS, the EVPPI on vector behaviour 

was comparatively higher even with remaining uncer-
tainty in the resistance-dependent entomological efficacy 
of ITNs (Fig. 4B). With and without IRS, the EVPPI was 
higher for the setting-specific ITN effectiveness, repre-
sented through combined elimination of uncertainty in 
pyrethroid resistance and the corresponding entomologi-
cal efficacy of ITNs. The median EVPPI was US$0.009 
(IQR 0.003–0.017) and US$0.011 (IQR 0.000–0.031) per 
person at risk at cost-effectiveness thresholds of US$75 
and US$1000, respectively, without IRS, compared 
to US$0.003 (IQR 0.000–0.010) and US$0.048 (IQR 
0.023–0.112) with IRS. Nevertheless, in settings where 
the EVPPI was greater than 0, the VOI on all indicators 
(EVPI) across settings was on average 4–41 times higher 
than the EVPPI, meaning that knowledge about all four 
indicators was more valuable to a decision-maker than 
information about vector behaviour or ITN effectiveness 
alone.

Estimates of the VOI can be interpreted as a theoreti-
cal maximum that might be worth investing into data 
collection on these entomological indicators, assum-
ing that further data collection can provide the required 
information. The estimated EVPI was compared to data 
on current investments into entomological monitoring 
from the US President’s Malaria Initiative for the 2021–
2023 period on the country level, with Fig.  5A showing 
the distribution of funding per population at risk across 
countries in sub-Saharan Africa. Twenty-five countries 
were supported by PMI and received funding for ento-
mological monitoring. Among those, the median funding 

Fig. 5 Comparison of the estimated expected value of perfect information (EVPI) with investments into entomological monitoring by the US 
President’s Malaria Initiative (PMI) in 2021–2023. A Distribution of PMI entomological surveillance funding across African countries. Investments 
in US dollars were divided by the population at risk of malaria in the respective country, with funding bands representing quartiles. B Comparison 
of these investments with the estimated EVPI for the set of interventions without IRS as shown in Table 3. Countries without PMI funding were 
excluded from this comparison
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per person at risk for the 3-year period was US$0.07 (IQR 
0.05–0.13, range 0.02–0.59). This corresponded very 
closely to the estimated VOI for all entomological indi-
cators at the cost-effectiveness threshold of US$250 per 
DALY averted, while the VOI was higher at the higher 
cost-effectiveness thresholds (Fig. 5B).

Discussion
This study assessed the most cost-effective malaria 
intervention package and quantified the potential mon-
etary value of entomological data collection for pro-
grammatic decision-making in different sub-Saharan 
African settings. An intervention package involving 
a switch to pyrethroid-pyrrole ITNs, scaling up ITNs 
and scaling up other treatment and prevention inter-
ventions represented the optimal combination on 
average at cost-effectiveness thresholds over US$170 
where IRS is not considered. In all settings there was 
value to obtaining further information, with a median 
expected value of perfect information (EVPI) of 
US$0.05–US$0.17 per person at risk depending on the 
cost-effectiveness threshold. The EVPI varied across 
settings, but in most the decision on the optimal inter-
vention could be made based on existing evidence as 
the VOI was modest compared to the net monetary 
benefit of its immediate implementation. However, the 
VOI is potentially still higher than current PMI fund-
ing for entomological monitoring in many settings and 
increased investments may, therefore, be warranted.

These results provide further support for the cost-
effectiveness of new pyrethroid-pyrrole ITNs across 
a variety of malaria transmission settings [14, 32], 
despite a relatively smaller projected impact on averted 
DALYs than on averted clinical cases. This was due to 
a rebound in severe cases occurring in high-prevalence 
settings under some parameter assumptions over the 
time horizon considered. In children protected by 
highly effective new ITNs in the first year after dis-
tribution, a delay in immunity development led to an 
increase in severe cases in the third year in the model, 
when ITN efficacy had partially waned and usage had 
dropped. This is similar to observed rebound patterns 
after malaria vaccination and other interventions [45], 
but unlikely to occur in reality where ITNs are also dis-
tributed through routine mechanisms in addition to 
the mass campaigns modelled here [46]. Compared to 
previous studies, this study also shows that switching to 
new nets could be cost-effective as part of a compre-
hensive intervention package, even if there is uncer-
tainty about the exact pyrethroid resistance level and 
the entomological efficacy of different classes of nets 
in a setting. Comparison of the estimated VOI to other 

studies is challenging because of methodological dif-
ferences. The EVPI on different entomological param-
eters in a previous study on decision-making for IRS 
and larviciding interventions in East Africa was higher 
than the estimates in this study [23], but this was partly 
due to a much higher cost-effectiveness threshold 
(US$7773).

Without IRS, estimates of the VOI were considerably 
higher in the highest prevalence (40%) setting (particu-
larly with high seasonality) than in others, suggesting that 
entomological data collection could be prioritized geo-
graphically. The VOI was in many cases lower in seasonal 
than in perennial and highly seasonal settings due to 
the inclusion of highly (cost-)effective SMC, which low-
ered the decision uncertainty in including the treatment 
and prevention package. However, these results were 
highly dependent on the interventions under considera-
tion and the assumed cost-effectiveness thresholds, and 
so it was not possible to draw a general conclusion on 
which settings to prioritize for entomological data col-
lection overall. Concomitantly, eliminating uncertainty 
in all entomological indicators had significantly higher 
value than only eliminating uncertainty in the subsets 
of parameters related to ITN effectiveness or to vector 
behaviour. ITN effectiveness parameters contributed 
more to the overall EVPI because much decision uncer-
tainty arose from the choice of different net classes, while 
vector behaviour became more relevant if IRS was also 
considered. The EVPPI on vector behaviour was lower 
both because these parameters were assumed to be less 
uncertain and because they had little effect on differences 
in the net monetary benefit between intervention pack-
ages. Overall, the results therefore support integrated 
programmatic surveillance platforms collecting data on a 
range of entomological factors over studies on individual 
indicators [8]. Whether obtaining this additional evi-
dence is worthwhile ultimately depends on the relation-
ship between the VOI and the cost of data collection and 
how accurate it is. However, it was not possible to iden-
tify sufficient data to estimate if the cost of surveillance 
activities able to generate data on the entomological 
indicators in the model would be less than the estimated 
VOI. In practice, data collection on the entomological 
indicators can also only provide imperfect information 
(which is why the EVPI represents a potential maximum 
value). Susceptibility bioassays to determine resistance 
levels are associated with large measurement error, par-
ticularly in high-resistance areas [2, 7], and the variability 
in experimental hut trials and mosquito bionomics stud-
ies is also substantial [3, 33, 47].

In interpreting the results, it should be kept in mind 
that the aim was to estimate the VOI for a specific deci-
sion problem across generalized settings in sub-Saharan 
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Africa. The results show that the VOI depends on the 
specific intervention packages under consideration. Cur-
rently, the most widely used vector control tools (ITNs 
and IRS) target the mosquito indoors, so information on 
the level of residual transmission is less informative. This 
will likely change if other interventions become avail-
able, making entomological information more valuable. 
Conversely, the sensitivity analysis on intervention costs 
shows that the value of information would be reduced if 
the cost of pyrethroid-pyrrole ITNs was lower than cur-
rently estimated relative to pyrethroid-PBO ITNs. The 
analysis also focuses on a cross-sectional assessment of 
the VOI for a 3-year decision on an intervention pack-
age, so estimates do not directly apply to the value of 
continuous monitoring and longitudinal data collection 
in sentinel sites [8]. The value of entomological data col-
lection is likely to change over time, particularly with 
changes to control strategies, and similar analyses could 
be conducted to inform withdrawal of vector control 
interventions as transmission decreases. Importantly, 
entomological surveillance has additional uses beyond 
the decision problem in this study; examples include the 
targeting and optimal allocation of resources across loca-
tions, providing knowledge about the extent and trends 
in insecticide resistance to inform resistance manage-
ment strategies, and awareness of emerging threats like 
the spread of Anopheles stephensi [9]. The EVPI estimates 
presented here should therefore not be interpreted as a 
measure of how much to invest in entomological surveil-
lance systems overall without considering these addi-
tional factors.

There are several limitations to this work. Firstly, to 
ensure computational feasibility, uncertainty was only 
represented for the four key entomological parameters 
known to influence the impact of vector control inter-
ventions in model simulations and for which further data 
can be collected with existing entomological methods 
[8]. The assumption of no uncertainty in other aspects 
of local epidemiology, e.g. parasite prevalence and sea-
sonality, or in the underlying mosquito biology and life 
cycle, may have underestimated the overall EVPI com-
pared to the real-life knowledge in a setting [8]. Simi-
larly, the point estimates used do not fully capture the 
uncertainty distribution of the vector behaviour param-
eters. Secondly, results apply to generalized settings and 
uncertainty ranges for the entomological indicators were 
derived across sub-Saharan Africa. However, in a given 
setting, additional prior knowledge about the parameters 
may exist due to past data collection, and thus the EVPI 
may be reduced. It was also assumed that entomologi-
cal parameters would remain the same over the course 
of the 3-year simulation period. While this work has 
explored a wide range of plausible scenarios for Africa, 

the considerable variability in the VOI between settings 
according to historical knowledge and local epidemiolog-
ical and entomological factors means that more tailored 
analysis is recommended. Decision-making should ide-
ally be based on country-specific or subnational analyses 
using local data, for example using the MINT online tool 
which has been piloted with the Ghana National Malaria 
Elimination Programme [7, 48]. Thirdly, the comparison 
of the estimated VOI with current investments into ento-
mological monitoring should be interpreted with cau-
tion. Data on these were only available from one funder, 
and no information was available for large parts of sub-
Saharan Africa. Model outputs are not representative of 
the distribution of transmission settings and associated 
population at risk across countries in sub-Saharan Africa, 
which hinders a direct comparison with country-level 
data. Fourthly, these results may overestimate the impact 
and cost-effectiveness of IRS, as the model does not 
account for practical challenges that limit the effective 
coverage of spraying campaigns, such as mistiming with 
regards to the rainy season and household modifications 
after application [49].

Conclusion
This study suggests that entomological data collection in 
the short-term should not delay implementation of inter-
ventions that have been empirically tested, have dem-
onstrated efficacy and have been recommended by the 
WHO. However, the value of information on entomologi-
cal indicators is likely to exceed current PMI funding for 
entomological monitoring in many settings. Sustained 
investments into entomological surveillance are, there-
fore, worthwhile and have broad value to national malaria 
programmes.
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