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Zusammenfassung

Reaktive Systeme spielen eine wichtige Rolle im Bereich der eingebetteten
Systeme. Sie interagieren kontinuierlich mit ihrer Umgebung, verarbei-
ten nebenläufige Vorgänge und sollten im Allgemeinen deterministisches
Verhalten aufweisen, um auch sicherheitskritische Anwendungen zu ermög-
lichen. In solch einem Kontext ist das Sprachdesign ein wichtiger Aspekt,
denn sorgfältig gestaltete Sprachkonstrukte können dabei helfen komplexe
Herausforderungen dieser Domäne anzugehen. Dies zeigen beispielsweise
die verschieden Nebenläufigkeitsmodelle, die es erlauben den klassischen
Fallstricken bei der Nutzung von Threads zu entgehen.

Heutzutage gibt es viele verschiedene Sprachen in diesem Kontext.
Häufig zeichnen sie sich dadurch aus, dass sie einzigartige Charakteris-
tika aufweisen, die sie für spezifische Anwendungsfälle besonders geeig-
net machen. Diese Arbeit beschäftigt sich mit zwei solcher Sprachen, der
Aktor-orientierten polyglotten Koordinationssprache Lingua Franca und
dem synchronen Statecharts-Dialekt SCCharts. Während die beiden Spra-
chen verschiedene Ansätze verfolgen, um eine reaktive Modellierung zu
ermöglichen, weisen doch beide Gemeinsamkeiten in ihrer Semantik auf
und ergänzen sich in ihren Designprinzipien.

Diese Arbeit betrachtet Schlüsselaspekte des Sprachdesigns für reaktive
Systeme im Kontext dieser beiden Sprachen. Für drei relevante Konzepte
werden dabei schlanke und minimalinvasive Spracherweiterungen entwor-
fen und evaluiert. Besonderes Augenmerk liegt darauf diese neuen Kon-
zepte an die fundamentalen Prinzipien der zugrundeliegenden Sprachen
anzupassen. Konkret wird Lingua Franca um die Möglichkeit erweitert
modusabhängiges Verhalten zu modellieren, während SCCharts eine Timed
Automata Notation mit dynamischen Ticks zur effizienten Ausführung erhält
und um Konstrukte zur objektorientierten Modellierung erweitert wird.
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Abstract

Reactive systems play a crucial role in the embedded domain. They con-
tinuously interact with their environment, handle concurrent operations,
and are commonly expected to provide deterministic behavior to enable
application in safety-critical systems. In this context, language design is
a key aspect, since carefully tailored language constructs can aid in ad-
dressing the challenges faced in this domain, as illustrated by the various
concurrency models that prevent the known pitfalls of regular threads.

Today, many languages exist in this domain and often provide unique
characteristics that make them specifically fit for certain use cases. This
thesis evolves around two distinctive languages: the actor-oriented poly-
glot coordination language Lingua Franca and the synchronous statechart
dialect SCCharts. While they take different approaches in providing reactive
modeling capabilities, they share clear similarities in their semantics and
complement each other in design principles.

This thesis analyzes and compares key design aspects in the context of
these two languages. For three particularly relevant concepts, it provides
and evaluates lean and seamless language extensions that are carefully
aligned with the fundamental principles of the underlying language. Specif-
ically, Lingua Franca is extended toward coordinating modal behavior, while
SCCharts receives a timed automaton notation with an efficient execution
model using dynamic ticks and an extension toward the object-oriented model-
ing paradigm.
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Chapter 1

Introduction

Reactive systems are characterized by their ongoing and time-sensitive
interaction with their environment [HP85]. This is particularly present in
the embedded and cyber-physical domain [Lee08]. Software development for
reactive systems is challenging due to intrinsically parallel processes, the
physical environment, and timing requirements.

In order to meet these demands, languages in this field provide concur-
rency. It enables the description of logically concurrent process in the pro-
gram and, orthogonally, utilizes parallel and distributed execution [Hal93].
While reactive programming is also often utilized for creating scalable and
loosely-coupled software for interactive systems [BCC+13; KHA17], these
often rely on unconstrained concurrency, which is prone to race conditions
and thus non-determinism [Lee06; LÍG+19]. For embedded reactive systems
and especially in a safety-critical context, any uncertainty in the program’s
behavior is inadmissible, or at least undesirable.

Synchronous languages are specifically designed to create deterministic
software for reactive systems [BCE+03; Hal93]. The fundamental idea is to
discretize time into instants, at which a program conceptually executes in
zero time. Then, inputs can be considered stable during logical program
execution and time progresses only in the environment. This abstraction
enables a sound semantics with deterministic concurrency. Section 2.1 will
provide a more detailed introduction. The synchronous paradigm and
execution model has proven itself well-suited for specifying, validating,
and implementing software for embedded and real-time systems [BCE+03].
While there are other languages and concepts that also achieve determinism,
the synchronous principle is the one guiding this thesis.
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1. Introduction

Another important factor in developing reactive systems is the language
design itself. Here, Model-Driven Engineering (MDE) is a prime principle that
facilitates the design and implementation of complex software systems. It
finds wide-ranging use [WHR14] and provides various advantages, such
as domain-specific abstraction, model checking, graphical notations, and
automatic code generation. In this thesis, MDE is central to the choice and de-
sign of languages for reactive systems. However, this does not categorically
exclude classical code-driven techniques. Pragmatics-aware modeling tech-
niques [HLF+22; FH10] and frameworks for model-based grammars [EB10]
enable combining many aspects of classical programming into a unified
model-driven approach. For example, transient views [HLF+22; SSH13; FH10]
enable graphical representations of textual models and polyglot designs inte-
grate support for different target languages into a single modeling language,
see Chapter 2.

Modeling languages all differ in syntax, semantics, and specialization.
Yet, they all offer means to abstract and shape the program based on a
mental image for particular aspects in the system. This has resulted in a
variety of abstractions or “views,” each corresponding to a different mental
model. The wide range of available modeling tools and languages illustrates
this development. The Unified Modeling Language (UML) [Obj11] standard
with its many manifestations is only one example for this heterogeneity. For
reactive systems, two major views have emerged, one that focuses on the
flow of data and one for the flow of control [Hal93; STP05].

The dataflow view breaks down the program into smaller blocks with
interconnections representing the streams of data flowing between them.
These blocks process inputs, produce outputs, and can be considered mostly
independent of each other, thereby presenting opportunities for paralleliza-
tion or distribution.

In the complementary control-flow view, the model expresses the ac-
tivation of certain execution units. For example, a Control-flow Graph
(CFG) [All70] models potential execution paths in a program. This is very
close to classical imperative programming or even machine instructions.
While this reflects the steps and states of the computation itself, it is often
more relevant for a developer to think in terms of the states of the sys-
tem. For this view, finite state machines (FSMs) are commonly used. When

2



1.1. The Furuta Pendulum Example

Figure 1.1. Schematic of a Furuta pendulum with an LED and speaker.

Harel and Pnueli initially introduced the notion of reactive systems [HP85],
they also proposed statecharts to model such systems. States, transitions,
hierarchical composition, and concurrency were introduced to address the
challenges in reactive system design. In terms of language design for reac-
tive systems, both views complement each other by emphasizing different
aspects and are equally relevant to this thesis.

This thesis will evolve around two languages: Lingua Franca (LF) and Se-
quentially Constructive Statecharts (SCCharts). Both are prime representatives
of all the aspects discussed so far. They are modern model-based reactive
languages, target embedded systems, and provide determinism using the
synchronous principles. While LF features a dataflow view, SCCharts pri-
marily use a statecharts notation providing a more control-flow-oriented
view.

1.1 The Furuta Pendulum Example

To provide a first impression of both languages and to act as a motivating
example, we will consider a controller implementation for an inverted
pendulum designed by Furuta et al. [FYK92]. It is a classic control system
problem, often used to teach feedback control. Figure 1.1 illustrates the
basic setup. It consists of vertical shaft driven by motor, a fixed arm (blue)
extending out at 90 degrees from the top of the shaft, and a pendulum (red)
at the end of the arm. The goal is to balance the pendulum upright above

3



1. Introduction

the arm. To achieve this, a controller usually has three phases; (1) it rotates
the shaft to impart enough energy to the pendulum that it swings up, (2)
it imposes a countermovement to catch the pendulum, and (3) it stabilizes
the pendulum above the arm using minimal adjustments. Each of these
steps requires a different control behavior, referred to as SwingUp, Catch,
and Stabilize mode.

To illustrate additional timing aspects, the scenario is extended by an
LED light and a speaker. The LED displays the phase in which the controller
operates. Off during swinging up, blinking with a 30 msec period while
catching, and constantly on when stabilizing. The speaker indicates how
close the pendulum is to its upright position. From the lowest to the highest
position it should play an ascending chromatic scale, specifically C2–B2
(approx. 65–123 Hz), by producing a square wave signal.

1.1.1 Lingua Franca

Lingua Franca is an actor-oriented polyglot coordination language [LMB+21]
based on the deterministic reactor model [LÍG+19]. Reactors are inherently
reactive, timed, concurrent, event-based, and represent encapsulated ob-
jects. LF focuses on efficient implementations and features a wide-ranging
applicability, from the embedded to the distributed domain.

Figure 1.2 presents the LF program that controls the Furuta pendulum
in an abstracted hardware environment. The program consists of reactors,
represented by the rounded boxes with input and output ports. Reactors
are concurrent and communicate via connections between their ports. In
LF, computations are embedded in reactions, written in a target language,
in this case C. In the graphical notation, reactions are represented by gray
wedges, but the actual code is omitted to reflect only the coordination level.

The PendulumSound reactor handles the angle-dependent sound. Its reac-
tion is triggered by an input at the angle port or the occurrence of an action
(white triangle). Actions enable the scheduling of future events internal to
the reactor. This action in particular is an effect of the reaction itself and is
used to schedule the next occurrence of a duty cycle switch. The reaction
calculates the current note based on the angle value and schedules actions
to control the frequency of the square signal.

4



1.1. The Furuta Pendulum Example

FurutaPendulum

Angles

theta

d_theta

phi

d_phi

PendulumSound

L

angle
sound

PendulumController

(0, 15 msec)

1

2

theta

d_theta

phi

d_phi

led

control

Speaker
wave_signal

LED
on

Motor
control

Figure 1.2. The pendulum control program in LF.

The PendulumController uses a timer (clock figure), with an initial offset
of 0 and a period of 15 msec, to trigger reaction 1. This reaction sets the
led output in an alternating pattern if operating in Catch mode. Reaction 2
computes the control response for the motor based on the angles at the two
hinges and their velocity. The number in the reaction labels indicates the
ordering, which is used to ensure output determinism. Here, reaction 2 is
able to override the value on the led output produced by the first reaction
to enforce a constant LED state for modes other than Catch.

The remaining reactors handle the interaction with the hardware. Their
contents are hidden as it is of no further relevance to this example. Sec-
tion 2.4 will present the given model in more detail, including the textual
source code with the reaction bodies.

1.1.2 SCCharts

SCCharts are a synchronous statecharts dialect with a Sequentially Con-
structive (SC) semantics [HDM+14]. They augment Harel’s classical stat-
echarts [Har87] with various synchronous language constructs, while SC

Model of Computation (MoC) combines sequential memory access with de-
terministic concurrency enabling a more intuitive imperative programming
style than in classical synchronous languages, such as Esterel or Lustre.
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1. Introduction

FurutaPendulum

float theta, d_theta, phi, d_phi, control
bool msec = false, led = false, sound = true
+ Angles

+ Time

PendulumSound
const int SEC_TO_MSEC = 1000
int msecs = 0
float duration = 0
immediate during / duration =

1 / sound_frequency(theta) / 2 * SEC_TO_MSEC

Alternate
during msec / msecs++

msecs >= duration
/ sound = !sound;
msecs = 0

-

- Sound

+ Motor

+ LED

+ Speaker

PendulumController
float catch_phi = 0

SwingUp
immediate during / control =

swingup_control(theta , d_theta)

Catch
during / control =

catch_control(theta , d_theta , phi , d_phi)

Toggle
15 msec
/ led = !led

- LED

Stabilize
during / control =

stabilize_control(theta , d_theta , phi , d_phi , catch_phi)

exit_swingup(theta)
/ led = true

exit_catch(d_phi)
/ catch_phi = phi;
led = true

exit_stabilize(theta)
/ led = false

-

- Controller

Figure 1.3. The pendulum control program in SCCharts.

SCCharts support multiple code generation strategies tailored to different
use cases and target languages combined in a powerful and transparent
model-based compiler [Smy21].

Figure 1.3 illustrates the SCChart that models the same behavior for the
pendulum as in LF. The SCChart has seven concurrent regions (white inner
boxes). These regions communicate via shared variables, declared at the
top of the root state. The additional msec variable indicates the passage
of one millisecond. It is not present in LF because it can rely on a built-
in time model. In this example, msec is computed in the Time region by
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1.1. The Furuta Pendulum Example

communicating with the hardware.1 This and the other regions for hardware
access are again hidden (collapsed).

The PendulumSound state uses the milliseconds to control the frequency
of the square signal. This state is the initial state of the enclosing region,
indicated by the thicker border. It has a constant, two local variables, a during
action, and an inner region. During actions executed the given effect as long
as their state is active. If marked immediate, they already execute at the tick
their state is entered; otherwise, they would only start at the subsequent tick.
In this case, the external function sound_frequency is invoked to compute the
frequency based on the current angle of the arm. The basic computations
for the sound and motor control are factored out into external C functions
to reduce the model size and reuse the same logic in SCCharts and LF. The
frequency is converted into a half cycle duration in milliseconds and stored
in duration. The inner region has a single state Alternate that increments the
msecs counter every time a millisecond passed by using a during action.
The self transition is activated if the msecs counter reaches the duration
threshold and then toggles the sound signal and resets the counter. The
transition weakly preempts the state, hence, the counting happens before the
trigger test. Since the during action is not immediate, the millisecond cannot
be counted twice.

In the PendulumController state, three inner states represent the different
control modes. Each state uses different external functions to compute
the control response and whether to exit this state. The LED is set as an
effect of the transitions, and in the Catch state an additional region handles
the toggling every 15 milliseconds. The 15 msec notation is a count delay;
syntactic sugar for a similar counting infrastructure as in PendulumSound, but
only for constant values. The red dot at the transition to SwingUp indicates
a deferred entry into this state, suppressing the immediate execution of the
during action. Hence, the control logic in each state will only activate in the
tick after entering its state.2

1For an SCChart in general, it would be more common to have the hardware communication
and time as dedicated inputs and outputs, see Section 2.3.2. However, the presented design
focuses on highlighting the equivalence to the LF program.

2Again, there are alternative designs, but this one was chosen for equivalence with LF,
especially in regard to modes presented in Chapter 3. This does not impair the modeling
quality of the solution.
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1. Introduction

1.2 Design Opportunities and Considerations

Without further details on the implementation or semantics of LF and
SCCharts, a comparison between the two pendulum models already reveals
valuable insights on the different design principles and enables identifying
opportunities for the improvement of both languages and for such language
design in general.

Most apparent are the two notations that are used; the dataflow approach
in LF, and SCCharts with its statecharts notation, as well as the different
degrees of detail in the graphical notation. As discussed before, there is
no clear preference for one or the other, and the granularity of the view is
mostly a question of tool configuration. Yet, from a modeling perspective,
LF cannot directly express the modal behavior of the pendulum controller, or
the fact that the timer is only relevant to the Catch mode. Both aspects are
explicit in the SCChart.

Another important aspect is the handling of time. In LF, time is a first-
class citizen. This enables the use of a timer in the Controller reactor and
the scheduling of actions in Sound with dynamic delays. On the other
hand, the SCChart requires time as an explicit input; in this case single
discrete milliseconds read from the hardware. This is a classical approach
in synchronous languages that follows a multiform notion of time [Ber99].
In the face of the dynamic and real-valued nature of the angle-dependent
delay and a per-tick time input, the counting of milliseconds is only a
compromise between precision and workload. The counting requires a
periodic execution of the SCChart at least every millisecond. In contrast to
that, LF features a more resource-friendly sparse execution that facilitates a
nanosecond precision (if supported by the hardware).

There are also notable differences in the way both languages express
concurrency, provide internal communication channels, and integrate their
target languages to provide basic instructions. These and other design
aspects are discussed in more detail in Chapter 2. However, a more subtle
aspect that is in the focus of this thesis is the fact that LF supports an
Object-Oriented (OO) design. To a certain degree, this comes naturally to an
actor-based language [Cap03; LLN09], but there is also great potential for
a statecharts language in adopting OO concepts to improve its capabilities

8



1.3. Contributions and Publications

in abstraction, genericity, reusability, and modularity. This is particularly
relevant in the face of increasingly complex software systems, also in the
safety-critical and embedded domain [Dvo09].

A straightforward solution to all these issues could be an attempt to
create a new language that is a union of both. However, this is not the goal
of this thesis. Both language have their fundamental design principles and
semantics that makes them valuable and successful in their area. Instead,
the goal is to address and investigate the discussed issues by creating simple
and minimally invasive extensions that stay true to the core principles of
the language. This especially includes a seamless integration into the textual
and graphical syntax, a lean implementation, and conservative and robust
semantics.

The previous comparison might give the impression that both languages
are played against each other. However, the opposite is the case since they
act as mutual motivation and inspiration due to the collaboration of both
projects. Chronologically, some concepts were initially developed in parallel
(cf. Section 1.3). Recent developments on efficient sparse execution [EH20;
SIL+17] or time and object-like structures in imperative synchronous lan-
guages [SIL+17; GG18], also show the high relevance of the discussed topics
to this domain. Yet, the consideration of modern MDE, deterministic con-
currency, embedded targets, and high-level coordination, in combination
with synchronous statecharts, or respectively reactor-oriented program-
ming, represents a relevant contribution to the language design of reactive
systems.

1.3 Contributions and Publications

This thesis is the first work analyzing the design of LF and SCCharts in
direct comparison (Chapter 2). The main contributions, however, concern
the improvement of both languages and are divided into three topics. Modal
models in LF, Time in SCCharts, and Object Orientation (OO) for SCCharts.
In each contribution the respective language is used as an environment to
carefully design an integration of this aspect that extends the modeling
capabilities for reactive systems.

9
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Modal Models

Chapter 3 investigates the design of a modal coordination layer in a reactor-
oriented environment. This chapter draws from and extends publications
on modal reactors [SHL+23b; SHL+23c; SHL+23a]. Specifically, Chapter 3
presents

• a minimally invasive language extension of LF to express modal struc-
tures that embraces the reactor-oriented nature and black-box approach
towards reaction code;

• an adaptation of a lean set of hierarchical composition capabilities and
common transition types, reset and history, implementing modal behavior
with reactors; and

• a semantics for modal behavior that introduces mode-local time and
leverages the superdense time model to achieve deterministic behavior.

The adaption of the LF tooling to the modeling pragmatics of the KIELER

project (see Section 2.5) is also part of my work, including the synthesis of LF

diagrams. Yet, this is only covered implicitly and is not part of a dedicated
publication or chapter in this thesis.

Time

Chapter 4 evolves around research questions on real-time modeling in a
synchronous context with a focus on a flexible notation of time, efficient
executions strategies, and practical arrangements for timer imperfections
when dealing with physical time. The presented topics draw from and
expand on publications titled “Time in SCCharts” [SHM+18; SHM+20]. The
chapter covers

• a lean timed automaton notation for SCCharts that models time with
real-valued clocks and can be expressed in a synchronous setting and only
minimal requirements on the execution environment or the languages
itself;

• a new language feature for periodically timed regions that enables mod-
eling multiclocked systems;

10
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• a detailed investigation of the suitability of different execution strategies
in a timed setting; and

• a sparse execution environment that implements dynamic ticks in a
synchronous real-time setting and requires only a minimal runtime in-
frastructure.

Object Orientation

Chapter 5 investigates the integration of the OO programming and design
methodology into a pragmatics-aware synchronous statecharts modeling
language. My work on OO is published with the title “Toward Object-
oriented Modeling in SCCharts” [SSM19; SSM21]. This chapter draws from
these results and extends them, consisting of

• a conservative extension of SCCharts that permits OO modeling under
the principles of synchronous languages, providing modeling class-based
data structures, capabilities for programming using methods, inheritance
to improve reusability, and a proposal for type parameterization and
subtyping to further facilitate abstraction;

• an integration of the new OO design features into the modeling and
compilation tooling of KIELER; and

• mechanisms to ensure the determinism of host language objects under
the shared memory concurrency of synchronous languages while re-
taining their encapsulation under a contract-based black-box scheduling
approach.

All three concepts have been implemented and tested and are publicly
available in the respective open-source projects of LF3 and SCCharts4.

3https://github.com/lf-lang/lingua-franca
4https://github.com/kieler/semantics
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1.3.1 Related Publications and Advised Theses

There are various co-authored publications and student theses advised by
me that relate to the topics discussed in this thesis and inspire and support
some contributions.

Ź On the topic of modal models and hybrid modeling, there is work un-
der the lead of Nis Wechselberg on “Augmenting State Models with
Data Flow” [WSS+18]; a Master’s thesis [Gri19] and subsequent publica-
tion [GSS+20; GSS+22] by Lena Grimm on the adaption of Lustre/SCADE

dataflow into SCCharts (using the dataflow extension developed by
Steven Smyth [Smy21]); and a Master’s thesis [Luc20] and publica-
tion [LSH+21] by Daniel Lucas on “Extracting Mode Diagrams from
Blech Code”.

Ź For time in SCCharts, Andreas Boysen developed in his Master’s the-
sis “An FPGA-based Demonstrator for Dynamic Ticks” that was also
published [BSH20b; BSH20a; BSH20c], see also Section 4.5.2. The collabo-
ration with the LF team also led to my participation in a publication on
time in LF [LMS+20; LBM+23].

Ź In relation to OO stands the Bachelor’s thesis of Gavin Lüdemann on
“Modular Code Generation for SCCharts” [Lüd21] and a supportive
role in the introduction of scheduling directives [SSH19; SSH18b] (see
Section 5.4.2 and Section 4.2.2) under the lead of Steven Smyth (covered
in [Smy21]).

Ź On MDE and modeling pragmatics, there are the Master’s theses by Philip
Eumann on “Model-Based Debugging” [Eum20], by Andreas Stange
titled “Model Checking for SCCharts” [Sta19], and by Sören Domrös
on moving MDE tooling into web technologies [Dom18]. Likewise, a
supportive role in “Guidance in Model-based Compilations” [SSH18a]
led by Steven Smyth (covered in [Smy21]) relates to this topic. Finally, I
participated in the creation of “Pragmatics Twelve Years Later: A Report
on Lingua Franca” [HLF+22].
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1.4 Outline

After this introduction follows Chapter 2 providing a direct comparison
of LF and SCCharts, including a brief introduction of their notations and
conceptional foundations. At the heart of this thesis are two parts. Part I
focuses on LF and the integration of modal models in Chapter 3, and Part II
bundles the two contributions based on SCCharts. Chapter 4 presents the
contribution on time and dynamic ticks, and Chapter 5 covers OO. Each of
the three main chapters briefly covers related work in the given context and
presents and evaluates its contribution. Finally, Chapter 6 concludes these
topics and gives an outlook on future work.
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Chapter 2

Design Principles of
Lingua Franca and SCCharts

Both LF and SCCharts are languages that enable modeling embedded re-
active systems and feature deterministic concurrency. They also put an
emphasis on practicality when it comes to the design and implementation
of the language itself, the generated code, and also the surrounding tooling.
While there are many commonalities between the two, there are also differ-
ences, such as the statecharts and dataflow modeling principle, support for
distributed execution, and integration of target languages.

Outline This chapter starts with a short description of the synchronous
approach in Section 2.1, which is an important link between the semantics
of LF and SCCharts. Afterwards, Section 2.2 and Section 2.3 discuss LF and
SCCharts. They both start with a brief introduction of the syntax, structure,
and semantics, highlighting differences and commonalities. Both sections
also feature the respective perspective on the runtime environment and their
approach to integrate target languages, as these become especially relevant
in subsequent chapters. In anticipation, Table 2.1 gives a brief overview and
comparison of some key aspects in LF and SCCharts that will be presented.
Section 2.4 presents a detailed look into the source code and behavior of
the pendulum implementations introduced in Section 1.1. This provides a
more practical impression of the different modeling features and principles.
Finally, Section 2.5 presents the modeling pragmatics and state-of-the-art
pragmatic-aware tooling that influence the design and usability of LF and
SCCharts.
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Table 2.1. A brief overview and comparison of key aspects in LF and SCCharts. It
covers the current state of the implementation, plus references to extensions made
by this thesis.

Aspect Lingua Franca SCCharts

Notation
dataflow actors

+ modes (Chapter 3)
statecharts and

dataflow

Modularity OO
macro modules
+ OO (Chapter 5)

Reactions time and event-driven
clock-driven

+ dynamic ticks (Chapter 4)

Synchrony multiclocked synchronous globally synchronous

Causality static acyclic static SC

Time
first-class citizen,

logical and physical time
“just” input

+ real time (Chapter 4)

Target lan-
guage integra-
tion

embedded black-box code
generic expression language
and black-box host functions

Internal com-
munication

events and state variables
with locally restricted scopes shared variables

External com-
munication

direct or via physical actions direct or via inputs & outputs

Execution
single-threaded, multi-threaded,

and distributed single-threaded

Runtime
restructuring

limited mutations1 none

Compilation
structure

monolithic model-to-model

Artifact standalone program tick function

Supported
languages

C, C++, Python,
Typescript, and Rust C, Java, and VHDL

1Generally supported by reactors but only partially implemented in the Typescript target.
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Environment

Reactive System 

Compute
Reaction

ActuateSense

Figure 2.1. Abstract view on a reactive system embedded in its environment (based
on [MHH13]).

2.1 Synchronous Languages

Concurrency is both a powerful programming principle and intrinsic to the
execution model of embedded reactive systems. Synchronous languages
are specifically designed to address the challenge of deterministic2 concur-
rency [BCE+03; Hal93; STP05].

Figure 2.1 illustrates the conceptual setup that drives the synchronous
principle. By definition, the reactive system is embedded in an environ-
ment [HP85]. From the synchronous design perspective the abstracted
process inside the program is (1) reading inputs from sensors, (2) comput-
ing a reaction, and (3) writing outputs to actuators. To ensure that this
lifecycle always has a deterministic outcome and is not exposed to race con-
ditions in the presence of concurrency, synchronous languages traditionally
apply two techniques; synchrony and causality.

The fundamental idea of the former is to discretize time into instants
that conceptually run in zero time [BCE+03; Hal93; STP05]. Each reaction
represents such an instant. Since the pace of reactions in synchronous lan-

2There is a distinction by Milner [Mil89] that separates determinacy from determinism.
According to his definition, a computation is determinate if the same input sequence produces
the same output sequence. In contrast to a deterministic one that additionally requires an
identical internal behavior and scheduling. This thesis does not follow this distinction and uses
both terms synonymously to refer to determinacy in Milner’s sense. It considers observable
determinacy w.r.t. the model level.
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guages is often driven by a global clock (inspired by hardware design), the
execution instants are also called ticks. As a consequence of this abstrac-
tion, outputs are generated at the same (logical) time as inputs are read.
Thus, inputs can be considered stable during reaction computation and
time progresses only in the environment. Synchronous programs classically
consist only of finite reaction workload, implicitly or explicitly separated
by some form of pauses that end the reaction and give the environment
(conceptually) some time to adjust before continuing with the next reaction.
For any concurrency expressed in the program, these pauses result in a
barrier synchronization for all threads that keeps them in lockstep.

The second technique introduces causal reasoning for data accesses. The
basic idea is that any read value should be definitely and deterministi-
cally defined before it is accessed, especially in the presence of multiple
concurrent writers [Hal93; STP05; Ber00]. Hence, synchronous languages
require any communication at each instant between concurrent threads
to be regulated by synchronous signals or channels. These special-purpose
shared memory structures are protected by an (intra-instant) synchronization
protocol, which ensures a unique value per instant. As a consequence, the
observable behavior of a program is that of a synchronous Mealy machine.
This provides synchronous languages with a sound mathematical semantics.
In practice, the compiler performs a static causality analysis that checks if
the synchronization protocol can be satisfied for each memory reference.
If a scheduling order can be found that adheres to these rules for any
relevant state and input of the program, it is considered constructive [Ber00].
Non-constructive programs are rejected.

2.1.1 Different Language Variants

Since their emergence in the 80s, various variants of synchronous languages
have been developed. They come in different programming styles and with
varying semantics. Yet, the fundamental principles are always present, even
if the specific MoC differs, for example in terms of synchronization protocols.

One of the most prominent and influential synchronous language is
Esterel [Ber00]. Its constructive semantics are motivated by hardware circuit
behavior and use multi-writer/multi-reader signals that follow a write-before-
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read synchronization protocol. This results in a globally consistent state for
each signal, similar to wires in a netlist. Esterel features an imperative coding
style and allows interacting with its host language (here C) to facilitate
practical application [PEB07]. The language supports various constructs,
most of which are considered syntactical sugar that can be represented by a
set of kernel language features to ease compilation.

The more recently developed synchronous languages Blech [GG18] and
Céu [SIL+17] are heavily inspired by Esterel and improve the handling
of time, working with data structures, and modularity. Quartz [Sch10]
is another imperative synchronous language close to Esterel that focuses
on hardware software co-design. SyncCharts [And03] is a synchronous
statecharts dialect that draws its semantics from the equivalence to Esterel.

In the category of dataflow or declarative synchronous languages, Lus-
tre [HCR+91] is the most notable one. Lustre programs consist of equation
systems that use nodes as reusable operators and subsystems. Communi-
cation is handled via clocked channels that implement a synchronization
protocol similar to Esterel. The main difference is that each channel must
always provide a value (be written) in accordance with its clock, while
Esterel also supports reaction to absence. A clock calculus ensures that
channels in a Lustre program are well-formed.

The Safety-Critical Application Development Environment (SCADE) is a
commercial variant of Lustre that supports graphical modeling [CPP17]. In
Signal [GGB+91] a multiclocked approach facilitates targeting distributed
systems [GG10]. Zélus [BP13] is a hybrid synchronous language that extends
discrete dataflow with ordinary differential equations. The heterogeneous
modeling environment Ptolemy II features a synchronous reactive domain
for modeling dataflow and coordinating state machines [EJL+03; Pto14].

2.2 Lingua Franca

Lingua Franca implements the concept and MoC of reactors [LÍG+19]. It is a
dataflow-oriented polyglot coordination language that abstracts a target lan-
guage into black-box containers (reactions) and coordinates their execution
in a reactive, deterministic, timed, and concurrent manner. The paradigm
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of reactor-oriented programming is inspired by many well-established prin-
ciples, such as OO [Str87], actor-oriented design [Hew77], or event-driven
programming [DZK+02].

This short overview can only provide a limited introduction into LF.
A more comprehensive description is available in the respective publica-
tions [LÍG+19; Loh20; LMB+21] and the official documentation3.

Composition LF programs consist of reactors. The entry point is a single
main reactor. Each reactor can instantiate other reactors and create connec-
tions between input and output ports to establish communication channels.
In addition to ports and reactor instances, reactors can contain reactions,
state variables, timers, and actions, as Figure 1.2 already illustrated.

Object Orientation Reactors can be considered instantiable classes in an
OO sense. They also offer inheritance to facilitate reusable designs. A reactor
can extend another one, where all declaration of reactions, ports, timer, etc.
in the super class are placed syntactically before locally defined ones. The
natural ordering of LF reactions then automatically results in an overriding
behavior. This form of inheritance is a bit more restrictive than in classical
mainstream OO languages.

Like objects, reactors encapsulate state and behavior in the form of state
variables and reactions in combination with timers and actions. All contents
of a reactor, except ports, have a local scope; they are only visible inside
the reactor or its subclasses. While objects classically interact via method
calls, reactors receive events from ports, timers, and actions and handle
them in reactions. Unlike methods, reactions are not invoked directly, but
are executed once if triggered by the presence of an event. There is no
recursion or multiple invocation per tick. In addition to reactions, LF also
has classical methods. However, these cannot react to input events but
instead are invoked from within reactions.

Causality Each reaction has a signature in the following form:
reaction(<trigger*>) <source*> -> <effect*> {= <body> =}

3https://www.lf-lang.org/docs/
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It defines optional lists of triggers (ports, actions, or timers that can trigger
it), sources (ports that the reaction can read from when triggered), and
effects (ports it may set or actions it may schedule). Scoping rules for the
reaction body, enforced by the compiler, ensure that the data dependencies
expressed in this signature are conservative. Hence, reaction signatures
represent a causality interface for reactions [ZL08].

Reaction signatures and connections between ports or instantiated re-
actor can be turned into a dependency graph. If acyclic, it yields a partial
order for all reactions that expresses all scheduling constraints that will
result in a deterministic execution for each tick. This corresponds to the
write-before-read protocol in synchronous languages. A causality problem
is present if the graph is cyclic, e. g., a reaction’s trigger or source depends
on its own immediate effect. Figure 2.6b will illustrate an example of a
model with a causality error.

The fact that the dependencies graph is valid independent of the actual
code in the body enables to treat reactions as black-boxes. This property is
the key factor in the polyglot nature of LF.

State variables are implicitly accessible in all reactions, and multiple
reactions may set the same output port. Therefore, reactions within the same
reactor always have a fixed scheduling order assigned to them, which is
derived from their textual position in the code. The dependency graph also
reflects these constraints to ensure determinism. In this regard, LF features
sequentiality similar to the SC MoC.

Synchronicity The runtime mechanism of LF is event-driven, as only
events trigger reactions. The event processing in reactors is synchronous
and similar to synchronous languages. Events are tagged with their time
of occurrence on a logical timeline. Execution progresses in ticks where all
events of the current time are processed at once and time does not progress
during execution. Consequently, outputs carry the same logical time tag as
their inputs and may instantly trigger downstream reactions. The previously
mentioned causality analysis ensures that no reaction executes before all the
data sources that it depends on are known. While ticks can act as a barrier
synchronization for concurrent reactors, primarily in a non-distributed
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context, LF also facilitates scheduling regimes that enable reactions to span
multiple ticks, as in logical execution time [KS12; HHK03].

Events can be checked for their presence at the current time and carry
a value. In this respect they correspond to valued signals in synchronous
languages.

Time While ports are terminals for the flow of events between reactors,
actions and timers enable the creation of timed events inside reactors. Timers
produce events with a predefined period and offset, whereas actions provide
an interface to manually schedule future events as an effect of reactions.

Considering the previously discussed causality, a reaction that depen-
dents on itself via an action, as in PendulumSound in Figure 1.2, could be
considered a problematic cycle. Yet, this is not the case due to a mandatory
delay upon scheduling. While the delay clearly must not be negative, it may
be zero.

Tags in LF are pairs (t, m), where t is a time value and m a microstep
index. Mircosteps separate subsequent ticks at the same logical time t. This
implements the concept of superdense time [MP93].

Connections pass events instantaneously (within the same tick/microstep),
but they can also be configured to impose a delay. Again, this can be zero,
introducing a microstep delay when passing events between reactors.

Another important aspect of time in LF is the relation to physical time
(wall clock time). This is also reflected in the difference between physical
and logical actions. Logical actions create events from within the execution
of reaction, hence, in sync with logical time, while physical actions can
be scheduled from an asynchronous context, e. g., a spawned thread or
interrupt service routine. Events from physical actions receive a tag based
on current physical time. The execution engine ensures that logical time
will not run ahead of physical time, such that there is no risk of out-of-order
events. In practice, logical time will lag behind physical time, because it will
not progress during execution. LF provides deadlines to detect and handle
timing violations [LMS+20; LBM+23].

Concurrency Reactions are atomic execution units that are subject to a
dependency graph. This transparently enables the parallelization of logically
simultaneous reactions that are independent of each other, without risking
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data races or deadlocks. LF’s runtime implementation features different
options for single- or multithreaded execution.4

Furthermore, LF programs can also be federated. If the main reactor is
marked federated, this turns its inner reactors instances into federates that
can be distributed onto different machines. Connections will be automati-
cally set up as network channels. The semantics of reactors, especially the
notion of logical time, will ensure determinism even in this distributed
setting. Yet, the nature of this environment results in multiple timelines and
a tradeoff between consistency and availability [LBL+23; LBL+21; LMS+20;
LBM+23]. LF offers the choice between a centralized coordination that han-
dles global synchronization of logical time or a decentralized control that
relies on the local physical clocks and techniques from Programming Tem-
porally Integrated Distributed Embedded Systems (PTIDES) [ZLL07]. The
second mechanism requires explicit bounds on network latencies and clock
synchronization errors, which may be violated in a practical deployment.
However, LF can detect these situations and enables reactions to such faults,
similar to deadlines.

The decentralized distributed aspect shows that LF is not a classical syn-
chronous language, in the sense that it is not driven by a single global clock,
but rather corresponds to multiclocked variants, such as Signal [GG10]
or multiclocked Esterel [BS01]. It also relates to the idea of a Globally
Asynchronous Locally Synchronous System (GALS) [Cha84].

Mutations While static instantiation is the normal and most common
way of composing reactors, the concept of reactors also supports dynamic
runtime creation and destruction using mutations [LÍG+19]. This includes
changing connections between reactors or reactions. By requiring the same
static signatures for mutations, it is possible to decide at compile time
on the soundness of runtime modifications to the reactor topology. In LF,
mutations are currently only implemented for the Typescript target as an
experimental feature.

4Currently, only the C, C++, and Rust targets provide support for multithreaded execution.
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Figure 2.2. LF-specific reactive program components and their interaction with each
other and the environment.

2.2.1 Runtime Environment

LF programs compile into standalone executables. In case of a federated
program, multiple executables are generated that can be automatically
deployed onto the different machines. An LF program consist of program-
specific code, generated from the reactor network and its reactions, plus a
generic runtime engine handling the event loop, scheduling of reactions,
and progression of time. This event-driven approach and the fact that main
reactors (as well as federated ones) cannot have input or outputs ports,
defines the way LF programs interact with their environment.

Figure 2.2 presents a concretized version of the reactive system schemat-
ics in Figure 2.1. It shows the LF-specific components and their interaction
with each other and the environment. The arrangement represents the LF

perspective on a reactive system. Hence, the Sensors and Actuators are posi-
tioned mostly in the environment, as they represent hardware components
and are only accessed via their respective application programming inter-
face (API). The Sensors provide input data asynchronously by scheduling
events via physical actions or read directly from within reactions. The latter
can be used to implement a polling mechanism by triggering a reading re-
action by a periodic timer. The LF Runtime manages events and time. Dashed
lines in the schematic represent triggering/execution of components, while
solid lines indicate passing data. The LF Runtime runs an internal Event
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Loop that advances time until processable events are present. If present, it
will start the execution—a Tick of the Reactor Network—passing the events
with that tag. The execution of the reactions will control the Actuators and
produce new internal events that need to be processed in the future.

2.2.2 Target Language Integration

LF aims for a polyglot language design by embedding code of any target lan-
guage directly into its coordination language. Key enabler for this approach
is the black-box treatment of reactions. Target code blocks ({= . . . =}), such
as reaction bodies, are neither parsed nor otherwise analyzed. Only the
reaction signatures are used as conservative dependency interfaces, while
it remains unknown to the LF compiler if certain data source are actually
accessed or effects are produced. The code generated for reactions contains a
verbatim copy of the reaction body. Additionally, the LF compiler generates
an individualized preface that makes only the triggers, sources, and effects
of the reaction and state variables of the reactor available to its body.

Section 2.4 will illustrate some functions that LF makes available to the
embedded code. This API is target language specific. Furthermore, the LF

compiler must support code generation for the desired target languages
and requires a compatible implementation of the LF runtime engine. With
these prerequisites the LF compiler can synthesize the main reactor into
code and create an executable using a target language compiler. LF currently
supports C, C++, Python, Typescript, and Rust as targets.

LF’s coordination layer establishes separation between reactors, which
in turn facilitates a polyglot design where different reactors are written in
different target languages. While the LF compiler does not yet support such
programs, at least federated LF models will soon provide the option to have
polyglot federates.

2.3 SCCharts

SCCharts are a synchronous language that follows that statecharts notation
developed by Harel [Har87]. They are inspired by SyncCharts [And03]
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input output bool A, B
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Figure 2.3. The ABO SCChart [HDM+14], consisting only of Core SCCharts elements.

and draw concepts from various other synchronous languages, providing a
powerful and versatile set of modeling elements. SCCharts are built around
the SC MoC but also follow a more classical synchronous approach compared
to LF.

This short overview can only provide a limited introduction into SC-
Charts. A more comprehensive description is available in the respective
publications [HDM+14; Mot17; Smy21; HDM+13] and the official documen-
tation5.

Core SCCharts Similar to Esterel, SCCharts are defined by a kernel lan-
guage, called Core SCCharts, that facilitates the definition of semantics and
code generation. This minimal syntactic core is relatively close to the basic
building blocks of statecharts. All other modeling elements in SCCharts,
called extended features, are reducible to this core language.

Figure 2.3 shows the ABO SCChart that only consists of Core SCCharts
elements. Its main purpose is to demonstrate core characteristics of the
SCCharts semantics, e. g., shared variables with multiple different values
during a tick. The program will produce O1 and O2 depending on the
inputs A and B. Both A and B will set O1 to true but with different timing.

5https://github.com/kieler/semantics/wiki
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Additionally, A will imply a true value on B once, overriding the value
set by the environment. After both A and B are correctly consumed by
HandleA and HandleB, O1 is reset to false and O2 is set to true. A complete
presentation of the behavior of the model can be found in its original
publication [HDM+14].

This model illustrates that Core SCCharts consist of states, variables,
regions, and transitions that can carry an optional trigger and effects, sepa-
rated by a slash. The top level state of an SCChart is called root state, in this
example named ABO. It declares the input output interface of the program.
Here, the interface consists of A, B, O1, and O2. A and B are both inputs and
outputs, which means they are consumed from the environment but can be
altered and provided as product of the program.

Composition Regions are used to compose SCCharts hierarchically and
additionally express concurrency if there are multiple regions in the same
state. If a state with one or more inner regions, called superstate, is entered,
all regions immediately start executing. Each region must have an initial
state, drawn with thicker border (e. g., Init), and can have one or more final
states, drawn with a double border (e. g., GotAB). When a region reaches a
final state, it terminates.6 Only when all inner regions have terminated, it
can be left via a termination transition (indicated by a green triangle), as in
the case of WaitAB.

Reactivity & Synchronicity While LF follows an event-driven dataflow
approach with connected reactors and reactions as event handlers, SCCharts
with its statecharts notation expresses behavior in a control-flow manner.
Yet, both languages react in synchrony and in discrete ticks, following
the synchronous idea. Where LF processes events by running reactions,
SCCharts transitions from one state to another. With concurrent regions
there can be multiple active states. Each active state checks its available
outgoing transitions (ordered by priority) whether its trigger expression
holds, takes the first match, executes its effect sequence, and passes activity
on to the target state. This continues until no further transition is enabled,
which marks the end of the tick. Hence, ticks act as a barrier synchronization

6Transitions leaving final states and final states with inner behavior are considered an
extended feature and are not part of Core SCCharts.
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for concurrent regions. In contrast to reactions, SCCharts can reenter the
same state and thus run the same behavior multiple times, w.r.t. limitations
by the SC MoC and code generation approach.

Time SCCharts do not have a built-in notation for expressing time or
tagged events as LF has. It follows the idea that time is “just” another input
to the system that comes in synchrony with other input values. This results
in a multiform notion of time as in Esterel, where for example one signal
indicates the passage of a second, while another represent a minute [Ber99].
The pendulum example in Section 1.1.2 illustrates this approach. However,
as already mentioned, this approach has limitations. Chapter 4 will present a
more advanced way of handling time, which is closer to LF and synchronous
languages such as Céu.

Yet, transitions have an important timing property concerning the dis-
crete synchronous ticks. They can be either delayed or immediate. Delayed
transitions require that at least one tick has passed after their source state
was entered before they can be taken, while immediate ones are always
available. Hence, a delayed transition contains a pause in the imperative
sense of synchronous languages. In the graphical syntax, delayed transitions
are solid lines, while immediate ones are dashed. For ABO this means that
the SCChart cannot reach the state GotAB during the first reaction (assuming
the appropriate inputs) because region HandleB has a delayed transition and
always consumes at least one tick before state WaitB can be left.

Sequential Constructiveness The semantics of SCCharts adhere to the
Sequentially Constructive (SC) MoC [HDM+14] that establishes causality and
determinism. A key factor is sequentiality, especially compared to classical
synchronous languages, such as Esterel. In these languages, signals are
the first-class citizens and their rather strict write-before-read protocol is
enforced globally. This rules out sequential check-and-override patterns
common to imperative programming, e. g., if (x < 42) x++, even in the ab-
sence of concurrency because it conflicts with the assumption of a globally
consistent state. Destructive updates can be encoded in thread-local vari-
ables in Esterel, but cannot be shared concurrently. Even the ABO example
in Figure 2.3 would be rejected in Esterel because it may write different
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values to O1 in the same tick. The SC MoC relaxes this limitation and unifies
signals, channels, and local variables into a single notion, the SC-variable.

SC-variables can have different values during a tick and are guided by a
dependency graph that considers natural sequentiality in the code and only
applies a synchronization protocol to concurrent contexts. This is similar to
LF where connections between reactors are subject to a write-before-read
protocol, but reactions in a reactor are ordered sequentially. The latter is
imposed by the fact that the state variables are shared between the reactions
of a reactor, and they may perform destructive updates on these variables,
as well as on output ports. In SCCharts the communication solely relies on
SC-variables, and they are shared between all concurrent regions of their
declaring state and into deeper levels of hierarchy.

In a concurrent context, SC-variables are synchronized under the Initialize-
Update-Read Protocol (IURP). The IURP allows variables to be initialized by
an absolute write first and then permits multiple relative updates that are
required to be commuting7 (i. e., in case of multiple writers, a combination
function must deterministically unify the value) before the value can be
read.

In ABO, the transition to WaitAB occurs before any behavior inside that
state and, hence, is ordered sequentially. The IURP only applies to variables
shared in the scope of the two regions inside WaitAB. This ensures that
writing to B in HandleA will happen before reading it in HandleB. The two
concurrent initializations of O1 are sound since they are commuting and any
ordering will yield the same result. The IURP applies per SC-variable, instant,
and concurrent context. Hence, the end of tick or leaving a superstate resets
the IURP for this variable.

Another important difference to LF is that SCCharts feature their own
expression language for triggers and effects. They are analyzed in a white-
box approach to extract variables accesses and in turn infer dependencies.
In contrast to that, LF uses the reaction signatures and connections for
explicit dependencies. For integrating host code, SCCharts rely on a similar
principle as LF, see Section 2.3.3, and with more modular SCCharts or

7In [HDM+14] this is called “confluent”, but “commuting” seems more precise in this
context. The execution of all writers is “confluent” because they are pairwise “commuting.”
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dataflow SCCharts (Section 2.3.1) the lines further blur. Yet, this remains a
major distinguishing factor as SCCharts is not only a coordination language
but also a programming language by itself.

Concurrency In SCCharts, concurrency is expressed by regions. Yet, the
actual runtime scheduling of region and potential interleaving is controlled
by SC-implied dependencies. During compilation, SCCharts are usually
represented by an Sequentially Constructive Graph (SCG) [HDM+14], a CFG

notation extended by synchronous constructs for concurrency and delays.
It is a one-to-one result of a further normalized Core SCChart. The SCG

then is augmented with the data-dependencies imposed by sequentiality
and the IURP. In practice, the compiler performs a static structural causality
analysis to determine SC-admissible schedules (i. e., adhering to the IURP)
and rule out nondeterminism. For such statically SC-admissible programs,
multiple low-level code synthesis strategies are available: (1) a hardware-
oriented netlist approach [HDM+14], (2) a more dynamic priority-based
compilation [HDM+14] with a limited support for cyclic execution, and
(3) a state-based approach [SMH18; Smy21] that synthesizes SCCharts into
more readable code and preserves the state machine structure. The state-
based code synthesis also features more lean variants dropping support for
some extended features and interleaving between regions in favor of more
modular and simple code [Smy21].

However, these approaches focus on statically establishing a single
SC schedule by removing concurrency. While it is a set goal for future
development, SCCharts currently do not provide multithreaded, parallel,
or distributed execution that utilizes concurrency modeled by regions. LF’s
multithreaded and distributed capabilities could act as a bridge technology
in this regard, see Section 6.3.1.

Extended Features Beyond Core SCCharts, there is a wide range of mod-
eling elements adopted from other synchronous languages. All these ex-
tended features are reduced to the core by model-to-model transformations
in the compiler. The following descriptions only give a brief overview of
major extended features. A complete presentation including semantics and
transformations is provided by Motika [Mot17].
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Transitions can be configured to cause any combination of the following
behavior.

weak/strong abort preempts inner behavior of the source state and forces
all inner regions to terminate, when leaving the state. While the strong
variant prevents any execution of inner behavior, a weak abort grants a
“last wish.” That means all behavior that can execute during the current
tick is executed before leaving the state.

deferred suppresses any immediate behavior of the target state.

shallow/deep history causes the target state to continue its behavior from
the last active state when left, instead of the initial state. The shallow
variant only affects regions directly inside the target state, while deep
also includes nested regions recursively.

count delay only activates the transition after the trigger was met at least
n-times after the entry of the source state.

States can carry a list of actions of the following kind.

entry executes only when entering a state.

exit executes only when leaving a state.

(immediate) during executes as long as a state is active. The immediate
variant will start in the same tick the state is entered, otherwise it is
delayed by one tick.

(immediate) (weak) suspend prevents all execution in the state as long as
its condition holds. All behavior is frozen in its current state but may
continue normally if the condition is no longer met. The immediate
variant can take effect in the same instant the state is entered, otherwise
it is delayed by one tick. The weak variant grants a “last wish,” similar
to weak abort.

Furthermore, SCCharts provide an extended data-type for Esterel’s signals
that expands naturally into SC-variables with their IURP [SMR+17; RSM+15].
There are some more features, but these are beyond the scope of this thesis.

Modularity While in LF reactors act as instantiable classes, SCCharts repre-
sent modules that can be referenced by states in other SCCharts [SMS+15]. A
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state that references another SCChart represents an instance of that module.
However, there is no notion of OO or the flexibility of inheritance as in LF;
Section 5.3 will introduce these capabilities. Additionally, a referencing state
has to provide a binding for all input and output variables of that module
that assigns locally available variables to them. This connects the abstract
module to the concrete context, similar to connections in LF. Section 2.4.1
will present an example for this.

Referenced SCCharts are handled by a macro expansion mechanism
inspired by Esterel [Ber99]. References are statically expanded at compile
time, similar to function inlining or macros of the C preprocessor. The body
of the referencing state is replaced by the module and all input output
variables are substituted according to the binding. This mechanism fits well
with synchronous languages, as it eases a global static analysis of programs
and is semantically solid.

LF uses a similar mechanism. An LF program is fully instantiated/ex-
panded at compile time in order to perform the global dependency analysis.
For some target languages, namely C++ and Typescript, an additional
analysis is performed at runtime. However, a difference is that LF does
not synthesize a fully expanded model but composes the modular reactor
network again at runtime, whereas SCCharts by default produces fully
expanded code. Referenced SCCharts are treated as an extended feature.
Yet, there is also an alternative approach for modular SCCharts compila-
tion [Lüd21; Smy21].

LF’s concept of mutations or any dynamic restructuring is not supported
by SCCharts or any other common synchronous language.

2.3.1 Dataflow SCCharts

In addition to classical statechart design, SCCharts also enable hybrid
designs by providing a dataflow notation [GSS+20; GSS+22; Smy21]. This
feature is inspired by SCADE but also has parallels to LF. In special dataflow
regions, SCCharts can be instantiated as actors and control logic is expressed
as equation systems.

Figure 2.4 illustrates the FurutaPendulum program from Figure 1.3 mod-
eled as a hybrid dataflow SCChart. In the root state, the seven regions are
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Figure 2.4. The FurutaPendulum program modeled as a hybrid dataflow SCChart.

now replaced by a single dataflow region. Each former region is now an
actor and their communication channels are explicitly visible, like in the LF

equivalent. Each actor is still an SCChart, as in the case of the expanded Pen-

dulumController in the middle, which still has the same states for its modes.
However, in this example the calls to the external functions that compute
the control behavior are replaced by dataflow regions. The Control region
shows a dataflow representation of the actual computation for the control
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Figure 2.5. SCCharts-specific reactive program components and their interaction
with each other and the environment.

result and exit_catch condition. In this case, restA and abs are not SCCharts
but external C function for restricting the angle value and computing the
modulus. The additional inputs are constants that configure the behavior,
but all declarations are omitted for brevity.

In the SCCharts compilation dataflow is treated as an extended feature
and transformed into referenced SCCharts and during actions. Yet, dataflow
SCCharts bear opportunities for a more modular compilation [Lüd21],
provide a more OO perspective in SCCharts (Chapter 5), and could act as
bridge to LF (Section 6.3.1).

2.3.2 Runtime Environment

SCCharts follow the classical approach of synchronous languages and
produce a tick function (or reaction function) as the result of a compila-
tion [PEB07]. A tick function is a procedure that, if invoked with the current
inputs, advances the state of the synchronous program by one reaction (tick)
and produces outputs. Compared to LF, this approach results in a different
perspective on the structure and environment of such a reactive program.

Figure 2.5 presents the reactive system schematics from Figure 2.1 con-
cretized for SCCharts. The reactive program is represented by the Tick

Function in the center. All other components are considered predominantly
part of the environment, from the perspective of the automaton itself (cf.
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Section 2.2.1). On the top left is the Trigger Unit. This is some application-
specific procedure that will invoke a Tick of the Tick Function, indicated
by the dashed arrow. The Trigger Unit could be periodically triggered or
event-driven via Sensors. However, the actual implementation is up to the
code embedding the tick function (execution shell [PEB07]). Section 4.3 will
compare the implications of different triggering strategies. When invoked,
the Tick Function receives inputs from potential Sensors and produces outputs
to control the Actuators.

In Figure 2.2, the data exchange of the LF program with the Sensors and
Actuators is labeled Read and Control. This does not mean that LF programs
do not have inputs or outputs, which they indeed receive from sensors,
respectively send to actuators. Instead, this should emphasize that SCCha-
rts, and synchronous languages in general, typically communicate with
the environment by a dedicated input output interface, usually using syn-
chronous signals, channels, or variables. Main reactors in LF, however, do
not permit input or output ports. Again, this does not mean that a tick
function cannot read its own data from sensors or cannot directly invoke an
actuator’s API to control it, but such a design can be considered uncommon.
In Figure 1.3 such a design is present in order to correspond to the LF

implementation, but to be more in line with synchronous languages, the
FurutaPendulum would rather declare the local variables (theta, control, etc.) as
inputs and outputs and handle hardware communication externally instead
of in regions.

The tick function design relies on an external application-specific imple-
mentation for invocation and handling of inputs and outputs. Listing 2.1
illustrates a main function example in C that invokes the tick function
generated for the PendulumSound SCChart in Listing 2.5.8 The program in
Listing 2.1a first includes the header with the tick function for the SCChart
(Listing 2.1b) and other required libraries. Then it defines the main function,
which creates a variable for the state of the PendulumSound program and
initializes it by passing it to reset. For the tick loop, it creates an infinite
loop with no delay (Section 4.3). In every cycle, first, the angle is read from
the hardware and stored in the input variable in the state. The millisecond

8This example is chosen for brevity, since it only represents a subset of a potential Furu-

taPendulum interface.
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1 #include "PendulumSound.h"

2 #include "HardwareMockup.h"

3 int main(int argc, const char* argv[]) {

4 TickData model;

5 reset(&model);

6 while (1) {

7 model.angle = read_from("theta");

8 model.msec = msec_passed();

9 tick(&model);

10 write_to("speaker", model.sound);

11 }

12 }

(a) Main function invoking the tick function and
handling inputs and outputs.

1 typedef struct {

2 double angle;

3 char msec;

4 char sound;

5 ...

6 } TickData;

7

8 void reset(TickData* d);

9 void tick(TickData* d);

(b) PendulumSound.h generated by
the SCCharts compiler.

Listing 2.1. Abstract implementation of a tick function loop for the PendulumSound

SCChart in C.

input is likewise determined by a utility function. Then, the tick function is
called, and finally the output is written to the hardware.

This setup illustrates that the tick function approach is more lightweight
in terms of code generation but requires an additional environment imple-
mentation, compared to a standalone approach in LF. Yet, the SCCharts is
also able to generate such a tick function wrapper and then compile and
deploy an executable, if the context is known, e. g., for simulation or based
on templates [Smy21]. It would also be possible to embed a tick function
in LF and use it as an environment. In such a setup the LF runtime engine
would act as the Trigger Unit. Section 3.4.4 will discuss such a design.

2.3.3 Target Language Integration

SCCharts feature a design primarily independent of any target language, by
providing a small generic expression language for specifying conditions and
computations directly in SCCharts. If relying on this core language, a model
can be specified without a pre-defined target. Furthermore, all SCCharts
structures and the expression language itself can easily be translated into
different target languages [HDM+14]. For example in the netlist compilation
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approach, the final sequentialized code only relies on conditional statements
and assignments, which is available in nearly every programming language
and easy to synthesize. SCCharts currently support C, Java, and VHDL.

The inputs and outputs produce a simple communication interface to the
environment, which could also be used for coordinating external behavior.
Additionally, SCCharts support direct interaction with their host language,
e. g., the sound_frequency function in Figure 1.3. Section 2.4 will present the
involved extern declarations. The term “host language” is synonymous to
target language but was coined by the fact that the tick function design
implies a host system embedding the synchronous program.9 External
host functions in SCCharts are inspired by Esterel’s host language integra-
tion [PEB07; Ber99]. They are treated as black-boxes, same as reaction code
in LF. In order to correctly include them in the causality analysis and to
provide deterministic handling, an interface for potential data accesses is re-
quired. SCCharts infer this from the use of passed arguments. Call-by-value
parameters are considered read accesses and call-by-reference non-confluent
writers. In most cases and under the assumption that the function does
not have side effects, this is sufficient to establish a causal relation to the
surrounding synchronous program. Section 5.4 further discusses this aspect
and introduces a concept for deterministically interacting with objects and
their methods.

An extern declaration introduces an external function, provided by a
verbatim string, to the SCCharts expression language under an alias. This
enables a degree of multilanguage support. For example the line

extern @C "rand", @Java "Math.random" random

declares a random function that works in C and Java using annotations
to synthesize the correct host code depending on the compilation target.
Additional annotations in the SCCharts source file would handle the correct
host-specific import of the required libraries. Like LF and Esterel, SCCharts
can use the host’s type system to define variables. For example

host "uint64_t" mask

9Even if synonymous, in this thesis the term “target language” or “target code” will be
used primarily in the context of LF’s polyglot reaction approach, while “host language” or
“host code” will describe the way synchronous languages and SCCharts handle the interfacing
with external languages.
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will create a 64 bit unsigned integer variable by using the type from the C
library stdint. SCCharts also has a verbatim code expressions. Any string in
the form ` . . . ` will be directly passed on to the generated code, similar to
{= . . . =} in LF.

This host language integration enables SCCharts to function as a deter-
ministic coordination layer around an existing software systems without
requiring communication via an input output interface. However, a polyglot
programming concept that effectively mixes multiple host languages in the
same SCChart, similar to the vision in LF, is not supported nor planned.

2.4 The Furuta Pendulum Example in Detail

Section 1.1.2 presented the basic setup and objectives in the augmented
Furuta pendulum scenario, as well as a first look at the two models in LF and
SCCharts. In this section the implementation and the practical application
of design elements in LF and SCCharts are in focus. This involves the
modular composition starting with the main program and the two primary
components PendulumSound and PendulumController.

Again, the inner workings of modules for platform-specific hardware
communication are excluded. Furthermore, the code factors out some of the
control logic into an external file, used in both the SCCharts and LF model.
The motor control behavior for the pendulum arm replicates a solution by
Eker et al. [LEJ+02]. All source files are available online.10

2.4.1 Main Program

The FurutaPendulum diagrams in Figure 1.2 and Figure 1.3 show the fully
instantiated main reactor, respectively the expanded root state, of the main
program. In the actual source, the program composes the two separate
components for sound and motor control with the hardware handlers and
sets up communication channels.

10https://github.com/a-sr/furuta-pendulum
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1 target C {

2 cmake-include: ["behavior.cmake"]

3 }

4 preamble {=

5 #include "behavior.h"

6 =}

7 import PendulumController from

"PendulumController.lf";

8 import PendulumSound from

"PendulumSound.lf";

9 import Angles, Motor, LED, Speaker from

"PendulumHardware.lf";

10

11 main reactor {

12 controller = new PendulumController();

13 sound = new PendulumSound();

14 angles = new Angles();

15 led = new LED();

16 speaker = new Speaker();

17 motor = new Motor();

18

19 angles.theta -> controller.theta;

20 angles.d_theta -> controller.d_theta;

21 angles.phi -> controller.phi;

22 angles.d_phi -> controller.d_phi;

23 controller.control -> motor.control;

24 controller.led -> led.on;

25 angles.theta -> sound.angle;

26 sound.sound -> speaker.wave_signal;

27 }

Listing 2.2. Source code of the FurutaPendulum main program in LF.

Lingua Franca Listing 2.2 shows the textual source of the main reactor.
The first line specifies the target language that the reactors will use, in this
case C. It also includes a file that will help the build system find the source
files that provide the low-level behavior implementation. The subsequent
preamble includes the corresponding header. The next lines import the
relevant reactors from accompanied files. The main reactor then instantiates
these reactors and sets up connections between their input and output ports.

SCChart Listing 2.3 shows the textual source of the main SCChart. Similar
to the LF program, the first lines make the external files known to the
build system, include the header file in the generated code, and import the
SCCharts modules. The following implementation of the SCChart starts
with the declaration of shared variables for the communication between the
modules. Afterwards, seven regions are defined. Each region has a single
initial state that references one of the modules. The parameters in these
module macros represent the binding of the local variables to the inputs
and outputs of the respective module. Hence, they correspond (in their use)
to the connections between the LF reactors.
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1 #resource "behavior.h", "behavior.c"

2 #hostcode-c "#include \"behavior.h\""

3 import "PendulumController.sctx"

4 import "PendulumSound.sctx"

5 import "PendulumHardware.sctx"

6

7 scchart FurutaPendulum {

8 float theta, d_theta, phi, d_phi, control

9 bool msec, led, sound

10

11 region Sound {

12 initial state PendulumSound is

PendulumSound(theta, msec, sound)

13 }

14 region Controller {

15 initial state PendulumController is

PendulumController(theta, d_theta, phi,

d_phi, msec, control, led)

16 }

17 region Time {

18 initial state Time is Time(msec)

19 }

20 region Angles {

21 initial state Angles is Angles(theta,

d_theta, phi, d_phi)

22 }

23 region Speaker {

24 initial state Speaker is Speaker(sound)

25 }

26 region LED {

27 initial state LED is LED(led)

28 }

29 region Motor {

30 initial state Motor is Motor(control)

31 }

32 }

Listing 2.3. Source code of the FurutaPendulum main program in SCCharts.

2.4.2 Pendulum Sound

The PendulumSound module produces a square wave signal for the speaker.
Both implementations use the external sound_frequency function to compute
the correct frequency for the note to play based on an angle value.

Lingua Franca The reactor in Listing 2.4 first declares its input port for
the angle and output port for the speaker signal. It has three state variables:
wave_state, cycle_duration, and last_switch. The first indicates whether the
signal is currently in its duty cycle or not. The next represents the current
length of a half cycle. The last one is the time of the last signal edge.
Additionally, the reactor has a logical action that carries a time value as
payload.

The behavior is defined in a single reaction that is triggered by input
events on the angle port or the alternate action (both triggers can also be
present simultaneously). The effects list the output port and the action.
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1 target C;

2 reactor PendulumSound {

3 input angle: double;

4 output sound: bool;

5 state wave_state: bool = false;

6 state cycle_duration: time = 0;

7 state last_switch: time = 0;

8 logical action alternate: time;

9 reaction(angle, alternate) -> sound, alternate {=

10 if (alternate->is_present && alternate->value == self->cycle_duration) {

11 self->wave_state = !self->wave_state;

12 lf_set(sound, self->wave_state);

13 lf_schedule_copy(alternate, self->cycle_duration, &self->cycle_duration, 1);

14 self->last_switch = lf_time_logical();

15 }

16 if (angle->is_present) {

17 interval_t new_duration = SEC((1 / sound_frequency(angle->value)) / 2);

18 if (new_duration != self->cycle_duration) {

19 interval_t remaining_time = MAX(new_duration - (lf_time_logical() - self->last_switch), 0);

20 lf_schedule_copy(alternate, remaining_time, &new_duration, 1);

21 self->cycle_duration = new_duration;

22 }

23 }

24 =}

25 }

Listing 2.4. Source code of the PendulumSound component in LF.

The basic idea is to determine the targeted frequency based on the
angle input and then schedule the action at the time of the next planned
signal edge. The reaction code is separated into two if statements. In the
fist one (lines 10 to 15), the periodic square signal is produced by emitting
alternating outputs based on the occurrence of the action. In the second
(lines 16 to 23), the cycle duration is adjusted based on the angle-induced
frequency.

To illustrate how these parts work together, we start with a first angle

event at tag (0, 0). The reaction will be triggered and the first if block is
skipped because only angle is present. In the second block, the new duration
for a cycle is computed using the sound_frequency function. The SEC function
handles the conversion into LF’s time representation. If the new duration
differs from the current one, the timing behavior must be adjusted, which
is always the case at program start. The remaining time to the next signal
switch is computed in line 19. It takes into account the last switch and

41



2. Design Principles of Lingua Franca and SCCharts

1 scchart PendulumSound {

2 input float angle

3 input bool msec

4 output bool sound = true

5

6 const int SEC_TO_MSEC = 1000

7 extern "sound_frequency"

sound_frequency

8 int msecs = 0

9 float duration = 0

10 immediate during do duration =

11 ((1 / sound_frequency(angle)) / 2) * SEC_TO_MSEC

12

13 region {

14 initial state Alternate {

15 during if msec do msecs++

16 }

17 if msecs >= duration do sound = !sound; msecs = 0

18 go to Alternate

19 }

20 }

Listing 2.5. Source code of the PendulumSound component in SCCharts.

prevents negative values by a maximum function. This time is then used as
a delay for scheduling the action. Finally, it saves the new cycle duration.
At time 0, the logic will always determine an immediate signal switch and
hence schedule the action with a delay of 0. However, actions impose a
microstep delay in this case. Hence, the reaction will not be executed again
at tag (0, 0) but at (0, 1). In this turn, only the first part will be active, since
angle is absent. This block first toggles the state, sets the output to this new
value, schedules the action again with the current cycle duration to ensure
a periodic signal, and saves the current logical time in last_switch.

In the further execution, the duration will change as the angle changes,
which will result in additional actions scheduled for a time before or after
the action that was scheduled based on the old frequency in line 13. This
is where the payload becomes relevant. It associates each action with the
duration it represents. The if statement in line 10 checks this value and
ignores actions that do not represent the currently targeted sound frequency.

This design is a consequence of the current limitation in LF that prohibits
removing or adjusting scheduled events.11 The fact that this implementation
introduces a microstep delay for producing a cycle switch “immediately” is
mainly for demonstration purposes, as the output could also be set directly
before line 20 and then only the next switch would be scheduled.

11A limitation that LF may lift in the future by returning a handle upon schedule that enables
the user to unschedule an action.
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2.4. The Furuta Pendulum Example in Detail

SCChart Listing 2.5 shows the code of the PendulumSound SCChart, ini-
tially illustrated in the Sound region of Figure 1.3. Comparing the code
with the diagram, one can notice that there is very little difference in the
amount of information. This is a clear contrast to LF, which hides the entire
implementation in reactions and only illustrates the coordination layer in
the diagram. While this is subject to the configuration of details in the
diagram, it presents different views on the model that are provided by
default. While LF focuses on the coordination aspect, SCCharts’ focus is
more on behavior modeling, which includes details on concrete conditions
and effects of individual transitions. Section 2.5 will discuss the concept of
views in more detail.

The SCChart code in Listing 2.5 first declares its module-specific inputs,
angle and msec, and the sound output variable. In line 6 it declares a constant
for converting seconds into millisecond as it cannot resort to a built-in time
model, as in LF. Afterwards, the external hostcode function sound_frequency

is defined and two local variables are declared.
Since SCCharts are not explicitly event-driven as LF, the during action

updates the cycle duration in each tick based on the angle. The Alternate

state in the region advances the msecs counter every time a milliseconds
passes. The self transition toggles the sound signal output and resets the
counter.

Hence, the signal edge in the square wave signal is modeled as a dynamic
threshold between the targeted half cycle length and the passed time, see
line 17. However, in order to work with the msec input, the SCChart needs to
be executed each millisecond, i. e., every time any operand changes. A sparse
execution, more similar to LF, requires a more sophisticated infrastructure,
as proposed in Chapter 4.

2.4.3 Pendulum Controller

The PendulumController module controls the motor to balance the pendulum
and sets the LED state to indicate its mode of operation. Again, both imple-
mentations use external functions for the control logic in each mode and to
check for mode switches.
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1 target C;

2 reactor PendulumController {

3 input theta: double;

4 input d_theta: double;

5 input phi: double;

6 input d_phi: double;

7 output control: double;

8 output led: bool;

9

10 preamble {= typedef enum {SwingUp, Catch,

Stabilize} ControlModes; =}

11 state control_mode: ControlModes = {=SwingUp=};

12 state led_state: bool = false;

13 state catch_phi: double = 0.0;

14 timer toggle_led(0, 15 msec);

15

16 reaction(toggle_led) -> led {=

17 if (self->control_mode == Catch) {

18 self->led_state = !self->led_state;

19 lf_set(led, self->led_state);

20 }

21 =}

22 reaction(theta, d_theta, phi, d_phi) -> control, led {=

23 switch (self->control_mode) {

24 case SwingUp:

25 lf_set(control, swingup_control(theta->value,

d_theta->value));

26 if (exit_swingup(theta->value)) {

27 self->control_mode = Catch;

28 self->led_state = true;

29 lf_set(led, self->led_state);

30 }

31 break;

32 case Catch:

33 lf_set(control, catch_control(

theta->value, d_theta->value,

phi->value, d_phi->value));

34 if (exit_catch(d_phi->value)) {

35 self->catch_phi = phi->value;

36 self->control_mode = Stabilize;

37 self->led_state = true;

38 lf_set(led, self->led_state);

39 }

40 break;

41 case Stabilize:

42 lf_set(control, stabilize_control(

theta->value, d_theta->value,

phi->value, d_phi->value,

self->catch_phi));

43 if (exit_stabilize(theta->value)) {

44 self->control_mode = SwingUp;

45 self->led_state = false;

46 lf_set(led, self->led_state);

47 }

48 break;

49 }

50 =}

51 }

Listing 2.6. Source code of the PendulumController component in LF.

Lingua Franca The reactor code in Listing 2.612 is similarly structured as
the SoundController. The PendulumController first declares its input and output
ports and then local state variables. The type for the control_mode is defined
as an enum in C by using a preamable that will be added to the generated
code for this reactor. The control_mode is initialized to the SwingUp mode
and the led_state starts in its Off state. The value catch_phi must be passed

12This code is based on an implementation by Edward A. Lee that adapts the original
Ptolemy II model by Eker et al. [LEJ+02] to C and LF. My variant extends this solution by
additionally controlling the LED.
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between the Catch and Stabilize phase. Additionally, the reactor defines a
timer with an initial offset of 0 and a period of 15 msecs.

The first reaction is triggered by this timer. It toggles the led_state and
sets the output with this value but only when operating in Catch mode.
The second reaction processes all angle related inputs. The implementation
assumes that all four events will always be present simultaneously and
omits individual checks for presence. The different modes of operation
are implemented in a switch statement. In each case, the control output is
set with the result of the respective control logic function, which receives
the relevant angle data. Afterwards, an if statement checks whether this
mode should be left. If that is the case, the new mode is set, the led_state is
updated accordingly, and the led output is set.

Setting the LED in the second reaction, ordered after the one for toggling,
is important to override the effect of the previous reaction if they happen to
be triggered simultaneously. However, while the design with two reactions
is quite reasonable, it results in a timing subtlety. Even if the first reaction
toggles the LED only in the Catch mode, the timer is not aligned with actual
mode change. Hence, the start of the Catch mode may not be the start of the
periodic blinking. This issue will be discussed in more detail in Chapter 3.

SCChart As it was the case for the PendulumSound, the source code in
Listing 2.7 only reveals minor additional details on the behavior of the
PendulumController compared to Figure 1.3. Again, this SCChart declares
the inputs and outputs relevant to this module and defines the external
functions.

Compared to the LF implementation, the state machine notation enables
SCCharts to express the modes more naturally and explicitly. This super-
sedes the need for the corresponding state variables and the synchronization
of the alternating LED to the Catch mode.

The SCChart models the same behavior as its LF counterpart, which
includes the way modes are changed. Specifically, at any time, the control

output is defined by the current mode, and if it decided to exit this mode
and switch to the next, the next one will only determine the value in the
subsequent instant. This is modeled by the fact that the during actions
for the control output are not immediate and the transitions only perform
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1 scchart PendulumController {

2 input float theta, d_theta, phi, d_phi

3 input bool msec

4 output float control = 0

5 output bool led = false

6

7 extern "swingup_control"

swingup_control

8 extern "exit_swingup" exit_swingup

9 extern "catch_control" catch_control

10 extern "exit_catch" exit_catch

11 extern "stabilize_control"

stabilize_control

12 extern "exit_stabilize" exit_stabilize

13 float catch_phi = 0

14

15 region {

16 initial state SwingUp {

17 immediate during do control =

swingup_control(theta, d_theta)

18 }

19 if exit_swingup(theta) do led = true

19 if exit_swingup(theta) do led = true

20 go to Catch

21

22 state Catch {

23 during do control = catch_control(theta, d_theta,

phi, d_phi)

24 region LED {

25 initial state Toggle

26 if 15 msec do led = !led go to Toggle

27 }

28 }

29 if exit_catch(d_phi) do catch_phi = phi; led = true

30 go to Stabilize

31

32 state Stabilize {

33 during do control = stabilize_control(theta,

d_theta, phi, d_phi, catch_phi)

34 }

35 if exit_stabilize(theta) do led = false

36 go to SwingUp deferred

37 }

38 }

Listing 2.7. Source code of the PendulumController component in SCCharts.

a weak abort (go to instead of abort to). Hence, transitions change the
state but the control value is not immediately overridden. One exception is
the initial state SwingUp. Here, the during action is immediate to provide
a control output in the inital tick. Therefore, the transition from Stabilize

enters this state deferred to suppress this immediate behavior and prevent
overriding.

2.5 Modeling Pragmatics

Both LF and SCCharts are guided in their design by modeling pragmat-
ics [HLF+22; FH10] and use state-of-the-art pragmatics-aware tooling to
enhance developers’ grasp of their code and increase their productivity.
Following the principles of MDE, LF and SCCharts programs are models. In
contrast to many other modeling tools, for example SCADE, their source
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(a) FurutaPendulum SCChart with induced dataflow, exposing implicit communication between
regions.
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(b) Highlighted causality cycle in an LF program that simulates the main components of the
FurutaPendulum example but creates an immediate feedback loop via control and theta.

Figure 2.6. Two examples for specialized views in SCCharts and LF.

representation is textual instead of graphical, as Section 2.4 already illus-
trated. This provides many benefits to the editing process and facilitates
version control. Yet, the real strengths of MDE play out with graphical repre-
sentations [Gur99], namely diagrams. At this point transient views [HLF+22;
SSH13; FH10] come in and provide customized diagrammatic representa-
tions. This idea corresponds well with the Model-View-Controller (MVC)
paradigm [Ree79]. However, it is unlikely that a user who just specified
the model textually, is eager to manually create, arrange, and continuously
synchronize an additional graphical view. Hence, automatic diagram syn-
thesis and layout algorithms are a key enabler in this field. All illustrations
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of LF and SCCharts models in this thesis are such automatically generated
diagrams.

Furthermore, an automated process enables on-the-fly creation of dif-
ferent views for the same model that focus on or reveal different aspects.
Examples for such specialized views can be found in Figure 2.6. Figure 2.6a
illustrates the FurutaPendulum SCChart from Figure 1.3 but with induced
dataflow [WSS+18]. This view reveals the implicit data-dependencies be-
tween concurrent regions, which are induced by their internal variable
accesses and visualized as dataflow. In Figure 2.6b, an LF program that
simulates the PendulumControl and PendulumSound reactors is implemented
incorrectly, such that an immediate feedback is present between the sim-
ulation and the control reactor. The compiler detects this causality cycle
and this view highlights the involved components and communicates the
problem.

Further capabilities in terms of interactivity, such as filtering, focus and
context methods, or an adjustable level of detail, enhance the browsing and
exploration workflow of diagrams. This can lead to a better understanding
of the model. For example, the buttons in the message box in Figure 2.6b
indicate that this view can be filtered to only show components that are part
of the cycle. The result is a modeling experience that cannot be adequately
described textually and should be experienced personally to reveal its true
advantages.

The KIELER Project The open-source Kiel Integrated Environment for Lay-
out Eclipse Rich Client (KIELER) project13 has been the birthplace and testbed
for many pragmatics-aware modeling technologies and languages. It pro-
vides a comprehensive modeling experience that combines textual editing
and interactive diagrams with automatic layout.

In the past, KIELER was built around the Eclipse Integrated Develop-
ment Environment (IDE), a versatile and extensible Java-based development
tool. Recent development also enables simultaneous support for Visual
Studio Code [Dom18; Ren18]. A major factor in all of this is the Xtext
framework [EB10]. It follows a model-driven approach for creating textual

13https://rtsys.informatik.uni-kiel.de/kieler/
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languages. Based on a grammar specification and a metamodel, Xtext au-
tomatically creates a parser and serializer, as well as multiplatform editor
support with syntax highlighting, content-assist, jump-to-declaration, etc.
The KIELER Lightweight Diagrams (KLighD) framework [SSH13] then facili-
tates the implementation of syntheses that turn the underlying models into
custom diagrams. It provides for automatic layout based on the Eclipse
Layout Kernel (ELK) [SSH14] framework, handles rendering, and supports
interactivity.

While the SCCharts implementation is part of KIELER, LF is a standalone
project but uses the same frameworks as SCCharts for its language imple-
mentation and diagram support.

KIELER also comes with an interactive model-based compiler [SSH18c;
Smy21] that is closely integrated into the diagram tooling. The model-to-
model transformations that form the SCCharts compile chain are imple-
mented in this compiler. This enables a visual inspection of all intermediate
results and facilitates checking or understanding the effect of individual
extended features.
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Chapter 3

Modal Models

The direct comparison of the pendulum implementation in LF with its
SCCharts counterpart (in Section 1.2 and Section 2.4) reveals two major
opportunities for improvement in LF;

1. extending modeling capabilities to express modal behavior1, such as
SwingUp, Catch, and Stabilize; and

2. binding of timed elements, such as the timer in PendulumController, to
specific modes of operation.

Modeling (1.) Complex software systems often feature distinct modes
of operation that provide a particular behavior for a specific context. The
Furuta pendulum example represents this characteristic well, even if it
is relatively small. Yet, the implementation of modes in a state machine
using a switch pattern is relatively extensive, as Listing 2.6 illustrates. More
importantly, such handwritten code contradicts the fundamental idea of
model-driven engineering and, moreover, is easily prone to errors, complex
to extend, and hinders formal verification.

Furthermore, the entire modal structure is “hidden” in a single reaction,
see Figure 1.3. From a modeling perspective, the explicit use of separate
states for the modes in the SCChart variant provides in comparison an addi-
tional value by enabling meaningful diagrams. While there are techniques

1The term mode describes the concept of combining program behavior into modes of
operation. While the most natural notation for modes is a state machine, modes can subsume
multiple states of a system into a single mode [MR98]. Hence, modes and states can be used
synonymously, if states do not refer to a single memory state but a more abstract modal state
of the program, as it is usually the case in statecharts and SCCharts.
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Figure 3.1. An excerpt of the led output by the PendulumController reactor in a
simulation. It illustrates a timing behavior of a non-aligned and an aligned timer in
relation to the catch mode.

to extract such mode diagrams from handwritten code, as Section 3.1.2 will
present, this contradicts the black-box approach that governs LF’s reactions.

Hence, there is merit to expressing modal structures directly on the
coordination layer of LF. It breaks down the behavior into smaller units
that promote code readability and can be supported by more meaningful
diagrams. Furthermore, it enables robust code generation for controlling
these modal units and exposes mutually executive behavior that can be
used to enhance modeling capabilities or facilitate verification.

Timing (2.) Figure 3.1 shows an excerpt of the LED output by the Pendu-

lumController reactor in a simulation. The simulation emulates the pendulum
behavior with a sample period of 5 msec. The presented interval reflects
the time in which the controller switches from mode SwingUp to Catch and
later to Stabilize, as indicated at the top of the plot. The solid non-aligned

line represents the output of the PendulumController reactor presented in
Listing 2.6. According to its implementation, the LED is set directly by the
second reaction when the mode changes, at time 1055 and 1115 msec. Dur-
ing Catch mode the signal is toggled by the first reaction when the timer
expires. Since the timer runs all the time, it happens to trigger the reaction
at 1065 msec in this simulation. This reduces the on cycle to only 10 msec.
The dashed aligned line is the output of the corresponding SCChart that
models the alternating LED outputs inside the Catch and thus aligns their
activity.
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Of course, this behavior has no critical consequences in this particular
scenario. Even if the start of the cycle would be aligned, the last cycle could
be cut off depending on the start of the Stabilize mode.2 Alternatively, a
logical action could be used to create a periodic triggering that starts with
the Catch mode, similar to the one in the PendulumSound reactor. Yet, a timer
is more simple and robust than manually scheduled actions, but it cannot
be controlled correctly if modes are only expressed on the target code level
and not in the model.

This example shows that timing is an important issue when working
with modes and that modal models are able to express time-related associa-
tions more naturally if their semantics are carefully designed.

Goals The main goal is to bring the advantages of modal models to LF

and the reactor-oriented programming paradigm, and indirectly also closer
to mainstream programming languages, which can be embedded into LF.
From FSMs to statecharts up to SCCharts, there are many concepts and
languages that are already able to express modal models. While the idea
of modes is not new, a seamless integration into LF that is guided by its
fundamental principles is. The goal is to create modal models that offer the
following characteristics.

Lean design Modes should constitute a minimal coordination layer that pro-
vides the most essential functionality but still offers maximal versatility
and user adjustability.

Polyglotism The modal notation should act as flexible multilanguage wrap-
per that focuses on the user’s language and requires only minor adapta-
tion effort.

Time sensitivity The model should offer a reliable and precise way to specify
time sensitive modal behavior, even in parallel and distributed environ-
ments.

Concurrency The design should enable the composition of multiple separate
modal units acting independently.

2It is only a coincidence that the Catch phase in this simulation is exactly 60 msec long.
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Determinism A model must yield unambiguous and reproducible output
behavior for the same sequence of input events.

The concept of modal reactors presented in this chapter embodies these very
principles and embraces the crucial black-box approach of reactions.

Outline This chapter starts with a brief presentation of related work, cov-
ering different languages and approaches to express modal behavior. Next,
Section 3.2 illustrates the basic principles of modal reactors by presenting
a variant of the PendulumController reactor that uses modes. Subsequently,
Section 3.3 describes the detailed concept and implementation of modal
reactors in LF. Finally, Section 3.4 discusses the proposed design and briefly
illustrates potential alternatives.

3.1 Related Work

The idea of expressing modal behavior is not new and there are many
languages and concepts that enable the use of mode automata or state
machines in this regard. While the design of modal reactors builds on
existing concepts, there is no previous work that truly matches the unique
principles of LF, especially in terms of polyglot design.

Statecharts A natural notation for modal behavior can be found in the
many variants of FSMs. Beyond that, there are statecharts that offer more
feature-rich language constructs. With their hierarchical composition, they
facilitate the encapsulation of individual behavior and fine-grained states
into broader modes of operation.

Synchronous dialects, such as SyncCharts, adapt statecharts into a se-
mantic domain that is relatively close to LF. However, in contrast to plain
statecharts or FSMs, modes for LF require a more hybrid approach, to accom-
modate for the dataflow nature of reactors.

SCCharts SCCharts surpass most other statecharts languages in terms of
features variety and versatility. This also includes modal modeling capa-
bilities. Yet, the focus of the modal model concept in this thesis is on LF,

56



3.1. Related Work

since it provides a unique opportunity to design modes in an actor-oriented,
polyglot, coordination context.

While SCCharts also provide a dataflow notation (Section 2.3.1), their
own form of multilanguage support (Section 2.3.3), and can be used to
deterministically orchestrate processes, these aspects are more pronounced
in LF.

3.1.1 Mode Extensions

Since LF is a reactor-oriented language, work that extends dataflow notations
with state machines is particularly relevant. Yet, a commonality in all
existing work is that they feature an additional extensive notation for states,
transitions, triggers, and effects, representing an obstacle for a lean and
polyglot integration in the context of LF.

SCADE The work that is perhaps the closest in spirit to modal reactors
is the extension of Lustre and SCADE with state machines. Maraninchi
and Rémond propose a concept of mode-automata [MR98] that combines
statecharts-like automata with a minimal Lustre language.

Colaço et al. pick up this approach and adapt a more lean variant into
Lustre and SCADE [CPP05; CHP06]. At its core, SCADE is a synchronous
dataflow modeling language, where concurrent nodes communicate via
clocked streams, see also Section 2.1.1. With the extension for modes, nodes
received a state machine notation that features reset and history transitions,
as well as preemption. Most importantly, states encapsulate equations,
which enables a hybrid design that mixes modes and dataflow.

The implementation uses a clock-directed approach based on a source-
to-source transformation. It extends the original clocks of Lustre/SCADE into
a richer type system that encodes and controls modes. In order to simplify
analysis, states and their equations are in mutual exclusion. Therefore,
preemption is restricted, such that a state can only be entered weakly
(non-deferred) if the previous is strongly preempted upon leaving or vice
versa.
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The SCADE approach represents a very similar design to the one later
found in modal reactors. However, it is based on the classical synchronous
principles, which LF exceeds in terms of distributed execution and notion
of time. In this regard, LF embodies a more event-driven concept than a
clock-driven one.

Ptolemy The Ptolemy II tool provides an environment for heterogeneous
modeling [EJL+03]. It is based on an actor-oriented design that supports
nesting and interconnecting components. A unique characteristic is that
each level of the hierarchy can have a separate MoC directing its semantics.
Ptolemy II provides various MoCs, such as continuous time (CT) or syn-
chronous dataflow (SDF), as well as a state machine layer that enables modal
models [LT10; Pto14]. A key to combining arbitrary MoCs in a modal model
is a notion of mode-local time to preserve a sound compositional semantics.

As mentioned in Section 2.4, some parts of the low-level implemen-
tation of the Furuta pendulum are based on a previous implementation
in Ptolemy [LEJ+02]. Figure 3.2 presents an excerpt of this model. It il-
lustrates the different layers of the model governed by different MoCs. A
modal model inside the controller manages the different computations of
the control output (u in this variant).3

In many ways, LF continues the research of the Ptolemy project. Yet, the
focus shifted from an experimentation platform for different MoCs to a more
application-oriented polyglot coordinating language.

Simulink MathWorks’ Simulink tool is an environment for modeling and
simulating control logic with block diagrams. With Stateflow [HR04] it
provides a statecharts-like notation able to express modes by nesting blocks
in different states.

In contrast to the discretized time in LF and synchronous languages,
Simulink primarily uses a continuous-time concept with semantics that
depend on the configuration of the simulation [CCM+03].

3Most of the pendulum controllers in this thesis factor out the control logic into external
functions, see Section 2.4. The example of dataflow SCCharts in Figure 2.4 illustrates a
variant that includes the modeling of these computations and, hence, corresponds more to the
approach in the Ptolemy model.
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Figure 3.2. A Furuta pendulum implementation in Ptolemy by Liu et al. [LEJ+02].
(©2002 International Federation of Automatic Control. Reproduced with the permission of IFAC from

J. Liu, J. Eker, J. W. Janneck, E. A. Lee, “Realistic Simulations of Embedded Control Systems”.

IFAC Proceedings Volumes, 35/1, pp. 391-396)

LabVIEW National Instruments’ LabVIEW is a graphical dataflow lan-
guage for implementing control systems [Kod20]. It enables modeling
modal behavior by using a pattern with a switch structure in a while loop.
A dedicated state diagram view supports the user in this design.

While LabVIEW does provide a notion of modes, the pattern-based state
notation and strong reliance on a graphical syntax only loosely relates to
the modal extension pursued in this thesis.
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ROOM The Real-time Object-Oriented Modeling (ROOM) language by
Selic et al. [SGW94] uses an actor notation for the high-level specification
of distributed real-time systems. The behavior of these actors is modelled
in a statecharts dialect, called ROOMcharts [Sel93]. In terms of characteristic
statecharts features, Selic et al. exclude concurrent composition with the
arguments that this aspect is better expressed on the actor level. Hierarchical
nesting is kept but is restricted only to the ROOMcharts elements.

Hence, while ROOM actors can be composed hierarchically, ROOMcharts
are specified independently and do not enclose inner actors into modal
units. Instead, it represents an additional specification for message process-
ing. Furthermore, communication in ROOM is governed by synchronous
(blocking) and asynchronous (non-blocking) message delivery rather than a
global model of timestamped events as in reactors.

Akka The Java-based actor programming framework Akka [RWB16] pro-
vides means to implement concurrent actors that interchange and process
event messages. LF uses Akka as a guideline for its performance bench-
marks [Loh20; MLB+23]. Akka also supports implementing stateful behavior
in actors by extending an FSM actor class [RWB16]. It enables defining states,
their event processing, transitions, and internal timers.

However, Akka does not ensure deterministic behavior. Furthermore,
the FSM notation does not support hierarchy, resulting in limited hybrid
modeling capabilities.

3.1.2 Mode Extraction

Instead of extending a language towards modes, there is also work that
extracts the implicit states from the code into a modal view. However, this
approach confines the modal modeling capabilities to the target language
and does not account for a modal coordination layer.

C/C++ Said et al. [SQK18] propose a technique that explores the state
space of a program by mining for state variables and simplifies these into
a state machine. The approach of Somé and Lethbridge [SL02] detects
special patterns, such as switch statements (as in Listing 2.6), and visualizes
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them. The same technique is used by Andersen to convert C/C++ code into
SCCharts [And19].

Blech Synchronous languages facilitate detecting states, as they explicitly
contain pauses. The translation from imperative Esterel code to SyncCha-
rts [PTH06] illustrates such a procedure but with strong focus of semantic
equivalence. The more recent work for the similarly structured Blech lan-
guage [GG18] applies an approach that emphasizes abstraction and reveals
a mode-oriented view on the underlying behavior of the program [LSH+21].

SCCharts An inverse procedure of mode extraction is illustrated by SC-
Charts’ induced dataflow [WSS+18]. It extracts the implicit dataflow rela-
tions between concurrent regions, as illustrated in Figure 2.6a.

3.1.3 Modal Augmentation

As an alternative to a separate coordination language with modes, there are
various proposals that aim at directly augmenting mainstream program-
ming languages with a notion of states or modes.

Statecharts in C/C++ Wagner et al. describe a design process for flat FSMs

directly in C [WSW+06]. An advanced approach by Samek describes the
implementation of UML statecharts in C/C++ [Sam08]. While this includes
concurrency, there are no provisions for a deterministic behavior.

FairThreads FairThreads [Bou06] are an extension of C that enables coop-
erative threading. They are implemented based on macros and use native
threads. FairThreads also include macros to model automata for auxiliary
tasks, as their restricted structure facilitates a more efficient execution w.r.t.
threads.

SyncCharts in C There are also some synchronous extensions to C, with
SyncCharts in C [Han09] as probably the most relevant for modes. Again,
this concepts relies on C macros to provide a light-weight low-level lan-
guage extension. It enables expressing states and provides deterministic
concurrency based on a priority-based dispatching of threads.
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Figure 3.3. The PendulumController reactor using modes.

3.2 The Modal Pendulum Controller

The basic idea of modes in LF is to use the existing reactor model as is and
to provide a minimally invasive notation to associate reactions and other
contents with modes. Transitions between modes are then triggered as an
effect of reactions.

Figure 3.3 illustrates a variant of the PendulumController reactor that uses
modes. The reactor now features three separate modes for the different
behaviors, similar to the SCCharts variant. Their graphical appearance is
inspired by SCCharts, for example by highlighting the initial mode SwingUp

with a thicker border. Each mode contains regular reactor elements. In this
diagram, only the Catch mode is expanded and reveals its contents. The
timer and the reaction are now local to this mode. As a result, the temporal
behavior is bound to the activation of the mode and yields the aligned

output presented in Figure 3.1, discussed in more detail in Section 3.3.2.
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3.2. The Modal Pendulum Controller

1 target C;

2 reactor PendulumController {

3 input theta: double;

4 input d_theta: double;

5 input phi: double;

6 input d_phi: double;

7 output control: double;

8 output led: bool;

9

10 state catch_phi: double = 0.0;

11

12 initial mode SwingUp {

13 reaction(theta, d_theta) ->

control, led, reset(Catch) {=

14 lf_set(control,

swingup_control(theta->value,

d_theta->value));

15 if (exit_swingup(theta->value)) {

16 lf_set_mode(Catch);

17 lf_set(led, true);

18 }

19 =}

20 }

21 mode Catch {

22 reset state led_state: bool = true;

23 timer toggle(15msec, 15msec);

24 reaction(toggle) -> led {=

25 self->led_state = !self->led_state;

26 lf_set(led, self->led_state);

27 =}

28 reaction(theta, d_theta, phi, d_phi) -> control,

led, reset(Stabilize) {=

29 lf_set(control, catch_control(theta->value,

d_theta->value, phi->value, d_phi->value));

30 if (exit_catch(d_phi->value)) {

31 lf_set_mode(Stabilize);

32 lf_set(led, true);

33 self->catch_phi = phi->value;

34 }

35 =}

36 }

37 mode Stabilize {

38 reaction(theta, d_theta, phi, d_phi) -> control,

led, reset(SwingUp) {=

39 lf_set(control, stabilize_control(theta->value,

d_theta->value, phi->value, d_phi->value,

self->catch_phi));

40 if (exit_stabilize(theta->value)) {

41 lf_set_mode(SwingUp);

42 lf_set(led, false);

43 }

44 =}

45 }

46 }

Listing 3.1. Source code of the PendulumController reactor with modes.

While the diagram presents modes in a classical statecharts appearance
with states and transitions, this is primarily a result of the graphical view.
In the textual source there is a more seamless integration into the dataflow-
oriented syntax of LF.

Listing 3.1 shows the source code of the modal PendulumController in
Figure 3.3. It reveals that the monolithic reaction with the switch pattern
for the modes (cf. Listing 2.6) is now split up into three reactions (starting
at lines 13, 28, and 38), one in each mode. The modes simply enclose their
associated contents. The execution semantics of modes will ensure that only
one mode is active at a time. Transitions between modes are implemented as
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ToggleLED
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Figure 3.4. The ToggleLED reactor that models the
alternating LED state with modes.

1 target C;

2 reactor ToggleLED {

3 output led: bool;

4 timer toggle(15 msec, 15 msec);

5

6 initial mode On {

7 reaction(toggle) -> Off, led {=

8 lf_set(led, false);

9 lf_set_mode(Off);

10 =}

11 }

12 mode Off {

13 reaction(toggle) -> On, led {=

14 lf_set(led, true);

15 lf_set_mode(On);

16 =}

17 }

18 }

Listing 3.2. Source code of the
ToggleLED reactor.

effects of reactions. For example, the reaction of the SwingUp mode in line 13
declares the Catch mode as an effect. This enables the lf_set_mode(Catch)

command in line 16 to issue a transition to that mode. The remaining
transitions are modeled analogously.

Another notable difference to the implementation presented in Sec-
tion 2.4 is that the led_state state variable is now located in the Catch mode.
Therefore, it has the default value true because the led output is already
set to true while transitioning to this mode. Consequently, the timer also
has an initial delay of 15 msec to take this into account. Furthermore, the
previous control_mode state variable, see Listing 2.6, is superseded by the
use of modes on the coordination level of LF.

Replacing State Variables by Modes In this spirit one could further ap-
ply this strategy for the led_state state variable. The mode extension of LF

supports nesting another modal model in the Catch mode by instantiating a
modal reactor. Figure 3.4 illustrates the reactor that is able to replace the
led_state state variable, the timer, and toggle reaction in the modal Pendu-
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lumController. Listing 3.2 presents the corresponding source code. Instead
of inverting the led_state value, the led output is set explicitly by a reaction
in each mode (lines 8 and 14). The alternation is caused by the switching
between the On and Off mode, triggered by the timer.

This solution is evidently a less compact implementation, but may be
preferable in terms of graphical representation. Furthermore, this exam-
ple illustrates that not all contents of a reactor must be associated with
modes. The timer is independent of the two modes and a shared trigger
for both reactions. In order to visually separate mode-independent reactor
elements from those in modes, the modal model is confined to a dedicated
area. As in Figure 3.3, the relevant input and output ports are duplicated
into each mode to prevent dependency edges from crossing and visually
cluttering the modal model layer. Since the timer is not a named port and
cannot be duplicated, as this would imply a different timing semantics (see
Section 3.3.2), it is connected with the mode area and has its own named
port that is then referenced inside the modes. Furthermore, this diagram is
configured to show the triggers of reactions potentially invoking a transition
as a label on the respective edge.

3.3 Modal Reactors

The previous section already illustrated some core principles of the pro-
posed modal reactor concept. To sum it up, it enables a partitioning of a
reactor’s contents into disjoint subsets that are associated with mutually
exclusive modes. In a modal reactor, only a single mode can be active at a
particular logical time instant, while activity in other modes is automatically
suspended. Transitioning between modes switches the reactor’s behavior.
While the previous example only shows the default behavior of transitions,
there are actually two different options to control the starting point of an
entered mode. A mode can either be reset, or it may continue with the
mode’s history. These are two common and powerful abstractions that are
particularly helpful in the automatic management of timed behaviors, which
can be extremely error-prone when carried out manually.
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The research question investigated here is: How can we enhance reactors
with a lean concept that enables the coordination of reactive tasks based on
modes of operation? The resulting design should align with core principles
of LF, such as the black-box abstraction of reactions that enables a polyglot
design. Adapting such an approach involves a trade-off because it comes
at a cost of decreased analyzability if the actual triggering of transitions is
hidden. Generally, the concept aims for a potential “best of both worlds”
situation that enables modeling state-oriented behavior seamlessly in an
actor-oriented language. The multitude of existing languages for express-
ing modal- or state-oriented behavior illustrates that this entails a number
of language design questions and trade-offs. For example, this includes
selecting a suitable set of transitions, evaluating potential preemption mech-
anisms, integrating transition timing into the model of super-dense time,
and technical considerations for implementing resets and harmonizing them
with the existing way of memory management for state variables at startup
and shutdown.

3.3.1 Modes and Transitions

Modes associate elements inside a reactor with a specific mode of operation,
while transitions control the change of activity and the effect on the entered
modes.

Mode Syntax Modes can be defined in any regular reactor.4 Each mode
requires a unique (per reactor) name and can declare contents that are local
to this mode. There must be exactly one mode marked as initial, see line 12
in Listing 3.1. A mode can contain state variables, timers, actions, reactions,
reactor instantiations, and connections. This excludes the declaration of
ports in modes. Instead, modes have access to the scope of their parent
reactor, which enables references to ports, state variables, and parameters
declared on the reactor level. Inner declarations of other modes are not ac-
cessible. While modes cannot be nested in other modes directly, hierarchical

4The only exception is a federated reactor. The current concept does not account for modes
with a state that needs to be synchronized across a federation. Yet, federates themself can be
modal reactors. Investigating a modal coordination of a federation is considered future work,
see Section 6.2.1.
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and concurrent composition is possible through the instantiation of modal
reactors.

Mode Activity In the presence of modes, only parts that are contained
in the currently active mode, or outside any mode, are executed at any
point in time. This also holds for parts that are nested in multiple ancestor
modes due to hierarchy. Consequently, all those ancestors must be active
in order to execute. Upon reactor startup, the initial mode of each modal
reactor is active, others are inactive. Reactions in inactive modes are simply
not executed. All components that model timing behavior, namely timers,
scheduled actions, and delayed connections, are subject to a concept of local
time. That means while a mode is inactive, the progress of time is suspended
locally. Section 3.3.2 will provide a more detailed explanation. How the
timing components behave when a mode becomes active depends on the
transition type.

Transition Syntax Transitions are declared within reactions. If a reactor
has modes, reactions can list them as effects if they intend to invoke transi-
tions. This enables the use of the target language API to set the next mode,
e. g., lf_set_mode in C, see line 16 in Listing 3.1. If the target code references a
mode that is not declared as an effect, the compiler will issue an error. The
user also needs to specify the type of the transition by adding the modifier
reset or history to the effect. History transitions are indicated by an “H” at
the arrowhead in the diagram, see Figure 3.5. In case a mode has no actual
state, i. e., only consists of reactions, the modifier can be omitted because
there is no effective difference between the two transitions types into this
specific mode.

Transition Timing A transition is triggered if a new mode is set in a
reaction body. This raises two questions: When will the transition take effect,
and what if multiple reactions set different modes? SCCharts illustrate that
there can be immediate and delayed transitions, see Section 2.3.

Immediate transitions would allow mode changes to occur directly after
executing the initiating reaction. The target mode would be instantly acti-
vated and its reactions executed at the same tag as the reaction that issued
the transition. This implies dependencies between reactions with transitions
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and all reactions associated with their target modes. As a consequence, any
cyclic modes structure would impose a causality loop and would have to
be rejected. Alternatively, transitions could wait until all contents of a mode
finish executing but then immediately switch to the next mode and execute
that one, still at the same tag. However, this would raise the question of
how to handle the reactivation of the same mode multiple times at the same
tag. Moreover, this would permit an arbitrary number of mode changes
during the same execution instant. In the end, some notion of a sequential
separation between mode activations would be necessary. Furthermore, the
reactor MoC is simply not intended to execute reaction multiple times at
the same tag. The evident solution is to implement delayed transitions that
introduce at least a microstep delay.

Hence, in modal reactors, reactions can set a new mode, but this has
no immediate effect. Only when the reactor has finished executing all its
contents, the transition will take effect and the new mode becomes active
in the next microstep. Hence, no two modes in the same reactor can be
active at the same tag. Neither can a transition interfere with ongoing re-
actions. The same principle for mutual exclusion of modes can be found
in SCADE [CPP05; CHP06]. Yet, this approach requires resolving potentially
“conflicting” transition effects from different reactions. To resolves such situ-
ations, the same mechanism applies as in setting ports. The fixed ordering
of reactions determines the effective target mode that will be used. In terms
of deterministic outcome and overriding behavior, setting new modes can
be considered analogous to assigning output ports. However, in terms of
timing, transition effects correspond to scheduling actions with a zero delay,
which also enforces a microstep delay to prevent causality cycles.

To be precise, if at a tag (t, m), a new mode was set by a reaction in a
modal reactor, the execution of that tick will finish unchanged. Only at the
end of that instant, the target mode will be determined by the last reaction
that set a mode, the current mode will be deactivated, and the new one
will be activated for future execution. This means no reaction of the newly
active mode will execute at tag (t, m). Instead, the earliest possible reaction
in the new mode occurs one microstep later, at (t, m + 1). If the newly active
mode has for example a timer that will elapse with an offset of zero, it will
trigger at (t, m + 1). In case the mode itself does not require an immediate
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execution in the next microstep, the next executed tag depends on future
events (t + e, 0), with e as the time offset to the next event, just as in the
normal behavior of LF. Thus, modes in the same reactor are always mutually
exclusive w.r.t. superdense time.

Reset Transitions A mode can be reset upon entry, returning it to its
initial state. Specifically, this has the following effects:

• all contained modal reactors are reset to their initial mode (recursively);

• all contained timers are reset and start again awaiting their initial offset;

• all events (actions, timers, delayed connections) that were previously
scheduled from within this mode are discarded;

• all contained state variables that are marked for automatic reset are reset
to their initial value; and

• all contained reactions with the new reset trigger are executed.

Note that “contained” refers to all contents defined locally in the mode and
in local reactor instances (recursively) that are not otherwise enclosed in
modes of lower levels.

These effects ensure that whenever a mode is entered with a reset
transition, the subsequent timing of behavior is as if the mode was never
executed before. Furthermore, state variables are not reset automatically
by default. Instead, they need to be marked for reset explicitly because
it is idiomatic for reactors to store manually managed resources, such as
allocated memory, in state variables. Hence, an automatic reset could easily
lead to memory leaks or runtime exceptions. Section 3.3.3 will provide
a more detailed example of manual resource management. To provide
manual control over resetting state variables, a new built-in reset trigger for
reactions is provided that enables reacting to a reset entry of a mode. The
reset modifier on state variables is a convenience feature that automatically
resets state variables to their initial value, e. g., used for led_state in line 22
of Listing 3.1.

History Transitions In contrast to a reset transition, a history transition
will “simply” skip resetting a mode’s contents. This enables the mode to
continue its behavior from the point it was last left, or its initial configuration

69



3. Modal Models

if it was not active yet. In regard to the temporal behavior, the time is frozen
during mode inactivity. This requires adjusting all events that originate from
timers, scheduled actions, and delayed connections. During mode inactivity
these events are suspended and will not be present at the intended tag.
Upon continuing the mode, their remaining delay is adjusted such that it
reflects the remaining delay recorded at the instant the mode was previously
left. This results in a notion of local time that elapses only when the mode
is active.

Diagrams As Section 3.2 illustrates, the extension to modal reactors also
includes a graphical notation to provide an intuitive perception of the modal
structures.

3.3.2 Local Time

The notion of mode-local time suspends all timing behavior within inactive
modes. This is an established and well-formed principle also found in
modal models in Ptolemy II [LT10; Pto14] and synchronous languages such
as Esterel or SCCharts. The considerations by Lee et al. that favor local time
over alternative approaches also apply to LF. The suspension of time gives
a clear and consistent meaning to the inactivity of modes and provides
comprehensible state of the mode’s contents upon entry. This especially
favors modularity, as reactors that may be instantiated in modes do not
have to anticipate the fact that their time (driven by timers or scheduled
actions) will advance while their reactions are suppressed. Furthermore,
modes allow defining reactor elements outside of modes, which gives the
developer control over which elements should be subject to local time. The
timer in the ToggleLED reactor in Figure 3.4 is one example for this.

Example Figure 3.5 shows an LF model that illustrates the different charac-
teristics of local time affecting timers and actions in the presence of the two
transition types. It consists of two modes One (the initial one) and Two, both
in the Modal reactor. The next input toggles between these modes. The input
port is controlled by a reaction on the top level that is triggered by the timer
T. After one second, the mode switch is triggered periodically. Both modes’
contents are structured identically. Each has a timer T1/T2 that triggers a
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Figure 3.5. The TimingExample model for illustrating the different effects of reset and
history transitions on timers and actions in modes. (Publ. in [SHL+23c])

reaction after an initial offset of 100 msec and then periodically after 750
msec. This reaction then schedules a logical action with a delay of 500 msec
(the actual target code does not add an additional delay upon the minimum
specified in the model). This action triggers the second reaction that writes
the output out. The last reaction is triggered by the input next and invokes
the transition to the other state. The main difference between the modes is
that One is entered via a history transition, continuing its behavior, while
Two is reset.

Execution Trace Figure 3.6 illustrates the execution trace of the first 4
seconds of this program. Above the timeline are the model elements that
are executed at certain points in time, together with arrows indicating
triggering relations and dashed lines for distribution through time. On top
of that is the currently active mode.
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Figure 3.6. The execution trace with reaction illustration for the TimingExample model
in Figure 3.5. (Publ. in [SHL+23c])
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At 100 msec the initial offset of timer T1 elapses, which leads to the
scheduling of the logical action in this mode. The action triggers the reaction
500 msec later at 600 msec and thus causes an output. At 850 msec the
first 750 msec period of T1 elapses and again invokes its chain of effects.
However, this time at 1000 msec the timer T causes a mode switch and mode
One is rendered inactive. For the scheduled action, this means that its event
(scheduled for 1350 msec) are suspended and will no longer trigger. The
same holds for timer T1.

The reset transition has no real effect on Two as the mode was never
active before. Hence, mode Two starts with the initial offset of T2 triggering
at 1100 msec. The following sequence of events is identical to the one that
mode One produced.

At 2000 msec the Modal reactor switches back to mode One with a history
transition. The event of the action in Two is discarded because this mode
is only entered via a reset and no suspension of events is necessary. In
general, it could be conservatively suspended and then discarded when
the mode is entered via reset instead of history, but this is not necessary in
this case. The event of the logical action in mode One resumes. Since it was
scheduled at 850 msec with a 500 msec delay and a 1000 msec inactivity of
this mode, it is reintroduced for occurring at 2350 msec. Hence, the delay is
kept relative to the time passing local to the mode. The same holds for the
timer T1, whose second period would have elapsed at 1600 msec without
mode inactivity, now it triggers at 2600 msec.

After 3 seconds the next mode switch happens, which again suspends
the event of the action in One. However, mode Two is reset upon entry, which
effectively puts the mode in a state as if it has never run before. No events
resume and timers restart with their initial offset. Hence, T2 triggers at 3100
msec and the sequence of events local to mode Two unravel in the same way
as the first time.

Time Progression Figure 3.7 illustrates the relation between global time
in the environment and the localized time for each timer in Figure 3.5. Since
the top-level reactor TimingExample is not enclosed by any mode, its time
always corresponds to the global time. Mode One is the initial mode and
hence progresses in sync with TimingExample for the first second. During
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Figure 3.7. The progression of time in each mode and their respective timer of the
TimingExample model in Figure 3.5. (Publ. in [SHL+23c])

inactivity of mode One the timer is suspended and does not advance in time.
At 2000 msec it continues relative to this time. T2 only starts advancing
when the mode becomes active at 1000 msec. The reentry via reset at 3000
msec causes the local time to be reset to zero.

This example illustrates that from the perspective of timers and actions,
time does not advance during mode inactivity. This also applies to indirectly
nested reactors, if instantiated inside a mode. In the same way, delayed
connections are affected by local time, if their source lies within a mode.
This corresponds to the fact that delayed connections can be considered
syntactic sugar for connections delayed by a logical action.
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Figure 3.8. The Con-

nection reactor.

1 target C;

2 reactor Connection {

3 input msg: char*;

4 state socket: int;

5

6 reaction(startup) {=

7 self->socket = socket(AF_INET, SOCK_STREAM, 0);

8 struct sockaddr_in server = {/*Connection configuation*/};

9 connect(self->socket, (struct sockaddr*)&server, sizeof(server));

10 =}

11 reaction(msg) {=

12 send(self->socket, msg->value, strlen(msg->value), 0);

13 =}

14 reaction(shutdown) {=

15 close(self->socket);

16 =}

17 }

Listing 3.3. Source code of the Connection reactor
illustrating manual management of a socket connection.

3.3.3 Startup and Shutdown

Section 3.3.1 already mentions that state variables cannot be reset by de-
fault because they might store manually managed resources. Hence, the
reset trigger was introduced. This new trigger comes in addition to the
two built-in triggers, startup and shutdown, that are defined by the reactor
MoC [LÍG+19]. Reactions with a startup trigger will be executed at the very
first tag at which their reactor exists. Symmetrically, shutdown reactions
will execute during the very last tag before the reactor ceases to exist. In
most programs this corresponds to the start and end of the program. Only
if mutations are used, the association with a reactor’s lifetime becomes
relevant.

These two triggers are commonly used for initializing and finalizing
manually managed resources, such as allocating memory, sensor or actuator
connections, or threads for handling asynchronous interactions. Figure 3.8
illustrates a reactor that manages a socket connection. The circle indicates a
startup trigger, while the diamond represents shutdown. Listing 3.3 presents
the corresponding source code. The startup reaction (lines 6 to 10) creates
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a socket, stores it in a state variable, and connects it to some address. The
second reaction sends a message received on the input port via the socket
(line 12) and the shutdown reaction closes the socket connection (line 15).
The code omits the actual address configuration for the socket, checks on
return codes, and the relevant includes, to keep the example simple.

While the behavior is relatively clear with respect to the reactor, the
question is: How does this reactor behave when instantiated in a mode?
More specifically: When are the startup and shutdown reactions triggered?
This question corresponds to defining the lifetime of mode-local elements.

Considerations on the Lifetime of Modes One solution could be binding
the lifetime to the modes’ activity and triggering startup and shutdown upon
entering and leaving a mode. This would also render the reset trigger redun-
dant. However, in case of a history transition, the mode has to continue its
behavior, requiring the previous configuration and state. And in the general
case with both reset and history transitions to a mode, this can only be
decided upon re-entry. Moreover, there is the challenging question of find-
ing the right time for executing shutdown reactions upon leaving because
the decision for leaving a mode is only final at the end of execution, see
Section 3.3.1. Consequently, shutdown reactions cannot simply be invoked
when leaving a mode.

The next best alternative is to associate mode-local elements with the
reactor’s lifetime. However, based on the current definition, modal reactors
suppress any behavior in inactive modes, which would include reactions
triggered by startup and shutdown. Hence, only initial modes would execute
their startup reactions (depending on the nesting of modes), while other
startup reactions would be skipped. The same applies to shutdown reactions
in inactive modes at the time of a shutdown. A possible solution is to exclude
startup and shutdown reactions from this suppression mechanism. However,
these are reactions with arbitrary effects that now would circumvent the
mutual exclusion of modes at start and end of a reactor’s lifetime.

Proposed Behavior While several other options and variations were con-
sidered to solve this issue, there was no fully satisfying solution. The
proposed concept is a compromise that
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• tries to minimize behavioral oddities in practical applications,

• enables embedding reactor instances with startup and shutdown reactions
into modes without further adjustment, and

• provides intuitive and deterministic behavior.

Startup reactions are executed at first activation of a mode. When the
reactor is shut down, it triggers all shutdown reactions at the same time,
but only those which modes were at least once active, i. e., had a potential
startup reaction. Hence, the lifetime of reactor elements in modes, especially
reactor instances, starts with the first activation of the mode and ends with
the shutdown of the reactor.

This design is a result of application-oriented considerations. Startup
reactions are more common, also for tasks other than resource management,
and are more likely to have effects than shutdown reactions. Therefore,
preventing their execution from bypassing mutual exclusion, as in shut-
down, hopefully reduces the noticeable effects of this design. The possible
improvement of this behavior is considered future work but may require
a more invasive redesign of resource management that in parts replaces
startup and shutdown reactions, see Section 6.2.1.

3.3.4 Implementation

The goal of creating a lean mode extension is not only reflected in the
language design itself but also in its runtime implementation. At the time of
writing this thesis, modes are implemented for C and Python, but extending
support for modal reactors to other targets is already planned for future
development. Nonetheless, modes have been successfully tested for these
targets with single-threaded and multi-threaded execution, and inside
reactors of a federation. This section provides a generic and reasonably
target language-independent view on the adjustments required to support
modes, achieving the behavior described in Section 3.3.1.

Extending the LF Compilation and Runtime As initially presented in
Section 2.2.1, generated LF programs consist of two parts, the program-
specific code and the generic runtime engine. The adjustments necessary
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for extending both parts towards modes are relatively small. Moreover, they
are mostly additive, which means that in the absence of modes in the source
model, there is virtually no difference to an implementation that does not
account for modes, and thus no performance overhead.

The existing runtime implementation is adjusted in two ways. First, the
triggering of reactions must check if a reaction is in an active mode and
otherwise prevent its execution. A trivial approach is to recursively check a
mode and all its parent modes whether they are all currently active modes.
Any element associated with no mode at all is considered always active.
Shutdown reactions are excluded from this activity check but their mode
(if any) must have had a startup phase, which is additionally recorded
when executing these reactions. Second, the execution life-cycle requires the
handling of transitions. It must be invoked after the processing of reactions
has finished but before logical time advances. Algorithm 3.1 presents the
procedure that handles mode transitions, which includes performing resets,
managing local time, and scheduling special triggers.

New Data Structures The algorithm relies on a few global data structures:
(1) the existing event queue of LF (EventQueue), the manipulation of which
is the sole change to the runtime that is needed to implement local time; (2) a
collection to store events suspended in local time (SuspendedEvents); and (3)
a set of all modal reactor instances in the model (ModalReactors). The latter
is a result of program-specific generated code, which also produces new
data structures and references for modes. Each modal reactor r provides
access to the following information, presented in a member notation here.
rmodes denotes the set of modes in r.

r.parentMode P {Nil}Y {xmodes : x P ModalReactors}
r.initialMode P rmodes
r.currentMode P rmodes
r.nextMode P {Nil}Y rmodes
r.transition P {None, Reset, History}

r.parentMode is either absent or the mode immediately containing r. Note
that this models only a unidirectional relation for mode hierarchy. While
one could also consider introducing a list of contained modal reactors,
this notation is closer to the actual implementation. r.initialMode is the

78



3.3. Modal Reactors

mandatory initial mode. As the parent mode, it is constant and set up
at program start. r.currentMode is the currently active mode w.r.t. to r,
starting with the initial mode. Whether the current mode is actually active
w.r.t. execution depends additionally on parent modes. r.nextMode and
r.transition represent the presence, type, and target of a transition. These
fields are filled if the target code sets a new mode, e. g., lf_set_mode(Catch).
The transition type is inferred from the effect definition. Furthermore, each
mode m in rmodes carries additional mode-specific information.

m.reactor P ModalReactors
m.leaveTime P T

m.reset P {True, False}
m.hadStartup P {True, False}

m.reactor is a constant reference to the mode’s reactor. m.leaveTime stores
the logical time at which this mode was last left. It is initialized with the
start time of the execution. m.reset indicates that this mode needs to be reset
as soon as it becomes active (initially False). m.hadStartup is a boolean flag
that is set from False to True as soon as the mode is active for the first time.

Finally, each reaction, timer, and action has a reference to its immediately
enclosing mode, if any exists. This also enables associating events with
modes via their trigger.

The Algorithm In the first line of Algorithm 3.1, every modal reactor
instance is processed in a top-down order. This refers to the partial order
of mode hierarchy and ensures that if a mode is entered with a reset,
inner modal reactors (line 2) are recursively forced into their initial mode
via a reset transition. Afterwards, transitions are processed in a separate
iteration. This iteration is separated from the previous iteration because
the hierarchical reset relies on the presence of transition information in
parent modes to reset itself accordingly (line 2) and this information is now
overwritten (line 22). First, events of the next mode that are suspended in
time are processed. At a reset, all timers are restarted with the initial offset
relative to the current time (line 12). Other events (e. g., scheduled actions)
are dropped. For reintroducing previously suspended events into the event
queue, the shift function is used to create the correct tag w.r.t. superdense
time.
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1: for each r P topdown(ModalReactors) do
2: if r.parentMode ‰ Nil and r.parentMode.reactor.transition = Reset then
3: r.nextMode := r.initalMode Ź Hierarchical reset
4: r.transition := Reset
5: for each r P ModalReactors do
6: if r.transition ‰ None then
7: for each e P SuspendedEvents do Ź Handle suspended events
8: if e.mode = r.nextMode then
9: Remove e from SuspendedEvents

10: if r.transition = Reset then
11: if e is Timer then Ź Reset timers, discard other events
12: t := shift(currentLogicalTime, e.timer.offset)
13: Insert e into EventQueue with tag t
14: else Ź Resume events adjusted to local time
15: t := shift(currentLogicalTime, e.tag - e.mode.leaveTime)
16: Insert e into EventQueue with tag t
17: if r.transition = Reset then Ź Perform transition
18: r.nextMode.reset := True
19: r.currentMode.leaveTime := currentLogicalTime
20: r.currentMode := r.nextMode
21: r.nextMode := Nil
22: r.transition := None
23: if isActive(e.currentMode) then Ź Trigger special reactions
24: if not r.currentMode.hadStartup then
25: Trigger startup reactions in r.currentMode at the next microstep
26: if r.currentMode.reset then
27: r.currentMode.reset := False
28: Trigger reset reactions in r.currentMode at the next microstep
29: Reset state variables in r.currentMode that are marked with reset
30: for each e P EventQueue do
31: if not isActive(e.mode) then Ź Suspend events in now inactive modes
32: Remove e from EventQueue
33: Add e to SuspendedEvents

Algorithm 3.1. Processing of mode transitions at the end of each execution cycle.
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shift(base : (t, m), offset : (t, m))

=

{︄
offsett ą 0 : (baset + offsett, offsetm)

offsett = 0 : (baset, basem + offsetm + 1)

This creates a tag that is the base tag shifted by a given offset into the future.
It takes into account that a zero delay offset (w.r.t. the timestamp t) results
in a future (incremented) microstep. In case time should continue due to a
history transition, all events are reintroduced into the event queue with an
adjusted target time. Here, the time that mode was left is subtracted from
the original tag (time to happen) of the event, to get the remaining time
at time of leaving, which is used to offset this event from the current time
(line 15). Next, the actual effect of the transitions is applied to the internal
data structures (lines 17 to 22). This includes marking the mode for reset if
necessary, storing the time the mode was left, setting the new mode, and
clearing transition information for use in future execution. Afterwards, the
special reactions are triggered for the current mode. Note that this takes
effect based on mode activity and not triggered by a transition (line 23).
The isActive function relies on the definition presented before. If the mode
was never active before, its startup reaction will be triggered at the next
microstep. This includes reactions in the mode and in all inner non-modal
reactors. Likewise, reset reactions are triggered when the mode is marked
for a reset. Additionally, the automatic reset for the respective state variables
is invoked, and the flag is cleared. At the end, all events that are associated
with now inactive modes are pulled from the event queue and stored in the
suspended events collection (lines 30 to 33).

In the real implementation of Algorithm 3.1, the procedure includes
some additional consistency checks and optimizations, e. g., a non-recursive
isActive implementation. However, as these specifics are not relevant for
the overall semantics, they are omitted for ease of readability. Overall, the
algorithm is considerably compact while providing the bulk of semantic
functionality for modes. The remaining behavior, such as suppression of
inactive reaction and triggering of shutdown, is directly integrated into the
normal LF runtime and uses the same mode-specific data structures.
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3.4 Evaluation

The modal pendulum controller presented in Section 3.2 already illustrates
that modal reactors are capable of expressing different modes of operation
in a program and elevate a low-level state machine implementation onto
the coordination level. Moreover, the encapsulation of timed elements and
the concept of local time enables the correct alignment and control over
time in modes, see Figure 3.1.

Reflection on Goals Considering the initially set goals, the question is:
Have these goals been met? (cf. page 55)

Lean design The additional syntax required for defining modes is rather
minimal. It consists only of declaring modes as encapsulation units,
transitions as reaction effects, and a new trigger for handling reset.
The core language remains unchanged and none of the new elements
break or disrupt the existing modeling paradigms in LF. Simultaneously,
the synthesized diagrams provide a more coherent view in a classical
statecharts notation. Furthermore, with reset and history transitions,
modal reactors have two basic but powerful ways to control the effect
of mode changes. Their behavior cannot easily be achieved by other
means due to their effect on temporal behavior, see also Section 3.4.1.
Yet, languages such as SCCharts provide a broader and more versatile
set of transition types. However, as Section 3.4.2 will present, some of
their functionality could be obtained in modal reactors by adjusting the
reaction implementation accordingly.

Polyglotism Modal reactors fully embrace the embedded target language
approach and black-box abstraction in LF. Hence, they do not obstruct
polyglot designs in LF. While the declaration of transition effects in reac-
tion signatures is sufficient to have a modal code generation, diagrams,
and static mutual exclusion (see Section 3.4.1), it imposes a limitation
in terms of analyzability and verification. As it turns out, this is a more
general issue in LF. By design, reactions do not expose detailed causal
relations between their triggers and effects, which hampers in-depth
model checking. Mode transitions likewise are subject to this limitation,
which should be addressed in future work, see Section 6.2.2.
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Time sensitivity The concept of mode-local time offers a well-defined and
consistent way to deal with time during mode inactivity and reen-
try. This design of “freezing” time favors composability, since reactors
instantiated in modes retain their temporal behavior relative to their
context [LT10]. It is also a well-established principle in Ptolemy II [LT10;
Pto14] and in synchronous languages, which often provide a suspend
feature that conceptually cuts off the clock signal for certain program
sections [PEB07].

Concurrency Concurrent and hierarchical composition comes naturally to
modal reactors, as they simply augment the existing reactor model
without introducing additional burdens or dependencies in this regard.
Modes are exclusively scoped to their reactor and thus facilitate com-
posability.

Determinism LF provides determinism and the modal extension retains this
property in all aspects. Temporal and causal behavior of transition is
designed to prevent potentially problematic inter-reaction dependencies.
Instead, the explicit modeling of mutual exclusion with modes enables
accepting programs otherwise conservatively rejected as potentially
non-deterministic, see Section 3.4.1.

3.4.1 New Modeling Opportunities

The introduction of modal reactors clearly expands the modeling capabilities
within LF. The modal pendulum controller in Section 3.2 is only very limited
example for this. It illustrates the separation of a reaction into modes and
the improvement of temporal behavior by association with modes. However,
the opportunities that modes offer in terms of modeling go beyond this
example.

Local Time While Section 3.3.2 illustrates the different effects of local time,
it does not yet fully explore the significant effect that this concept can have
on the temporal modeling capabilities of LF. Consider the very simple case
of pausing an application. Such a use case appeared while extending the
Furuta pendulum example into a more full-fledged demonstrator. Figure 3.9
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Figure 3.9. The control components of the Furuta pendulum in a simulation setup
connected to a user interface that supports pausing.

illustrates a program that enables observing a simulation of the pendulum
while running. Without going into much detail about the implementation, it
communicates via a WebSocket5 connection with a web-based user interface
that displays the state of the pendulum as 3D model (Figure 1.1 is a snapshot
of this visualization). The user can interact with the live system by imposing
an external disturbance to the pendulum or pausing and continuing the
simulation. In this example, modes are used to implement the effect of
pausing by simply switching between a Paused and Running mode. The
Running mode contains all the reactor instances relevant for the simulation
and continues their behavior with a history transition upon entry.

While this model relies on modes and their notion of local time to solve
the rather simple task of pausing, achieving the same behavior with non-
modal LF is quite cumbersome in comparison. It would require adjusting all
reactors inside the Running mode that have timing elements. They all would
require a new input for pausing, a state variable that remembers the pause
status, and all reactions need to stop producing outputs when paused. Since
their local time would continue to run, timers and actions would still elapse
and trigger reactions. For actions in PendulumSound, this would require
some bookkeeping to discard invalidated events and reschedule actions

5https://datatracker.ietf.org/doc/html/rfc6455

84

https://datatracker.ietf.org/doc/html/rfc6455


3.4. Evaluation
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(a) Multiple feeders (reaction and two reac-
tors) to the same output port (out) but sepa-
rated by modes.
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(b) A cyclic dependency resolved by the use
of modes.

Figure 3.10. Two examples for LF models that can be accepted as deterministic/
causal due to the use of modes.

accordingly upon unpausing. Timers, as in PendulumController, could most
certainly no longer be used as they do not offer control over their temporal
behavior at runtime and would need to replaced by actions.

All in all, this example illustrates the efficient temporal modeling capa-
bilities that come with modes and their notion of local time.

Static Analysis The basic principle of modes is to separate reactor ele-
ments into mutually exclusive modes. The pendulum example in its non-
modal form illustrates that the same behavior can be achieved without
modes on the coordination level. However, the explicit presence of modes
enables more advanced structural analyses of LF programs. This lifts cer-
tain modeling restrictions imposed under the standard LF MoC and allows
accepting more programs. Figure 3.10 illustrates two such examples.
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In the absence of modes, an output port can never be fed by multi-
ple connections to reactors or a mix of reactions and reactors, as this is
a potential source of non-determinism. Only reactions have an intrinsic
ordering, while reactors are inherently concurrent. However, in a model
that locates these writers in separate modes, the compiler has access to
this additional information. It can accept such structures, provided that all
writers are mutually exclusive. Figure 3.10a illustrates such a situation. Both
the first reaction and the two instances of the Producer write to the out port.
The modal structure statically ensures that these writes will not happen
currently at runtime.

The design of modes and timing of transitions guarantee this property
in all cases, except for shutdown reactions, see Section 3.3.3. Hence, these
are exempted from this adjustment to the static analysis and are handled as
before by the LF compiler.

Furthermore, the same principle applies to causality problems imposed
by feedback loops. In this case, the use of modes enables an advanced
dependency analysis that takes mutual exclusion into account when de-
tecting cycles. Figure 3.10b illustrates a model that would be rejected in
the absence of modes. If both reactions could be active at the same time, it
would constitute a causal cycle: in1 – out1 – in2 – out2 – in1.

Hence, the structural information provided by modes enable inferring
additional static information about the program that can be used to reduce
the conservative over-approximation by the compiler and accept more
programs. Yet, a full formal analysis of modal behavior remains future
work, see Section 6.2.2.

3.4.2 Feature Comparison with Statecharts

Guided by the goal of creating a lean modal extension, modal reactors
only provide a minimal set of built-in features. In comparison, statecharts
languages offer a much broader range of language constructs and transition
behavior. SCCharts are a prime example of such a design, as they combine
many features of common synchronous languages. While the fundamental
concepts of states and transitions are the same, many advanced aspects
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were considered during the design of modes. Hence, some features are
implicitly present in modes, while others are deliberately excluded in favor
of simplicity. Nonetheless, LF can also utilize the target code in reactions to
implement advanced behavior.

Hybrid Modeling A hybrid modeling approach that combines a dataflow
notation and statecharts is common in many modeling languages. SCCharts,
SCADE, and Ptolemy II all provide such design capabilities, see Section 3.1.1;
and likewise does LF.

However, an interesting subtlety in the design of LF is its incorporation
of pragmatics-aware modeling, discussed in Section 2.5. Other languages
follow a rather strict syntactic separation between the dataflow and state-
charts domain. Ptolemy II is a prominent example of this layered design. In
LF, this separation is more distinct in the diagrams than the textual source.
The concept of views facilitates a language design that seamlessly integrates
modal structures into the textual syntax of reactors, while preserving a
graphical notation that explicitly expresses the state machine nature of
modes.

Preemption In synchronous languages, transitions typically apply a form
of preemption [Ber93] when a state is left. In case of SCCharts, there are
strong and weak aborts, see Section 2.3. While the strong variant preempts
all inner behavior of the left state, the weak variant grants a “last wish”
before leaving.

Technically, transitions in modal reactors always perform a weak pre-
emption, since they allow all inner behavior to execute in the current tick
and deactivate the mode afterwards. The main reason for this design is that
transitions are triggered by reactions that are inner behavior of the mode.
As discussed in Section 3.3.1 on the timing of transitions, mode changes
that immediately preempt other behavior are complicated in this context
and impose additional dependencies with a negative impact on the paral-
lelization potential. Such problems are also present in other synchronous
languages. In SyncCharts, for example, it constitutes a causality error if a
state emits a signal that would strongly preempt that state. SCCharts do not
have this issue, as they consider strong abort checks ordered sequentially
before the execution of inner behavior.
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Figure 3.11. An example for a strong abort in
SCCharts and a similar but shallow implemen-
tation in LF.

1 target C;

2 import Computation from

"Computation.lf";

3 reactor ShallowStrongAbortExample {

4 input stop: bool;

5 output result: int;

6

7 initial mode Compute {

8 reset state abort: bool = false;

9 c = new Computation();

10

11 reaction(stop) -> Stopped {=

12 lf_set_mode(Stopped);

13 self->abort = true;

14 =}

15 reaction(c.result) -> result {=

16 if (!self->abort) {

17 lf_set(result, c.result->value);

18 }

19 =}

20 }

21 mode Stopped {}

22 }

Listing 3.4. Source code of the
ShallowStrongAbortExample reactor.

While the proposed modal reactors model does not include preemption,
there were considerations for including this feature, for example in the
form of special “initial” reactions that would be executed before any other
reactor elements to determine and suppress preempted content. However,
such a design was deemed expendable in the face of a lean language design
and the fact that LF already offers many ways to influence the transition
triggering in reaction bodies by using target language capabilities.

Figure 3.11 illustrates a small example modeling a strong abort in SC-
Charts and a variation in LF that emulates a form of shallow preemption.
Listing 3.4 presents the source code of the reactor. The first reaction sets
the abort variable (line 13) to prevent an effect on the result output in the
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second reaction (line 16). Admittedly, this exemplifies only a preemption of
the behavior of the second reaction but not a true hierarchical preemption
of the internal behavior in the Computation reactor. It rather suppresses
the observable effect of the behavior in Computation and, hence, could be
considered a shallow abort. Nonetheless, it illustrates the general procedure.
To explicitly abort the internals of Computation, the reactor would require an
additional input to pass on the abort variable downstream as an event and
react accordingly inside the Computation reactor.

However, the LF community has not yet requested a more convenient
built-in strong preemption feature and, as of yet, there are no use cases that
justify an introduction.

Termination SCCharts and SyncCharts also feature the non-preemptive
termination transition type, see Section 2.3, that is enabled when all inner
regions reached a final state. It corresponds to joining one or more spawned
threads. However, termination is a control-flow concept that does not make
much sense in a dataflow language that does not model concurrency as
explicit threads or that does not provide built-in constructs that indicate
termination. Modal reactors could give an opportunity to introduce such a
feature, but the proposed concept simply embraces the dataflow in LF and
keeps the extension lean.

Priorities With the use of reactions as transition triggers comes another
difference in comparison to SCCharts and other statecharts dialects. They
usually use priorities to assign an order to available transitions, with the first
enabled transition preempting lower ones. While the preemption aspect
was already discussed, modes in LF have exactly the inverse behavior, where
the last invocation of lf_set_mode in reaction order determines the actual
transition. An implementation for setting modes in reactions that favors the
first writer could be easily achieved, but the proposed design favors the
analogy to setting output ports.

Immediate and Delayed A timing aspect, predominately present in syn-
chronous languages, is the distinctions between immediate and delayed tran-
sitions, see Section 2.3. Section 3.3.1 already explained arguments on why
immediate transitions are not supported in this proposal for modal reactors.
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Deferred Some languages, such as SCCharts or SCADE, also provide de-
ferred transitions. They suppress the immediate behavior of an entered state.
This concept assumes that transitions are instantly processed and, hence,
represent a way to enter a state delayed by one tick. Considering the mi-
crostep delay for transitions in modal reactors, as discussed in Section 3.3.1,
one might argue that these transitions are always deferred. This is also
illustrated by the fact that the SCCharts variant of the PendulumController

uses a deferred transition to produce a behavior equivalent to the LF model,
see Section 1.1.2.

Reset and History While reset and history transitions in modal reactors
are equivalent to statecharts, SCCharts feature a further distinction of
history transitions into a deep and a shallow variant, see Section 2.3. While
the shallow history only affects the direct elements of the target state and
resets nested statechart, the deep variant continues the behavior recursively.
In pursuit of a lean design, modal reactors only implement a deep variant.

3.4.3 Modes as Mutations

In the current concept for modal reactors, modes are established as a core
language feature and implemented directly in the LF runtime. However,
early on in the design process, there was the idea to define and implement
modes via mutations [LÍG+19].

Mutations offer an interface to restructure a reactor at runtime. Using
this concept as a foundation for modes would mean that modes would
be translated into mutations for each modal reactor. The mutations would
make sure that at runtime a modal reactor only contains the elements of
the currently active mode. Upon transition, the mutations would destroy all
these elements and create those defined the target mode.

However, this approach assumes that the lifetime of modes is bound
to its activity. Such a design would conflict with the support of history
transitions, as already discussed in Section 3.3.3. Mutations would need
to store and re-apply the state of modes that are entered with history.
Furthermore, the interface for mutations is intended for end-users and does
not provide the capabilities to manipulate events sufficiently to implement
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mode-local time as in Algorithm 3.1. In the absence of history behavior, an
implementation with mutations would be feasible, but history transitions
were considered more important.

Another consideration that argues against mutations is their intended
use case. Mutations are designed to give the user the opportunity to dynam-
ically adjust the elements of a reactor. For example, instantiating a number
of reactors for a parallelized processing of data, such as a map-reduce
pattern with a variable input size. In contrast to that, modes are a more
static feature that select which parts of the program are active at a certain
point in time.

3.4.4 Embedded SCCharts

Section 3.1 discusses various related approaches that represent alternatives
to a modal reactor implementation in LF. Let us investigate such an alterna-
tive design by conceptually embedding SCCharts as a target language in
a non-modal LF. This approach would utilize the polyglot nature of LF to
include a notation that can naturally express modal models and facilitates
the extraction of mode diagrams.

Concept Figure 3.12 illustrates an example for the proposed design and
presents the compilation infrastructure necessary to support SCCharts
embedded in LF. The file ao.lf in the top right corner represents the source
LF program. The reactor uses SCCharts as a target language, but also C to
indicate the code synthesis target for the SCCharts. The program models a
very simple behavior that waits for the presence of the input A and passes
its value on to the output O. The following Done state does not permit a
repetition of this process.

In order to create executable code, the LF compilation requires an addi-
tional intermediate step. In this step, the SCCharts code is extracted from
the reaction and put into a separate artifact, ao.reaction.sctx on the right.
While the code in the reaction body implicitly assumes the presence of the
declared interface, as it usual in LF, the SCChart is now completed with the
necessary declarations, to yield a valid model. The events are encoded as
signals to represent the event’s presence and payload.
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ao.lf

target SCCharts, C;
reactor AO {
input A:int;
output O:int;

reaction(A) -> O {=
scchart {
inital state Wait
if A do O(val(A))
go to Done

state Done
    }
  =}
}

ao.reaction.sctx

scchart AO {
input signal int A
output signal int O

initial state Wait
if A do O(val(A))
go to Done

state Done
}

LF Intermediate Compilation

LF Compilation

C Compilation

AO Executable

ao.intermediate.lf

target C;
reactor AO {
input A:int;
output O:int;
state scchart:{=TickData=};

reaction(startup) {=
    reset(&self->scchart);
  =}
reaction(A) -> O {=

    self->scchart.A = A->is_present;
if (A->is_present) self->scchart.A_val = A->value;

    tick(&self->scchart);
if (self->scchart.O) lf_set(O, self->scchart.O_val);

  =}
}

LF Runtime

ao.tick.c

ao.tick.h

typedef struct {
  char A;
  int A_val;
  ...
} TickData;

void reset(TickData* d);
void tick(TickData* d);

ao.intermediate.c

...
int main(int argc, char* argv[]) {
return lf_reactor_c_main(argc, argv);

}
...

SCCharts
Compilation

AO

a o

input signal int A
output signal int O

Wait DoneA / O(val(A))

-

SCCharts
Synthesis

LF Synthesis

Figure 3.12. Conceptual structure of an LF compilation with an embedded SCChart.
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The second output of the intermediate compilation is an adjusted LF

source, ao.intermediate.lf on the left. The SCChart in the reaction body is
replaced by C code that handles the invocation of the tick functions, as
described in Section 2.3.2. Additionally, the program now has a state variable
(scchart) to store the internal state of the SCChart and a startup reaction to
initialize this data structure.6

In the subsequent compilation, the intermediate LF code can be ordinarily
processed by the LF compiler, while the SCChart is compiled into its tick
infrastructure by the SCCharts compiler. Finally, the C compilation combines
all artifacts into an executable.

In addition to the compilation, the LF diagram synthesis can likewise
embed the SCChart. By invoking the SCCharts synthesis to create a diagram
from the completed SCCharts model, the LF diagram could display the state
machine inside the reaction figure, as illustrated in the top right corner.

Evaluation Regarding the goals for a modal model in LF, such a design
retains the determinism due to the use of SCCharts and is still compliant
to the polyglot black-box approach, as the semantics of LF do not rely on a
white-box analysis of the SCCharts code. Yet, there are several disadvantages
to such a concept, as already mentioned in the context of similar related
work, see Section 3.1.

Most importantly, this design only provides modal reactions, since the
SCCharts code does not support embedding reactors, neither practically
nor under the black-box abstraction of reactions. Hence, it does not actu-
ally constitute a modal notion for the LF coordination layer but only for
individual reactions.

Furthermore, this alternative concept reintroduces the problem of non-
aligned time. The modal behavior is again confined to a reaction and does
not provide for association of timers with modes. However, the concept
of dynamic ticks, presented in Chapter 4, improves the timed modeling
capabilities of SCCharts in a way that it could handle time locally.

6This example uses default names for the tick function and other variables. In the presence
of multiple reactions with SCCharts code, this concept requires a naming scheme that prevents
conflicts.
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Finally, the practical implementation is rather heavy-weight, as it relies
on two full compilation stacks for LF and SCCharts. This also includes
the diagram synthesis, as it requires an intermediate compilation of the
SCCharts model.

Nonetheless, this design also illustrates the powerful integration oppor-
tunities that LF offers. For example, Section 6.3.1 will propose a variation
of this design that enables SCCharts to utilize LF’s distributed execution
capabilities.
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Chapter 4

Time

In the comparison between the pendulum implementation in SCCharts and
its LF counterpart, there are notable differences in the handling of time, see
Section 1.2 and Section 2.4. For SCCharts, this can be condensed into two
major opportunities for improvement;

1. the introduction of a more precise and explicit notation for time-related
behavior, such as time-outs or periodic executions; and

2. an efficient and precise execution model that embraces the sparseness
of inputs and does not trigger reactions for the sole purpose of tracking
time.

Modeling Timed Behavior (1.) The abstraction from time in synchronous
languages typically comes at the price that all references to physical time
must somehow be resolved by the environment. The multiform notion of
time [Ber99] is one embodiment of this principle. Following this concept,
physical time becomes a second-class citizen, expressed in abstract inputs
indicating the passage of time, as the pendulum SCChart illustrates. While
this is consistent with the synchronous abstraction, at the end of the day, it
makes it harder to for a programmer to express real-time behavior.

Bourke and Sowmya investigated this problem and found that the
granularity of time inputs easily imposes imprecision and inconsistencies
in time measurements [BS09; Bou09]. Their solution is the introduction of
real-time delays. Similarly, LF also has an explicit notation for real-time, to
specify timers, define deadlines, and schedule actions. Hence, in order to
express precise real-time delays for a program and communicate these to the
environment, it is important to have a form of timed modeling capabilities
with access to real-time.
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Efficient Execution (2.) The SCCharts implementation of the Furuta pen-
dulum counts milliseconds to control its timed behavior, as presented in
Section 2.4. Consequently, over the course of a three seconds long execution,
(at least) 3000 ticks need to be executed in order to yield the intended
behavior w.r.t. to real-time. Moreover, such an execution is only feasible
if the computation time for each tick is below 1 millisecond. Otherwise,
the behavior would lag behind, as tick execution must not overlap. For the
same reason, milliseconds were chosen as a compromise for time granu-
larity in the SCCharts implementation. A higher precision increases the
general execution load and may cause delays. Yet, a more coarse-grained
resolution will impose delays when timed effects are rounded up to the
next millisecond, as it is the case for the sound signal in the SoundController

SCChart.
Section 4.5.1 will investigate the tick load of different implementations.

It reveals that the LF model requires only 1300 ticks in the same three-second
simulation1, while producing a more precise timing for the sound signal.
This is a result of the sparse event-driven execution that only triggers a tick
if an input event occurs or an internal timing event fires, such as timers or
actions. Hence, a comprehensive timed modeling concept should include a
dynamic (sparse) tick execution to decrease the system load. In turn, this
opens up space for (theoretically) scheduling ticks onto more precise points
in time.

Goals This chapter investigates how to incorporate physical time into
synchronous languages, using SCCharts as an example. While such an
endeavor is not new and there are many viable solutions in various other
languages, see Section 4.1, the goal is to emphasize efficiency in terms of
runtime and implementation, as well as modeling aspects in the context
of synchronous statecharts. This particularly includes evaluating and in-
corporating the latest developments in sparse and event-driven execution
models, as in LF or with dynamic ticks by von Hanxleden et al. [HBG17].
More specifically, the design is guided by the following principles.

1This simulation of the pendulum works at a 5 msec pace, which makes tick loads below
3000 possible.
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Determinism The semantics should fit seamlessly into the synchronous
paradigm and provide deterministic behavior, e. g., outputs are fully
determined by inputs. For SCCharts that means there should be no
changes to the underlying SC MoC.

Resilience A solution must cope with run-time variations and imperfections
of physical timers. It should be possible to avoid accumulations of timer
imperfections and to detect variations and lags.

Scalability The number of (concurrent) timers should not be restricted or
impose significant overhead per timer.

Fine granularity The specification of time constrains should not be restricted
by a specific granularity. For example, it should be possible to specify
timeouts of 1 sec and 3.1415926 msec in the same model.

Time composability Time-based constraints should remain their intuitive
semantics if composed. E. g., waiting 1 sec twice should mean the same
as waiting 2 sec’s once.

Simultaneity and order Timers that started in the same tick and run the same
duration should expire in same tick.

Lean interface The inference between the model and its environment should
be simple, lean, and independent of application specifics or the number
of timers.

Seamless compiler integration In the context of SCCharts, any solution should
fit into the incremental compilation concept [MSH14; Smy21]. It should
consist of a minimal core, with more advanced modeling aspects imple-
mented as extended features, see Section 2.3.

The concept of timed SCCharts presented in this chapter embodies these very
principles and implements dynamic ticks to create a precise and efficient
execution model with a light-weight interface and implementation.

Outline This chapter starts with a brief overview of related work on time
in modeling languages and synchronous languages in particular. Next,
Section 4.2 will introduce the timed automaton notation in SCCharts and
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other modeling capabilities of timed SCCharts. Section 4.3 discusses differ-
ent execution regimes for a timed model, ultimately settling for dynamic
ticks. Then, Section 4.4 illustrates how dynamic ticks are implemented in
SCCharts and discusses strategies to deal with imperfections when exposed
to physical time. Finally, Section 4.5 evaluates the performance of timed
SCCharts and compares the design to event-driven approaches, such as LF.

4.1 Related Work

Time plays an important role if a program has to work in relation to the real
world, most prominently in the form of real-time systems. The same holds
for distributed execution [LL21]. Many specification models and languages
have been developed over the years that provide notions of time. Here,
synchronous languages are again of particular interest to this thesis.

4.1.1 Modeling with Time

Specifying a model with explicitly timed behavior requires a capable mod-
eling formalism and a notion of time.

Timed Automata A formalism for timed models that is particularly rele-
vant in the context of state machines and SCCharts are timed automata by
Alur and Dill [AD94]. Timed automata consist of state-transition graphs
with additional real-valued clocks that enable expressing timing constraints
for transitions. They extend the theory of ω-regular languages into timed
words that pair the input word with an (infinite) sequence of real-valued
time values indicating their occurrence. This results in a dense-time model.
Clocks are similar to regular program variables but bound to the continuous
flow of time. Having multiple clocks with the option to independently reset
their values in addition to their natural progression provides a powerful
and flexible modeling concept for the specification of temporal constraints.

Timed automata in different forms and variations have been extensively
studied for verification purposes [AD94; ACH+95; OSY94; HNS+94]. In the
context of this thesis, they will be used with a focus on code synthesis and
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the synchronous MoC. This includes the investigation of practical execution
strategies, see Section 4.3.

Altisen and Tripakis [AT05] investigate the effects of execution seman-
tics and platforms on the timed automaton behavior. They propose an
implementation methodology that wraps a timed automaton into a global
execution model, to decouple the real-time access and interpret the original
model based on simulated time. This approach makes it possible to keep a
fixed behavior for timed automata that is independent of influence of the
execution environment on timers, which facilitates platform-independent
verification.

This thesis will not focus on the topic of verification, but the interface
of timed SCCharts to their environment also facilitates a form of wrapped
simulated time. However, as Section 4.4 will discuss, it also supports the
opposite approach by providing access to the raw real time. Exposing the
model to platform-specific imperfections may yield a different behavior
but also enables the model to detect them and adjust its control behavior
accordingly.

Multirate Timed Automata Timed automata have been extended in vari-
ous ways, one example are multirate timed automata (or multirate timed
systems) [ACH+95]. There, each clock progresses at its own speed, possibly
varying between a lower and an upper bound. This further extends the
capabilities of clocks to model timed behavior, e. g., in the context of Cyber
Physical System (CPS) [LS17]. Olivero et al. illustrate that multirate timed
automata can be mapped to single-rate timed automata [OSY94].

The implementation of timed automata in SCCharts will feature single-
rate clocks, but their design as an extended feature also facilitates a more
advanced behavior in the future.

Discrete Timed Automata Pinisetty et al. [PRS+17] introduce discrete
timed automata to formalize runtime enforcement of CPS, also using SC-
Charts in the process. Instead of real-valued clocks they use discrete clocks,
counting specific timed events, in this case periodic ticks.

While timed SCCharts may also use integer-typed clock implementa-
tions to circumvent issues of floating-point arithmetic, discussed later in
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Section 4.2.2, they rely on a dense-time model. Furthermore, dynamic ticks
are specifically designed to overcome a fixed discrete time progression, as
in a periodic execution, see Section 4.3.

Uppaal The Uppaal tool provides an environment for modelling and veri-
fying real-time systems using timed automata [LPY97]. These systems are
specified as a network of non-deterministic sequential processes featur-
ing concurrency, advanced data types, and communication channels with
synchronization and prioritization capabilities. Uppaal supports model
checking and simulation by using symbolic interpretation and statistical
model checking techniques [BBB+10].

For timed automata in SCCharts the focus lies more on the aspects of
practical real-time modeling in a synchronous context, rather than verifi-
cation. Nevertheless, with model checking capabilities in SCCharts [Sta19],
there is also potential future work in this direction.

CCSL The Clock Constraint Specification Language (CCSL) [AM09] is a
notation for expressing clock domains and relations, independent of a
specific programming language. Clocks in the sense of CCSL correspond
more to the concept of polychronous systems [GTL03], rather than clocks
in timed automata. Yet, CCSL not only provides patterns of classical syn-
chronous clock constraints for multiclocking [GG10] or asynchronous clock
relations [Lam78], but also real-time representations of physical time. For
example, CCSL is used in a simulation and debugging tool for LF pro-
grams [DCB+21].

For timed SCCharts, CCSL opens up a future avenue into multiclocked
and polychronous systems design, see Section 6.3.2.

Ptolemy The heterogeneous modeling environment of Ptolemy II provides
different domains to express timed behavior, such as discrete events or
continuous time [EJL+03; Pto14]. It also includes a multirate timed automata
implementation, illustrated later in Figure 4.1. Internally, time is a global
property of the simulation and provided as a single unit to all components.
A floating-point number specifics its resolution, but to ease and harden
time arithmetic, time itself is handled in the form of integer multiples of
that resolution [CLB+19].
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In timed SCCharts, time also conceptually originates from a real-valued
domain, but the implementation is adjustable on an application-specific
basis, see Section 4.2.2.

ROOM The real-time modeling capabilities of the actor-oriented ROOM

language [SGW94] include time-controlled behavior. In contrast to a model-
based specification, such as timed automata, ROOM supports the periodic
creation of events [SFR97], similar to timers in LF. Additionally, the ROOM

virtual machine provides access to a low-level timeout service. Timing
constraints in ROOM mainly concern classical real-time scheduling and
response times analyses, as they specify bounds on arrival times of time-
triggered events and deadlines on event-processing sequences [SFR97].

While timed SCCharts can be used for hard real-time tasks, see Sec-
tion 4.5.2, this proposal does not investigate the combination with real-time
scheduling strategies or analyses.

Statecharts Harel’s proposal for statecharts also includes expressing timed
reactions [Har87]. Using an implicit notion of timers, a transition can specify
a timeout based of the occurrence of an event or the entry of the state. Timers
refer to a global notion of discrete time steps that is controlled by the way
the model is simulated [HN96].

The effects of different simulation strategies on timeouts are similar
to the consideration of logical and physical time in Section 4.4. However,
timeouts in statecharts are an abstracted notion of discretized time and do
not provide access to real time, limiting the model in reacting to its actual
environment. Furthermore, timed SCCharts account for both discrete and
real-valued models of time.

4.1.2 Synchronous Languages

Classically, synchronous languages rely on a more abstract notion of time.
Yet, there are several synchronous languages that handle time in a more
robust and precise fashion compared to the multiform notion.

Esterel In its classical form, Esterel relies on the multiform notion of
time [Ber99]. Bourke and Sowmya investigate the implications and draw-
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backs of this design, such as imprecisions when measuring time intervals
via fixed-paced time inputs and inconsistencies between multiple time
inputs in different granularity [BS09]. They propose an extension by real-
time delays. These timed delays act as a form of abstract macros that are
subsequently implemented using sampling or event-based strategies, sim-
ilar to the considerations in Section 4.3. However, there is a gap between
the expressed timing constraints and the actually provided behavior by
the (platform-specific) implementation. This was one motivation for the
development of dynamic ticks by von Hanxleden et al. [HBG17].

The proposed concept for timed SCCharts tries to overcome this gap by
using dynamic ticks and the option to handle raw physical time inputs in
the model.

Zélus Zélus [BP13] mixes both discrete time and continuous time behavior
specification in a single synchronous language. It uses a discrete Lustre-like
dataflow syntax with automata and combines it with ordinary differential
equations for continuous behavior. At runtime, an external solver simulates
the continuous time domain and detects zero-crossings, at which the discrete
sections of the program can react. The type system and causality analysis
ensure that the hybrid segments correctly align and no discontinuities occur
during integration of the two domains.

The proposal for time in SCCharts does not aim to express continuous
behavior but to provide a timed extension that enables explicit modeling
of time-related behavior based on a combination of real-valued and logical
constraints.

Argos The statecharts-like synchronous modeling language Argos [Mar92]
is a predecessor of SyncCharts [And03] and thus in spirit also of SCCharts.
An extension by Jourdan et al. introduces the specification of temporized
states for verification purposes [JMO93]. States can carry timeouts, similar
to statecharts, and must be left before it expires.

Timeouts in Argos are abstract and can either be implemented by ded-
icated discrete events that are passed to the program but cannot occur
simultaneously with other inputs, or by internal timed automata. However,
Argos does not provide an accessible notion of time to handle differences
in the implementation, as timed SCCharts strive for.
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Céu The imperative synchronous language Céu [SIL+17] is strongly in-
spired by Esterel. However, there are some key differences, such as the
notion of time, which is a first-class citizen in Céu. Timers can be used to
express real-time delays and expose physical lag to the program to enable
adjusting the behavior. Timing events dynamically trigger reactions and the
Céu runtime tries to automatically compensate for physical lag.

There are many similarities between the handling of time in Céu and
timed SCCharts. However, a core difference is the fact that Céu uses an
event-based runtime and thus is more closely related to LF. This includes a
notion of logical time for events. In contrast, the concept of timed SCCharts
embraces the classical tick function-oriented approach and is not bound to
an event queue or event-based processing.

The Sparse Synchronous Model Inspired by the concept of PTIDES [ZLL07;
ELM+12], Edwards and Hui developed the Sparse Synchronous Model
(SSM) [EH20; HE22]. It combines an event-driven, and hence sparse, execu-
tion regime with the principles of synchronous languages. Consequently, it
is closely related to Céu and also LF. While externally- and time-triggered re-
actions are driven by events, the internal program behavior is synchronous
and based on activation of routines, similar to reaction in reactors but
permitting recursion. In terms of timing specification, the SSM provides a
statement that postpones writes to variables based on a real-time delay,
while another one can wait for the occurrence a write access.

With dynamic ticks, timed SCCharts also achieve a more sparse execu-
tion regime but also provide a more flexible interface for real time behavior.

4.2 Timed Automata in SCCharts

Timed automata are a well-established and extensively studied formal-
ism for the behavior of real-time systems, see Section 4.1.1. The research
question investigated in this section is: How can we seamlessly integrate
timed automata into SCCharts, while maintaining the underlying MoC and
modeling principles and capabilities? In particular, this includes practical
considerations, such as a robust execution semantics, efficient and scalable
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4. HYBRID SYSTEMS

Figure 4.7: A timed automaton that generates a pure output event every T time
units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure 3.10.

Lee & Seshia, Introduction to Embedded Systems 87

Figure 4.1. Trafficlight controller modeled as timed automaton by Lee and Se-
shia [LS17] (CC BY-NC-ND 4.0).

code generation, and handling varying granularity in the time representa-
tion, imposed by the application environment or hardware. Additionally,
this section will investigate the utilization of timed automata into a higher
level construct for multiclocked synchronous programs.

The Traffic Light Controller Example The Furuta pendulum example
illustrates the need for improved timed modeling capabilities in SCCharts.
However, the parts of the model that can be expressed in timed automata
are relatively small and are best matched with more advanced concepts, as
Section 4.2.3 will illustrate. Hence, to introduce, discuss, and investigate
the basic notion and semantics of timed automata in SCCharts, the traffic
light controller is better suited example. It is a model used by Lee and
Seshia [LS17] to discuss (multirate) timed automata in the context of CPS

design. Figure 4.1 shows this traffic light controller.
The represented traffic light has three lights, green, yellow, and red, to

control the car traffic. An additional button for pedestrians causes the traffic
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light to temporarily switch to a red light to stop the traffic and provide for
a safe crossing of the street.

The controller handles the timed behavior of a single traffic light. It has
a real-valued clock x, a pedestrian input that indicates a pedestrian request
for crossing, and three outputs sigR, sigG, sigY. The type pure denotes a
signal without payload that is either present or absent at each reaction. For
the pedestrian input this denotes the event of pressing the button. Likewise,
the outputs use the signal to trigger color changes rather than controlling
the state of the light directly. It is assumed that the red light is turned on
initially and subsequently emissions of signals will switch from the current
configuration to the requested one.

In this notation, the clock is represented by a first-order differential
equation on a real number. It can be explicitly set (e. g., x(t) := 0) or used
as a transition constraint. Time progresses in states controlled by an explicit
derivative, in this example one (ẋ(t) = 1). Furthermore, the resolution of
time is expressed in abstract units. For this example, we can assume that
one time unit corresponds to one second.

The automaton for the controller consists of four states red, green, yellow,
and pending, with red as the initial one. Transitions between states carry
optional guards and effects, using the same notation as in SCCharts. One
could denote guards as triggers, analogously to SCCharts, but this would
already imply a specific execution semantics, as discussed in Section 4.2.1.

The system starts in the red state. When the clock x reaches or surpasses
the threshold of 60, the transitions to green is enabled, which will emit the
signal for switching to a green light and resetting the time to zero. In the
green state the system waits for a pedestrian to push the button, but the
following state depends on the passed timed. Case 1, if less than 60 sec
passed since entering green, the automaton will transition to pending, but x

is not reset. It remains there until the time has reached at least 60 sec, then
the yellow light is turned on, the timer is reset, and the state is switched to
yellow. Case 2, if the pedestrian signal is received after at least 60 sec have
passed, the automaton transitions directly to yellow with the same output
and reset. After at least 5 sec in state yellow, the automaton switches to red,
signals a red light, and resets the time in x.
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4.2.1 The Eager Semantics

At a first glance, the specification of the traffic light controller seems rather
clear and straight-forward. However, when considering specific scenarios,
there is some variation in the way the controller may behave.

Formal Model The original definition of timed automata [AD94] is based
on a timed regular language. It associates each input symbol in a word
with a real-valued time stamp. Formally, a timed word is a pair (σ, τ),
where σ = σ1, σ2, . . . is an infinite word over the input alphabet Σ and a
timed sequence τ = τ1, τ2, . . ., an infinite sequence of time values τi P R,
satisfying monotonicity and progress constraints. Given a timed word, a
run of a timed automaton is an (infinite) sequence of state transitions,
analogous to standard regular languages defined by classic automata. In
timed automata, a transition only reads the input if its clock constraints
are satisfied. Furthermore, runs have to provide an initialization, starting all
clocks at zero in the initial state, and consecution, relying only on transitions
that satisfy the input and clock constraints, while clocks only progress in
adherence to the input time and internal resets.

The fact that the automaton is driven by inputs and only implicitly by
time (in association with inputs) can be the source of unintended behavior.
To concretize this, assume that in the traffic light controller the pedestrian
button is triggered at times 40 and 122.2. This constitutes the following
input sequence (timed word): (⟨{pedestrian}, 40⟩, ⟨{pedestrian}, 122.2⟩). For
convenience, this notation extends the concept of timed words such that
the inputs σi do not have to consist of exactly one event, but constitute
an arbitrary input set that is associated directly with a time stamp. It also
permits finite input sequences.

Purely Input-Driven Semantics From a practical perspective, the timed
automaton now needs to perform reactions in order to process a given an in-
put sequence, one for each time-stamped input in the sequence. Figure 4.2a
illustrates an execution trace of the traffic light controller consuming the
previous input sequence. The trace starts at time 0 with the implicit ini-
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0 t

Input:
Output:

40 122.2

pedestrian
sigG
pedestrian

(a) Purely input-driven execution

0 t

Input:
Output:

40 60

pedestrian
sigY sigRsigG

187.2

pedestrian
sigG

122.2 127.2

(b) Eager semantics execution

Figure 4.2. Illustration of variation in the timed behavior of timed automata based
on the execution strategy. The execution traces show the reactions (vertical strokes)
of the traffic light controller under different regimes. (Publ. in [SHM+18; SHM+20] ©2018

IEEE)

tialization.2 At time 40 nothing happens because the timing constraint for
the transition to green is not met. This assumes that the timed automaton
shown in Figure 4.1 has implicit default transitions, enabling the model to
remain in the current state if no outgoing transition is available. Otherwise,
there would be no admissible run for this input sequence because there
is no transition that can accept any input at time 40. Finally, at time 122.2,
the automaton transitions to green and emits sigG. Then there is no further
reaction due to the absence of further input events.

While this run constitutes a valid execution of the timed automaton, it
most certainly does not correspond to the intended behavior of the creator
of the model. For example, the output sigG should probably not occur at
time 122.2, even though 122.2 ě 60 certainly holds, but rather at time 60. To
reflect such behavior, time (without further input events) also needs to be a
trigger for reactions, in particular if the automaton contains transitions that
are guarded solely by timing constraints.

Eager Semantics In order to issue additional reactions, the input sequence
must be extended by events in the form ⟨H, τx⟩ that originate from the
model itself to trigger reactions to time. However, this raises the question at

2One could also make this initialization reaction explicit by including τ0 (defined as zero)
in the input sequence: (⟨H, 0⟩, ⟨{pedestrian}, 40⟩, ⟨{pedestrian}, 122.2⟩).
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TimedTrafficLight
input signalpedestrian
output signal sigR, sigG, sigY
clock x = 0

red

green

pending

yellow

x >= 60 / sigG; x = 0

1: pedestrian && x < 60 2: pedestrian && x >= 60 / sigY; x = 0

x >= 60 / sigY; x = 0 x >= 5 / sigR; x = 0

-

Figure 4.3. The traffic light controller modeled in SCCharts using the timed automa-
ton notation. (Publ. in [SHM+18; SHM+20] ©2018 IEEE)

which time (τx) a reaction should occur. For example the transition from
red to green could occur at any time from 60 onward. Lee and Seshia [LS17]
resolve this by assuming that a transition is taken as soon as it is enabled.
Thus, the automaton conceptually reacts “continuously.”

This assumption can be denoted as eager semantics and leads to the
trace in Figure 4.2b. It augments the trace in Figure 4.2a by further input
events at times 60 (emission of sigG, transition to green), 127.2 (emission of
sigR), and 187.2 (sigG again).

This eager semantics constitutes the targeted behavior for timed au-
tomata in SCCharts, and Section 4.3 will discuss different approaches to
achieve this semantics in practice.

4.2.2 Timed SCCharts

As it turns out, the synchronous MoC fits quite naturally into the execution
semantics of timed automata. Likewise, the state machine notation makes
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TimedTrafficLight
input signalpedestrian
input floatdeltaT = 0.0
output signal sigR, sigG, sigY
float x = 0

red
during / x += deltaT

green
during / x += deltaT

pending
during / x += deltaT

yellow
during / x += deltaT

x >= 60 / sigG; x = 0

1: pedestrian && x < 60 2: pedestrian && x >= 60 / sigY; x = 0

x >= 60 / sigY; x = 0 x >= 5 / sigR; x = 0

-

Figure 4.4. The traffic light controller SCChart after the clock transformation. (Publ.
in [SHM+18; SHM+20] ©2018 IEEE)

SCCharts well-suited for expressing timed automata. With timed SCCharts,
the modeling capabilities of SCCharts are extended by explicitly timed
behavior in the form of timed automata. The following concept is based on
introducing a new extended feature: clock declarations.

Figure 4.3 shows the SCChart implementation of the traffic light con-
troller. Despite some minor syntactical differences, the structure of the
state machine itself and its transitions and their effects are the same as in
Figure 4.1. The new SCCharts keyword clock declares the clock x, which
will automatically advance with the external progression of time. As in
timed automata, it can be used to trigger/guard transitions and can be set
to arbitrary values.

Simple Transformation In line with SCCharts’ concept of extended fea-
tures, clock declarations are replaced during compilation. Figure 4.4 presents
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the compiled intermediate result of the TimedTrafficLight SCChart, revealing
its actual internal implementation and behavior. The clock x is now an
ordinary floating point variable. Additionally, the SCChart received a new
input deltaT that is used for the progression of clocks. The only obligation
on the run-time environment is that at each tick deltaT is set to the time
passed since the last tick. This corresponds to the timed sequence τ that
consists of the elapsed time between events.

The progression of time for clock x is represented by during actions in
each state. They increase x by deltaT. The during actions are non-immediate
to ensure that only the time passed inside a state is considered and clocks
are not advanced multiple times. The advancement of x could be multiplied
by the slope of the clock to support a multirate timed automata design.
However, the implementation does not yet provide a syntax for this feature.
Yet, a user could always perform the described transformation manually
and adjust the result. In this example, the scaling of the clock is irrelevant,
as it is 1 in all states.

Sequential Constructiveness When considering the individual execution
steps of the different ticks in the traffic light controller, one can notice
that in this implementation x may instantaneously assume up to three
different values within a single tick. The value at the beginning of a tick, the
incremented value computed by the during action, and the reset value when
a transition is taken that resets x to zero. While such destructive updates
are a problem for most synchronous languages3, the SC semantics handle
them with ease, as they follow a natural sequential ordering.

Concurrent Clock Access The transformation illustrated by Figure 4.4 is
inspired by classical timed automata and advances clocks in each state.
In part, this is also a precaution for supporting multirate timed automata.
However, in contrast to a simple automaton, SCCharts modeling involves
using hierarchy and concurrency, which can create situations in which this
approach is insufficient.

3Implementing the same concept in a non-SC synchronous language would be a bit more
involved. Still, with for example an SSA-like renaming multiple values per tick could be
supported in classical synchronous languages [SSH+18b; SSH+18a].
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TimedTrafficLight
input signal pedestrian
input float deltaT = 0.0
output signal sigR, sigG, sigY
float x = 0
schedule {conflicting,conflicting,commuting,commuting} ClockUIUR xSD
during / x += deltaT

red

green

pending

yellow

xSD 3, xSD 1

x >= 60 / sigG; x = 0

xSD 3

xSD 0

1: pedestrian && x < 60

xSD 3, xSD 1

2: pedestrian && x >= 60 / sigY; x = 0

xSD 3, xSD 1

x >= 60 / sigY; x = 0

xSD 3, xSD 1

x >= 5 / sigR; x = 0

-

Figure 4.5. The traffic light controller SCChart after the advanced clock transforma-
tion using Scheduling Directives.

In the presence of concurrency, multiple states can be active at the same
time, but we do not want each of them advancing the same clock. Hence,
if multiple concurrent regions access the same clock, the advancement of
clocks is no longer handled in each state but in a separate region (during
action) concurrent to all these regions. For multirate timed automata this
requires a consensus of all regions for the applied slope.

Figure 4.5 shows the result of this advanced transformation approach,
ignoring the lack of necessity due the absence of concurrency in the traffic
light controller. The main difference to the previous result is that all during
actions that handle the progress of the clock x are consolidated into a single
during action on top level. However, there is a major problem with this
approach, as it can no longer be scheduled under the standard SC semantics.
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Counter Reset
output int counter = 0

Wait Increment
/ counter++

- Increment

Wait Reset
counter >= 10 / counter = 0

- Reset

Figure 4.6. A concurrent counter reset, illustrating the fundamental problem with
clocks managed by a single concurrent during action [SSH19]. (©2019 IEEE)

The issue is caused by the now concurrent during action and its relations
to the resets and readers. Previously, the sequential relation of inner state
behavior and outgoing weak abort transitions constituted their ordering, but
now they are subject to the concurrent communication protocol. However,
the IURP orders updates (here, the clock progression) after the initializations
(reset) and both before reads, while the transitions enforce a sequential
order from reading the clock to resetting it. This constitutes a causality
issue. Figure 4.6 illustrates the underlying problem. It shows a counter
(corresponding the clock) that is updated while concurrently read and then
reset. Additional arrows indicate the data dependencies imposed by the
IURP (blue for initialization Ñ update and green for update Ñ read).

One way to work around this issue could be the encoding of the clock
update as an absolute write while users have to express resets as updates
(e. g., x -= x). However, the SC semantics are not conceptually bound to
the IURP, as it is only one possible synchronization protocol implemented
for SCCharts, and should not be limited by it. For this reason Smyth et al.
created Scheduling Directives (SDs) [SSH19]. The issue with clock resets was
one motivation to extend the SCCharts compiler to support customized
scheduling protocols that override the default IURP.

The SCChart in Figure 4.5 contains the SD xSD that introduces a schedul-
ing regime for the clock x. The ClockUIUR regime is an extended variant of the
standard three-staged IURP, but with an additional phase at the beginning
for advancing the clock. The SCChart shows that only the during action is
assigned to this stage (xSD 0), while the transitions indicate that some of
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their triggers and effects are subject to phase one (reset) and three (read).
The current visualization does not yet support a per statement display of
scheduling assignments, as present in the source code. Classical updates
(relative writes on x by the user) that would fall in stage two are not present.
The declaration of xSD lists stages as conflicting and commuting, which has no
further effect in this specific example and will be discussed in more detail
in Section 5.4.2.

The use of the custom SD xSD renders the SCChart in Figure 4.5 permis-
sible for the SCCharts compiler, while providing the same behavior as the
model in Figure 4.4 because the clock progression is scheduled before any
other access.

Similarly, the same issue arises with hierarchy, even in the absence of
concurrency. At a first glance, one could think that adding during actions
only to inner states but not the superstates, following the previous strategy,
would be sufficient. However, regions may terminate, leaving no active state
other than the superstate, and this state may not be left at that time (e. g.,
in the absence of a termination transition). This results in clocks not being
updated. Yet, updating clocks only in the top-most superstate, again, creates
a concurrent context between this during action and inner resets, and that
requires an SD.

Compositional Effects on Time Progression By default the SCCharts
compiler tries to use the simple transformation, since it best corresponds
to the classical flat timed automata schema. If concurrent or hierarchical
use of a clock is detected, an error is raised suggesting the activation of the
advanced transformation. This is a manual process because it changes the
way clocks interact with other SCCharts features.

The simple transformation assumes that there is only one active state
using a specific clock. This state controls the progression of time in that
clock, e. g., illustrated by the state-local rates in Figure 4.1. Hence, any effects
on the active state of the timed automaton also affect the clock. For example,
if the state is suspended, so is the progression of time; and preemption of
the state likewise preempts the clock.

In the transformation with support for concurrent access, the behavior is
different. Here, the clock is bound to the superstate it is declared in. Hence,
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if any contained region or inner state is suspended, it does not affect the
progression of time. This is important, since states in other regions may not
be suspended and rely on the clock’s progression. Only effects concerning
the state or region declaring the clock will influence its behavior, since this
is the location of the synthesized during action that handles the progression
of time.

Time Resolution The transformations illustrated in Figure 4.5 and Fig-
ure 4.4 both convert the clock declaration into a float4 variable. While this is
in line with the formal definition of timed automata and enables normal-
izing time to the common (SI) base unit seconds, it subjects the practical
implementation in SCCharts to the known limitations and imprecision of
floating point representation and arithmetic in computers, such as quantiza-
tion errors [CLB+19]. For demonstration purposes or in models without a
known hardware context, such as the traffic light controller example, such
an approach is acceptable. However, as soon as the model is supposed to
run on hardware and meet its specified timing behavior, a more robust
integral-based resolution is usually desired. This for example to preserve the
associative law for additions. Yet, this requires a more hardware-platform-
specific implementation, which is difficult to provide generically.

For example, if targeting a nanosecond resolution in C, the standard
time library can provide this precision on Linux, but Windows only yields
milliseconds or requires a different API. Embedded processors also vary in
supported time access and resolution. Furthermore, effectively handling
time in nanoseconds requires integer types with more than 32-bit, which is
supported on common platforms but cannot be guaranteed when working
with embedded processors.

LF solves this issue by providing a reasonably platform-independent time
API for each target language. In C, these are macros5, such as SEC in line 17 of
Listing 2.4. Time specifications on the LF coordination level, for example 15

msec in line 14 of Listing 2.6, internally use the same macros. A preprocessor
directive can switch these macros between micro and nanosecond precision.

4In SCCharts float is an abstract floating point number and does not express a specific
precision limitation.

5https://github.com/lf-lang/reactor-c/blob/4c97e960d9a40d60dfb3725678dbd38176023f45/include/

core/tag.h
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While this approach is appropriate for LF, since it controls the com-
pilation of the execution environment for LF programs, SCCharts follow
a more abstract approach in accordance with the concept of generating
tick functions, see Section 2.3.2. The deltaT interface likewise aligns with
this concept and puts the extraction of time into the hand of the external
environment.

For timed automata in SCCharts, the float type acts as the default type.
However, the transformation can be configured to synthesize any type.
For example by annotating the SCChart with @IntegerClockType "int64_t",
the code generator produces host code type for 64-bit integers in C, see
Section 2.3.3. Yet, the timing guards may require manual adjustment to the
targeted resolution. This can be done by appropriate constants, as in line 6
of Listing 2.5, or using methods introduced alongside OO in Section 5.3.1.
The timed automaton implementation of the Furuta pendulum in SCCharts
presented in the next section will illustrate this approach by using an
SCCharts-based class to provide time conversion utilities. This way, one can
achieve a reasonably platform-independent design that is easily adaptable
to changes in hardware. Alternatively, an SCChart can be specified with
implicit knowledge about the external resolution of time, as in Figure 4.23
in the context of the DS demonstrator.

Furthermore, timed SCCharts provide the special type time for use
in combination with clocks. During compilation, time declarations will
automatically adjust their type to the one used in clocks and deltaT, i. e.,
they comply with the @IntegerClockType annotation. This enables the user to
store time independent of the actual resolution and host type, and keeps
hardware-specific modeling at a minimum.

4.2.3 The Furuta Pendulum in Timed SCCharts

In the Furuta pendulum example, both the PendulumSound and Pendulum-

Controller use timed behavior and can be re-modelled using timed SCCharts.
The actual changes only involve replacing the milliseconds counters by
clocks.
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PendulumSound
input ref TimeUtil tu
input float angle
output bool sound = true
clock t
time duration = 0
immediate during / duration = tu.sec(1 / sound_frequency(angle) / 2)

Alternate

t >= duration / sound = !sound; t -= duration
-

Figure 4.7. The PendulumSound component modelled as timed SCChart.

Pendulum Sound Figure 4.7 illustrates the PendulumSound SCChart as
a timed automaton. In contrast to the original implementation, see Sec-
tion 2.4.2, this component no longer requires the msec input, the msecs

counter, or the during action in state Alternate. Instead, it relies on the new
clock t to track time automatically. Considering that the transformation
for timed automata will reintroduce the same components to track time in
clocks shows the nature of extended features.

Compared to the traffic light example, this model does not use a fixed
value as timed guard but another variable to model the angle-dependent
shifting of the threshold for the sound signal. This extends the classical
timed automaton model [AD94], which only permits constant thresholds.
While fixed value constraints ease verification, this example shows that
variable thresholds are also relevant in practice. The transformation of
timed automata in SCCharts naturally supports this feature.

Another difference to the previous implementation is the use of the time

type for the duration variable. This ensures the time resolution and type
matches the clock t. In the same spirit, the sec method is used in the during
action to convert the half cycle length into the appropriate resolution. The
method is provided by the tu object of type TimeUtil and is passed as an
input to the SCChart. Section 5.3 will provide a detailed introduction of
these OO features. In this example, TimeUtil represents an interface for time
conversion, inspired by the LF macros. The concrete object that is passed
as input will implement these methods for a specific time resolution, e. g.,
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PendulumController
input ref TimeUtil tu
input float theta, d_theta, phi, d_phi
output float control = 0
output bool led = false
float catch_phi

SwingUp
immediate during / control = swingup_control(theta, d_theta)

Catch
during / control = catch_control(theta, d_theta, phi, d_phi)

period tu.msec(15)

Toggle/ led = !led

- LED

Stabilize
during / control = stabilize_control(theta, d_theta, phi, d_phi, catch_phi)

exit_swingup(theta) / led = true

exit_catch(d_phi) / catch_phi = phi; led = true exit_stabilize(theta) / led = false

-

Figure 4.8. The PendulumController component modelled as timed SCChart.

nanoseconds. In the future, the interface and common implementations
may be provided as a standard library by the SCCharts tool. This approach
illustrates how the model can be kept independent of the underlying time
resolution and easily adapted to new platforms. Alternatively, one could
use hard-coded factors in the model, such as SEC_TO_MSEC in Listing 2.3 or
invoke host code functions to achieve a similar design.

A last difference that should be noted in comparison to the traffic light
example is the way the clock t is reset. Instead of setting the clock value to
zero, only the duration threshold is subtracted. This design is a precaution
for timing imperfections in the actual execution, if t is bound to physical
time. Section 4.4.3 will discuss this “soft” reset in detail.

Pendulum Controller In the PendulumController component, the only tim-
ing aspect is the periodic blinking of the LED during the Catch mode. While
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this again can be solved with a timed automaton, the SCChart model in
Figure 4.8 illustrates the use of another extended feature in timed SCCharts:
periodic regions. The period directive confines a region (or state) to a periodic
activation. In this example, the state machine in the LED region toggles the
boolean value unconditionally in each step, but the period will ensure that
these reactions are 15 msecs apart. The next section will illustrate that this
feature has a straight-forward translation into timed automata and can be
considered syntactic sugar.

4.2.4 Multiclock SCCharts

Timed automata naturally support multiple clocks and so does its SCCharts
implementation, as there is no restriction of the number of clock declarations.
In synchronous languages, there is also the concept of multiclocking [GG10],
for example in Signal or Multiclock Esterel by Berry and Sentovich [BS01].
However, in this context the term “clock” does not describe real-valued
time measurement but a hardware clock that drives a hardware circuit or
similarly designed software. In other words, this notion of clocks refers to
the source of discrete synchronous ticks.

In multiclocked systems, different parts of the program are activated
by different clocks. These clocks refine a base clock and can be considered
additional inputs to trigger specific parts of the program. Polychronous
systems [GTL03], as in Signal, go beyond refining clocks and support
loosely coupled clocks synchronized by clock relations and hierarchies.

Multiperiodic SCCharts With the period directive, timed SCCharts pro-
vide means to express multiclocked SCCharts based on real-time. Periodic
regions and states subject their inner behavior to a new clock that refines
the base clock of the model. Instead of deriving their pace directly from the
discrete ticks of the base clock, periods bind it to a real-time clock used in
timed automata. This is especially relevant for modeling with dynamic ticks,
as presented in Section 4.4, because dynamic ticks do not provide a periodic
base clock to refine but instead derive the pace for ticks dynamically from
inner timing requirements.
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TwoLEDs
output bool ledA = false, ledB = false

period 2.5

/ ledA = !ledA

- A
period 0.333

/ ledB = !ledB

- B

(a) SCChart with multiple periodic regions

TwoLEDs
output bool ledA = false, ledB = false

clock c = 0
bool tick = false

tick
/ ledA = !ledA

- A

1: c >= 2.5
/ c = 0;
tick = true

2: / tick = false

- Period

- A

clock c = 0
bool tick = false

tick
/ ledB = !ledB

- B

1: c >= 0.333
/ c = 0;
tick = true

2: / tick = false

- Period

- B

(b) Transformed SCChart

Figure 4.9. Example of a multiclocked SCChart that has two LEDs blinking in
different frequencies.

Transformation Figure 4.9a illustrates a multiclocked SCChart using pe-
riodic regions. The example is inspired by the LED handling in the Catch

mode in Figure 4.8. It simply toggles two LEDs, ledA and ledB on and off.
Each in separate regions and with different periods, 2.5 sec for ledA and
0.333 sec for ledB.

Figure 4.9b shows how this extended feature is transformed into a
timed automaton during compilation. Both regions A and B are transformed
individually but follow the same pattern. The inner states of the region
are moved into a new super state that declares a new clock variable c and
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a boolean flag tick. The tick variable acts as guard for all reactions in the
original state machine. In this example, they are added to the self-transitions
toggling the LEDs in each region. If any transition or action has its own guard,
it would be conjuncted with tick. This prevents the inner SCChart from
performing any action unless enabled by tick. This approach corresponds
to the concept of suspension, present in synchronous languages, such as
Esterel or SCCharts. In this case, tick is initialized to false, which means that
no reaction takes place in the initial tick. However, there is also an immediate
period directive that initializes tick to true and enables an initial reaction.

Additionally, there is a new region Period with a single-state timed
automaton for each of the periodic regions. In each tick the clock c reaches
its period’s threshold, the clock is reset and tick is set to true, enabling the
reaction in the region that now holds the user-specified behavior. Otherwise,
represented by the transition with the lower priority (2:), the variable is set
to false.

By introducing the clock directly at the level of the period directive, the
guarded state or region is only activated if the given amount of time has
passed since the entering/start of the state/region or its last activation. In
the PendulumControl in Figure 4.8 this ensures that the blinking behavior is
aligned with the activation of the Catch state (cf. Figure 3.1).

Clock Relation Specification While the period directive is a simple way to
achieve a form of multiclocking in SCCharts, it also sets a first cornerstone
for future work toward polychrony and distributed execution [GG10]. There
are some initial efforts to combine multiclocked SCCharts with the CCSL

by André [And09] to establish a formal specification for the relation of
clocks [SHM+20]. CCSL was also used for the specification and validation of
timing requirements in Esterel [AM09] and the simulation and debugging
of LF programs [DCB+21]. Section 6.3.2 will discuss this topic in more detail.

4.3 When to React?

Timed automata use timing constraints on transitions and real-valued clocks
to express timed behavior. It is clear that if a constraint is not met, the
transition must not be taken. However, when the constraint is satisfied,
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0

I0O0

tl

I1O1 I2O2

1 2

(a) Logical time: time is discretized
into logical ticks 0, 1, etc. Input Ii
is synchronous with output Oi , the
reaction time is abstracted to be 0.

w0 = 0

I0 O0

t [μsec]
w1 = 100 w2 = 200

tick()

I1 O1

tick()

I2 O2

tick()

c0 c1 c2

(b) Physical time: the computation of the i-th reaction,
corresponding to logical tick i and the i-th call of the
tick function, begins at wake-up time wi . Inputs are
read at the beginning of the computation, outputs
are written at the end of the computation.

Figure 4.10. Different timing abstractions [HBG17]. (©2017 IEEE)

the automaton can react. Section 4.2.1 presented the eager semantics that
tightens this specification such that the automaton should react as soon as
possible. While in a theoretical model, it is possible to react at any time
and perfectly meet this semantics, in reality, an execution regime can only
approximate the eager semantics.

The same holds for the abstraction of time in synchronous languages.
Under the synchrony hypothesis a reaction does not take time and the pro-
gram runs in logical time steps, as illustrated in Figure 4.10a. However, in
practice a tick takes time to compute (ci) which create a temporal separa-
tion between inputs and outputs, as in Figure 4.10b. Additionally, the tick
computations must not overlap because the synchronous program must be
able to atomically access its internal state and prepare it for the subsequent
execution.

Furthermore, the question of when an automaton should react is not
restricted to this “timed” setting. Instead, it is relevant to synchronous pro-
gramming in general. While LF comes with its own event-driven execution
environment, classical synchronous languages, such as SCCharts, synthesize
a tick function (Section 2.3.2), which puts the invocation of ticks into the
hands of the tick environment. And, as already discussed in Section 4.2.1,
this can have implications on the final behavior of the model.

Hence, a more thorough investigation of different execution strategies is
necessary to determine drawbacks and limitation. The goal is to identify a
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strategy that fits the desired eager semantics, while being resilient, precise,
and efficient.

Figure 4.11 shows traces for the traffic light example using different
execution strategies for the tick function. Figure 4.11a recalls the trace from
Figure 4.2b as it represents the intended execution behavior under the eager
semantics.

Input-driven Execution As already discussed in Section 4.2.1 an entirely
input-driven execution, as in Figure 4.11b, does not match the intended
behavior for timed automata. Without a trigger based on time, transitions
with only a timing constraint do not trigger when their condition is met
but, in this example, will wait for the next pedestrian input. Consequently,
the runtime should provide a strategy that also performs reactions based
on time.

No-delay Execution A common and very simple approach for tick ex-
ecution is to create a loop without delay [DDR04]. Listing 2.1 illustrates
a corresponding implementation. Ticks are triggered as soon as possible
(ASAP) after each other, in order to enable the program to react to as many
points in time as possible. Figure 4.11b shows the traffic light trace for
this strategy. The reaction markers are deliberately irregular, since the time
between ticks depends on the individual execution time of each tick.

The reaction times on the timeline also include a question mark in their
decimal place. This should indicate that the reaction to an input at that time
will (most likely) be subject to an unknown delay. This is caused by the fact
that this strategy always has a tick in execution, which makes it unlikely
that an input arrives exactly between two ticks and can be immediately
processed. Hence, the question mark digit represents this remaining tick
execution time until the model can actually try to react to the input.

Another disadvantage of this approach is the maximal load that it puts
onto the execution platform, while the vast majority of ticks yield no output
due to the absence of inputs or insignificant passage of time. Hence, most
tick invocations are wasted processor time and energy, which is problematic
especially in embedded use cases. This illustrates the need for a more sparse
execution that economizes resources by reducing the number of ticks to a
relevant minimum.
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0 t

Input:
Output:

40 60

pedestrian
sigY sigRsigG

187.2

pedestrian
sigG

122.2 127.2

(a) Eager semantics execution as reference (Section 4.2.1)

0 t

Input:
Output:

40 122.2

pedestrian
sigG
pedestrian

(b) Input-driven execution (same as Section 4.2.1)

0 t

Input:
Output:

40.? 60.?

pedestrian
sigG

pedestrian
sigGsigY

sigR

122.2? 127.2? 187.2?

(c) No-delay execution

0 t10

Input:
Output:

40 50 60 120 130

pedestrian
sigYsigRsigG

180 190

pedestrian
sigG

(d) Periodic execution with rate 5

0 t10

Input:
Output:

40 50 60 120 130

pedestrian
sigG

180 190

pedestrian
sigGsigY

sigR

(e) Time-input-triggered execution, multiform notion of time

0 t

Input:
Output:

40 60

pedestrian
sigG

deltaT:

122.2 127.2

sigY sigR

187.2

pedestrian
sigG

0 40 20 62.2 5 60
sleepT:60 20 1000 5 60 60

(f) Dynamic tick execution

Figure 4.11. Execution traces of the traffic light controller based on different ex-
ecution strategies. Vertical strokes denote reactions. (Publ. in [SHM+18; SHM+20] ©2018

IEEE)
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Periodic Execution A straight forward alternative to a no-delay execution
is the introduction of a delay that results in a periodic invocation of the
tick function. In this strategy, one fixed global period is determined by
analyzing the timing constraints of the model, its environment (e. g., poll
rate of sensors), and sometimes also its worst case reaction time, to ensure
on-time execution of ticks.

Figure 4.11d illustrates a trace with this execution semantics. For the
traffic light example, the period is 5. It is the greatest common divisor of
the two relevant timing constants 5 and 60 in the model, which constitutes
a sufficient sample rate for the system’s timing constraints. However, since
this is the only source of tick invocations in this strategy, it subjects inputs to
the same processing pace. This causes the pedestrian input occurring at time
122.2 sec to be processed in the next period at time 125 sec, consequently the
sigR signal is also emitted at time 130 sec. This behavior might be sufficient,
especially when there are corresponding sample rates for hardware sensors,
such as the pedestrian button. Nonetheless, it does not facilitate on-time
reactions, as desired in the eager semantics.

While less pronounced than in the no-delay execution, this approach is
still relatively inefficient when it comes to tick invocations. For example, for
a delay of 60 sec as in the red state, there are always 12 ticks executed, even
though the transition can only be taken in the 12th tick.

The Multiform Notion of Time With the multiform notion of time in
classical synchronous languages the execution follows an input-driven
approach, but with explicit inputs for the passage of time. This results in a
time- and input-triggered execution. The progression of time in the model
is then measured by counting occurrences of the dedicated time signals.

In contrast to the periodic execution, it does not require an analysis of
the program to determine a global rate but simply serves the inputs defined
by the modeler. While this makes the concept quite flexible, it can easily
lead to temporal inconsistencies, in particular if multiple input signals are
used to model time, as discussed further by Bourke and Sowmya [BS09].

For example, in the traffic light model the relevant timing thresholds are
5 and 60. Now, to model this with multiform time, one could introduce two
separate timing inputs, e. g., fivesec and sixtysec. However, waiting for the
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next occurrence of sixtysec does not necessarily mean the same as waiting
for 12 occurrence of fivesec.

To circumvent this problem, the trace in Figure 4.11e is based on a model
that only introduces a single timing input for the greatest common divisor
of all timing constraints, in this case fivesec, which can be used to derive
the 60 seconds threshold. As the trace illustrates, the system reacts every
5 seconds, always with fivesec present. Additionally, there is a reaction at
time 122.2 sec, when pedestrian is present but fivesec is absent.

Consider time 122.2, when the pedestrian input is processed and sigY is
emitted. Since time is measured by counting fivesec events, and the last such
event has occurred at time 120, the pedestrian event is effectively considered
to have taken place at time 120. Consequently, sigR is already emitted at time
125 instead of 127.2. This reduces the delay between yellow and red to only
2.8 sec, contrary to the intended 5 sec in the specification. Similarly, sigG is
emitted at time 185, which is also earlier than in the trace in Figure 4.11a.

For this specific trace, one could comply with the eager semantics by
increasing the granularity of the discrete time input, i. e., using an event for
0.1 sec passed. However, this would in turn increase the number of reactions
and load on the system significantly, getting closer to a no-delay-like trace.

A similar problem is present in the PendulumSound component with
millisecond inputs, see Section 2.4.2. Here the delays stem from the wave
lengths of notes, which are real numbers, and would require a infinitesimal
timing input to be captured by accumulation in counters. In this case
the approximation by milliseconds reduces the precision of the produced
output, similar to the traffic light trace. Section 4.5.1 will investigate this
imprecision and compare it with the dynamic approach.

Dynamic Ticks Neither the periodic nor the time-input-triggered execu-
tion strategy was able to match the timing of the eager semantics. The
problem is that both took a static approach to the granularity and pacing of
time events. In periodic execution the program was analyzed for a globally
matching pace, and in the multiform notion of time the timing inputs imply
the relations to time. However, the relevance of internal timing triggers de-
pends on the program’s state, and external stimuli are simply unpredictable.
Therefore, a more dynamic approach is needed.
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I0 O0
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w1 w2

tick()
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tick()
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tick()

Figure 4.12. The basic idea of dynamic ticks: the wake-up times are controlled by
the tick function itself [HBG17]. (©2017 IEEE)

The concept of dynamic ticks by von Hanxleden et al. [HBG17] is designed
to fill this gap. Instead of a fixed pace for tick functions, it enables the
program to compute and communicate its own recurrence. Figure 4.12
illustrates this idea. In addition to the outputs, the tick function yields
its desired wake-up time wi. In order to produce a wake-up time the
program also requires access to time. In the concept of dynamic ticks, time
is considered a continuous entity and only discretized by the occurrence
a tick, equivalent to producing a timestamp for an event. Hence, time
is kept in its real-valued domain (or platform specific representation, see
Section 4.2.2). This circumvents the previously discussed problems that stem
from an over-discretization of time. Furthermore, this approach preserves
the determinism of the synchronous system [HBG17].

However, the concept, as discussed so far, only handles the recurrence of
ticks originating from timing considerations inside the model but not from
external sources. In order to facilitate on-time reactions to inputs outside
the determined wake-up time, dynamic ticks must be combined with input-
driven triggering. This fits naturally into this dynamic approach because
when such an additional tick occurs, the program can simply decide to
either reaffirm or update the previous wake-up time.

Figure 4.11f illustrates the trace for the traffic light example under
this dynamic tick execution. This strategy matches the eager semantics,
while producing the minimum number of ticks necessary to provide the
intended behavior. The additional numbers below the tick line indicate the
communicated current and wake-up time, using a relative notation, deltaT

and sleepT that will be introduced in Section 4.4. The reported sleep time at
time 60 is a special value that could just as well be infinity, since it indicates
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that there is no time related triggering from within the model. At that point,
the program requires an external stimulus, which then appears in the form
of the pedestrian input at time 122.2 and then again issues a wake-up time
at 127.2.

It is important to note that the LF semantics produces the same execution
behavior as dynamic ticks, since both follow the same dynamic approach.
A difference can be found in the form of communication. While in dynamic
ticks a single wake-up time is set, LF programs are able to produce multiple
future events (via actions and timers). These events will enter the event
queue together with external inputs. Then, ticks are executed dynamically
as soon as the logical time progression hits the timestamp of the earliest
event. Section 4.5.3 will investigate these differences in more detail.

4.4 Dynamic Ticks in SCCharts

As discussed in the previous section, the concept of dynamic ticks is well-
suited to efficiently produce the behavior specified by the eager semantics.
It embodies a sparse execution mechanism that refrains from introducing
additional ticks without intended workload. At the same time, it requires
only a minimal communication interface to achieve the dynamic invocation
of ticks.

This section investigates the concrete manifestation of dynamics ticks in
SCCharts. Technically, this includes the lean integration of the communica-
tion interface and support for automated sleep times based on the timed
automaton notation. Additionally, this section addresses research questions
regarding imperfection of physical time and means to achieve a resilient
timing behavior in applications.

4.4.1 A Dynamic Tick Environment

Figure 4.13 illustrates how dynamic ticks integrate into the tick environment
of SCCharts. The components in red are new compared to the initial version
presented in Section 2.3.2. At the core of dynamic ticks is the minimal
interface of communicating current and wake-up time. This design uses
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Environment

Sensors

Tick
Function

(Automaton)
Inputs Outputs

sleepTdeltaT

Event Trigger

Time Trigger

Trigger Unit

Actuators

Tick

Time Manager

Figure 4.13. A dynamic tick function and its environment. Components in red are
new compared to Figure 2.5. (Publ. in [SHM+18; SHM+20] ©2018 IEEE)

a relative notation with an input deltaT for passing the time elapsed since
the last tick and a sleepT output to communicate the time until the next
time-related reaction is expected. The new input and output simply extend
the environment of the tick function. A Time Manager is responsible for
providing time and triggering a tick when the requested sleep time expired.
The triggering by events remains the same, as previously discussed.

The conservative nature of this extension shows that this structure is
still fully within the standard synchronous execution model. The execution
of the system is divided into logical ticks, which read inputs and produces
outputs. Conceptually, deltaT is an input like any other input, and sleepT is
an output like any other output. It also upholds the general requirement
of determinacy: given a trace of inputs (including deltaT), the output trace
(including sleepT) is fully determined.

Tick Loop Implementation While the basic design of the dynamic tick
environment and its communication interface is clearly defined, its imple-
mentation depends on the platform and the specific use case. For example,
it could use an interrupt routine for inputs or requires a special API for
accessing time in a precise resolution.

Listing 4.1 shows a fairly generic implementation for a dynamic tick
loop. It picks up the example from Listing 2.1 and runs a version of the
PendulumSound component with the dynamic ticks interface, which is the
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1 #include "PendulumSound.h"

2 #include "HardwareMockup.h"

3 int main(int argc, const char* argv[]) {

4 TickData model;

5 reset(&model);

6

7 double last_tick = curr_time();

8 while (1) {

9 double tick_start = curr_time();

10 model.deltaT = tick_start - last_tick;

11 model.theta = read_from("theta");

12 tick(&model);

13 write_to("speaker", model.sound);

14

15 last_tick = tick_start;

16 double sleep = MAX(model.sleepT -

(curr_time() - tick_start), 0);

17 awaitInputOrTimeout(sleep);

18 }

19 }

Listing 4.1. Tick loop example for dynamic ticks.

model described in Section 4.2.3 but compiled with the sleep time inference
that will be introduced in Section 4.4.2. Compared to the previous no-delay
version in Listing 2.1a, it implements a Time Manager and waits for triggering
ticks instead of immediately starting the next.

Before the start of the tick loop, the last_tick variable is declared in line 7
and initialized with the current time. Each tick execution begins with storing
the start time (line 9). Then, the deltaT input is computed based on the time
between the current and last tick. Afterwards, the program provides the
remaining inputs, invokes the tick function, and processes the outputs. At
the end of this tick computation, the start time of the current tick becomes
the last tick time (line 15) and the sleep time is computed (line 16). The sleep
time is based on the sleepT output but subtracts the execution time of the
tick function. This compensates the fact that deltaT is a stable input for the
synchronous tick function and consequently sleepT represents a sleep time
relative to this point in time. A maximum function prevents negative sleep
times. Alternatively, this step could raise a runtime error because a negative
sleep time indicates that the program requires an execution pace that cannot
be satisfied due to its own execution time. The awaitInputOrTimeout function
can be considered an abstraction of a platform-specific interrupt and waiting
routine. Here it is a blocking call that returns as soon as any input can be
read from the hardware or the provided sleep time expires. Only then the
loop repeats itself to execute the next tick.
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Logical or Physical Time? LF uses a notion of time that includes a logical
and physical timeline (or even multiple ones [LMS+20]). Events are pro-
cessed in timestamp order and always on time w.r.t. to logical time, even if
physically impossible. Physical time represents the wall clock time during
execution and is always in advance of logical time (or equal to), potentially
triggering deadlines if processing timeframes are violated. For example, if
two events occur after each other but with a delay smaller than the execution
time of the processing tick, it is impossible to process the second event at its
physical time of occurrence. Furthermore, it is a property of the event-based
processing with logical time that the program is able to recognize the event
during execution, store it, and catch up on its processing. Sant’Anna et al.
provide a detailed discussion on the consequences of different sampling
strategies in the context of Céu [SIL+17].

Timed SCCharts neither rely on such an event-based semantics nor intro-
duce an explicit separation between logical and physical time. The concept
of dynamic ticks only relies on the time provided by the environment via
deltaT. Hence, it is very well possible to create a tick environment that
executes the SCChart with logical time, see Section 4.5.3, by hiding the
natural execution lag from the program. This would keep the program in a
“perfect world.” As a consequence, deltaT will always be equal to the previ-
ously requested sleepT, if input events are not interrupting. This perfectly
simulates the eager semantics.

However, dynamic ticks also work without this additional requirement
on the environment. Listing 4.1 represents a tick environment with physical
time input. In this example, the curr_time() function is supposed to directly
access the system’s clock, also illustrated by the fact that it is used to
determine the execution time of the tick function in line 16. This approach
can be very valuable for a modeler, as it implicitly communicates physical
lag to the program and enables an adjustment of the behavior. For example,
a model can measure its own execution time and modify its workload, enter
a “degraded” mode if timing overruns occur, or even maintain a local logical
timeline. Section 4.4.3 will discuss modeling options in timed SCCharts that
deal with the exposure to a physical time input.
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TimedTrafficLight
input signalpedestrian
input floatdeltaT = 0.0
output signal sigR, sigG, sigY
output float sleepT = 0.0
float x = 0
immediate during / sleepT = 1000.0

red
during / x += deltaT
immediate duringx < 60.0 / sleepT min= 6.0 - x

green
during / x += deltaT

pending
during / x += deltaT
immediate duringx < 60.0 / sleepT min= 6.0 - x

yellow
during / x += deltaT
immediate duringx < 5.0 / sleepT min= 3.0 - x

x >= 60 / sigG; x = 0

1: pedestrian && x < 60 2: pedestrian && x >= 60 / sigY; x = 0

x >= 60 / sigY; x = 0 x >= 5 / sigR; x = 0

-

Figure 4.14. The traffic light controller SCChart after the non-concurrent clock

transformation producing dynamic ticks. (Publ. in [SHM+18; SHM+20] ©2018 IEEE)

4.4.2 Sleep Time Inference from Timed Automata

An SCChart is compatible to dynamic ticks as soon as it provides the
specified interface. Of course these variables can be used to manually track
time and compute sleep times, but the notation of timed automata in
SCChart offers a more elegant way to automatically infer sleep times. As
presented in Section 4.2.2, the transformation of timed automata in SCCharts
already relies on a time input named deltaT and thus is in accordance to
the dynamic tick interface. The same transformation can be configured to
additionally produce an overall sleep time for the model.
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Transformation Figure 4.14 shows the traffic light controller example in its
transformed state (based on Figure 4.4) with full support for dynamic ticks.
The SCChart now declares the additional output sleepT. Additionally, the
root state contains an immediate during action that initializes the sleep time
to 1000. This presumably large default value is simply denotes that there is
no active timeout and could be just as well infinity. The transformation can
be configured to use different default values. Afterwards, the value of sleepT

is updated by the states requesting an earlier wake-up time. Each state
that has transitions with a trigger involving a clock-based guard creates
an immediate during action for each constraint (state green is special case
discussed later). If the timing condition can be met in the future (e. g., x <

60.0 for the x >= 60 transition of state red), it registers the remaining time
for the trigger point of the guard (consequently, 60.0 - x) in sleepT. The min=

is an update assignment that sets sleepT to the minimum of its current value
and the right-hand side expression. The result is a consensus of all active
time-related guards on the closest relevant triggering time. The specifics of
the sleep time calculation will be discussed later.

With the provided sleep times and a dynamic tick environment, the
model will now behave as illustrated in Figure 4.11f and comply with the
eager semantics. The program reacts to the pedestrian input at time 40, but
the state of the automaton does not change. However, as illustrated by deltaT

and sleepT presented under the timeline, the dynamic ticks adapt to the
input-triggered invocation and correctly compute a new sleep time of 20.
After the output of sigG at time 60, no timing constraint is available. Hence,
the model has to rely on inputs for triggering and defaults to 1000 in sleepT.
The trace further shows that the reaction to the pedestrian event at 122.2 is
likewise on time, and the output of sigR is exactly 5 sec after this event.

How to Compute Sleep Times The main task in computing automatic
sleep times is to detect if and which passage of time causes a transition
to be enabled in the future. The transformation uses a static analysis of
the timing bounds in the outgoing transitions of states for this task. In
order to facilitate its implementation, it is subject to certain restrictions in
the timing constraint specification. More specifically, it considers timing
constraints if the form c ě ltb, where c is a clock and ltb some expression
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for a lower timing bound. As illustrated in Figure 4.14, the difference between
ltb and the current clock value determines the requested sleep time for
this constraint (e. g., sleepT min= 60.0 - x). To simplify the detection of lower
timing bounds, the implementation does not handle negations of timing
constraints.6 Furthermore, constraints that specify an upper bound do not
contribute to the sleep time since they, considered separately, do not require
time to pass to be enabled and hence would result in a sleep time of zero.

Another case in which the passage of time has no triggering effect,
despite the presence of a timed guard, can be found in the green state
of Figure 4.14. Here, both outgoing transitions primarily depend on the
pedestrian input, and x only distinguishes which of the two paths is taken. To
detect such non-triggering timing constraints, assume that the i-th outgoing
transition of some state has a guard Gi = Ci ^ Ti, where Ci is a condition
that does not depend on time and Ti is a timing constraint. Assume that
no guard is currently active, i. e.,

⋁︁
i Gi = false, and that T1 specifies a lower

timing bound ltb. If Di such that C1 implies Ci and ␣T1 implies Ti (i. e.,
whenever the ltb has not been reached yet, Ti holds), T1 is considered non-
triggering. This will prevent a contribution to the sleep time computation.
The implementation further simplifies this condition and assumes that C1
and Ci are the same boolean guard, and T1 and Ti are negations of each
other. In the example, the guards on the outgoing transitions from green

fulfill that criterion. Taking pedestrian && x ą= 60 for C1 and pedestrian && x

ă 60 for C2, the compiler classifies 60 to be a non-triggering ltb and does
not compute a sleep time for it.

Timing Bounds The concept of computing sleep times based on lower
bounds is closely tied to the eager semantics. In a perfectly eager execution,
it would be sufficient to write x ě 60 as x = 60. However, considering real-
valued time and a realistic implementation with physical time and possible
timer imperfections, the first option is more robust and thus preferable. The
following section will take a closer look at handling such imperfections.

Open timing intervals, specified via ą, are not supported by the pro-
posed concept because they would imply a request for an infinitesimally

6Note that this simplification does not limit expressiveness, as for example, !(x ă 10) can be
written as x ě 10.
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larger sleep time in a real-valued time domain, while in an integer-based
time representation, it would be trivial to express the same timing bound in
the ě notation.

4.4.3 Dealing with Physical Time

As already discussed, dynamic ticks can be operated in an environment with
logical or physical time inputs. While logical time ensures a perfect eager
semantics, physical time might be preferable in cases where the program
should be able to detect timing imperfections and adjust the behavior of
the system from within the model. In LF, watchdogs and deadlines provide
such means to react to a deviation between logical and physical time. Yet,
LF’s notion of physical time is slightly different from the physical time input
discussed here in the context of SCCharts, since physical time continues to
progress during execution of an LF program. In contrast to that, the deltaT

input in SCCharts is held stable during execution, even if determined based
on physical time.

With timed SCCharts exposed to physical time, this raises the question:
Can we react in time? If, for example, more time than the minimum of a
specified lower bound passes, it is possible that other transitions also get
enabled or disabled, which may change the expected behavior. Assume
the example that a state is entered when at least 60 sec passed (x ě 60)
and is immediately (in the same tick) left when at most 80 sec have passed
(x ă 80), without any reset of the clock. With eager semantics, the state will
be entered after a time of 60 and then left immediately. If the tick is delayed
due to physical lag, for example to react after a time of 80 for the first time,
then the state is entered but can never be left.

One could argue such a system is designed badly and advocate the use
of logical time to perfectly match the eager semantics. Alternatively, one
could consider this design a deliberate expression of a deadline. Specifically,
if the execution environment approximating the eager semantics in the real
world fails to meet the 60 sec trigger point by an additional margin of 20
sec, the system must not advance to the next state. Section 4.5.3 will discuss
a similar model.
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FastAndSlow

clock x = 0

x >= 333
/ x = 0

- Fast

clock x = 0

x >= 1000
/ x = 0

- Slow

(a) SCChart motivating
the use of soft bounds.

FastAndSlowGreedy

clock x = 0

x >= 333
/ x = 0

- Fast

clock x = 0

x >= 999 || x >= 1000
/ x = 0

- Slow

(b) SCChart using soft bounds in the
trigger in region Slow.

FastAndSlowGreedy
input int deltaT = 0
output int sleepT = 0
int _region_Fast_x = 0
int _region_Slow_x = 0
immediate during / sleepT = 1000

during / _region_Fast_x += deltaT
immediate during _region_Fast_x < 333 / sleepT min= 333 - _region_Fast_x

_region_Fast_x >= 333
/ _region_Fast_x = 0

- Fast

during / _region_Slow_x += deltaT
immediate during _region_Slow_x < 1000 / sleepT min= 1000 - _region_Slow_x

_region_Slow_x >= 999 || _region_Slow_x >= 1000
/ _region_Slow_x = 0

- Slow

(c) Transformed SCChart with soft bounds

Figure 4.15. Motivating example for using soft bounds in dynamic ticks. (Publ. in

[SHM+20])

In addition to such modeling options, timed SCCharts provide strategies
and language constructs to deal with physical delays in timing bounds and
on clocks. This enables the user to create models that yield a more robust
and desirable behavior in a realistic physical environment.
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Hard vs. Soft Bounds—A Greedy Semantics An eager execution will
always try to react to inputs on time. However, if two events (input or
time) occur so close that their separating time falls below the execution
time of the tick function, the second event can only be processed with
inevitable physical delay. Since timed SCCharts are not strictly bound to
an event-based processing in logical time as LF, they provide the concept of
soft bounds to handle such situation differently. The soft approach loosens
the regime of the eager semantics and leads to a greedy semantics.

Figure 4.15a illustrates a minimal SCCharts example to motivate soft
bounds. The SCChart has two regions Fast and Slow, each one uses a timed
automaton to react. Every time its threshold is reached, it resets its clock.
The SCChart uses an implicit time resolution in microseconds. Hence, Slow

should react every millisecond and Fast three times faster. Starting at time
zero, the third reaction of region Fast will be at 999 usec, leaving only one
microsecond to invoke the reaction of Slow, which might be infeasible for
the environment.

With soft bounds such short sleep times can be avoided. The idea is to
widen the timed reaction window of a transition, speculating to possibly
“piggyback” on a somewhat earlier reaction invoked by another state. At
the same time, the transition should still request its own sleep time to
ensure that it is triggered. In timed SCCharts, the modeler may replace the
hard bound x ě 1000 in region Slow by a soft bound x ě 999 || x ě 1000, as
illustrated in Figure 4.15b. If enabled, the compiler detects this pattern and
adjusts the computed sleep time, as presented in Figure 4.15c. The state
now only requests a sleep time of 1000 usec, as for the original hard bound
specified with x ě 1000. However, at run time the transition may already be
taken at time 999 usec, thus subsuming the sleep time of 1000 usec. This
favors earlier reactions over late reactions, prevents very small sleep times,
and possibly reduces the total number of reactions by processing assuredly
delayed reactions ahead of time.

Hard vs. Soft Resets—Handling Physical Lag in Clocks With physical
time fed to deltaT, timer imperfections affect the clocks in SCCharts. Ticks
executed before the requested sleep duration are normal in the presence
of external input events. These do not affect the timed behavior since the
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FastAndSlowGreedySoftReset

clock x = 0

x >= 333
/ x -= 333

- Fast

clock x = 0

x >= 999 || x >= 1000
/ x = x - 1000 < 0 ? 0 : x - 1000

- Slow

Figure 4.16. Variant of FastAndSlowGreedy SCChart using soft reset in both regions.
(Publ. in [SHM+20])

clocks will register this intermediate time, compute a new sleep time, and
related time constraints do yet not trigger. However, when a tick is executed
after the requested sleep time, the additional delay time will be present in
all clocks. This fact should be considered when performing a reset on a
clock.

A hard reset sets the value of the clock to an absolute value, as presented
in Figure 4.15. Alternatively, one can use a soft reset that takes into account
the potential lag on a clock. Figure 4.16 shows a variant of the previously
introduced FastAndSlowGreedy SCChart that uses soft resets in both regions.
Each resets its clock x to the amount of time that exceeds the expected
wake-up (x ´ 333 and x ´ 1000). Due to the soft bounds in region Slow, it is
legal to take this transition with 999 usec, which would result in a negative
clock value. Therefore, the maximum of 0 and x ´ 1000 is used to assign x.

A consequence of hard resets is that clocks start to drift as soon as
the tick function is invoked slower than the expected wake-up time. For
example, if region Fast in Figure 4.15b wakes up at 335 usec, it would reset
the clock to 0 and request a sleep time of 333 usec, disregarding the 2
usec that additionally passed. Hence, the (earliest) next wake-up would
be at 668 usec and this drift increases as the delays accumulate over time.
This violates the set goal of temporal order and simultaneity. Soft resets
compensate this accumulation of timer imperfections by leaving the lag on
the clock and consequently include them in the sleep time computation.
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LogicalClock
logical clock x = 0

x >= 1 / x = 0
-

(a) Source SCChart

LogicalClock
input floatdeltaT = 0.0
output float sleepT = 0.0
float lag = 0.0
float x = 0
immediate during / sleepT = 1000.0
during / lag = deltaT > pre(sleepT) ? deltaT - pre(sleepT) : 0

during / x += pre(lag) + (deltaT - lag)
immediate duringx < 1.0 / sleepT min= 1.0 - (x + lag)

x >= 1 / x = 0
-

(b) Transformed SCChart

Figure 4.17. Example for using a logical clock with dynamic ticks.

The Fast region in Figure 4.16 would reset its clock to 2 if it woke up after
335 usec and consequently would only request a sleep time of 331 usec. The
Slow region behaves similarly.

For period directives, introduced in Section 4.2.4, the compiler can be
configured to automatically synthesize soft or hard resets.

Logical Clocks The previous example illustrates that a model is able to
detect the discrepancy between the expected idealized (logical) time and the
provided physical time. As a continuation of the idea, timed SCCharts pro-
vide logical clocks that are driven by a physical time input but automatically
hide potential lag from the user.

Figure 4.17a illustrates a small SCChart that uses a logical clock. This
annotation causes the transformation to synthesize a different progression
mechanism for the clock, as well as an adjusted sleep time computation.
In addition to the dynamic tick interface, the transformed SCChart in
Figure 4.17b has a new variable lag that is set by a during action in each tick,
except the initial. If the elapsed time is greater than previously required
sleep time, then this deviation is stored in the variable. Otherwise, no lag is
present, for example if a reaction was triggered by an input event before
the wake-up time. The progression of time in x is no longer directly bound
to deltaT but follows a derived logical timeline that hides the lag. For the
increment of x, the current lag is removed from deltaT and the lag in the
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previous tick is added because it was hidden at that time. However, this
procedure only works if the sleep time computation is adjusted as well.
It adds the current lag to the value of the clock x before computing the
remaining time for the timing condition. This corresponds to an implicit
soft reset for logical clocks and issues a compensation of the detected lag.

Since x progresses on its own virtual logical timeline, it might request
negative sleep times to catch up with reactions that are already past physical
time. This is similar to the delta compensation implemented in Céu [SIL+17].
Since the environment cannot physically go back in time, deltaT will not be
negative, resulting in an increase of lag, both in reality and accumulated
in the lag variable (deltaT - pre(sleepT)). If the program or the inputs do not
grant a sufficient idle period, the logical time might not be able to catch up
with physical time. However, this is in the nature of logical time processing
and is likewise the case for LF or Céu.

4.5 Evaluation

From a design perspective, the use of timed automata as a notation for
timed behavior in SCCharts is plausible. Both the traffic light controller in
Section 4.2.2 and the Furuta pendulum controller in Section 4.2.3 illustrate
that timed SCCharts provide sufficient modeling capabilities to express
various time-related behavior. Aside from modeling aspects, dynamic ticks
are a powerful concept for timed execution. This evaluation investigates
if it can deliver in terms of performance, sparse execution, and precision
(Section 4.5.1 and Section 4.5.2). Furthermore, there are some differences
but also links to event-based languages, such as LF, that are worth a closer
look (Section 4.5.3).

Reflection on Goals As a first informal evaluation, the initially set goals
are examined for their fulfillment in the proposed concept (cf. page 100).

Determinism By accessing time only through regular inputs [HBG17] and
by fully relying on the SC MoC provided by SCCharts, timed SCCharts
ensure deterministic behavior.
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Resilience Section 4.4.3 discussed multiple options to cope with run-time
variations and imperfections, for example, the soft reset that avoids
accumulations of physical lag in clocks.

Scalability All clocks in SCCharts receive their time from a single input,
deltaT, only imposing a minimal management and storage overhead for
each. Furthermore, the concept of dynamic ticks combines all internal
timers into a single sleep time, eliminating the need for tracking timers
individually.

Fine granularity Timed SCCharts are not restricted to a specific resolution
or granularity of time. While floating point values enable encoding arbi-
trary timeouts, the synthesized types can be adjusted to match whatever
granularity is required or provided by the environment. Dynamic ticks
take care of an efficient execution regime that does not require superflu-
ous intermediate reactions for matching arbitrary timeouts, as it is the
case, e. g., in periodic execution.

Time composability With a single input source for time that is sensitive to
ticks, timed SCCharts achieve a time composability and prevent incon-
sistencies as it is the case with multiform time [BS09]. In the presence
of physical time, soft resets for clocks preserve the composability of
consecutive uses of the same clock in relation to other clocks.

Simultaneity and order Similar to previous properties, simultaneity and order
in timed SCCharts are a consequence of the single time input and the
properties drawn from the synchronous SC MoC.

Lean interface Dynamic ticks come with the smallest possible interface
for communicating time in both directions. They impose minimal re-
quirements on the environment and are easy to implement in a tick
environment. Section 4.5.3 will continue on this topic.

Seamless compiler integration Clocks, timed guards, period directives, and
dynamic ticks are all implemented as extended features in SCCharts
and seamlessly integrated into the existing compiler without further
measures.
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4.5.1 Sparse Pendulum Execution

One motivation for dynamic ticks in SCCharts was the observation that
periodic execution and the multiform notion of time can lead to a notable
overhead in reactions. This tick load consumes valuable resources, while
many reactions are for the sole purpose of tracking time and have no
outside effect. Section 4.3 already discussed the conceptual workings and
implications of the different execution regimes. The following experiment
investigates the concrete tick loads based on the Furuta pendulum models.

Setup The experiment for the Furuta pendulum was conducted in soft-
ware.7 A simulation replaced the real-world behavior of the pendulum. Its
implementation is based on a simple forward-Euler simulation by Eker
et al. [LEJ+02] and thus corresponds to the control logic used in the con-
troller implementation, see Section 2.4. The simulation was configured to
work at a pace of 5 msec. All involved models and source files are available
online.8

In the experiment, three variants of the PendulumController and the Pendu-

lumSound component were simulated over an interval of 3 seconds, which is
sufficient to swing up and stabilize the pendulum. The test involved the SC-
Charts using the multiform time approach (Section 2.4), the timed SCCharts
variants (Section 4.2.3) with dynamic ticks, and the LF implementation with
modes (Section 3.2). The overall program was extended to log the timing of
ticks and the outputs of both components.

Behavior Figure 4.18 illustrates the observed behavior of the pendulum
and its additional outputs. The pendulum (Theta) starts in a downward
position (+π) and is accelerated upward by the arm. However, the induced
momentum is not sufficient to get the pendulum into an upright position (0)
and it starts to fall down again at about 400 msec. It passes its downward
position and swings back up on the other side (+π Ñ ´π). This time it
reaches a higher point and is caught by the controller, indicated by the

7While it certainly would be interesting to conduct an experiment with a real-world Furuta
pendulum and future work may make up for this, for the measurement of tick behavior a
software simulation is sufficiently suited. See Section 4.5.2 for a real-world experiment with
dynamic ticks.

8https://github.com/a-sr/furuta-pendulum
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Figure 4.18. Observed pendulum behavior during simulation.

LED signal oscillating at around 1.1 sec. The catch phase is successful, and
the pendulum is stabilized in its upright position. The square wave signal
for the Speaker has high frequency due to the nature of the sound. The
plotted Sound line indicates the notes the signal produces. As expected, they
correspond to the pendulum angle. The jitter is discussed later.

This chart is based on the LF behavior but is representative for the
SCCharts variants as well. All models produce the same pendulum behavior,
only the timing differs, which primarily affects the sound.

Tick Load Table 4.1 shows the execution measurements for all three vari-
ants. The SCChart with multiform time produces 3001 ticks over the mea-
surement period. It reacts every millisecond due to the need to process the
msec input, plus an initial tick at time 0. The behavior of all inner modules
align at multiples of this input (simulation at 5 msec, blinking LED at 15
msec) and thus do not issue additional ticks.

The implementation with dynamic ticks performs only 1208 ticks. 601
of them are required to satisfy the 5 msec pace of the simulation and the
remaining ones are ticks that are requested by the PendulumSound module
to produce a square wave signal with the correct cycle length.
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Table 4.1. Results of the Furuta pendulum simulation.9

Measurement
SCCharts with
multiform time

SCCharts with
dynamic ticks Lingua Franca

Number of Ticks 3001 1208 1300
Average Response Time (nsec) 144,871 196,791 181,388

Average Tick Time (nsec) 18,505 23,662 26,984

As expected, the dynamic ticks are able to reduce the tick load compared
to the effectively periodic execution in the multiform variant. However, the
fact that LF performs 92 ticks more requires a closer look, since LF should
theoretically also correspond to an eager execution.

Tick Discrepancy between LF and Dynamic Ticks A first indication for
a difference in the tick count was already discussed in Section 2.4. For
demonstration purposes, the implementation of the PendulumSound reactor
issues a zero-delay action to “immediately” toggle the sound output, which
requires an additional tick execution. Yet, this design decision only accounts
for 3 of the additional ticks in the LF execution.

Another aspect described in Section 2.4 is the discarding of actions
that are no longer relevant. In the current version of LF, scheduled actions
cannot be re-scheduled or removed. Hence, if a change in the angle of the
pendulum issues an adjustment of the sound, the previously scheduled
action will still trigger the reaction for the now deprecated sound frequency.
The program does not change the sound output in these cases, nevertheless,

9The experiment was conducted on an Ubuntu 20.04 system with an Intel Core i5-7300U
CPU and 16GB RAM. The code was compiled using the GCC compiler with optimization
level O3. The response time represents the delay between the time produced outputs and their
theoretical time to happen (i. e., logical time/wake-up time). All three implementations use the
POSIX function clock_nanosleep to wait between ticks. The tick time is measured from the time
of leaving the sleep function to its reentering. Hence, the measurement covers the business
and probing logic (which is identical in all three models), the model-specific control structures,
and the language-specific runtime infrastructure. The average does not include the initial and
last tick, since these are outliers due to the need to set up the program and finalize the results.
The SCChart models were synthesized using the netlist approach and the LF program was
generated as a single-threaded application.
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Trigger:

Output:
180,050

(a) Lingua Franca execution

Physical Time
180,000

motor + sound

wake-up time

tp [usec]180,064180,038

Trigger:

Output:

(b) SCCharts execution with dynamic ticks

Figure 4.19. Comparison of a representative execution sample, illustrating the
reduction of ticks in SCCharts with dynamic ticks. The sample shows the ticks on
their respective timelines. The yellow boxes indicate the wake-up lag and gray ones
the tick computation time.

it results in 29 additional ticks for LF in this experiment. While future
versions of LF will probably provide an API that facilitates handling such
cases, it is also notable that the concept of sleep times in dynamic ticks
naturally handles such situations. In each tick both the clock t and the
timing threshold (duration) may change, see Figure 4.7, and consequently
the computed sleep time automatically shifts accordingly.

With additional 32 ticks now accounted for by the reactor implementa-
tion, this still leaves a difference of 60 ticks. These are a result of LF’s logical
time and event-based processing. At a given time, the SCChart reacts to
the provided inputs, which in the experiment is physical time (provided
via deltaT). As presented in Section 4.2.3, the implementation is aware of
physical time lag and uses soft resets. In contrast to that, LF maintains an
event queue that tracks all events in logical time and processes them even if
physical time has advanced beyond that point. This results in additional
ticks in certain cases.

Figure 4.19 illustrates a characteristic sample found in the experiment.
The LF execution is associated with a logical and physical timeline, see
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Figure 4.19a. At 180, 000 usec the timer event that triggers the simulation
and indirectly the PendulumController is due. On the physical timeline, the
start of the tick is delayed by a lag in the sleep process (yellow bar). The tick
computation starts at 180, 215 usec and finishes with the motor output 29
usecs later. Table 4.1 also lists the average lag and execution time as general
reference. On the logical timeline all of this happened instantaneously at
180, 000 usec. Then, there is a subsequent event from the logical action in
PendulumSound, scheduled for 180, 050 usec. In logical time, this event is
processed on time in a separate tick. On the physical timeline this tick lines
up directly after the previous one because it is already past due. The sound
signal is ultimately updated at 180, 263 usec.

In the SCCharts execution in Figure 4.19b, there is also a tick planned at
180, 000 usec for the simulating and motor control. Again, the actual output
is delayed by the physical wake-up lag and execution time; in this case a
relatively low response delay (cf. Table 4.1). However, there is no additional
tick and the timelines are individually scaled to illustrate their conceptual
correspondence. Instead, the reaction executes both the PendulumSound

and PendulumController component, and updates both outputs at the same
time. This is the case because there are no timestamped events or logical
time for the SCChart. When the tick starts, there are 180, 038 usecs on the
clock and the program reacts in accordance to these inputs. Note that the
planned time for a sound signal change differs between the SCChart and LF,
because the SCChart uses physical sleep times for the cycle timing, while
the PendulumSound reactor uses logical actions. Therefore, the sound reaction
in SCCharts is not due at 180, 050 usec but earlier10, which justifies a sound
output with 180, 038 usecs on the clock.

One could argue that from an event-driven perspective, the dynamic
ticks use a greedy approach, as described in Section 4.4.3. However, this
does not mean the behavior of the SCChart is not in accordance with its
semantics, it simply uses a different time input and correctly reacts in
accordance to that. Furthermore, if the SCChart would use a logical clock,

10The experiment did not capture the internal variables of the execution, hence, the exact
time is unknown. Yet, it is certain that it was due between 180, 000 and 180, 038 usec because
the output was produced, and the triggering time was a multiple of 5 msec and thus originated
from the simulation and not the PendulumSound component.
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Figure 4.20. Deviation of the sound signal from the expected angle-dependent note.

as described in Section 4.4.3, it would simulate the LF behavior and issue a
negative sleep time to catch up on the sound signal event. However, since
this point is already physically gone, it would only further delay the sound
output as it is the case in the LF trace. Yet, it is important to note that the
use of logical clock does not supersede an external event queue with logical
time, because it only introduces an internal notion of logical time and this
only for reactions to time. As illustrated by Sant’Anna et al. in the context
of Céu [SIL+17], an external event queue in combination with logical time
has the advantage that no external events are missed, as it can be the case
with other sampling methods. However, from the design perspective of
SCCharts, this is a question of the environment and how it samples and
handles inputs.

Sound Jitter Figure 4.18 illustrates that there is a jitter in the sound signal.
Figure 4.20 presents the individual deviations of the produced sound from
the timing of the expected note. Since the multiform time variant is only
modelled with a 1 msec granularity, it performs expectantly worse than the
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other two variants. Figure 4.20a shows that the half cycle length of the signal
is often nearly 1 msec longer than desired. This is caused by the fact that
the condition on the trigger rounds up to the next millisecond, resulting
in an additional delay. This is further intensified by physical delays in the
wake-up process. Since notes do not progress linearly in their wavelength,
Figure 4.20b presents the deviation in terms of notes. Here, one can see that
the 1 msec pace causes the audible sound to be 3 to 4 semitones below the
expected one.

In both dynamic ticks and LF, the deviation is much smaller and the
program is mostly able to strike the right note. The jitter is caused the
variations in the wake-up lag. If a small lag is followed by a larger one, it
results in a longer wavelength. In the inverse case, the observed cycle is
shorter.

The experiment shows that dynamic ticks in SCCharts and LF are on the
same level when it comes to timing of the sound. However, a significant
factor in the jitter and strength of the deviation is the wake-up lag. With
over 100 usec (Table 4.1) on average, it requires further investigation in the
future, see Section 6.3.3.

4.5.2 A Hard Real-Time Demonstrator for Dynamic Ticks

To investigate the performance of dynamic ticks in a more time-sensitive
context, a real-world demonstrator was developed, built, and tested by
Boysen under my supervision [BSH20a; BSH20b; BSH20c]. The goal was
to create a reasonably cheap and easy to implement demonstrator that
embodies a hard real-time problem with scalable timing challenges. This
should then act as a testbed for an SCChart with dynamic ticks to investigate
its real-time capabilities. The result was the “Disk-and-Sticks demonstrator,”
in short DS demo.

Setup Figure 4.21 shows an annotated image of the DS demo setup. On
the left is the Motor Controller receiving an input from a Signal Generator

to control the speed of the experiment. In this case, the controller is a
Field Programmable Gate Array (FPGA) board, but the setup is designed for
interchangeable controllers. The controller is connected to two Motor Drivers.
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Figure 4.21. DS Demonstrator setup with annotations [BSH20b]. (©2020 IEEE)

These driver boards are specifically designed [BSH20c] to give the controller
direct control over the power supply to the two stepper motors in the Motor

Assembly on the right. At the heart of the demonstrator is the assembly of
the two stepper motors, arranging the disk and sticks in a 90 degree angle.
Figure 4.22 presents a more detailed schematic. If the motors are running
synchronized in an exact 3-to-5 ratio, the sticks can pass through the disk.

Stepper motors are well-suited for such a task, since they lock into step
locations and thus provide good repeatability and precision. Additionally,
when controlling a stepper motor directly, the steps in the real world directly
correspond to reactions in software, imposing real-time requirements on
the software.

Timing Challenges For the controller, the task at hand is to drive two
stepper motors in a synchronized way. Any deviation would let the sticks
and disk collide and destroy the assembly. Stepper motors move based on a
rotating magnetic field created by magnetizing coils. In the DS demo, the
motors consist of a permanently magnetized rotor, surrounded by a stator
containing two separately controllable coil sets. Both the stator and rotor are
multitoothed, and energizing a set of coils will cause the rotor to snap into
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Figure 4.22. Technical drawing of the DS motor assembly [BSH20b]. (©2020 IEEE)

the next position (step) by aligning itself to the magnetic fields. The direct
control requires the controller to decide which and when to magnetize coils.
An increasing target speed automatically raises the required number of
steps both in the motor and the controller.

The stepper motors in the DS demo have a nominal voltage of 4.2 V.
However, they can easily reach about 11,000 rounds per minute when
powered with 30 V and without the disk/stick to reduce the load. This
raises an additional challenge. Increasing the voltage also increases the
current drawn by the coil when powered over time. At voltages beyond the
nominal value, it will eventually destroy the coil. Hence, to safely operate
the motor at higher voltages and speeds, the power supply needs to be
temporarily decreased, to limit the resulting current. While it is common to
handle this aspect in the motor driver, the boards in the DS demo pass this
task to the controller to impose another critical hard real-time requirement.
The driver boards support the controller in this task by sensing the current
drawn by the motor and signaling an overcurrent event.

Controller Model The DS demo controller is modelled in SCCharts and
manages the power supply to each individual coil in both motors. For an
in-depth presentation of the model, please consult the corresponding publi-
cations [BSH20b; BSH20a; BSH20c]. A crucial component of the controller
is the OverCurrentProtection illustrated in Figure 4.23. For each coil output,
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OverCurrentProtection
input boolenableIn, overCurrent
output bool enableOut
const int BLIND_TIME = 1500
const int OFF_TIME = 10000
clock delay

Wait
entry / enableOut = false

Power
entry / enableOut = true
entry / delay = 0

Cooldown
entry / enableOut = false
entry / delay = 0

enableIn

2: !enableIn

1: overCurrent && delay >= BLIND_TIME delay >= OFF_TIME

1: enableIn

2:

-

Figure 4.23. The timed SCChart handling overcurrent protection in the con-
troller [BSH20b]. (©2020 IEEE)

one instance of this SCChart protects the coil from overcurrent damage
by temporarily disabling the power supply for a constant time. During
this off-time, the coil is discharged through protection diodes in the driver
board.

The SCChart has three states: Wait, Power, and Cooldown. In normal
operation, it simply passes on the enableIn input to the enableOut output.
When the motor is powered, an overcurrent event may be reported by the
driver board. This causes the SCChart to go into the Cooldown state and
disables the coil. However, this transition has an additional timing guard
that only enables this transition if the BLIND_TIME has passed. The model
implicitly uses an integer clock with nanosecond resolution, hence, the
threshold is at 1500 nsec. This blind time has its origin in the parasitic
induction of the resistor used to measure the current. The Cooldown state
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Figure 4.24. General structure of the dynamic tick environment with multicycle tick
execution, implemented in the DS demo [BSH20b]. (©2020 IEEE)

is left after 10 usec. Then, the SCChart either enters the Power state if the
controller still requires a magnetization of that coil, or continues in Wait if
the coil was switched off in the meantime.

Dynamic Ticks for FPGAs The demonstrator setup is designed to support
different controller hardware. In the experiments, a Rasberry Pi and an
FPGA were used. While the Pi can use a classical software environment, as in
Listing 4.1, to create a dynamic tick environment, there are different options
for the FPGA.

The simplest approach is to synthesize the SCChart into a netlist in
VHDL, add input and output processing, and deploy that directly to the
FPGA [Joh13]. However, this approach restricts the maximum speed of the
FPGA’s base clock to the computation time of the generated logic. One
motivation for dynamic ticks is to detach ticks from these strict periodic
regimes to facilitate more precise reactions in between. Hence, Boysen
developed a multicycle tick environment with dynamic ticks. Figure 4.24
illustrates the structure of this environment as a concretization of the
concept in Figure 4.13.
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In this environment, the stateless SCCharts Logic is surrounded by various
registers. Inputs are held stable during tick computation by the registers on
the left. They only update (via EN) at the start of the tick, indicated by the tick

signal, similarly for the Internal State and Output. During tick computation
the tick signal ripples through the registers on top and finally indicates
the end of the computation (tickDone). The Trigger Unit in the Dynamic Ticks

section only starts a new tick if no tick is currently executing (tickDone) and
it is triggered by an input event via Edge Detection or an expired sleep time.

This design enables a base clock speed for the FPGA that is a fraction
of the tick logic’s computation time and thus facilitates more fine-grained
input sensing and wake-up times. The clock speed is determined at compile
time by selecting the number of ripple registers in relation to the logic’s
computation time.

Response Time The DS demo offers a realistic real-world environment im-
posing scalable timing requirements to evaluate dynamic ticks. Figure 4.25
illustrates the results of two experiments conduced both with the FPGA

and the Raspberry Pi.11 In a first experiment, the response time of both
controllers and the dynamic tick environment was tested to expose physical
lag. It represents the delay between the input of the function generator
and the resulting output change. The experiment was run at a relatively
low speed with 400 steps per second and without the disk and stick setup,
to generally assess the capabilities of the controllers, while protecting the
assembly.

Figure 4.25a illustrates the response time results. The Pi performs worse
than the FPGA, as expected for a general purpose processor with a Linux
operating system. The horizontal red line indicates a response time that
enables safe operation with correct overcurrent protection (5 usec, to reliably
produce the 10 usec off time in Figure 4.23). The Pi with dynamic ticks
barely meets this threshold. Furthermore, the fact that this Linux kernel
is not real-time capable and may interrupt the control process results in

11The FPGA board is a Digilent Arty A7 35 and the Raspberry Pi a model 3B. The same
SCChart controller was compiled to VHDL and respectively C, using the netlist approach. For
the measurements, the FPGA board itself was used as a logic analyzer. However, when probing
the FPGA this way, the analyzer and controller logic share the same 100MHz clock. To account
for that, the results include a 10ns offset in response time (worst case advantage) for the FPGA.
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(a) Comparison of response time between an ASAP exe-
cution (no-delay in Section 4.3) and dynamic ticks.

(b) Comparison of deviations in
the produced off time with dy-
namic ticks.

Figure 4.25. Comparison of the FPGA and Rasberry Pi controller in experiments on
the DS demo (logarithmic scale on both y axes) [BSH20b]. (©2020 IEEE)

various outliers significantly exceeding the mean. This effect is not present
on the FPGA.

Figure 4.25a also shows the difference of dynamic ticks to a no-delay
triggering (ASAP). On the FPGA, the dynamic tick environment has a constant
response time, while ASAP causes a notable variation. This substantiates the
claim in Section 4.3 that executing ticks without expecting relevant behavior
can obstruct and delay reactions with crucial outputs. A similar variation
can be observed for the Pi.

Furthermore, the ASAP triggering illustrates how many consecutive ticks
are possible on the platform. On average, the Pi was able to perform about
260,000 ticks per second and the FPGA 1.25ˆ 107. The dynamic tick execution
only issued about 1000 ticks per second.

Timing Precision As already discussed in the context of sound in the
Furuta pendulum, variations in physical lag can cause outputs with a fixed
distance to deviate from the modelled behavior. In a second experiment
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with the DS demo, the speed was set 0 and the motor was supplied by
10 V causing a constant need for the overcurrent protection, illustrated
in Figure 4.23. Figure 4.25b shows the measured deviation of the control
outputs from the expected 10 usec long off-time. Again, the timing of the
FPGA is nearly perfect, except for a few minor outliers. The results for the
Pi show stronger deviations, caused by the high variation in the response
time.

Compared to results for the pendulum sound deviation in Figure 4.20a,
it is notable that the deviation interval on the Pi is much smaller in absolute
terms. Despite a lower processor frequency on the Pi, the deviation interval
is around 50 usec for the off time versus 200 usec in wavelengths for
sounds. Similarly in Figure 4.25a, there is only a peak of around 25 usec
in additional response time delay. The most probable explanation is the
fact that Boysen did not rely on the system’s sleep function but used an
implementation performing busy waiting. While this contradicts the idea
of reducing resource consumption, it also shows that the sleep and wake-
up process is an important factor in the timing precision, and should be
furthered investigated, see Section 6.3.3.

Furthermore, the deviations in Figure 4.25b tend to lean towards positive
values, while in the sound signal in Figure 4.20 they are distributed more
evenly. This is a consequence of the hard reset in the overcurrent protection
SCChart in Figure 4.23, which ignores additional physical lag on the clock
and thus promotes positive deviations.

Final Results In the final demonstration, the FPGA was able to operate the
entire DS demo setup with up to 100 stick/disk crossings per second. This
corresponds to 1,200 rounds per minute on the disk. With 400 steps per mo-
tor rotation, and at least 10 ticks per step due to sampling/synchronization
logic, this corresponds to 80,000 ticks per second.

4.5.3 Event-Based Designs

There is a difference between the processing of timestamped events in
LF and dynamic tick execution in SCCharts, as already illustrated by the
skipping of some ticks in the presence of physical lag, see Figure 4.19.
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This disparity continues in the interface between the model’s logic and its
runtime environment. While dynamic ticks rely on deltaT and sleepT, an
event-based system, such as LF, Céu, or the SSM, see Section 4.1.2, require
an external event queue that stores, orders, and processes pending events.

Observations The dynamic tick interface is the smallest possible com-
munication channel for time in and out of a model. With no further re-
quirements on the communication of time, this places a great degree of
freedom on the developer. Similar to the concept of the tick function itself,
it facilitates an application-specific implementation, while ensuring only
the deterministic input output behavior of the program itself. The program
can be provided with a notion of logical time or with physical time inputs,
raising the need and opportunity to address timing imperfections in the
model, as discussed in Section 4.4.3.

In LF, the time model is more specific, as it provides logical time, as well
as physical time that progresses during execution. This especially facilitates
the modeling of distributed system with different machine clocks, an area
that is not yet substantially supported by SCCharts. In turn, this event and
time architecture also increases the effort to implement a platform-specific
runtime environment.

The tick environment for the FPGA in the DS demo in Figure 4.24 appears
relatively complex but only consists of components that are quite easy to
implement. Creating support for VHDL in LF will be more demanding, since
it requires implementing the event queue and execution infrastructure for
reactions. While this is a one-time effort, the implementation also has to be
reasonably platform-independent, since different FPGA boards come with
different capabilities. This is a concern that SCCharts, with its tick function
approach and minimal environment requirements, simply passes on to the
developer and the concrete use case.

Timed SCCharts Embedded in Lingua Franca While timed SCCharts
with dynamic ticks do not require an explicitly event-based environment,
they are still suited to operate in such a context. To demonstrate such a sce-
nario, we revisit the concept of SCCharts embedded in LF from Section 3.4.4.

Figure 4.26a illustrates a timed variant of the AO SCChart that now only
emits O if an A occurs at least 1 microsecond after the start. Figure 4.26b
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TimedAO
input signal int A
output signal int O
clock t = 0

Wait

Done

A && t > 1000
/ O(val(A))

-

(a) SCChart

TimedAO

1

2
L

A
O

(b) Embedding LF reactor

Figure 4.26. Timed vari-
ant of the AO SCChart
and its embedding Reac-
tor.

1 target C;

2 reactor TimedAO {

3 input A: int;

4 output O: int;

5 logical action sleep: time;

6 state tick: time = 0;

7 state scchart: {=TickData=};

8

9 reaction(startup) {=

10 reset(&self->scchart);

11 =}

12 reaction(A, sleep) -> O, sleep {=

13 if (A->is_present ||

14 (sleep->is_present && sleep->value == self->tick)) {

15 self->scchart.deltaT = lf_time_logical_elapsed() - self->tick;

16 self->scchart.A = A->is_present;

17 if (A->is_present) { self->scchart.A = A->value; }

18 tick(&self->scchart);

19 if (self->scchart.O) { lf_set(O, self->scchart.O_val); }

20 self->tick = lf_time_logical_elapsed();

21 lf_schedule_copy(sleep, self->scchart.sleepT, &self->tick, 1);

22 }

23 =}

24 }

Listing 4.2. Source code of the TimedAO reactor
embedding the SCChart.

shows the embedding LF reactor, with its source code listed in Listing 4.2.
In addition to the previous implementation in Figure 3.12, this reactor
creates a dynamic tick environment for the generated tick function of the
SCChart. In line 15, it provides the model with the logical time elapsed
since the last tick. The sleepT output is used to schedule the sleep in line 21
that will trigger a wake-up. Similar to the procedure in the PendulumSound

component described in Section 2.4.2, it requires the handling of deprecated
actions. Hence, the action carries the tag of tick that it corresponds to and
line 14 ensures that only the sleep time computed at the most recent tick
can actually trigger a tick in the SCChart.

160



4.5. Evaluation

With LF’s runtime infrastructure in mind, this design illustrates how
an event-based dynamic tick environment with logical time execution im-
plementation for SCCharts could look like. This design was tested in the
context of the Furuta pendulum12 and produced the same behavior as the
LF implementation.

Modeling Internal Events in SCCharts In addition to managing external
input events, the event queue in LF also handles the events produced by
actions and timers. It stores them and advances in time until the next event
is due. The same fundamental principle is also used in Céu and the SSM. In
timed SCCharts, a similar effect results from the sleep time computation.
The minimum function in the sleep time update, described in Section 4.4.2,
considers all active timeouts and determines the closest in time to request
a wake-up at that time. The main difference is that the timeouts are not
stored as events in an external queue. With this in mind, we can investigate
a timed SCChart example that strives to simulate a simplified version of
LF’s actions.

Basically, scheduling an action and reacting to its occurrence could be
expressed in timed SCCharts by a single transition. A timing guard would
carry the scheduled delay and reaching the target state would indicate the
occurrence of the event. However, LF also provides deadlines that match
the event scheduled on the logic timeline against the physical timeline. The
idea of the following example is to bundle this combined behavior into a
dedicated data type for an event.

Fundamentally, an event produced by an action is a signal in the sense
of synchronous languages. It is present only at a specific time and otherwise
absent, additionally it may carry a value. Section 5.5.2 will describe how
the new OO features in SCCharts can be used to implement signals as user-
defined types by modeling an SCCharts-based class. In anticipation of these
features, the TimedSignal will present an LF-inspired event class that can be
scheduled for future occurrence based on logical time and can indicate a
deadline violation based on physical time. To keep the example simple, the
model will only support a single future schedule per TimedSignal and omits
carrying payloads.

12https://github.com/a-sr/furuta-pendulum/tree/master/lf/scchart-embedded
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TimedSignal extends PureSignal
public const time NONE = -1
private time delay = NONE
private time deadline = NONE
private bool late = false
schedule {conflicting, conflicting} ExpireFirst efSD

entry

delay <= NONE

delay = newDelay

deadline = newDeadline

return true

return false

exit

true

- bool schedule( time newDelay, time newDeadline ) efSD 1

entry

return late

exit

- bool isLate( )

logical clock lTime
clock pTime

Idle

Waiting
during / late = false

delay > NONE
/ lTime = 0;
pTime = 0 efSD 0

lTime >= delay
/ emit()

efSD 0

1: deadline > NONE &&
pTime >= delay + deadline
/ late = true;
delay = NONE efSD 0

2: / late = false;
delay = NONE

- Timing

PureSignal
protected bool present = false
+ void emit( ) + bool isPresent( )

Absent Present
present

/ present = false

- Reset

Figure 4.27. The TimedSignal class in SCCharts extending the basic behavior with a
scheduling and deadline option.
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The Timed Signal Class Figure 4.27 illustrates the TimedSignal class mod-
elled in SCCharts. It extends the PureSignal class from Figure 5.17 (presented
later in Section 5.5.2) to inherit the basic reset behavior and an interface
for emission and presence checks. Figure 4.27 recapitulates this model and
puts both in a generalization relation.

The TimedSignal has three private variables, one for storing the scheduled
delay, one for a deadline offset, and a late flag that indicates a violated
deadline. The public constant NONE is used to indicate the absence of
scheduled events or a deadline. The class provides two additional methods,
schedule to issue a future presence of this signal and isLate as a getter for
a deadline violation. The main behavior of the TimedSignal is specified in
the Timing region, which declares the clocks lTime and pTime. The use of a
logical clock mimics LF’s event processing behavior, i. e., it may try to catch
up on events in the past, contrary to the behavior discussed in Section 4.5.1.
The use of SCCharts’ regular clock for physical time does not fully match
the LF semantics, which checks the current physical time during execution,
whereas this implementation uses the physical time at the start of the tick
execution.

The diagram in Figure 4.27 visualizes the method’s bodies in a CFG

notation. The schedule method first checks if there is currently a pending
event (delay <= NONE) and only if this is not the case, it sets the delay and the
potential deadline. In the end, it returns if scheduling was successful. As a
consequence, only a single future occurrence can be scheduled. The example
could be further extended to support a fixed or dynamically sized queue,
or alternatively reschedule the existing event. This would also provide
an opportunity to permit multiple concurrent calls to schedule, which is
prohibited in this single element queue implementation.

If a future occurrence of a TimedSignal is scheduled, the Timing region
switches from Idle to Waiting, resetting both clocks and, delayed by one tick,
the late flag. When the delay expires in relation to the logical time, the
TimedSignal emits itself and resets the deadline. Immediately after (modelled
as a transient connector state), it checks if there is a deadline and whether
it is violated in regard to the physical clock, setting late accordingly.

While this example does not replace an external timestamped event sys-
tem, which in turn could enable decentralized distributed execution as in LF,
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it at least illustrates a notational bridge to synchronous modeling in SCCha-
rts. Any SCChart could now instantiate a TimedSignal (via ref TimedSignal ts)
and invoke its methods in triggers and effects, e. g., ts.schedule(2, 0.5) or
ts.isPresent() && !ts.isLate().

Scheduling Intricacies in the Timed Signal Model This implementation
of the TimedSignal supports scheduling a new event in the same instant the
previous one expired, i. e., the TimedSignal instance is present. Yet, since all
invocations of schedule will be concurrent to the Timing region and both
will read and write the delay and deadline variables, it cannot be scheduled
with the IURP because this would result in cyclic dependencies. Hence, there
is the SD efSD (cf. Section 4.2.2) that establishes an “expire first” regime
and orders the check and reset of the current delay and deadline (efSD

0) before potential invocations of the schedule method (efSD 1). The use
of a method facilitates this design because it allows to indirectly subject
any invocation of this method to this regime by associating the SD with
the method’s declaration. This aspect is further discussed in Section 5.4.
The strong abort, used in the outgoing transition of the Waiting state, can
preempt the sleep time computation that will be synthesized into the Waiting

state and allows to first process the timer expiration check and then, upon
reschedule, compute the sleep time based on the new delay value.
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Chapter 5

Object Orientation

The OO paradigm has proven itself as a powerful design and programming
concept that facilitates abstract and modular design of large and complex
systems. Unlike in the previous chapters, the Furuta pendulum cannot
sufficiently act as a motivating example in this case. It is deliberately chosen
as a small introductory model tailored to a concrete use case, whereas the
strengths of OO become particularly evident when used in larger software
systems that require some form of abstract reusable components or generic
functionality. Nonetheless, there are again two research aspects driving the
proposed extension of SCCharts;

1. the integration of OO modeling capabilities into the domain of syn-
chronous languages and statecharts modeling, in combination with a
pragmatics-aware language design focus; and

2. an advanced interface to OO host languages that provides flexible strate-
gies for establishing deterministic behavior.

Object-Oriented Modeling (1.) Most general-purpose programming lan-
guages popular today1 support OO concepts, such as encapsulation of data
and functions, inheritance, and message passing. In software engineering,
the OO paradigm is often combined with a model-based approach, for ex-
ample in UML, to create well-designed software architectures. Today, many
software engineers are well-trained in programming languages, such as
Java, C++, C#, or Python, so that OO design techniques are second nature
to them. It is compelling to exploit the benefits of OO also in a specialized

1https://www.tiobe.com/tiobe-index/
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domain, as is it the case with synchronous languages for embedded and
safety-critical systems.

Actor-based languages are already closely related to objects, since they
embody the message passing between objects and combine it with a notion
of concurrency [Agh86]. Therefore, many of these languages support OO

features, such as a class-based design, inheritance, or subtyping [Agh86;
LLN09]. LF is not different and supports methods, inheritance, overriding
reactions, and type parametrization.2 With dataflow SCCharts, there is also
an actor-based notation in SCCharts that can benefit from such features.

However, the focus of this thesis is the integration into the more control-
flow-oriented statecharts notation of SCCharts. An OO notation in SCCharts
facilitates expressing the internal behavior of objects as statecharts, enables
user-defined types, and provides more reusable or easily adjustable im-
plementations. With Section 4.2.3 and Section 4.5.3, the previous chapter
already illustrates some of these aspects. Furthermore, a model-driven
approach also facilitates integrating other design methods, such as class
diagrams. While such an approach is not new, best exemplified by Harel’s
O-charts [HG96], its usability is often subject to conceptual limitations
due to a graphical syntax. Once again, a pragmatics-aware language de-
sign that combines classical OO programming with graphical OO designs
methodologies can mitigate notational obstructions in the modeling process.

Host Language Objects (2.) Aside from “bare-metal implementations”,
OO programming languages become more prevalent, even in embedded
systems. In an embedded market study from 2019 by Aspencore with
nearly one thousand participants, 39% of developers name an OO language
as the primary language for their next project [Asp19]. Especially for a
synchronous language such as SCCharts, which also aims to provide a mod-
eling environment beyond classical embedded systems, one needs to take
this trend into account. For example, SCCharts are currently commercially
used in a Java-based tool for operations control of railway lines; and in a
Bachelor’s thesis by Raschkowski [Ras21], SCCharts were integrated into
a game engine written in C++. In such contexts, the classical approach of

2Some of these features were developed relatively recent and are not supported in all target
languages yet.
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an input output signaling interface can quickly reach its limits, and a more
direct interaction with the OO host environment is required to apply effects
or coordinate external behavior.

The design of LF that directly embeds the target language into the
coordination layer naturally adapts to an OO programming language. In
SCCharts, host functionality is integrated into the expression language to
provide an abstract synchronous programming layer, e. g., with external
functions presented in Section 2.3.3. This concept is borrowed from Esterel
and was initially designed for C as host language. However, this impairs
the integration of objects because it relies on a parameter-based causality
interfaces and the assumption that functions are free of side effects. Yet, it
is in the nature of methods to hide internal data from their interface and
have a side effect on the object itself.

Hence, in order to interact directly with host language objects from
within SCCharts or any synchronous language, these objects require an
OO-aware representation. To facilitate deterministic concurrent use, spe-
cial scheduling regimes are required to handle causality relations hidden
by methods. The idea is that an object itself should specify the regula-
tions for its deterministic access and the program should automatically
adhere [AMP+18].

Goals The main goal in this chapter is to harness the benefits of the well-
established OO paradigm to improve modeling of synchronous systems and
embrace the presence of objects in the host language. While there are many
OO languages and some synchronous languages already support some
object-based capabilities, SCCharts provides a unique context that combines
modern pragmatics-aware statecharts-oriented MDE with a powerful and
sound synchronous semantics. To focus the effort of this OO extension, the
language design is guided by the following principles.

Conservative The introduced OO features should be carefully selected and
conservatively restricted to prevent violation of fundamental virtues of
synchronous languages.

High-level The OO modeling capabilities should not require a low-level
host language support for OO but offer an implementation as extended
features. This would make the benefits of an OO design also available
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to classical embedded targets, such as C. For host language objects, a
black-box approach is expedient that is not bound to specific OO host
languages or relies on parsing external code.

Pragmatics-aware The language design should offer a common OO program-
ming syntax and experience, while utilizing the integration of graphical
views to enable OO design methodologies and dedicated visualizations.

Concurrent New OO features should embrace the built-in concurrency of
synchronous languages and, where possible, aid in designing concurrent
behavior.

Deterministic The semantics should fit seamlessly into the synchronous
paradigm and should not introduce any non-deterministic behavior.

The concepts of OO SCCharts and deterministic host objects presented in
this chapter are designed along these lines and provide an OO extension
to SCCharts, while also representing approaches applicable to other lan-
guages in this context. In contrast to previous work, see Section 5.1, they
include modern developments on pragmatics-aware modeling and flexible
scheduling regimes, such as SDs. The range of OO programming features
and functionalities is wide and implementing all of them easily exceeds
the scope of this thesis. Therefore, the proposed concepts focus only on
some core features and conservatively restricts advanced functionality that
requires more extensive analyses, e. g., to ensure determinism. While this
enables an investigation in terms of language design and OO modeling, it
also lays the foundation for future extension of functionality.

Outline Section 5.1 presents an overview of the related work. Section 5.2
starts with a brief discussion on OO features and an assessment of their
applicability to the domain of synchronous languages. Next, Section 5.3 will
introduce the OO modeling capabilities in SCCharts. Then, Section 5.4 will
discuss the challenges of integrating host language object in a synchronous
context and will present a concept that utilizes flexible scheduling regimes
to ensure deterministic object access. Finally, Section 5.5 evaluates the new
design capabilities of the proposed concepts.
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5.1 Related Work

The OO paradigm has a long history and a variety of programming lan-
guages contributed to the notion of objects [Cap03]. Today, there are many
languages that have been developed with OO at its core, such as Java or
C++. Some others received an OO makeover or extension, for example Ada
in 1995 [Ada16], O-charts by Harel [HG96], OO Petri Nets [Ess96], OO-
VHDL [SMC95], Objective ML (later OCaml) [RV98], ObjectCurry [HHN01],
or Actors [Agh86; LLN09]. Additionally, OO programming languages are
accompanied by powerful analysis and design methodologies; most promi-
nently in the form of the UML [Obj11].

In order to focus the scope of this section, it covers relevant work on OO

in embedded systems, synchronous languages, and statecharts.

5.1.1 Embedded Systems

In the context of embedded systems, C is still the predominant program-
ming language, but OO languages are also gaining a place [Asp19]. Safety of-
ten plays an important role in this context and is usually standardized by the
industry, for example in DO-178C [DO-12] for avionics or ISO 26262 [ISO18]
in the automotive industry. Some languages are specifically built to facilitate
formal verification or certification, for example SCADE or Ada. However, this
task is more complicated for general purpose languages, such as C.

The MISRA Standard for C++ The industry often uses guidelines and
language subsets to improve robustness and safety of software. For example
MISRA-C++ [MIS08] by the Motor Industry Software Reliability Association
(MISRA). The defined language subset can be considered a best practice
approach established in industry rather than based on formal methods. It
consists of large sets of informal rules, for example prohibiting recursion or
the use of union types. Regarding OO, all basic features of C++ class design
are generally retained. Yet, they are often restricted, for example multiple
inheritance is forbidden such that classes may not be derived from more
than one non-interface base class, just like in Java.

These guidelines show that there is a demand for C++ and consequently
OO in the industry, but there are some manifestations of OO in C++ that may
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be error-prone and raise safety concerns. An important aspect that is not
sufficiently covered in these guidelines is concurrency [Rog11]. Synchronous
languages and SCCharts, with their built-in deterministic concurrency,
provide an advantage in this regard.

Ada An OO language that is specifically designed for safety-critical em-
bedded systems is Ada [ISO12]. Ada features a strong type system and
a design-by-contract methodology. Its class-like packages support inher-
itance with overriding, multiple inheritance on interfaces, abstract types,
subtyping, and polymorphism with dynamic dispatching. For the use in
high integrity systems, Ada proposes ways of eliminating and mitigating
common safety-related vulnerabilities that are associated with OO [Ada16].
Its approach utilizes Ada’s capabilities in compile and runtime checking,
contract-based programming, and formal verification. At the same time,
the language remains methodologically neutral by keeping the OO features
optional. If a program does not make use of OO, then these capabilities will
remain inactive and do not impose any potential run-time penalty.

In contrast to Ada, OO in SCCharts focuses more on the aspect of MDE.
Yet, its design likewise makes OO an optional feature and utilizes static
restrictions to create a conservative subset.

Rust Started by the Mozilla Foundation, Rust3 aims to reduce program-
ming errors in development and shows great potential for the use in safety-
critical systems [PCO19]. It is best known for its ownership model that
guarantees memory-safety and thread-safety [JJK+17]. Mutability of refer-
ences is always expressed explicitly and imposes a multiple readers single
writer synchronization, similar to synchronous languages. In terms of OO,
Rust provides object-based encapsulation of data and behavior but rejects
classical inheritance because it is considered an unwanted overhead to
always inherit all superclass behavior. Instead, Rust uses a trait system,
similar to interfaces, that is implemented on a per-class basis and enables
subtyping and polymorphism.

The scheduling regimes for objects, discussed in Section 5.4, are similar
to the ownership model, since they regulate access to objects and thus

3https://www.rust-lang.org/
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implicitly assign exclusive but also shared ownership. In terms of OO,
SCCharts will follow the more common approach of providing classical
inheritance, and if there are concerns about efficiency in a specific use case,
the user can simply skip this feature.

5.1.2 Synchronous Languages

There are some synchronous languages that include a notion of objects
either in their language or during code generation. However, to my knowl-
edge none of them fully embraces an OO design including inheritance or
incorporates visualizations tailored for object relations.

Blech The imperative synchronous language Blech [GG18], developed
by Bosch Research, is inspired by Esterel and the SC MoC. In addition to
classical synchronous programming constructs, it provides C-like abstract
data structures, instantaneous functions, and reactive activities that can span
multiple ticks. Listing 5.1a illustrates a small example with a Counter struct
and an activity for automatic incrementing. In the initial proposal [GG18],
activities and functions could be associated with a data struct in a class-like
fashion. However, Blech never capitalized on this object-based design by
introducing visibility restrictions, inheritance, or subtyping. Instead, the
association was removed, and an optional module system now loosely
bundles data types and related behavior.

In terms of scheduling, Blech relies on an interesting mixture of classical
synchronous white-box causality and a black-box approach [GGM+20;
GGM+22]. Blech permits sequential memory updates, but in the presence of
concurrency, code sections are interleaved and variables follow the classical
write-before-read protocol. However, activities are not partitioned or further
analyzed, instead, their causality interface is directly expressed by their
parameters, which are separated into a read-only and read-write list. Note
that in line 4 of Listing 5.1a, the Counter struct is defined in the second
parameter list because the activity writes the contained value variable.

In OO SCCharts, methods correspond to Blech’s functions and regions
to activities, but they are combined in a more feature-rich OO notation.
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1 struct Counter

2 var value: int32

3 end

4 activity Counting ()(c: Counter)

5 repeat

6 c.value = c.value + 1

7 await true

8 end

9 end

10 @[EntryPoint]

11 singleton activity Main ()()

12 var c: Counter = { value = 0 }

13 run Counting()(c)

14 end

(a) Struct and activity in Blech

1 data Counter with

2 var int value;

3 end

4 code/await Counting (var& Counter c) ->

NEVER do

5 every 1ms do

6 c.value = c.value + 1;

7 end

8 end

9 // Main

10 var Counter c = val Counter(0);

11 spawn Counting(&c);

12 await FOREVER;

(b) Data structure and code block in Céu

Listing 5.1. Data structures in Blech and Céu, illustrating a counter with an addi-
tional routine that increments the value every tick respectively millisecond.

The concept of deterministic objects in Section 5.4 also utilizes a black-box
perspective but provides a more flexible approach than the separation into
writers and readers.

Céu Similar to Blech, Céu [SIL+17] supports structured data types. While
inspired by objects, it also follows the same C-like approach and separates
data and instantaneous or reactive procedures [San18; SIL15]. Listing 5.1b il-
lustrates the previous Counter example in Céu, with the code/await block as a
counterpart to Blech’s activities. In contrast to Blech, the abstract data struc-
tures provide subtype relations with inheritance for fields, supplemented
by a parameter-based dispatching mechanism for code blocks. Memory
allocation is automatically managed based on lexical scopes and finalization
handlers. To establish determinism, intra-instant communication of shared
variables is prohibited in Céu, and concurrent code sections are scheduled
non-interleaved in lexical (source code) order.

OO SCCharts aim for a more clear OO design, including the characteristic
encapsulation of data and behavior. This, in combination with classical
synchronous causality analyses based on data access, also enables a more
fine-grained data-oriented mechanism for establishing deterministic be-
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havior. Yet, in terms of dynamic instantiation and references, Céu is more
advanced, which could also inspire improvements of OO SCCharts in the
future, see Section 6.3.4.

Lustre The synchronous dataflow language Lustre [HCR+91] and its
closely related siblings SCADE [CPP17] and Zélus [BP13] are not OO. Simi-
lar to Blech, they only provide support for simple data records. Yet, they
recognize the useful structuring and encapsulation principles embodied
by objects, and all utilize object-based intermediate languages for modular
compilation [BCH+08; BBD+17; BCP+15].

The OO concept in this thesis makes this powerful structuring capability
available to the programmer at the source level and further facilitates
reusability and adjustability, e. g., by including inheritance.

In an extension to Lustre, Caspi et al. introduce Scheduling Policies
(SPs) [CCG+09], which is based on an object notation. They bundle data
and different modes of operation in the form of method-like dataflow
nodes. SPs then describe the constraints for a sound access of these objects.
While this concept inspired the modeling of SPs for deterministic objects in
Section 5.4.3, it instead uses the SP formalism by Aguado et al. [AMP+18]
that is compatible to the control-flow-oriented SC MoC and can act as a
prescriptive contract for scheduling.

Synchronous Objects André et al. [ABP+97] introduce synchronous objects
as an extension of the reactive object model [BDS96]. The basic idea is to
conceptualize regular synchronous modules as objects that have a state,
associated behavior, and a communication interface based on signals. This
facilitates using OO design methodologies and models for specifying the
different classes, their instantiation, and communication in a system. In
their approach, interconnections between objects must be acyclic because
communication is instantaneous and objects are considered black-boxes
that cannot interleave with each other. Asynchronous objects from the
host’s domain are wrapped into interface objects to enter the synchronous
messaging mechanism.

While André et al. support SyncCharts, Esterel, and Lustre for the
specification of behavior in synchronous objects, they do not introduce
OO to the languages itself, as it is the case with OO SCCharts. Instead,
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regular synchronous modules are wrapped into objects and managed in
way that is more closely related to an actor-oriented approach, such as LF

(cf. Section 3.4.4).

synERJY The synchronous language synERJY [BPS04] founds its syntax
on a subset of Java to facilitate an OO programming style. A program is
separated into classes that can declare interface signals, local variables,
and methods, as well as instantiate other synchronous classes. A con-
structor contains a synchronous subprogram that can be specified as a
mixture of Esterel-like imperative code, Lustre-like dataflow equations, or a
SyncCharts-inspired automaton notation. Objects run concurrently and only
communicate by signals. While similar to synchronous objects by André,
synERJY establishes a global white-box schedule for the entire program
with a write-before-read ordering. If a causality cycle is detected, an explicit
precedence specification for the involved operations (e. g., assignments or
method calls) is requested from the user to resolve it.

There are many similarities between synERJY and SCCharts, also in
regard to OO concepts. However, OO SCCharts more comprehensively in-
clude OO features, such as inheritance, and combine it with a model-driven
approach. In terms of scheduling, synERJY’s precedence system embodies
the same principle envisioned by SDs and utilized for deterministic objects.

Lingua Franca With reactor inheritance, reaction overriding, type parame-
ters, and methods, LF already supports OO designs. These features aim to
improve reusability and adjustability of reactors and facilitate providing
generic functionality in libraries.

While the notation and semantics are different in SCCharts, OO capabil-
ities are introduced for the same reason. The concepts developed for OO

SCCharts, e. g., visualizing object relations or statecharts inheritance, could
also be transferred to LF in the future, see Section 6.2.1.

5.1.3 Statecharts

Statecharts are a popular formalism for specifying the behavior of embedded
and reactive systems. There are various different dialects and variations of
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statecharts. This also includes concepts for OO modeling. However, none of
these OO variants features a deterministic synchronous semantics.

Objectcharts One of the first OO statecharts approaches was developed
by Coleman et al., called Objectcharts [CHB92]. The basic idea is to model
an entire software system in a top-down design process across multiple
modeling notations. A configuration diagram represents inheritance, inter-
faces, and usage relations between classes, as well as their instantiation
and the communication. Then, Objectcharts are used to characterize the
lifecycle and state of classes. Yet, they do not explicitly describe the behavior
of objects but the state-dependent acceptance and triggering of services,
which are the abstract communication interface of these objects, similar to
ports in LF. Objectcharts support inheritance to add new services and adjust
transitions of the extended parent classes.

With their role as specification of communication admissibility, Ob-
jectcharts correspond more to the modeling of SPs in Section 5.4, than the
OO extension proposed for SCCharts. In contrast to SCCharts, there is no
provision for determinism in Objectcharts.

O-charts Following the idea of Objectcharts, Harel and Gery [HG96]
present their own OO statecharts language. Again, two separate notations
are used; UML-like O-charts to specify the class structure, inter-associations,
and inheritance hierarchies; and statecharts to specify stateful behavior
in classes. In contrast to Objectcharts, these statecharts are not limited to
expressing the acceptance of messages but specify the actual implementation
of operations. Therefore, C++ is directly integrated into statecharts as
expression language. The proposed semantics features a run-to-completion
concept with two different ways of communication; broadcasted events
that are queued and then processed one at a time in subsequent reactions;
and operations, corresponding to method calls, that immediately hand over
control to the callee statechart and block until it returns. Consequently, there
is no simultaneity in events. Moreover, concurrent reactions to an event may
be non-deterministic. O-charts permit inheritance between classes and the
corresponding statecharts can add new states, change transition targets, and
introduce additional hierarchy or concurrency. Yet, Harel and Gery prohibit
alterations that remove elements or change their containment hierarchy.
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This is intended to prevent radical changes in behavior, in the sense of
behavioral subtyping [LW94] or language refinement [LS17]. Yet, it is still
possible to arbitrarily modify triggers and effects. Subsequent work by
Syriani et al. proposes a more restricted set of rules to further ease static
verification [SSL19].

The work by Harel and Gery is an important inspiration for OO SC-
Charts, however, there are some key differences. First, OO SCCharts do not
introduce different notations for specifying a system but use a pragmatics-
aware approach that utilizes views, e. g., to derive class diagrams similar
to O-charts. Second, SCCharts use a synchronous semantics that provides
a robust way to handle simultaneity and instantaneous communication.
Third, the OO proposal uses a more coarse-grained overriding mechanism
based on regions, which is closer to method-based overriding in major OO

languages. By default, the proposed concept imposes no restrictions but can
be extended to preserve behavioral consistency, e. g., via model checking,
see Section 6.3.4.

Rhapsody Statecharts The work on O-charts resulted in the Rhapsody
semantics of statecharts [HK04] and the commercial tool Rational Rhapsody
by IBM, which implements O-charts in the form of UML class diagrams
and statecharts with inheritance.4 When adjusting derived statecharts in
Rational Rhapsody, individual states, transitions, and other elements can be
set to inherited, overridden, or regular. Inherited elements are fully in sync
with their base definition and cannot be changed; overridden elements
are adjustable but will also adapt to subsequent changes in their original
definition, e. g., a modified state will be deleted if the original state is
removed from the base statechart; and regular elements are completely
decoupled from their base class definition.

These rather intricate relations stem from the fine-grained overriding
mechanism but also seem to be influenced by the editing process that is
imposed by a graphical-only modeling approach, as present in Rhapsody,
O-charts, and Objectcharts. With a more classical overriding approach on
regions and text-based modeling, OO SCCharts aim for a more natural and
pragmatic programming experience.

4https://www.ibm.com/docs/en/rhapsody/8.2?topic=statecharts-statechart-inheritance
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ROOMcharts In ROOM [SGW94] the system is composed of intercon-
nected actors, and the behavior of each actor is described by a ROOM-
chart [Sel93]. Its notation mostly follows the classical statecharts formalism
by Harel [Har87] and uses a run-to-completion semantics. Yet, it does not
feature concurrent composition or broadcast communication because these
aspects are only expressed on the actor level. ROOMcharts support inher-
itance similar to Harel’s OO statecharts but do not impose restrictions on
overriding states or transitions. Selic argues that such a language design
“can be severely limiting in practical applications” [Sel93].

Again, OO SCCharts feature a different granularity for inheritance, and
they embrace a synchronous semantic that includes concurrency and instan-
taneous communication inside SCCharts. Furthermore, the combination
with actors in ROOM corresponds to dataflow SCCharts, discussed in Sec-
tion 2.3.1, which also can benefit from the new OO features.

5.2 General Discussion and Assessment

The OO paradigm has established itself as a popular design principle in
software development. There are numerous languages, design tools, and
workflows based on this concept. Of course, there are also controversies
regarding its success and underlying principles, but the general approach
has proven to be successful [Ald13]. Cook once stated: “I believe the aca-
demic community as a whole has not adopted objects as warmly as they
were received in industry.” [Coo09] Clearly, OO is not the “holy grail” of
programming paradigms. Programming languages evolve and ideally try to
find approaches that fit the domain and the needs of developers best. This
is also illustrated by OO consideration for the actor model [LLN09]. The
OO paradigm is simply a very powerful and commonly used approach for
structuring and designing software.

With this in mind, this thesis does not aim to enter into a wide-ranging
discussion about OO programming. Instead, the goal is to enrich syn-
chronous programming by OO facilities, as far as they fit. This especially
since these principles have rarely been embraced by synchronous languages,
see Section 5.1.2. Reasons might have been a focus on the C target, bare
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metal embedded platforms, or potential risks in unconstrained dynamic
behavior that might obstruct ensuring deterministic behavior. This section
provides a brief overview on the core features of OO, while investigating
and assessing possible implications and precautions in the context of syn-
chronous languages. This facilitates creating a conservative OO extension
for SCCharts.

The Notion of Objects Of the different definitions for OO that appeared
over time, the one by Wegner [Weg87] has been the most accepted one,
according to Capretz [Cap03]. It is also the one best suited for the concepts
of this thesis. Wegner defines an object as “a set of operations and a state
that remembers the effect of operations.” [Weg87] Therefore, objects express
data abstraction similar to abstract data types (ADTs); for a more detailed
comparison see Cook [Coo09].

Wegner further distinguishes object-oriented (OO) and object-based lan-
guages. While object-based refers to the support of objects as a language
feature, OO additionally requires a notion of classes and class hierarchies
for objects.

object-oriented = objects + classes + inheritance [Weg87]

From this foundation originate three important characteristics of objects:
encapsulation, inheritance, and polymorphism [Cra07; GM10].

Encapsulation Objects apply encapsulation or data hiding in which pro-
tected information (variables) are combined with legal operations (methods)
to mutate the internal state of an object. To further decouple objects from
each other, operation invocation is handled under the principle of message
passing, where the implementation of the required operation is selected by
the receiving object. Classes act as templates for constructing objects and
unify objects of the same kind. They can have multiple interfaces that specify
a set of abstract operations that the class has to implement.

Encapsulation is a well known principle in synchronous languages, ex-
pressed by modules in imperative styles and actors or nodes in dataflow
notations. Compared to many general purpose languages, such as Java or
C++, synchronous languages usually handle the invocation of operations
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via signals and not methods. However, Blech and Céu illustrate that func-
tions can generally be supported in synchronous languages as well, see
Section 5.1.2.

Inheritance With inheritance, classes can be derived from one another. A
subclass can reuse, alter, or extend the existing properties and behavior
implementation of its superclass, to create a new kind of class adjusted to
an extended purpose. Expressing common ancestry of classes facilitates
resource sharing in the definition of objects. In this regard, inheritance is a
flexible syntactic reuse mechanism.

In synchronous languages, reusing code comes in the form of modules or
subprograms, e. g., activities in Blech. Traditionally, synchronous compilers
perform a static macro expansion of modules, see Chapter 2. Yet, there
are also modular compilation approaches for synchronous languages, for
example in Blech [GG18] or based on interface theory for synchronous
block diagrams [BCR12; TL18]. The incremental definition of classes via
inheritance is a static feature and can be handled via macro expansion as
well, as later illustrated in Section 5.3.2.

In the literature on OO, a point of criticism to inheritance is the fragile
base class problem [MS98]. When a subclass is allowed to override method
implementations that are also used internally by the base class, then changes
and maintenance on the base class affect and will be affected by potential
alterations in subclasses. Sabané et al. conducted a study on this problem
and found no significant evidence that the presence of such internal over-
riding led to more fault-prone software [SGA+17]. Yet, in general, a more
open and adjustable system requires a more careful design process.

Multiple Inheritance Conceptually, there is no restriction on the number
of direct parent classes. Multiple inheritance describes the support for ex-
tending more than one class. However, multiple inheritance can lead to the
diamond problem [Cra07; GM10], in which a class inherits the same function
from two different superclasses with different implementation. Hence, the
challenge when supporting multiple inheritance is to resolve this ambiguity.
Some languages simply prohibit inheritance of behavior from more than
one superclass. Python resolves in lexical order of listed superclasses. Java
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with its default implementations in interfaces requires a reimplementation
of ambiguous methods to unify their behavior in the deriving interface. In
C++, method calls with multiple competing definition must explicitly name
the class that should provide the behavior. Lee et al. created an ultramet-
ric space for multiple inheritance in actors that resolves the behavior via
distance in the model [LLN09].

While there are sound technical solutions to support multiple inheri-
tance, it may complicate code understanding and maintenance, and is often
advised against, for example in industry coding guidelines, see Section 5.1.1.
Hence, it should be considered carefully.

Delegation It is important to note that even if inheritance is a core concept
of OO, it is not the only way to achieve reusability. Composition is a viable
alternative, for example in the form of the delegation pattern [GHJ+95].

Gamma et al. present a point of view that favors composition over
inheritance [GHJ+95]. They argue that inheritance is essentially a white-
box approach that gives access to the internal state of an object, while
composition is able to achieve the same result while retaining full (black-
box) encapsulation. Rust is an example for a language that follows the
principle of Gamma et al.

This became a controversial topic in the OO community and requires a
closer look, since it might be interpreted as inheritance being superfluous
or adverse. Tempero et al. investigate the use of inheritance in large Java
projects [TYN13]. Their studies conclude that “there is no need for con-
cern regarding abuse of inheritance.” They state that the observed use of
inheritance is justified, especially when it comes to subtyping and adjusting
internal behavior. Kegel and Steimann analyze the practicality of refactoring
inheritance into delegation in Java projects [KS08]. Their results show that
this “is neither always possible, nor generally trivial to perform” and “the
refactored code exposes so much technical overhead that the benefit of the
refactoring must be questioned.”

Modules already provide capabilities for compositional design in syn-
chronous languages, and the proposed concept for OO SCCharts will not
obstruct a delegation pattern.
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Prototype-Based Inheritance Wegner’s object notation uses a class-based
approach. However, there are also languages that apply prototype-based
inheritance, such as JavaScript. In these languages, there are no real class
definitions.5 Instead, objects act as prototypes for each other, when they
are created at runtime. New objects can be manipulated to replace or add
members to the object. Such a classless design is often used in interpreted
languages without static typing.

In synchronous languages, strong static compile-time assurances for
determinism and correctness are a key feature. This is a fundamental
opposite to prototype-based inheritance that essentially shifts the object
definition to runtime.

Type Inheritance In the presence of a type system, inheritance often also
expresses subtype relations, where an object is allowed to substitute objects
of its superclasses or interfaces. However, these are conceptually separate
concepts [CHC89]. The main difference between inheritance and subtyping
is that inheritance establishes a syntactical relation for reusing code between
classes, while subtyping ensures the compatibility and substitutability in
a type system. Subtyping or type inheritance is a form of polymorphism. In
practice, most OO languages use the same syntax to express these relations,
which results in subtype acceptance potentially restricting reusability via
inheritance. Yet, there are also ways to uncouple these concepts [CHC89].

Forms of Polymorphism In general, polymorphism is the applicability of
operations, functions, and variables to more than one type. Cardelli and
Wegner differentiate four forms of polymorphism [CW85], presented in
Figure 5.1. Since this is not a topic specific to OO but of type theory and pro-
gramming languages in general, they build upon exiting work and extend
it by inclusion polymorphism to capture subtyping in OO. Inclusion belongs
to the category of universal polymorphism that describes the handling of an
infinite number of types. In the same category is parametric polymorphism,
for example embodied by generics in Java [GJS+15] (e. g., in Listing 5.2).
Ad-hoc polymorphism is restricted to a finite number of types and covers
method overloading and operation-dependent type casts (coercion).

5In ECMAScript 6 there are optional class definitions, but they only act as syntactic sugar
for JavaScript’s existing prototype-based inheritance.
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polymorphism

universal

ad hoc

inclusion

parametric

overloading

coercion

Figure 5.1. Varieties of polymorphism
(based on [CW85])

1 interface<E> Stack {

2

3 public E pop();

4 public void push(E item);

5 }

Listing 5.2. A simple generic
interface for a stack in Java

Polymorphism permits the presence and use of different type-dependent
implementation that is selected based on the syntactic or runtime context.
Hence, it must be carefully considered in the context of synchronous lan-
guages, since it can hamper or jeopardize establishing deterministic behav-
ior when the actual implementation and its causal relations are unknown.

Inclusion Polymorphism With inclusion polymorphism an object can
have multiple types. Assuming the coupling of type and implementation
inheritance, it inherits the types of all superclasses. As such, it is applicable
to any context expecting a supertype. However, as Cook et al. describe,
subtyping bound to inheritance without any restrictions can lead to an inse-
cure type system [CHC89]. To ensure that a subtype object can work in the
context of a supertype, many languages implement additional constraints
for the validity of a subtype relation, most commonly the availability of
operations with the correct type6 or a model refinement relation [LS17].
However, there is also the concept of behavioral subtyping or the Liskov substi-
tution principle [LW94] that additionally requires a semantically permissible
substitution of the behavior.

Consider the Java interface in Listing 5.2. Any Java class that implements
this interface is a valid subtype of Stack because it will provide the push and
pop methods. However, there are no formal or programmatic assurances
that push and pop actually provide a first-in-last-out semantics as intended

6For example, a subtype usually must not change the return type of a method, e. g., bool

getValue(), if the base type specifies float getValue().
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by a stack. Behavioral subtyping would use model checking, verification,
and formal methods to provide such an assurance.

Behavioral subtyping is employed in the context of Harel’s O-charts or
as local type consistency verification7 in Ada [Ada16]. Lee and Xiong present
a behavioral type system for concurrent component-based designs [LX04]
that uses an extended form of interface automata [AH01].

Since synchronous languages lend themselves well to model checking
and static analyses, such techniques can be applied in this context as well,
in order to restrict subtyping to a desired degree.

Operation Dispatching If objects can substitute objects of a supertype and
provide different behavior, this requires a type-depend selection mechanism
to execute the correct behavior. In the OO concept of message passing, this
is considered dispatching.

If it is possible to deduce a single implementation at compile-time, e. g.,
by using constant object references or via type inference, static dispatch
directly resolves the invocation. Otherwise, dynamic dispatch is required to
select the correct implementation at runtime. Classically, this is implemented
in a virtual function table, but there are also alternative approaches, such as
explicit type switches with rigorous type inference, as performed by Zendra
et al. [ZCC97].

Synchronous languages usually perform static data analysis at compile-
time to ensure determinism. This naturally favors static dispatch to resolve
polymorphism. There are many powerful static analyses to infer and de-
termine types [CW85; PS91; CCZ97], which are profoundly applied in lan-
guages such as Rust, Ada, and functional OO languages. Dynamic dispatch
has an implicit runtime overhead and makes it more difficult to establish
determinism based on data access if the access can only be determined at
runtime. This makes it less applicable to synchronous languages.

However, the need for dynamic dispatch stems from the presence of un-
constrained runtime-mutable object references. In synchronous languages,
pointers are rarely supported as they often impede a static causality analysis.

7Local type consistency verification is a strategy to mitigate subtype vulnerability and is
specified in DO-332 [DO-11], which is an OO supplement to DO-178C [DO-12], a standard for
software safety in avionics.
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Blech supports mutable and immutable references and uses an ownership
model inspired by Rust to ensure a single writer, but it is not subject to sub-
typing in the first place. Céu has mutable pointers and subtyping but uses
a lexical order for deterministically scheduling threads and, hence, does
not need to consider the effect of references on a data-oriented causality
analysis.

Parametric Polymorphism The second form of universal polymorphism
enables functions or classes to carry type parameters that act as a placeholder
to define functionality independent of the actual argument type. Listing 5.2
illustrates an interface for a stack in Java that has a generic type parameter E.
This allows to predefine the push and pop methods to this arbitrary but
consistent type.

In statically typed languages, such as Java and Ada, type parameters
are resolved statically at compile-time. This procedure is very similar to
macro expansion, which makes this feature easily applicable to synchronous
languages.

Ad-Hoc Polymorphism Overloading permits the same identifier to refer
to different functions or operations based on the involved types. A class
can have multiple methods with the same name but different parameter
types and lists. Another example is the plus operator, which in many
programming languages performs a concatenation, when applied to strings,
instead of a numeric addition. Resolving the actual implementation based
on the type is again subject to static or dynamic dispatching, hence, the
same considerations for synchronous languages apply here.

Coercion describes automatic type conversion. For example, in the case of
a string concatenation with plus, the second operand, if not already a string,
is usually automatically converted into one. In synchronous languages, this
feature is usually handled by the type system or the host language.

Final Remarks The OO paradigm combines different principles and mech-
anism into a powerful design and programming concept. As it turns out,
many of the features are of a static nature and can be adapted to a syn-
chronous context that relies on a static causality analysis to establish de-
terminism. Similarly in LF, all OO features are currently supported only
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for static use. Yet, with growing support for mutations, there is also the
questions of admissibility of subtype reactors that are dynamically inserted
into a reactor.

In general, dynamic components with polymorphism enable designs
with a high level of interoperability and flexibility [Ald13]. However, they
can impede static analyses and may jeopardize determinism. Hence, a
conservative approach has to restrict these features to ensure the integrity
of its semantics, e. g., as illustrated by Ada. Even without dynamic aspects,
OO has a lot to offer. Creating reactive classes, reusing code via inheritance,
or adjusting behavior via overriding can be valuable modeling capabilities
for synchronous languages when dealing with large and complex systems.

The OO proposal in this thesis will follow a conservative path and
restricts itself to features that can be handled statically, see summary in
Section 5.5. As it turns out, this already covers a significant portion of
aspects relevant to the language design of SCCharts. Once the language
features are present, semantic restrictions can be lifted in the future, for
example by advancing the static analysis, revisiting scheduling granularity,
or introducing black-box approaches, as Section 6.3.4 will discuss.

5.3 Object Orientation in SCCharts

This section presents a conservative extension of SCCharts by OO. While
there are OO statecharts notations and some objects-based synchronous
languages, this is the first OO synchronous statecharts dialect that combines
both under a pragmatics-aware approach. The research question at hand
is: How can we introduce OO modeling features into a statecharts notation,
while remaining on the safe semantical terrain of the synchronous MoC?
This includes utilizing the benefits of textual modeling in combination
with graphical views to create a natural OO programming experience. Fur-
thermore, it involves the consideration of classes as an OO refinement of
synchronous modules, methods that represent a classical OO programming
notion and benefit from the imperative sequential nature of the SC MoC,
inheritance not only in terms of code reusability but also for adjustability
of behavior, and safe aspects of polymorphism.
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Additionally, this section describes a high-level implementation approach
that relies on the static macro expansion principle and treats these new OO

features as syntactic sugar. The transformation results can be inspected and
verified on source level, thus grounding their semantics in the existing sound
execution model of SCCharts. This also preserves the current mechanism of
a global white-box causality analysis to establish determinism under the SC

MoC. The goal is to build upon the well-established and tested compilation
and code generation mechanisms of SCCharts, without imposing new
requirements or significant overheads. A further extension into a modular
OO code generation is considered future work, see Section 6.3.5.

5.3.1 Class Modeling

Traditionally, SCCharts model an entire system as hierarchically and concur-
rently composed statecharts. Modules facilitate this process by dividing the
system into subprograms, modelled as individual SCCharts, as illustrated
by the Furuta pendulum example in Section 2.4. However, in line with the
new OO modeling perspective, SCCharts modules can also be interpreted as
classes. An SCChart has a name, can contain local variables and provides
behavior usually associated with its regions. The OO extension of SCCharts
introduces new capabilities to utilize SCCharts as classes, hereafter referred
to as SCCharts-based classes. This aims at modeling user-defined OO data
structures in SCCharts, as already illustrated by the TimedSignal in Sec-
tion 4.5.3. Indirectly, it also enables a more imperative programming style
for specifying behavior in classical SCCharts modeling.

Methods Regions represent the inner behavior of states that execute when
the state is active. With the OO extension, SCCharts can now specify meth-
ods alongside regions. Their behavior is only executed upon invocation
and is restricted to be instantaneous, i. e., methods must not contain any
synchronous delay (pause). This limitation is a design decision to estab-
lish a clear separation between the implicitly active and stateful behavior
in regions and instantaneous effects to method invocations. It is in line
with other synchronous languages, such as Blech, which separate func-
tions and activities, or Céu with code/tight and code/await. LF also provides
instantaneous methods.
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Counter

# value: int

+ increment()

+ decrement()

+ getValue(): int

(a) UML notation

Counter
protected int value
+ void increment ( )

+ void decrement ( )

+ int getValue ( )

(b) SCCharts notation

Figure 5.2. Visual representations of a
Counter class.

1 scchart Counter {

2 protected int value

3

4 method increment() { value++ }

5 method decrement() { value-- }

6 method int getValue() { return value }

7 }

Listing 5.3. Textual SCCharts-based
Counter class.

With methods, SCCharts grow closer to a classical class notation, as
illustrated by Figure 5.2. Figure 5.2a shows the UML class diagram [Obj11]
of a Counter class. This model of a counter will act as a running example for
various aspects presented in this chapter. It consists of a protected8 integer
field value and three methods: one for incrementing the counter, one for
decrementing it, and a getter method to return the current value. The same
information is also available in the SCChart in Figure 5.2b. Additionally, the
given SCChart includes implementations for the three methods, reflected in
the source code in Listing 5.3.

In contrast to regions, methods do not contain a state machine but in-
stantaneous imperative code. Their bodies are written in a subset of the
Sequentially Constructive Language (SCL) [HDM+14], which is a minimal
imperative language fully equivalent to the SCG described in Section 2.3.
Aside from their classical role in object design, methods improve the expres-
siveness of SCCharts beyond the usual trigger-effect-pattern in transitions
and provide reusable code snippets to perform classical algorithmic compu-
tations.9

8Figure 5.7a requires this visibility to enable the later implementation of a reset method in
the deriving this class.

9Methods have already proven themselfs useful in a student project involving SCCharts.
The students wanted to find the shortest path and hence implement Dijkstra’s algorithm. They
modelled a state machine with only transient states and immediate transitions. Clearly, this
was not a fitting notation for such an algorithm. An alternative would have been factoring
out this functionality into the host language. However, since the SC MoC already provides a
foundation for such sequential behavior, methods closed the notational gap and offered the
students imperative programming capabilities within SCCharts to naturally implement the
algorithm.
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CounterApplication
ref Counter counter

/ counter.increment()

-

/ print(counter.getValue())

-

/ counter.decrement()

-

Figure 5.3. The CounterApplication SCChart using Counter class. (Publ. in [SSM21])

In Figure 5.2b, the graphical representation of methods uses a region-
like notation. They are displayed in gray, to distinguish them visually
from regions and illustrate their inherent inactivity in the absence of an
invocation. If expanded they reveal a graphical SCG representation of the
SCL code specified in the textual source, the example in Figure 5.4a, will
later illustrate such a view. In fact, this representation is actually only a
CFG because the subset of SCL that is permitted in methods excludes the
synchronous pause and concurrency, as these aspects should be expressed
in classical regions. Since such a diagram represents only one possible view,
a user can also switch to a declaration-like notation with a textual preview
of the method’s body or just the method’s signature. Some subsequently
presented models will use this more compact representation, e. g., Figure 5.5.

Instantiation Now that SCCharts can represent a class, such as Counter,
they can be used for instantiating an object. The SCChart in Figure 5.3 de-
clares an instance of Counter as the counter variable. The three regions invoke
the methods counter.increment(), counter.decrement() and counter.getValue()

concurrently in every tick. The SC semantics and its IURP prescribes a
scheduling order where the printing (reading) of the value comes after
the other concurrent method invocations (updates). As a consequence, the
counter value is always zero at the end of the tick. This may not appear
useful, but the behavior of this example will be used in Section 5.4 to illus-
trate custom scheduling on objects and has no further implications on the
example in this context.
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The notation ref Counter counter corresponds to the instantiation of SC-
Charts as actors in dataflow regions [Smy21]. The classical notation for refer-
enced SCCharts [SMS+15] (state S is Module(), e. g., in line 12 of Listing 2.3)
is unsuitable for instantiating object, since it is designed to embed the
referenced behavior without providing a handle to the object. Nonetheless,
such a notation will reappear in the context of inheritance in Section 5.3.2,
where it is used instantiate a state by anonymously extending a class. This,
in turn, permits implicit access to its inherited members.

In SCCharts, the declaration of a variable with SCCharts type is consid-
ered an instantiation. Each such variable is an immutable reference to an
automatically created instance. This takes a conservative approach to the
problems imposed by mutable pointer, dynamic instantiation, and runtime
polymorphism, as discussed in Section 5.2. Yet, future work can build upon
this notation and lift these restriction when there is a more advanced anal-
ysis for mutable references, see Section 6.3.4, or per-object assurances for
determinism, as presented in Section 5.4.

Bindings The instantiation of objects upon declaration establishes a com-
position relation between the object and its instantiating SCCharts. However,
objects might need to interact with each other without such a containment.
In classical programming this is solved by passing object references. Yet, this
conservative proposal refrains from explicitly introducing pointers, instead
it relies again on the principles of macro expansion. In referenced SCCharts
modules, inputs and outputs of modules act as temporary aliases that are
lexically replaced upon expansion. This is also supported for SCCharts-
based classes. Conceptually, binding inputs and outputs resembles passing
references in a constructor, and it also appears similarly in the code, see
Listing 2.3. Hence, an input ref declaration can be used to refer to an object
instantiated outside the scope of the SCChart. Section 5.3.3 will present how
this can be combined with subtyping and Section 4.2.3 already illustrated
the practical application of this mechanism with the TimeUtil class.

Mixing Methods and Regions While methods offer a way to modularize
reusable sequential instantaneous behavior, regions retain their previous
role of specifying stateful behavior, now directly associated with an object.
Figure 5.4 illustrates an extended version of the Counter class in Figure 5.2b.
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CountingCounter
protected int value
+ void increment( )

+ void decrement( )

+ int getValue( )

entry

value = 0

exit

- void reset( )

Counting

/ increment()

- Counting

(a) The CountingCounter SCCharts
class.

CountingCounterApplication
ref CountingCounter counter

Wait Reset
counter.getValue() >= 10

/ counter.reset()

- Application

(b) Use of CountingCounter class in CountingCounterAp-

plication.

Figure 5.4. Example of an SCChart class with a region.

Each object of this class will autonomously increment its value in every tick.
This behavior is defined by the region Counting, containing a single state
with a self-transition that invokes increment.10 Section 5.3.2 will illustrate
how to use inheritance to base the definition of CountingCounter on Counter,
instead of redefining it.

Figure 5.4b illustrates an SCChart that creates a variable counter based
on the CountingCounter. The program simply waits until 10 ticks have passed
and then resets the counter value in the next tick and starts again. Manually
invoking increment or decrement would slow down or speed up this progress.

High-Level Transformation SCCharts-based classes can be considered
an extended feature and be replaced by more basic language elements.
During compilation, ref declarations are transformed into a more low-level
class representation, whose syntax is strongly inspired by classes in Java.
This native class type is also available to users and enables a more classical
approach for defining classes. However, its main purpose it to provide an
integration of objects and classes from host languages into SCCharts, as
described and utilized in Section 5.4. In this case, it is used to ease the down-

10A during action would be a more compact notation, but the purpose of the example was
to explicitly introduce a region.
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CountingCounterApplication
class CountingCounter {

protected int value
void increment( ) { value++ }
void decrement( ) { value-- }
int getValue( ) { return value }
void reset( ) { value = 0 }

} counter

Wait Reset
counter.getValue() >= 10

/ counter.reset()

- Application

Counting

/ counter.increment()

- counterCounting

Figure 5.5. First step in the high-level transformation of the CountingCounterApplica-

tion, replacing the SCCharts-based class by a native notation.

stream compilation of SCCharts-based classes. Figure 5.5 shows the result
of this translation step for the previous example of the CountingCounterAp-

plication from Figure 5.4b. The class declaration of CountingCounter contains
the counter variable and the three implemented methods. Since native class
declarations do not support regions, this transformation integrates them
into the instantiating SCChart. The region is renamed to counterCounting to
enable multiple instances of such a class. The method call counter.increment()

was adjusted to refer to the instance variable, since the region is no longer in
the same scope as the increment method. Instantiating regions of SCCharts-
based classes inside the declaring SCChart is only possible due to the static
instantiation and the read-only restriction of the ref declaration. In turn, this
binds the lifetime of an object to its declaring state.

In the next step of the transformation, method invocations are statically
expanded and replaced by the body of the method, known as procedure
inlining [ASU07]. Parameters are directly resolved to their invocation ar-
guments by a constant/copy propagation. Figure 5.6 shows the result of
method inlining for the CountingCounterApplication. Note that this model
is manually created to illustrate this procedure because in the actual im-
plementation, the method inlining is performed in a later transformation
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CountingCounterApplication
int counter_value

Wait Reset
counter_value >= 10

/ counter_value = 0

- Application

Counting

/ counter_value++

- counterCounting

Figure 5.6. Conceptualized second step in the high-level transformation of the
CountingCounterApplication with method inlining and simplification of the class data
structure.

step at the SCG-level. There is no conceptual difference to when the inlining
is performed. For the SCCharts compiler, only technical considerations
resulted in implementing this functionality at a lower level.

In addition to the method inlining, the Figure 5.6 also illustrates the
result of “unpacking” the class Counter. With static instantiation, read-only
references, and inlined methods, the remaining members in a class’s data
structure can be extracted and turned into individual variables, in this
example counter_value. With such a conversion, the last trace of the notion of
objects disappears. This illustrates that with the high-level approach used
here, the OO features introduced so far can be treated as syntactic sugar.
Moreover, it fully grounds the proposed language elements in the existing
definition of the SC semantics and SCCharts.

Class Transformation in Practice While Figure 5.6 illustrates how classes
can be transformed into classical SCCharts without any notion of OO, the
SCCharts compiler will not always perform this second step. By default, it
will only convert the SCCharts-based classes into the native class notation,
as in Figure 5.5, and maintain this structure even in the generated code.
The reason is that every relevant host language can express structured data,
including C and VHDL. To enable this approach, the dependency analysis
for SCCharts was extended to handle such data structures.
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CountingCounter extends Counter

entry

value = 0

exit

- void reset( )

Counting

/ increment()

- Counting

(a) The CountingCounter SCChart ex-
tending the Counter in Figure 5.2b.

ControlledCountingCounter extends CountingCounter
private bool counting = false
+ void start( ) + void stop( )

Waiting

Counting

Counting

/ increment()

- CountingCounter.Counting

counting !counting

- override Counting

(b) The ControlledCountingCounter SCChart extending
the CountingCounter and overriding the Counting re-
gion.

Figure 5.7. Examples of inheritance and overriding in SCCharts-based classes.

In the same sense, the inlining of methods can be disabled. Yet, if
method invocations are kept, the compiler will treat them as atomic units,
which limits the potential for interleaving and may result in a rejection of
a program as not SC schedulable, see Section 6.3.5. The current SCCharts
compiler is able to pass on classes into the generated code as far as it fits.
I. e., in C, classes are split up into structs and functions with access to that
struct. This approach maintains a better association between the generated
code and the original model, and establishes a foundation for an OO code
generation in the future, see Section 6.3.5.

5.3.2 Inheritance

Inheritance is an important OO concept that expresses commonalities be-
tween classes. The CountingCounter in Figure 5.4 is an example where basing
the class upon the Counter in Figure 5.2b can eliminate the need to copy the
common implementation. Figure 5.7a illustrates a variant of this SCChart
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that uses the new extends keyword to declare a superclass and only defines
the reset method and Counting region, while inheriting the variable and
methods from the Counter SCChart. Ultimately, this class has the same
properties as the one in Figure 5.4.

OO SCCharts support the common visibility modifiers private, protected,
and public on variables, methods, and regions. This enables the reset method
to access the value variable directly, while in the CountingCounterApplication

the access to this internal variable is restricted.

Overriding Inheritance unfolds its full potential when overriding enables
the adjustment of inherited behavior to the purpose of the extending object.
Overriding in classical imperative OO programming languages, such as
C++ or Java, is a rather straight forward process because it applies only
to methods. An overriding method completely supersedes the overridden
implementation. However, there are more options if the behavior is mod-
eled in a statecharts notation, as Harel’s OO statecharts illustrate. Harel’s
inheritance features fine-grained altering of states, transitions, triggers, and
effects, since these represent the implementation of different methods. In
contrast to that, inheritance in SCCharts supports top-level region overriding
and classical method overriding. This unifies the overriding mechanism for
both methods and regions. It further facilitates future development on OO

code generation that might similarly consider a region an atomic scheduling
unit, see Section 6.3.5.

Figure 5.7b illustrates overriding in the context of the counter example.
The ControlledCountingCounter extends the previously discussed Counting-

Counter, adds two new methods, start and stop, that set and unset the
additional boolean flag counting and overrides the existing Counting region.
The green highlighting indicates an overriding region. The previous be-
havior is replaced by two states, Waiting and Counting. Only if counting is
true, the SCCharts will enter the Counting state and will perform automatic
increment of the counter value. As soon as counting becomes false, this
behavior is aborted. Hence, a user now has control over the counting pro-
cess. Furthermore, OO SCCharts support accessing the implementation of
superclasses while overriding, similar to languages such as Java [GJS+15].
In this example, this mechanism is used to instantiate the previous (super)
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implementation of the Counting region inside the new Counting state. The
diagram indicates this by referring to it as CountingCounter.Counter in the
region title and highlighting the region in the purple, in accordance to the
existing referenced SCCharts notation. If more fine-grained overriding is
desired in the future, this mechanism could be extended to pick individual
elements from the overridden implementation.

Multiple Inheritance OO SCCharts support multiple inheritance. As dis-
cussed in Section 5.2, this must include handling ambiguities. SCCharts
uses the same strategy as for default methods in Java 8 interfaces [GJS+15].
If multiple superclasses contribute regions or methods with the same iden-
tifier but different implementations, they must be overridden to define a
single unambiguous definition. Otherwise, the model is rejected by the
compiler. Likewise, SCCharts are rejected if the inheritance hierarchy is
cyclic, name clashes occur, or an ambiguous super scope is accessed.

As indicated by Listing 5.3, there is no syntactical distinction between
SCCharts-based classes and interfaces. This is a contrast to other OO lan-
guages, such as Java. The underlying design decision was to subordinate
the SCCharts-based class design to classical SCCharts modeling. Hence,
OO SCCharts feature a set of annotations: @Interface, @AbstractClass, and
@Class. These annotations activate validation rules that issue an error if
the SCChart does not comply with these OO design concepts (based on the
definition in Java [GJS+15]) and enforce their consistent use across class
hierarchies. They act as a design guideline and, hence, the @Class will dis-
courage multiple inheritance of classes (providing behavior), as discussed in
Section 5.2. If multiple inheritance is desired, it must be explicitly enabled
by the annotation, i. e., @Class[MultipleInheritance] true.

Anonymous Classes in States The example in Figure 5.7a illustrates the
use of inheritance for SCCharts-based classes, and Section 5.3.1 discussed
that the classical module expansion syntax for states is insufficient for
instantiating objects. However, with inheritance and overriding, there is
an opportunity to revive and advance this concept. The state S is Module()

pattern (e. g., in line 12 of Listing 2.3) creates a state and fills it body with the
contends of the Module. The state S extends Module() {<body>} syntax will
have the same effect. However, it enables adding behavior in its body with
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access to the superclass definition, and more importantly override existing
methods or regions to adjust the implementation for this specific state.
This corresponds to the concept of anonymous classes, e. g., in Java [GJS+15].
Hence, in addition to its role in SCCharts-based class modeling, inheritance
can act as an advanced macro expansion and adjustment mechanism for
states in the classical design of SCCharts.

The Logger Example Figure 5.8 illustrates an example that uses inheri-
tance on individual states to create a modular but easily adjustable design.
The presented SCChart is a simplified model of a real-world example.11

In the underlying scenario, incoming messages, here reduced to messageA

and messageB, must be processed differently depending on the state of the
application. By default, a received message is logged. This common behav-
ior is modeled in the DefaultLogger that has separate concurrent regions for
processing each message. The state machine in each region immediately
logs the message’s content on an info level, if received. Then, it switches
to the Logged state and returns to the receiving state in the next instant to
process further messages. The input messages are declared as valued sig-
nals in the MessageReceiver SCChart, extended by the DefaultLogger. Valued
signals provide a combination of presence indication and payload (accessed
via val), similar to an events in LF. In the actual application represented by
LoggingApplication, the behavior differs from the default logging behavior
depending on the state. In this simplified example there are two states
in the application, ACausesError and BCausesError, that alternate triggered
by the next input. Each state inherits the behavior of the DefaultLogger. In
state ACausesError the handling of messageA is altered by overriding region
HandleA. If messageA is received, an error is logged and the Error state is en-
tered but not left, ignoring future occurrences of messageA in this state until
reentry. Analogously, the state BCausesError handles error from messageB.

11An industrial partner from the railway domain uses SCCharts to replace handwritten state
machine code by models and generated code. In the context of a C++ project, the developers
found the need for states to have common default behaviors. An example is the described
logging of messages. It is only reasonable to address such a use case by means of OO, especially
since C++ developers are already used to this methodology.
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LoggingApplication extends MessageReceiver
input signal next

ACausesError extends DefaultLogger

Wait Error
messageA
/ logError("Error: A occurred")

- override HandleA

BCausesError extends DefaultLogger

Wait Error
messageB
/ logError("Error: B occurred")

- override HandleB

next next

-

DefaultLogger extends MessageReceiver
extern Logger.info logInfo
extern Logger.error logError

Receive Logged

messageA
/ logInfo(val(messageA))

- HandleA

Receive Logged

messageB
/ logInfo(val(messageB))

- HandleB

MessageReceiver
input signal string messageA, messageB

LoggingApplication
input signal string messageA, messageB
input signal next

ACausesError
extern Logger.info logInfo
extern Logger.error logError

Wait Error
messageA
/ logError("Error: A occurred")

- HandleA

Receive Logged

messageB
/ logInfo(val(messageB))

- HandleB

BCausesError
extern Logger.info logInfo
extern Logger.error logError

Wait Error
messageB
/ logError("Error: B occurred")

- HandleB

Receive Logged

messageA
/ logInfo(val(messageA))

- HandleA

next next

-

Figure 5.8. Example for usage of inheritance and overriding (left) and the result
after inheritance is statically expanded by the compiler (right). Red arrows indicate
where the parts of the model are expanded into. (Publ. in [SSM19; SSM21] ©2019 IEEE)

High-Level Transformation Inheritance in SCCharts can be treated as
an extended feature and removed by a macro expansion mechanism. A
model-to-model transformation copies all variables, methods, and regions
into their extending states. Overriding is handled by static dispatching of
overridden behavior. The right-hand side of Figure 5.8 shows the result for
the LoggingApplication. The red arrows indicate the relation between the use
of inheritance with overriding and the resulting model. A special case are
the input signals in MessageReceiver that need to be bound when extended
in ACausesError and BCausesError, because only root states can have an input
output interface. The syntax enables an explicit binding, but in this case it
is optional because the LoggingApplication shares the same common ancestor
interface (MessageReceiver) and the signals are implicitly bound.
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CountToTen < T is Counter >
ref T counter

Wait
during / counter.increment()

Stop
counter.getValue() >= 10
/ print("Counter reached 10!")

-

Figure 5.9. An SCChart with a type parameter for a Counter classes that is instantiated
and used to count to ten.

5.3.3 Type Parametrization and Subtyping

Parametric polymorphism is the foundation of generic programming and
enables the definition of abstract behavior applicable to multiple types
only concretized upon actual use. While this concept is not specific or
limited to OO, it can be combined with subtyping. C++ implements type
parametrization in templates [ISO20], while Java uses generics [GJS+15].
Similarly, SCCharts-based classes can declare type parameters.

Figure 5.9 illustrates the generic CountToTen class that declares a type
parameter T after its name. The type T is then used to declare and instantiate
the variable counter. In order to enable any sensible interaction with the
object, the type T is restricted to the Counter type. Hence, a concrete argument
must be of type Counter or any valid subtype. With this constraint, the Wait

state can invoke the increment method in a during action and transition to
Stop when the value reaches at least 10.

Now, this class could be instantiated via ref CountToTen<Counter> ctt,
which will result in the message printed after ten ticks. However, if the
CountingCounter from Figure 5.4 is passed as type argument for T, the
message already appears after half the ticks because this class additionally
increments the value by itself.

Subtyping The CountToTen example illustrates that SCCharts-based classes
can be used to substitute each other if they are in a subtype relation. The
same applies if an SCChart declares a ref declaration as input. As discussed
in Section 5.2, it is relevant to restrict the acceptance of subtypes beyond
the inheritance relations. For subtyping in SCCharts, there are three aspects
that can be considered:
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1. interface compatibility,

2. scheduling admissibilit, and

3. behavioral conformance.

Subtypes must provide a compatible interface in terms of operations and
their types (1). For example, this is expressed in model refinement [LS17]
and OO type checking [Car88; WNS+06; KN06]. In Figure 5.9 inheritance
ensures the availability of the used methods, while removing methods is not
permitted. Validation rules for overriding will reject changes to incompatible
types, e. g., in the return type of a method.

Determinism is a crucial aspect to synchronous languages. The conser-
vative approach presented in this section relies on the established concept
of a global white-box causality analysis. In this context, subtype objects can
be analyzed and scheduled individually. However, in future extensions, a
subtype restriction in terms of scheduling admissibility (2) could enable
objects that are interchangeable at runtime. The basic idea is that a subtype
must provide the same scheduling interface as its supertype. The program
can then establish a deterministic schedule based on the supertype and
retain this determinism for any subtype, as Section 6.3.4 will further discuss.

The next level of subtype restrictions is behavioral subtyping (3). There
are model checking capabilities in SCCharts [Sta19] that could be extended
in this regard. For example, if Counter carries some form of invariant that
prevents a change of the value without external interaction and must be
fulfilled by subtypes, this could be used to prevent the CountingCounter from
becoming a valid subtype of Counter. Given the scope of this thesis, the
integration of behavioral subtyping remains future work, see Section 6.3.4.

High-Level Transformation Generic type parameters in SCCharts are
statically expanded at compile time. A subtype check validates whether
the given argument is an admissible type and then replaces all occurrences
of the parameter with the given argument. For the example in Figure 5.9,
the static instantiation of ref CountToTen<Counter> ctt follows the procedure
described in Section 5.3.1 but expands ref T counter into ref Counter counter.
Then, the expansion continues recursively.
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5.3.4 Modelling Object-Oriented SCCharts

The proposed OO SCCharts combine statecharts modeling with established
concepts of OO. However, in order to create a language that provides OO

design in a practical and effective way, the actual programming support, or
in this case the modeling support, is an important aspect. Stroustrup, the
creator of C++, formulates it this way:

“Object-oriented programming is programming using in-
heritance. Data abstraction is programming using user-defined
types. With few exceptions, object-oriented programming can
and ought to be a superset of data abstraction. These tech-
niques need proper support to be effective. Data abstraction
primarily needs support in the form of language features and
object-oriented programming needs further support from a pro-
gramming environment.” [Str87]

In this sense, the OO features presented so far represent language support
for user-defined types and expressing inheritance. This is accompanied
by a pragmatics-aware modeling environment in the form of the KIELER

tool, see Section 2.5. It offers a unique way of combining textual editing
with customizable transient views. This also affected the design of OO

features in SCCharts, since they are under deliberate influence of popular
and especially textual imperative OO languages.

KIELER Figure 5.10 shows a screenshot of the ControlledCountingCounter

model from Figure 5.7b in the KIELER tool. On the left side is the editor with a
textual source code. The extends syntax in line 5, the overriding of regions as
a method-like unit in line 15, and the reference to the super implementation
in line 21 are designed to create a Java-like programming experience. This
is accompanied by common editor features, such as content-assist.

Located on the right is the Diagram view that displays the graphical
representation of the SCChart. The sidebar left of the diagram shows some
configuration options for SCCharts and its OO features. In contrast to the
diagram shown in Figure 5.7b, this view is configured to provide a preview
of inherited elements. Hence, the declarations at the top of the SCCharts
also list the variable and methods defined in the derived SCCharts. This
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Figure 5.10. Screenshot of the ControlledCountingCounter in the KIELER tool.

gives the modeler an impression of the final properties in the designed class.
Additionally, methods are configured to appear as textual code snippets,
rather than graphical SCGs.

UML Class Diagrams Another new visualization option that comes with
the OO extension is the arrangement of SCCharts in a UML class diagram no-
tation. Figure 5.11a illustrates such a view for the CountingCounterApplication

from Figure 5.4b. A generalization edge indicates the inheritance relation be-
tween Counter and CountingCounter. The instantiation of the CountingCounter

in the CountingCounterApplication SCChart is reflected by the association as
an aggregation.

Figure 5.11a illustrates how SCCharts adapt notational aspects of UML

class diagrams to augment the classical SCCharts representation. Fig-
ure 5.11b presents the same model in a more classic UML class diagram
style. A separate section of properties was introduced to list regions.

This pragmatics-aware modeling approach for OO SCCharts seamlessly
combines OO programming with the OO design methodology. Additionally,
it addresses the important issue of documentation [HLF+22]. In software
development, there is often the problem that the actual implementation
starts to diverge from the architecture defined in an earlier stage or the doc-
umentation, if not kept in sync. In SCCharts, the model acts as the source for
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CountingCounterApplication
ref CountingCounter counter
+ Application

CountingCounter
+ void reset( )

+ Counting

Counter
protected int value
+ void increment( )

+ void decrement( )

+ int getValue( )

(a) SCCharts notation

CountingCounterApplication

+ counter: CountingCounter

Regions
# Application

CountingCounter

+ reset()

Regions
# Counting

Counter

# value: int

+ increment()

+ decrement()

+ getValue(): int

(b) Classical UML notation

Figure 5.11. The CountingCounterApplication and the involved classes arranged in a
UML class diagram style.

the generated code and the documentation. Using automatically generated
graphical views, the tasks of designing, implementing, and documenting a
system start to merge, while handling a single model.

Transparent Compilation The KIELER compiler [SSH18c; Smy21] also fa-
cilitates working with OO SCCharts. Its modular approach is influenced by
the idea of transient views and produces accessible intermediate results for
each step of the compilation. Hence, a user can inspect and verify the effect
of each transformation presented in this chapter, down to each individual
macro expansion.

5.4 Deterministic Objects

A core feature of synchronous languages is their deterministic concurrency.
In the classical approach, described in Section 2.1, the program is subject
to an analysis that determines data accesses of individual elements (e. g.,
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statements), establishes causal relations, and tries to find a deterministic
scheduling based on the respective MoC. However, this white-box approach
is limited by the availability of information and is often too fine-grained to
support separate modular compilation.

Normally, the analysis ends at the level of the synchronous language and
does not reach into the host language. Hence, the host code becomes a black-
box and requires some form of causality interface [ZL08] to enable safe
interaction from within the synchronous program. This is best exemplified
by LF’s black-box reactions but also by the host code integration in Esterel
and SCCharts.

In separate compilation, the underling rationale is to utilize existing
modularity and compile components separately. In turn, this requires some
from of causality interface that decouples the compilation process and can
act as a placeholder when including a module now reduced to a black-box.
Again, LF’s reactors are an example for this, same as activities in Blech, which
are both designed to be compiled independently. There are also modular
compilation approaches for synchronous dataflow languages [BCH+08;
TL18; PR10], Esterel [HPB+99], or SCCharts [Lüd21; Smy21].

While these considerations are not new and solutions have been re-
searched, this section revisits this topic in the context of OO in SCCharts.
The primary research question is: What are mechanisms to include objects
from the host language in synchronous languages, while acknowledging
their inherent OO characteristics and providing a flexible way to achieve
determinism?

A solution will in turn facilitate modular OO compilation, if SCCharts
supports interacting with a black-box object that could result from a sepa-
rately compiled SCChart. Yet, such an application remains future work, as
discussed in Section 6.3.5.

The solution proposed in this section will advocate a contract-like in-
terface for objects that expresses scheduling instructions, rather than data
access, to establish internal determinism. Specifically, SCCharts will utilize
the existing Scheduling Directives (SDs) [SSH19] and Scheduling Policies
(SPs) by Aguado et al. [AMP+18] for this purpose.
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CounterApplicationHostClass
host class Counter {

void increment( )
void decrement( )
int getValue( )

} counter

/ counter.increment()

-

/ print(counter.getValue())

-

/ counter.decrement()

-

(a) The counter defined as a host class with
methods. (Publ. in [SSM19; SSM21] ©2019 IEEE)

CounterApplicationHostFunctions
int counter
extern increment increment
extern decrement decrement
extern getValue getValue

/ increment(&counter)

-

/ print(getValue(counter))

-

/ decrement(&counter)

-

(b) The counter defined as a simple integer
with external functions for manipulation.

Figure 5.12. Two variants of the CounterApplication using host code.

5.4.1 Black-Box Scheduling

The high-level transformations for objects in SCCharts, presented in Sec-
tion 5.3, provide determinism by statically exposing all data accesses to the
white-box analysis in the SCCharts compiler. For the CounterApplication in
Figure 5.3, this means that the analysis detects the three concurrent method
invocations and looks into their implementation, if not already exposed due
to inlining. This yields the result that increment and decrement perform a
relative write on the value variable of the counter object, while getValue reads
this value. The IURP then prescribes that both the increment and decrement

method call (or the actual increment/decrement statement, if inlined) must
happen before the reader in getValue, to form a valid SC admissible schedule.
Since the two write accesses are commuting, they can be scheduled in any
order without jeopardizing determinism.

Figure 5.12a shows the same program but with the Counter class defined
in the host language. The host class syntax is a variant of the native class
notation used in the compilation of SCCharts-based classes, discussed
in Section 5.3.1. The declaration makes the class and the signatures of
its methods known to the SCChart. Like extern declarations, the actual
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implementation is only linked into the program at compile time. A more
detailed description of OO host language integration in SCCharts is available
in the corresponding journal on OO in SCCharts [SSM21].

In this model, the methods are now black-boxes and the analysis can no
longer determine internal data accesses. Unless the synchronous compiler
parses the host language, which, however, would be contrary to the idea of
black-box host code. The absence of information about data accesses renders
the program vulnerable to non-determinism, since there is no restriction
on how to schedule the regions, and the method calls could appear in
any order, potentially leading to data races. Hence, the return value of
getValue is different depending on whether it is executed before or after
an increment/decrement. Note that for non-parallel SCCharts execution and
in the absence of data dependencies between regions, the scheduling falls
back to the syntactical order of the regions in the source code. Yet, this still
yields a different behavior in this example, since the value would be printed
before it is decremented.

Causality Interfaces in Functions The issue of non-determinism with
black-box function calls is well-known to synchronous languages. It is
usually avoided by demanding that external functions must not have any
side effects through shared memory. Hence, shared data has to be passed
between these functions through the synchronous language. Figure 5.12b
presents a variant of the CounterApplication that uses the classical approach
of host code functions. The three methods are now external host functions
and the counter that was previously an internal private member of the
Counter class is a variable in the SCChart. The invocations then pass the
shared variable to the functions. The parameters now act as a causality
interface, where call-by-value arguments are considered read and call-by-
reference arguments are read-write accesses on the respective variable.
Other languages, such as Blech or Esterel, determine the mutating behavior
of function arguments via separate parameter lists.

This approach raises the internal data relations into the external input
output interface of each function. However, such an interface only allows
limited scheduling decisions. For example, this model still has to be re-
jected because the concurrent calls increment(&value) and decrement(&value)
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Counter
value:int(0)

1

2

3getValue

decrement

increment

value

Figure 5.13. An attempt to model the Counter class as a reactor in LF.

both read and write the variable. This constitutes a causality cycle under
a write-before-read scheduling. The additional write-read dependencies
in Figure 5.12b illustrate this fact. The SC semantics can only accept this
program if the analysis is able to detect commuting relative writes, i. e., up-
dates. Hence, a more expressive form of scheduling information is required
to enable scheduling beyond a write-before-read protocol.

A more fundamental problem with the aforementioned approach is its
incompatibility with the OO principle of encapsulation. In the example in
Figure 5.12b, the notation for the counter changed from a class to a set of
functions, in order to illustrate the extraction of internal members. This
clearly violates the idea of information hiding in objects. If one tries to keep
all object members in one data structure to retain encapsulation, it further
complicates scheduling. This “self” struct would need to be passed to
every method associated with the object, to provide read-write access to its
members, creating bidirectional dependencies, i. e., causality cycles, between
all of them. After all, the basic purpose of an object’s method is to access
and manipulate the object’s internal state. In other words, methods have
side effects on their object by nature, which makes them incompatible with
existing mechanisms and assumptions about host functions in synchronous
languages.

Causality and Ordering in Reactors When interacting with the host lan-
guage while permitting side effects, a causality interface for inputs and
outputs is necessary but not sufficient, additionally there has to be some
ordering that establishes determinism internally. The same principle can
be observed in LF, which provides OO encapsulation with black-box code.
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Figure 5.13 shows a reactor that mimics the Counter class in Figure 5.2b. It
has input ports for triggering an increment or decrement and getValue that
will issue an output at the value port. Other than methods in SCCharts, the
associated reactions can only be triggered once per tick, further discussed
in Section 5.5.3. The counter value is an internal state variable. Note that
this variable is not exposed in the causality interface of reactions nor the
input output interface of the reactor. Instead, each reaction has an implicit
read and write access (side effect) on state variables and determinism is
established by the fixed lexical ordering of reactions. In this diagram, the
orange arrows indicate this relation in addition to the numbering.

This sequential ordering is an effective way to establish determinism
inside an object. Yet, given the context of shared objects in SCCharts, such a
strict order would reduce the extent of utilizable concurrency, since increment

and decrement are actually commuting in this example.

Objects with Scheduling Contracts The proposed solution for determin-
istic black-box objects in SCCharts is similar to the concept of LF. Classes
can encode a contract that prescribes the scheduling order for its meth-
ods in a concurrent context. This augments the causality imposed by the
input output interface of methods and abstractly expresses inter-method
dependencies imposed by hidden data dependencies and side effects. The
contract is enforced upon concurrent invocation on a per-object basis. The
contract could also be used beyond establishing determinism in the pres-
ence of concurrency and govern the general interaction with objects, i. e.,
by prescribing an order even for sequential accesses, but this is not in the
focus of this thesis.

For host classes, which are always treated as black-boxes, there is a
default contract. This conservative version imposes an invocation order
corresponding to the lexical order of declaration in the class notation of SC-
Charts. It prohibits multiple invocations of the same method, since methods
cannot be assumed to be commuting to themself. Normal SCCharts-based
classes do not have a default contract because they are scheduled under
white-box SC. However, in both cases, a user-defined contract can be speci-
fied that supersedes the default ordering.
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The following sections will present two existing concepts for implement-
ing such contracts and will adapt them to objects in SCCharts. The first
approach are Scheduling Directives (SDs) by Smyth et al. [SSH19] that are
already implemented in the SCCharts compiler and are designed for the
same purpose: adjusting the default scheduling in synchronous languages.
Section 4.2.2 already illustrated their utilization in prepending a clock up-
date phase for concurrent clock use. Second, Scheduling Policies (SPs) by
Aguado et al. [AMP+18] inspired the idea of object-specific contracts. SPs

augment objects with a precedence interface based on access methods that
subject its scheduling to the specified precedences. With their automaton
formalization, SPs are more powerful than SDs and fit well into the modeling
approach of SCCharts.

To illustrate the approaches, the CounterApplicationHostClass SCCharts
from Figure 5.12a is continued as an example. Its default contract is replaced
by a custom ordering that permits clients to concurrently invoke increment

and decrement multiple times and in any order, but strictly before any calls
to getValue. This results in a deterministic value read from a counter object
in every instant and corresponds to the semantics under a white-box SC

scheduling.

5.4.2 Scheduling Directives

SDs are designed to facilitate resolution of causality problems in a user-
defined way. The idea is to augment the mechanism of casual data-related
dependencies imposed by the MoC, e. g., the IURP, with precise rules that
aid the compiler in accepting programs that would otherwise be rejected.
Therefore, SDs associate a scheduling unit, such as a single assignment or a
region, with a named schedule and an index.12 All SDs associated with the
same named schedule must be scheduled according to their index, lowest
index first. This induces a new schedule that overrides the pre-defined
synchronization protocol of the synchronous language.

As it turns out, this approach is also well suited to introduce scheduling
rules for objects, especially since SDs can express non-trivial causal relation.

12The notation of SDs avoids the term “priority” to prevent confusion with the priorities of
priority-based scheduling [HDM+14], where the highest value priority is executed first.
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CounterApplicationWithSDs
host class Counter {

schedule { commuting , commuting } CounterSD
void increment( ) CounterSD 0
void decrement( ) CounterSD 0
int getValue( ) CounterSD 1

} counter

CounterSD 0

/ counter.increment()

-

CounterSD 1

/ print(counter.getValue())

-

CounterSD 0

/ counter.decrement()

-

Figure 5.14. The CounterApplication with a host class and a custom schedule. The
resulting scheduling instructions are visualized as green arrows. (Publ. in [SSM19;

SSM21] ©2019 IEEE)

In an SD-defined schedule each index can be declared conflicting or commut-
ing, with the former as default. If multiple scheduling units are associated
with the same index, a commuting group permits these units to occur in
any order, while concurrent execution of conflicting units is rejected by the
compiler.

Classes with Scheduling Directives Figure 5.14 shows the CounterAppli-

cation from Figure 5.12a using SDs. The definition of the host code class
is augmented by a named schedule CounterSD that has two phases, both
commutative in their group. The index 0 is assigned to increment and decre-

ment, meaning that their invocations can be ordered arbitrarily but must
occur before any calls to getValue, which has assigned the higher index 1.
Index 1 is also commuting because reading has no causal implications in
this case. As a novelty to classical SDs, the actual scheduling units, i. e., the
method invocations, draw their SD from their declaration. The diagram also
shows these implicit SDs on the transitions and additionally illustrates the
imposed ordering. Furthermore, the current SCCharts compilation ensures
atomicity of black-box method calls, which, therefore, can be treated as
single scheduling units.
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SDs were implemented in the SCCharts compiler by Smyth [Smy21]
and are extended here, to support their application in host objects and
SCCharts-based classes. The fact that SDs are compiler instructions leads
to their complete consumption during static scheduling and imposes no
overhead on the generated code or runtime.

5.4.3 Scheduling Policies

A more general form of a scheduling contract is an SP. It augments an object
or memory cell with a policy that specifies the admissibility and precedence
of its access methods in a concurrent context. SPs use an automaton formal-
ism to encode a precedence graph, which facilitates a high level of abstraction
and enables more advanced stateful scheduling regimes than SDs. They are
capable of generalizing scheduling protocols of synchronous MoC for indi-
vidual shared ADTs. In contrast to the policy model by Caspi et al. [CCG+09],
SPs by Aguado et al. [AMP+18] permit destructive updates and sequentiality,
which is particularly relevant in the context of SCCharts. SPs act as a contract
between objects and the program, and they require the enforcement of a
policy-conformant scheduling at run-time or statically at compile time, where
any inability to do so implies a constructiveness problem. At the same time,
a policy also requires a policy-coherenent implementation of the objects itself,
such that the object will behave deterministically if accessed in accordance
to the given SP. Ensuring or checking this property is not in the focus of
this thesis, and the following concept will assume that users will provide
correct policies w.r.t. the implementation.

Classes with Scheduling Policies Figure 5.15 shows the CounterApplication

from Figure 5.12a using an SP. The CounterPolicy is specified inside the Counter

class and visualized as a policy region. The syntactic elements are based
on SCCharts’ states and transitions but adjusted to the SP formalism. The
automaton has two states, count and read, which capture the two different
scheduling modes, before and after the first read access to the counter.
Initially, in state count, invocation of all three methods increment, decrement,
and getValue are admissible. This is expressed by the availability of an
instantaneous transition labeled with the name of the method and a blocking
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CounterApplicationWithPolicy
host class Counter {

policy CounterPolicy
void increment( )
void decrement( )
int getValue( )

} counter

count read

decrement: ∅

getValue:
{increment,
decrement}

getValue: ∅

σ tick

- policy CounterPolicy
CounterPolicy

/ counter.increment()

-

CounterPolicy

/ print(counter.getValue())

-

CounterPolicy

/ counter.decrement()

-

increment: ∅

σ tick

Figure 5.15. The CounterApplication with a host class and a policy automaton. The
resulting scheduling instructions are visualized as green arrows. (Publ. in [SSM19;

SSM21] ©2019 IEEE)

set, separated by a colon. In the case of getValue, it states that any admissible
invocation of getValue must wait for all concurrent calls to increment or
decrement, which take precedence. On the other hand, the blocking sets of
increment and decrement are empty and thus are neither blocked by getValue

nor each other. This corresponds to the commuting property inside the first
scheduling group, when expressed by SD in Figure 5.14. In the given policy
automaton, the first concurrent invocation of getValue will switch the state
to read. There, calls to increment or decrement are no longer admissible, only
invocations of getValue, which are again commuting as this transition leads
back to read and has an empty blocking set. The solid (non-instantaneous)
transitions labeled σ tick represent the synchronous clock that starts a new
instant and resets the SP to the initial count mode.

The policy imposes the same precedences onto the method invocations
in the CounterApplication as in Figure 5.14. This is again illustrated by the
additional arrows in the diagram.

Partial Implementation SPs provide a powerful formalism for prescribing
schedules. However, this includes schedules that may require runtime-
dependent changes in the ordering of methods, for example, if a policy
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does not return to its initial state in each tick. Such policies are not sup-
ported by the current static compilation approach in SCCharts and either
require a policy-conformant scheduling at runtime or an exploration of
the program’s state space at compile time, e. g., as illustrated by Aguado
and Duenas [AD21] utilizing model checking. Hence, SPs in SCCharts only
support a subset of policy automata at this point, specifically those that can
be statically transformed into SDs.

SDs are a special case of stateless SP automata that always return to their
initial state after a tick and specify precedences which methods can be
uniquely assigned to scheduling groups (indices) and classified as conflict-
ing (listing themselfs in their blocking set) or commuting. The transforma-
tion of SPs in SCCharts analyzes the automaton and generates SDs based
on a topological sort of precedences. If the structural requirements are not
met, the program is rejected. Hence, the provided implementation of SPs in
SCCharts is only partial and acts as a proof of concept. Note that the SP in
Figure 5.15 fulfills the requirements for transformation and will result in
the SD shown in Figure 5.14.

A Foundation for Stronger Decoupling SPs for classes, same as SDs, act
as contract between the object and the scheduler, as well as the class and
its implementation. As such, they can be utilized beyond host objects
and formalize the safe interaction between shared objects in SCCharts in
general. This can also facilitate future development of modular OO code
generation for SCCharts. If the compiler automatically synthesized policies
for SCCharts, to specify the precedences between, e. g., regions, this could
enable instantiating these SCCharts as black-box modules in other SCCharts.
This would facilitate the separate compilation of such modules in a finer
granularity, further discussed in Section 6.3.5.

As mentioned in Section 5.3.3, a fixed scheduling contract could also ease
the handling of subtyping in the face of runtime mutable object references.
If all subtypes must be policy-coherenent to their supertype’s policy, a
policy-conformant scheduling of an object reference could be established
independent of the actual subtype.
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5.5 Evaluation

The features proposed in this chapter introduce core capabilities of OO

design and programming for SCCharts. They are based on a careful assess-
ment of the OO methodology in Section 5.2 and continue some existing
concepts present in Blech, LF, or O-Charts.

After a reflection on goals and the extent of the introduced features,
Section 5.5.1 will briefly assess implications of the high-level transformation
approach. Next, Section 5.5.2 will evaluate the class modeling capabilities
of the OO extension by turning SCCharts’ built-in signal types into classes.
Section 5.5.3 will follow up with a discussion on the relation of methods to
the classical concept of signal interfaces in synchronous languages. Finally,
Section 5.5.4 presents a case study on a steam boiler controller modeled in
SCCharts using OO features.

Reflection on Goals As a first informal evaluation, the initially set goals
are examined for their fulfillment in the proposed concepts (cf. page 167).

Conservative Based on the assessment in Section 5.2, the OO features for
SCCharts are carefully selected. Restrictions are only introduced to
conservatively enforce determinism, facilitate static analysis, or to limit
the implementation extent for this thesis. Additionally, these restrictions
are only functional and do not affect the investigation of the language
design itself. Furthermore, the presented high level transformations
illustrate that the new features can be conservatively grounded in the
existing language core and semantics of SCCharts.

High-level All introduced OO modeling capabilities can be handled as ex-
tended features in SCCharts and transformed by the proposed high-level
approach, which seamlessly integrates into the existing compiler. As
a result, the OO features do not require an OO host language and can,
for example, be compiled into C code. Yet, the design is not restricted
by this approach, since the new language constructs are in many ways
inspired by OO general purpose languages, which facilitates utilizing
their capabilities downstream. Section 6.3.5 will discuss a sketch for a
code generator that carries OO constructs down to the host language
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level. Another benefit of the high-level approach is that it facilitates
inspecting and verifying the results on the source level.
For host code objects, scheduling contracts provide a high abstraction
level, enabling a black-box approach that is not bound to specific OO host
languages or relies on parsing external code. With SPs, the specification
of custom scheduling regimes becomes a high-level modeling task.

Pragmatics-aware As discussed in Section 5.3.4 and illustrated by the various
diagrams and graphical views presented in this chapter, the design of
OO SCCharts embodies the principles of pragmatics-aware modeling
and tooling.

Concurrent Objects in SCCharts are treated as concurrent entities, similar to
LF reactors or actors in dataflow SCCharts. With the support of regions
in SCCharts-based classes, the proposed concept augments classical class
design with a statecharts notation capable of expressing concurrency. In
addition to signals and shared variables, method calls offer a new way
of communication in SCCharts, further discussed in Section 5.5.3.
Scheduling contracts are designed to enabled concurrency for shared
objects under a black-box abstraction. While fixed ordering or classical
write-before-read protocols may limit utilizable concurrency, SDs and SPs

facilitate fine-grained scheduling classifications and are able to express
confluence in the form of commuting access groups.

Deterministic The high-level transformation approach illustrates that the
proposed concept is grounded in Core SCCharts and the deterministic
SC MoC. The conservative restriction to immutable references enables
this static approach and rules out a source of runtime non-determinism.
For host objects that may have no causality interface due to data hiding,
SCCharts provides a deterministic default scheduling based on the
lexical ordering of methods. Replacing this default regime by an SD or
SP puts the responsibility of establishing determinism in the hands of
the users.

Supported Functionality Table 5.1 gives an overview of the characteris-
tics of the OO features and their support in the SCCharts implementation.
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Table 5.1. Characteristics of OO features in the current implementation of SCCharts.

Feature Current Support / Restrictions

Objects see Section 5.3.1

definition
class-based, either in a classical syntax or modelled
as an SCChart, which permits using regions

creation/destruction static instantiation with static expansion for regions
references constant object pointers
encapsulation private, protected, and public visibility

methods
instantaneous imperative bodies; method inlining
based on static dispatch

determinism
provided by white-box SC semantics, SDs, or a subset
of SPs

Inheritance see Section 5.3.2

relations
multiple inheritance with unique behavior definition;
static expansion at compile-time

applicability
SCCharts-based classes and states (anonymous
classes)

overriding supported for methods and regions

Type parametrization see Section 5.3.3

definition
declaration of generic types on SCCharts-based
classes; static expansion at compile-time

subtyping
admissibility based on interface compatibility and
indirectly schedulability by the causality analysis

As initially described, the dynamic runtime aspects of OO are challeng-
ing to adapt to a safety-critical and embedded domain, see Section 5.2.
These are conservatively restricted in favor of static analyzability, memory
boundedness, and good predictability for execution time. As a result, object
references are constant and there is only static instantiation for objects,
which rules out runtime polymorphism and dynamic dispatching. Some
restrictions can be partially lifted by advancing analysis mechanisms, as
Section 6.3.4 will describe. Others, such as the support of inheritance in
states and SCCharts but not in class declarations, are not part of the proof
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of concept implementation provided by this thesis. They do not require
an additional concept, as the proposed approach can be easily transferred,
and they do not directly contribute to the investigated research questions.
In conclusion, the proposed concepts cover core OO constructs, such as a
class-based designs and inheritance with overriding, and integrate them
into synchronous statecharts modeling.

5.5.1 Assessment of the High-Level Transformations

The proposed high-level transformations for handling OO features in SC-
Charts have two main benefits. First, they ground the semantics in the
existing model of Core SCCharts. Second, extended features can be seam-
lessly integrated into the existing compiler and enable target non-OO host
languages, such as C, which are relevant for many embedded platforms.
Yet, the proposed language extension is not designed to be limited by this
approach. Instead, OO constructs could be transferred to an OO capable host
language, as Section 6.3.5 will discusses in the proposal for a future OO code
generation approach. This would reduce the code size of programs that
instantiate (reference) the same SCCharts multiple times. Such results were
observed by Lüdemann [Lüd21], when testing SCCharts with a modular
compilation.

Treating OO modeling capabilities as extended features and removing
them for the final program comes at a price. Clearly there is a cost in
performing the transformations at compile-time. However, tests show that
it is relatively negligible and less relevant than a potential runtime impact.
In order to assess any implication of the high-level approach, all OO models
presented in Section 5.3 and some additional test cases were also modeled
with the classical module approach, to enable a direct comparison.

The Non-OO Logger Figure 5.16 shows such a re-modelled variant of
the LoggingApplication example in Figure 5.8. It utilizes referenced SCCharts,
shown as state with a purple background (see Listing 2.3 as an example
in textual syntax), to instantiate the LogMessage and LogError module. The
general design of the SCChart is different from the OO variant because the
modules in their given form do not allow expressing a common interface
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LoggingApplicationNoOO
input signal string messageA, messageB
input signal next

ACausesError

HandleA @ LogError (messageA, "Error: A occurred")
+

- HandleA

HandleB @ LogMessage (messageB)
+

- HandleB

BCausesError

HandleA @ LogMessage (messageA)
+

- HandleA

HandleB @ LogError (messageB, "Error: B occurred")
+

- HandleB

next next

-

LogMessage
input signal string message
extern Logger.info logInfo

Receive Logged

message
/ logInfo(val(message))

- HandleMessage

LogError
input signal string message
input const string errorMessage
extern Logger.error logError

Wait Error
message
/ logError(errorMessage)

- HandleMessage

Figure 5.16. Logger example modelled using the classical module approach.

or adjustable default behavior.13 Instead, the modules individually provide
the different logging behaviors, in case of this simplified example only two.
The LoggingApplicationNoOO SCChart composes them in the two states to
create the desired behavior. The inputs are used to create some degree of
reusability given the different context of ACausesError and BCausesError.

Results Executing these models in a benchmark with fixed input traces
indicated no drawbacks in runtime performance when using an OO de-
sign instead of modules. Inspecting the generated code of OO and non-OO

variants reveals nearly the exact same structures and instructions, which
underpins the runtime observation.

13SCCharts’ modules could be extended by a form of procedure parameters with default values,
in this case for regions, to provide more flexibility and adjustability. The result would be
quite similar to type parameters in Section 5.3.3 and would turn SCCharts into higher-order
functions. However, in my opinion the OO paradigm is a more natural and well-established
way to approach this.
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One minor difference is an additional level of hierarchy that is intro-
duced when using modules. In Figure 5.16, state ACausesError has a region
HandleA that has a state HandleA in order expand the SCChart LogMessage

into this state. Only this state will have the region HandleMessage with the
actual business logic. In contrast to that, the OO variant using inheritance
puts the regions with the message handling logic directly in the ACausesError

state, see Figure 5.8. It is a consequence of the module design in SCCharts
that requires a dedicated state to instantiate an SCChart module. Similarly,
the instantiation of SCCharts as objects via references, as described in Sec-
tion 5.3.1, does not introduce this additional state either. Assume that the
modules in the FurutaPendulum SCChart were instantiated using this new
OO approach. This would eliminate the need for regions such as Controller

in Figure 1.3 and directly integrate the variable and region of the Pendu-

lumController into the FurutaPendulum SCChart. Alternatively, the additional
hierarchy level needed for modules could be optimized by the compiler or
addressed by introducing a more compact syntax.

Independent of this aspect, the benchmarks with OO and non-OO models
did not indicate that the OO approach is more costly than classical mod-
eling. However, in general purpose OO languages, this is sometimes the
case. One reason are lookup tables for polymorphic method calls that im-
pact performance. Yet, this aspect is excluded in SCCharts as discussed in
Section 5.2.

Design Methodology The comparison between the OO LoggingApplication

in Figure 5.8 and the non-OO variant in Figure 5.16 illustrates that the
proposed OO features in SCCharts provide the user with alternative ways
of creating reusable, adjustable, and modular SCCharts. While this can
be expected from a successful integration of the OO design methodology,
this evaluation will refrain from attempting to generally quantify a ben-
efit of OO over other design principles. As initially mentioned, this is a
controversial topic and this thesis assumes the relevance of the OO design
paradigm, referring to existing surveys on the effect of different design
methodologies [Wie98; PLR95].
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PureSignal
protected bool present = false
void emit( ) { present |= true }
bool isPresent( ) { return present }

Absent Present
present

/ present = false

- Reset

Figure 5.17. The PureSignal class modelled in SCCharts.

5.5.2 Modelling Signals as Classes

Signals are the backbone of classical synchronous programming [BCE+03].
In SCCharts, they are subsumed by SC-variables. Nonetheless, SCCharts
provide built-in signals, as for example illustrated in Figure 5.8. Signals
in SCCharts are an extended feature and encoded as boolean variables
during compilation [HDM+14; Mot17; SMR+17]. The following case study
investigates an alternative approach to the hard-coded transformation and
uses the new SCCharts-based class modeling capabilities to create user-
defined class for signals, evaluating the proposed OO concepts in the process.

The Pure Signal Class A signal in its pure form is reset to absent in
each tick and can be emitted, resulting in a present state. The SCChart
in Figure 5.17 represents a class with this behavior. It encapsulates the
signal’s state in the internal variable present and provides the method emit

for emissions and isPresent to retrieve the state. The emit method sets the
present state by using a relative write. This classifies it as an update and,
under the IURP, permits confluent concurrent emissions, while ordering it
after the initialization to absent at the beginning of a tick. The reset behavior
is modelled in the Reset region of the class, since it is inherently active
during the lifetime of an instance of this class. In any tick the signal is
emitted, this region will immediately switch from the Absent state to Present,
which causes a reset of the present state in the next tick, due to the delayed
transition back to Absent. Alternatively, one could use a during action that
resets the present in every tick.
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AbstractValuedSignal < T is primitive > extends PureSignal
input const T INIT
private T value = INIT
protected T combined = neutral()
void emit( T newValue ) { emit(); combine(newValue) }
T getValue( ) { return value }
abstract protected void combine( T newValue )
abstract protected T neutral( )

Neutral Combined

isPresent()
/ value = combined

/ combined = neutral()

- ApplyValue

Figure 5.18. The AbstractValuedSignal class that carries a generic value and requires
the implementation of a combination function.

To evaluate this design against the built-in signals, existing SCCharts
models that use built-in signals were adjusted to use the PureSignal class.
The test set included SCCharts that are used in the continuous integration
of the SCCharts compiler to check the correct behavior of built-in signals,
as well as a variant of the traffic light controller in Section 4.2 by Wechsel-
berg et al. [WSS+18] that uses signals. Comparing the generated code of
both approaches revealed very little differences, if the classes were fully
expanded and inlined. However, one advantage of the built-in variant is
that it consolidates the reset behavior of all signals into a single region,
while the class-based approach resulted in one region per signal instance.
This more distinct use of concurrency comes in favor of a more modular
design.

The Valued Signal Class In addition to the pure signal behavior, valued
signals carry a persistent value that is set upon emission. In case of multiple
concurrent emissions, a combination function must deterministically merge
the different values into one. Figure 5.18 illustrates the SCCharts-based class
AbstractValuedSignal, representing such a behavior independent of a concrete
value type or combination function.

The AbstractValuedSignal SCChart extends the PureSignal class and declares
a type parameter T that is restricted to be primitive. The primitive supertype
was introduced to permit only basic variable types, such as int or bool, and
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not classes. This enables the compiler to handle these types different to
ref declarations, turning them into normal variable declarations, which
can be assigned in contrast to object references in SCCharts. Hence, this
new supertype is a technical consequence of the design decision to prevent
writes on object pointers.

The AbstractValuedSignal class has two variables, value and combined, both
of type T. The value represents the persistent value of the signal and is
initialized by the constant input INIT. The combined variable is part of a two
stage process that first combines the values of all emissions in a tick into
one combined value, and then replaces the previous value of the signal.
The mechanism corresponds to the built-in implementation of signals in
SCCharts [Mot17]. The overloaded emit method invokes the pure emission
to set the present state and afterwards calls the abstract combine method,
which is responsible for performing the update on the combined value.
In order to work correctly, the combined variable must carry the neutral
element of the combination function, which is provided by the abstract
neutral method. For example, a concrete implementation for integers with a
sum combination would return 0 as the neutral element and implement the
combine method with combined += newValue in the body. This represents an
OO approach to concretizing the combination function, but one could also
imagine extending SCCharts further and allowing functional parameters to
solve this differently.

Additionally, this class contains a region named ApplyValue that sets the
value to the combined value of all emission in a tick. At the beginning of
the next tick, it resets combined variable to the neutral element to enable
a new round of value combination. As a result, each instance of this class
will have two regions running. Alternatively, one could override the Reset

region of the PureSignal to jointly handle the reset of the variables in one
region. However, the presented design favors encapsulation.

Like in the case of pure signals, the tests confirmed that the implemen-
tation of the AbstractValuedSignal class provides the same behavior as the
built-in signals and the generated code only showed insignificant differ-
ences.
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PureSCSignal extends PureSignal
void unemit( ) { present = false }

emit: ∅

- policy CustomUnemitPolicy

unemit: {emit}

isPresent: {emit, unemit}

σ tick

Figure 5.19. The PureSCSignal class extending pure signals by an unemit method with
a custom scheduling protocol.

The Customized Pure SC Signal Class A main advantage of having
signals as accessible classes instead of a hard-coded transformation is that
they can be easily extended by the user. For example, in SCEst [SMR+17],
signals were adjusted to the characteristics of the SC semantics. These SC

signals feature an unemit that allows the user to manually reset the present
state and consequently permits multiple states during a tick, as enabled by
the SC MoC.

Figure 5.19 illustrates such an extension by adding an unemit method.
Additionally, this PureSCSignal is further customized to provide a different
scheduling regime than proposed in the SCEst definition. Originally, an
unemit takes presence over emissions in a concurrent context [SMR+17].
This naturally fits in to the IURP because an unemit is implemented as an
absolute write and emissions are updates. However, this example uses an SP

to override this regime and schedules concurrent unemits after emissions,
allowing to suppress emissions in a concurrent context.

Final Assessment These examples illustrate the ability of OO SCCharts to
express customizable classes for complex data types by combining classical
OO programming concepts with modeling SCCharts. At the same time,
the object abstraction lends itself well to flexible user-defined scheduling
contracts defined at the class level and independent of the specific caller
context.
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5.5.3 On Methods and Signals

Most examples in this chapter that illustrate OO modeling in SCCharts
use methods for interacting with objects. This is a deliberate choice as
methods were specifically introduced to provide a common imperative OO

programming style, shaped by languages such as C++ or Java. Yet, this
raises the question whether it constitutes a fundamental break with the
principle of using signals or shared variables for communication between
modules, as it is the case in classical synchronous languages.

Input Output Interfaces A first observation is that the new concept of
methods does not replace the classical interface of SCCharts, but constitutes
an alternative or addition that is tailored to objects. SCCharts-based classes
still can use input or output variables that will be bound at instantiation,
just like SCCharts modules, see Section 5.3.1.

Moreover, the tick functions interface to the environment remains the
same, see Section 2.3.2. Method calls are used for internal interaction with
objects and are not supposed to be called from the environment, since this
would interfere with the synchronous execution of a tick. Given the inlining
approach, they might not even be available for this purpose. At the same
time, host class methods enable a more natural handling of host objects,
which can be used to communicate with the environment. Yet, this is not a
conceptual novelty given the previous concept of host functions.

Multiple Invocation Basically, methods and variables or signals in an
input output interface serve the same purpose. They pass control messages
and data to and from the object or module to affect its behavior.

Figure 5.20 illustrates an attempt to model the Counter class from Fig-
ure 5.2b as a classical SCCharts module. Two boolean inputs can be set
to trigger an increment or decrement of the counter. The value variable
is provided as an output and two during actions process the inputs and
update the value accordingly.

The most striking difference to the design with methods is the inability
of this SCChart to perform multiple increments or decrements in one tick. Of
course this is a consequence of using a single boolean input. However, even
if one uses an integer input variable to indicate the number of operations
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CounterWithBooleanInterface
input bool increment
input booldecrement
output int value = 0
during increment / value++
during decrement / value--

Figure 5.20. The Counter class
modelled as a classical SCCha-
rts module with boolean vari-
ables for interaction.

CounterApplicationDF
input bool Up, Double
output int Count
ref Counter counter

Up
increment

increment

getValue

decrement

decrement getValuecounter
Double

Count

&&!

! &&

true

-

Figure 5.21. The CounterApplicationDF SCChart us-
ing the Counter class with methods in a dataflow
region.

(increments or decrements) that should be performed, the counter itself
is not affected multiple times but once. The environment of this module
has to combine all “operation invocations” into a single input value that
is passed to the counter and read in the during actions. Consequently, this
counter module cannot be used as a class in a sequential context, where
instantaneous writing and reading is permissible in any number, order,
and combination under the SC MoC. In other words, only with methods
supporting multiple invocations, SCCharts can model objects that can
harness the benefits provided by the SC semantics in terms of sequentiality.

Methods and Dataflow Methods are beneficial for the imperative pro-
gramming capabilities in SCCharts. They and their invocations represent a
control-flow perspective that matches the SC semantics in which sequential-
ity can be utilized. On the other hand, classical input output variables rather
correspond to a dataflow view, where there is no control-flow invocation
but a signal or boolean value indicating the presence of an operation and
its accompanied data.

Technically, there is very little difference between these concepts in
SCCharts. Considering the fact that methods can be inlined by the compiler,
this places the method’s body and internal data access in the caller’s context,
similar to writing to an input variable. However, objects use encapsulation
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to permit only regulated operations under abstract aliases (method names),
e. g., emit and unemit in Section 5.5.2.

While inlining illustrates a tight integration into an imperative program,
the message passing nature of methods also enables a dataflow view. This
is best represented by an actor-oriented design [Lee03; LLN09]. It estab-
lishes the objects as concurrent components and explicitly models their
communication. As discussed in Section 2.2, LF embodies this nature. Con-
sidering the Counter reactor in Figure 5.13, input ports receive the operation
events handled by reactions, similar to methods. However, reactions can
only execute once per tag. This fits well into the dataflow nature of actors
because there usually are no control-flow elements that could express the
sequential relations of multiple instantaneous events. Instead, one would
use LF’s superdense time model and spread out the events across separate
sequentially ordered microsteps, in order to enable separate reactions. This
differs from the concept of performing multiple instantaneous method invo-
cations. The work of Rentz et al. on representing C code in actor models also
illustrates the challenges of expressing instantaneous control-flow aspects
in a dataflow notations [RSA+21].

Methods in Dataflow SCCharts With dataflow regions, there is also an
actor notation in SCCharts, as discussed in Section 2.3.1. While most of the
proposed OO features, such as inheritance, easily adapt to this notation, just
like in LF, methods require special consideration.

Figure 5.21 illustrates the CounterApplicationDF SCChart that uses the
Counter class with methods from Figure 5.2b in a dataflow region. The
counter is incremented in each tick when the Up input is true and otherwise
is decremented. The Double input doubles the number of steps per tick
and Count conveys the counter value as an output. The connections to the
counter actor are inspired by the LF mockup for the counter in Figure 5.13. A
boolean typed wire indicates the invocation of a method. It is represented by
a special port figure that should illustrate the more event-driven nature of
methods. The input wire could be considered an individual clock signal for
the method. Multiple invocations are visualized as different port instances
of the same method. Return values, as in the case of getValue(), are produced
at output ports. An additional internal edge, the dotted line, associates the
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method invocation port with the corresponding return value port. Similarly,
parameters would be received as separate input ports, also associated with
the method’s triggering port.

This approach does not constitute a fleshed out proposal for methods
in actors, but instead should act as a proof of concept to illustrate that the
introduction of methods did not result in an incompatibility to SCCharts’
dataflow notation. Note that in the compilation of dataflow regions, methods
do not impose a challenge either, because the dataflow is transformed into
normal control-flow SCCharts. A future refinement of the visualization
approach in Figure 5.21 may also be used to create views for regular OO

code, continuing in the direction by Rentz et al. [RSA+21]. It could further
act as an interesting use case for investigating sequentiality in SC dataflow,
as started by Grimm et al. [GSS+22].

5.5.4 System Design Aspects of an Object-Oriented Steam
Boiler Controller in SCCharts

The OO design principles become most effective when structuring larger
software systems that can be modularized and provide opportunities for
reusing code. The Furuta pendulum or the examples presented in this
chapter, which are tailored to briefly illustrate specific aspects of the OO

extension, offer only limited opportunity to evaluate this aspect. Hence,
this section investigates the system design capabilities of the proposed OO

concepts in a case study modeling a more complex steam boiler controller.

The Steam Boiler The steam boiler by Abrial [Abr96] is a well-known
model for control software specification and represents a CPS. In the pro-
vided scenario, the program has to maintain a safe water level in a steam
boiler, e. g., in a power plant. This involves interacting with its physical
devices, such as multiple pumps and sensors for throughput of water and
steam. The program has to be able to detect different device and operation
failures and react to that by switching into different operation modes, until
the devices are repaired, or an emergency stop is required because the
situation in the boiler becomes critical.
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Over the years, steam boiler controllers have been implemented in
several languages. For this evaluation, the implementation by Büssow and
Weber [BW96] is particularly interesting because they use an OO approach
to decompose the problem and derive an architectural view. Yet, the goal of
this case study for OO SCCharts is not to recreate the design of Büssow and
Weber but to use it as a point of reference in terms of system design. For the
actual implementation of their program, Büssow and Weber use classical
statecharts and the specification language Z [Spi89].

The main goal in modeling the steam boiler in SCCharts is to use the
new OO features to the best of their ability, in order to evaluate the resulting
structure. While the steam boiler example is usually used in combination
with formal methods, this aspect is not in the focus of this case study.

The entire controller is too large to be presented in full. The model
takes over 600 lines of code and consists of 24 individual SCCharts. Here-
inafter, characteristic OO design aspects of the controller are presented and
discussed.

Composition Figure 5.22 illustrates main components of the steam boiler
controller and their compositions into the Controller SCChart. This view
focuses on the classes that represent the real-world devices the controller
interacts with, and omits several other components that are used internally
to provide modular behavior, such as failure detection. The diagram fur-
ther hides all declarations and methods in these SCCharts to provide an
abstracted overview. The Controller hosts instances of the Water Sensor, the
SteamSensor, the Valve, and the pumps. Each physical pump has a driver,
implemented in Pump and a monitoring device, represented by PumpMonitor.
Both components are joined into a MonitoredPump. The Controller interacts
with the MonitoredPumpsControl SCChart that provides an interface to all
pumps in the steam boiler, here indicated by the multiplicity Config.NUM_

PUMPS. In the underlying specification, four pumps are proposed, but this
design can handle any number.

This view displays the composition relations in a flat association graph.
Comparing this structure to the architectural view by Büssow and We-
ber [BW96] reveals many similarities. They use the same separation for
interacting with devices, including a MonitoredPump, but do not introduce

227



5. Object Orientation

Controller
extends

ControllerInterface
+ Control

WaterSensor
extends

WaterLevelInterface
AbstractWaterLevel

PhysicalUnit
+ WaterLevelConsistency

MonitoredPumpsControl
extends

MonitoredPumpsInterface
AbstractFailure

MonitoredPump
extends

MonitoredPumpsInterface
AbstractFailure

PumpMonitor
extends

SinglePumpControlInterface
PhysicalUnit

+ FlowState

Pump
extends

SinglePumpInterface
PhysicalUnit

+ PumpState

Valve
extends

ValveInterface
+ ValveControl

SteamSensor
extends

SteamInterface
PhysicalUnit

+ SteamFlowConsistency

Config.NUM_PUMPS

Figure 5.22. Composition of the main components in the steam boiler controller.

a MonitoredPumpsControl. Instead, they interact directly with the array of
pumps, while in SCCharts MonitoredPumpsControl provides a method to
activate a parameterized number of pumps. Moreover, Büssow and Weber
use a UnitManager component to handle the repair protocol and failure
detection of all devices. In contrast to that, the SCCharts implementation
expresses this common behavior in the PhysicalUnit SCChart inherited by
each individual device component, which will be discussed later. Büssow
and Weber also note that a more fine-grained decomposition could further
improve modularity, which seems to be the case in this implementation.
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Controller
+ Control

AbstractFailure

WaterSensor
+ WaterLevelConsistency

PhysicalUnit

Normal
+ UnexpectedMessages

Failed
+ UnexpectedRepairMessage

+ MissingAck

FailingAcknowledged
+ UnexpectedAckMessage

Repaired
+ UnexpectedAckMessage

deviceFailure
/ failMsg

failAckMsg

repairMsg
/ deviceFailure = false;
repairAckMsg

1: deviceFailure
/ failMsg 2: !repairMsg

- RepairHandling

AbstractWaterLevel

MonitoredPumpsControlMonitoredPump

PumpMonitor
+ FlowState

Pump
+ PumpState

Valve
+ ValveControl

ComputedWaterLevel
+ VirtualWaterLevel

SteamSensor
+ SteamFlowConsistency

Figure 5.23. Inheritance relations between main components in the steam boiler
controller.

Inheritance Figure 5.22 lists the SCCharts inherited by the main compo-
nents. This includes interfaces named after devices, such as ValveInterface.
Their only purpose is to declare the communication signals associated with
the specific device, similar to the MessageReceiver interface in the logger
example in Figure 5.8. However, more interesting are the other inheritance
relations that are illustrated in Figure 5.23. This view shows the main com-
ponents from the previous figure plus relevant SCCharts that they derive
from. It omits the less relevant interfaces and again hides all details in the
SCCharts, except their regions.
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Starting at the top, the AbstractFailure is an SCChart that provides an
interface and abstract behavior for transmission and device failures. It is
implemented via the PhysicalUnit by each device, but also by the Monitored-

Pump and the MonitoredPumpsControl, since they collect and forward failure
information from their contained components, see Figure 5.22. The con-
troller will finally use the interface defined by AbstractFailure to access failure
information of devices.

The PhysicalUnit SCChart is an abstract class that implements the com-
mon repair protocol for physical devices. While the actual failure must
be detected by the device implementation, e. g., a negative value for the
water level in WaterSensor, the communication protocol for reporting and
resolving the problem is the same for all devices. As illustrated in the ex-
panded RepairHandling region of the PhysicalUnit SCChart, a failure message
(failMsg) is sent and must be acknowledged by the environment. Then, the
program waits for a repair signal, acknowledges its reception, and returns
with normal operation as soon as the environment stops sending the repair
message. The derived classes will bind these message placeholders, such
as failMsg, with concrete communication signals from their interface, e. g.,
LEVEL_FAILURE_DETECTION. Interestingly, the Valve has no failure and repair
protocol in the specification by Abrial [Abr96] and thus does not extend
PhysicalUnit despite being a physical device. Likewise, the Controller has no
inheritance relations to any of these classes.

Subtyping Another relevant inheritance relation can be found in the
form of the AbstractWaterLevel in Figure 5.23. This SCChart implements
the classification of the water level, e. g., as low or critical according to the
specification. However, it does not retrieve an actual water level value. This
is implemented in the WaterSensor, which reads from the physical device,
and in the ComputedWaterLevel SCChart, which is used only in the Rescue

mode of the Controller.
Figure 5.24 illustrates the Controller SCChart with its Modes region in

focus. Without going in to too much detail about the steam boiler behavior,
the specification describes different modes of operation that a controller
must provide. In case that only the WaterSensor has a failure and needs to
be repaired, the controller has to enter a Rescue mode, modelled by a state
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Controller extends ControllerInterface

NoEmergency
bool anyDeviceTransmissionFailure = false
bool anyDeviceFailure = false
bool initializationFailure = false
+ CollectFailures

Initialization
entry / MODE = Modes.INITALIZATION
+ InitializationSteps

Normal
entry / MODE = Modes.NORMAL
+ ref MaintainWaterLevel control(water, pumps)

Degraded
entry / MODE = Modes.DEGRADED
+ ref MaintainWaterLevel control(water, pumps)

Rescue
entry / MODE = Modes.RESCUE
entry / virtualWater.setBaseLevel(water.getLastValidLevel())
+ ref ComputedWaterLevel virtualWater(steam, pumps)

+ ref MaintainWaterLevel control(virtualWater, pumps)

Emergency

3:

3: anyDeviceFailure 3: !anyDeviceFailure 2: water.hasDeviceFailure()

2: water.hasDeviceFailure() 2: !water.hasDeviceFailure()

1: water.isCritical()

1: water.isCritical()

1: water.isCritical()

1: steam.hasDeviceFailure() ||
pumps.hasMonitoringDeviceFailure() ||
virtualWater.isCritical()

- Modes

EmergencyStop
entry / MODE = Modes.EMERGENCY_STOP

1: 3 STOP 2: anyDeviceTransmissionFailure ||
initializationFailure

3:

- Control

+ private ref WaterSensor water + private ref SteamSensor steam + private ref Valve valve + private ref MonitoredPumpsControl pumps

2: anyDeviceFailure

Figure 5.24. The different control modes in the Controller SCChart for the steam
boiler.
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with the same name in Figure 5.24. Now that there is no water sensor, the
controller derives a water level based on the steam output and the through-
put of the pumps. This is modelled by the ComputedWaterLevel SCChart.
Since both the WaterSensor and the ComputedWaterLevel share the same super
class, they are admissible subtypes. This enables implementing the control
logic for the pumps in the MaintainWaterLevel SCChart independent of the
source of the water level information. Both the Normal state and the Rescue

state in the Controller instantiate this SCChart. In this view, ref declarations
are visualized as region-like containers, which allows interactively expand-
ing them to inspect the instantiated SCChart. In state Normal (likewise in
Degraded), the WaterSensor (water variable) is provided as source for the
water level. In contrast to that, the Rescue state first creates an instance of
the ComputedWaterLevel (virtualWater variable) and binds the control logic
to this source, which in turn draws from steam and pumps. The bindings
are expressed as argument of the reference variable, which correspond to
constructor arguments in a shortened notation.

Final Remarks While modelling the steam boiler in SCCharts, there were
certain aspects in which SCCharts’ dataflow notation would have been
a likewise suitable alternative. In my opinion, this illustrates the tight
relation of OO and actors, also expressed by Lee et al. [Lee03; LLN09].
However, these were only notational aspects when interacting with objects.
For example, with a dataflow notation in the Rescue state, the individual
input and outputs port connections between control, virtualWater, steam,
and pumps would need to be explicitly specified, whereas the current
notation hands over entire objects. Of course, the actor notation would
expose the communication more clearly, but this aspect could also be
derived automatically, as illustrated by SCCharts’ induced dataflow14, see
Section 2.5.

Another aspect in the relation between dataflow SCCharts and OO SC-
Charts could be efficiency. With the current use of methods, a return value,
e. g., of water.isCritical(), is computed only on demand, whereas in a classical
dataflow region, each output is computed in each tick disregarding its use.

14The current implementation of induced dataflow in SCCharts does not yet support OO
SCCharts and requires an extension in the future to illustrate these relations.
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On the other hand, multiple invocations of the same method might lead to
computing the same result multiple times. This relation between OO and
dataflow in SCCharts is an interesting topic for future investigation.

The specification of the steam boiler problem itself does not assume any
specific design paradigm, and this evaluation does not aim at establishing
the superiority of any notation. Instead, modeling this complex scenario
illustrates that the new OO SCCharts are capable of expressing an OO

architecture and its implementation in one model, while various derived
views can visualize different structural aspects.
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Chapter 6

Conclusions

This thesis investigated various research questions in the context of lan-
guage design for reactive systems. LF and SCCharts acted as examples to
study modal models in a dataflow environment, real-time modeling in
statecharts, dynamic execution of ticks, and OO programming and design in
synchronous statecharts. Both languages embody important characteristics
and principles of reactive system design, as well as the latest generation of
pragmatics-aware MDE. This allowed for new approaches but also required
crafting lean and seamless language extensions that carefully align with the
fundamental principles of the underlying language.

The proposed concepts were successfully implemented and evaluated.
All new features were warmly welcomed by the LF and respectively the
SCCharts community, and received positive feedback.

Outline Section 6.1 will present a short summary of the results in this
thesis. Since not every follow-up idea could be pursued, this leaves room for
future continuation and improvement of some topics, addressed in Sections
6.2 and 6.3. Section 6.4 will close with a few personal remarks.

6.1 Summary of Results

Chapter 2 started with introducing and comparing the fundamental princi-
ples of LF and SCCharts. The discussion revealed important characteristics
shared throughout languages for reactive systems, such as concurrency,
causality, and notions of logical time. It also illustrated the degrees of free-
dom that exist in language design, including the different approaches of
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dataflow and statecharts modelling, language features and their compila-
tion, or practical aspects of interfacing with the environment. Many of these
principles are reflected in the goals that drive the design of the language
extensions in the subsequent chapters. The chapter further showed the idea
of pragmatics-aware modeling in these languages.

Modal Models Chapter 3 investigated the design of a modal coordination
layer in a reactor-oriented dataflow environment. The proposed solution
is a seamless integration of modes into LF reactors, diagrams, and tooling.
It provides a lean, polyglot, concurrent, timed, and deterministic language
extension that retains the crucial black-box abstraction of reactions. The
design carefully considers trade-offs, for example in terms of limitations
in analyzability due to transition triggering in reactions or omitting some
language features known from SCCharts or synchronous languages in favor
of a leaner compilation.

The proposed concept extends the modeling capabilities of LF with
modal models without breaking with existing principles. In terms of timed
behavior, the notion of mode-local time is a powerful tool that enables
designs otherwise tedious to achieve in LF.

Time In Chapter 4, the research focus was on modelling with time and effi-
cient execution strategies for ticks in SCCharts, and synchronous languages
in general. With timed automata, SCCharts received a well-established
notation for timed modeling that seamlessly integrates into the existing
SCCharts language, compilation approach, and semantics.

An important research question for timed SCCharts was the efficient
execution of ticks, following the desired eager semantics for timed automata.
Dynamic ticks provide the required flexibility in combination with a lean
interface to the environment and the option to use physical time as input.
In turn, this facilitates resilient designs that can deal with imperfections
in relation to physical time by using strategies, such as soft bounds, soft
resets, and logical clocks. A consequence of the proposed approach is that
the model itself provides deterministic behavior independent of potential
non-determinism in the physical environment.
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While timed automata and dynamic ticks already existed, their combi-
nation and integration into SCCharts with a strong focus on practicability
resulted in a capable timed modeling concept. The evaluation in a software
experiment with LF and a real-world hardware demonstrator for dynamic
ticks confirmed this. Dynamic ticks in SCCharts are capable of achieving
real-time constraints, given an appropriate platform, while only performing
relevant ticks. Moreover, at this level SCCharts are on par with LF, in terms
of performance and expressiveness. Even if there are some conceptual dif-
ferences between the two languages, the evaluation shows that many of
them can be bridged by appropriate designs.

Object Orientation Chapter 5 investigated concepts for OO programming
and design in the context of SCCharts. The proposed language extension
provides a conservative set of features for OO modeling in SCCharts that can
be handled by high-level transformations. Inheritance offers new and pow-
erful opportunities for reusing code and enables expressing commonalities
between SCCharts-based classes. These features enable the application of
an OO methodology in SCCharts modelling, as illustrated in the evaluation.
In combination with the pragmatics-aware design of SCCharts, this enables
the integration of UML notations in to the modelling process and facilitates
the automatic generation of model documentation.

Based on existing techniques for user-defined scheduling contracts, ob-
jects in SCCharts can be customized to provide deterministic behavior even
if concurrently shared. As it turns out, the philosophy of the SC semantics
is a natural match to objects communication via methods. This concept
is crucial for integrating objects from the host language, since scheduling
contracts enable a black-box treatment but also facilitate resolving causality
issues in a classical white-box compilation.

6.2 Future Work on Lingua Franca

At the time of writing, LF is a vibrant project, whose future development
is driven by the many contributors onto various avenues. This work con-
tributes some more directions, primarily in terms to modes.
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6.2.1 Extending the Implementation of Modes

The design of modal reactors in Chapter 3 conforms with the polyglot idea,
but currently only C and Python are supported as target languages. One
future task is to extend the support of modal reactors into the remaining
target languages.

Modal Federations In the proposed design, a federated reactor cannot
contain modes, only its federates. It might be worthwhile to investigate
potential semantics and use cases for modes on a federation level. They
could be used to coordinate the distribution of federates at runtime or
represent a mode of operation shared with the entire federation.

Additionally, modes could contribute to the synchronization behavior
in a decentralized federation. If a federate reactor has a mode that has no
reactions to certain input ports, it does not need to synchronize with (wait
for) reactors that supply these inputs as long a that mode is active. This
may allow the reactor to respond faster and increases its availability.

Startup and Shutdown Another improvement could emerge from revisit-
ing the behavior of startup and shutdown in modes and the general way of
managing resources in reactors. One idea to address the issues discussed
in Section 3.3.3 is to introduce dedicated constructors and destructors for
reactors. This would separate the memory management aspect from the
event processing behavior of startup and shutdown. However, this would be a
major change to the way reactors are written, whereas the current solution
offers a backward-compatible way of dealing with user resources in the
presence of modes.

Inheritance Reactors in LF support inheritance, see Section 2.2. Yet, in the
proposed syntax for modes, modal reactors rely on syntactic containment
to associate reactions and other elements with a mode. This inhibits adding
new reactions to an inherited mode when extending reactors because the
inherited mode is only implicitly present. Hence, the mode syntax in LF

requires further extension, either to explicitly associate reactions with inher-
ited modes (e. g., reaction mode M (t) {=...=}) or to extend inherited modes
by new reactions (e. g., extend mode M { reaction (t) {=...=} }). Adding new
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reactions to modes of derived reactors would also enable changing transi-
tions because these reactions would be ordered after previous ones and can
override transition effects. Additionally, they could be used to connect new
modes into the inherited modal model.

Aside from modes, LF can also benefit from OO concepts developed
for SCCharts in Chapter 5, especially in terms of visualization. The UML-
inspired view for OO class relations can be directly transferred to reactors,
to illustrate these relations in LF models and improve LF’s documentation
capabilities.

6.2.2 Formal Analysis of Modes

An important topic in the future development of LF is the application of
formal methods. Modes facilitate such processes by statically expressing
structural properties about runtime relations between reactor elements. For
example, mutual exclusion of modes can help to reduce the state space that
needs to be explored.

However, as mentioned in Section 3.4, there is a drawback of the current
design, caused by placing the transition triggering inside the reaction code.
The black-box treatment of reactions only allows a conservative approxima-
tion of effects in a static context. Actual transitions and changes in mode
activity can be only determined at runtime. However, this is generally the
case for any state-dependent verification in LF.

There is already a debugging tool by Deantoni et al. [DCB+21] that
hooks into the LF runtime system to monitor effects of reactions. With an
exhaustive simulation, it enables static verification of temporal properties.
However, it does not yet consider modes.

Another approach could be the annotation of the LF reactions with
additional assumptions and input output relations that are passed on to a
model checker by a special compilation. Lin et al. [LML+23] outline such
an approach, which is also similar to model checking in SCCharts [Sta19].

Alternatively, the program could be written in a special target language
that allows a white-box analysis for verification but can also be compiled
into executable code. A setup could be similar to the use of SCCharts as a
target language in Section 3.4.4.
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Figure 6.1. A mockup of a behavior tree in LF. The two variants illustrate different
options for representing the same behavior.

6.2.3 Behavior Trees

In recent years, behavior trees [CÖ17] gained attention for describing reactive
system behavior. They were initially developed in the context of gaming
applications but also become more popular other fields, such as robotics or
artificial intelligence [CÖ14]. A key advantage is their modularity, as they
describe combinations of actions in a tree structure, with each node either
running, failing, or succeeding. Even if this notation differs from classical
hierarchical state machines or actor-oriented dataflow, there are many
behavioral commonalities. An interesting future research direction is the
combination of these notations and computation models.

For example, Colledanchise and Ögren propose a pattern-based struc-
tural translation of behavior trees into a dataflow-like structure1 [CÖ17].
Such a structure can easily be created in LF. Figure 6.1 illustrates a model
based on this pattern. Figure 6.1a shows the BehavriorTree reactor with the
contained behavior tree rendered in its classical notation. It consists of a se-
quence node (Ñ), a condition Test, and an Action task. If Test reports success,
Action will be executed afterwards, otherwise the Sequence node will abort
and yield a failure. Figure 6.1b illustrates a reactor network with the same
behavior. Each node is represented by a reactor and connections model the
triggering relations. Note that this model follows a reactive semantics in

1In section 2.2.2, Colledanchise and Ögren call the result an FSM. However, given the fact
that model does not have actual states and the “transitions” are used to convey triggering
information, a dataflow network is in my opinion a more fitting description.
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which tests and actions run instantaneously, rendering the running output
of nodes superfluous. In order to provide the sketched modeling capabilities
for behavior trees to users, LF could be extended by a dedicated syntax
and an automated transformation, or it could be provided in the form of a
library with generic reactors for the different node patterns.

The modal reactors introduced in Chapter 3 additionally facilitate mod-
eling stateful aspects of behavior tree nodes and enable the investigation of
alternative transformation approaches. Furthermore, the topic of behavior
trees is equally interesting from the perspective of synchronous languages,
since the synchronous reactive model fits well into the notion of behavior
trees.

6.3 Future Work on SCCharts

SCCharts have seen active development over the years and established them-
self as a reliable synchronous modeling language. With the introduction
of timed and OO modeling features there are new directions for further
research and some proposed concepts leave room for improvement. In
combination with LF, there are new opportunities to explore in the future.

6.3.1 Distributed SCCharts using Lingua Franca

At the moment, the code generation capabilities of SCCharts do not pro-
vide a distributed deployment option. Hence, including aspects of LF could
broaden the usability of SCCharts to this area. While it would be possible to
adapt and reimplement the distributed infrastructure of LF for SCCharts, a
simpler and more robust way could be the integration of LF into the down-
stream compilation of SCCharts. LF would act as a dedicated distributed
coordination layer for concurrent SCCharts. In this regard, the dataflow
notation in SCCharts, presented in Section 2.3.1, could act as a natural
bridge between the two language.

Section 3.4.4 already illustrated a concept to embed SCCharts in LF.
A similar approach could be used to deploy distributed SCCharts. An
intermediate transformation in SCCharts would synthesize a federated LF
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model from a dataflow SCChart that models a distributed system. Each
SCCharts actor would be compiled into a separate tick function (cf. [Lüd21;
Smy21]) that is invoked by a reaction in corresponding federates. The LF

runtime infrastructure would then take care of the distributed deployment,
communication, and execution of the SCCharts components.

6.3.2 Multiclocked SCCharts

The introduction of clocks to SCCharts in Chapter 4 primarily focuses on
modeling real-time aspects. With period directives there is also a feature
that is inspired by synchronous multiclocking. In this context, CCSL could
be utilized to provide a formalization of program parts that are subject to a
periodic execution. While this could cover real-time considerations, CCSL

also offers means for logical relations between clock-bound entities, e. g.,
regions. One such example is the intended 3-to-1 ratio for the region pacing
in Figure 4.15. In a preliminary experiment, an SCChart was automatically
synthesized from a CCSL specification for a similar relation and could act
as a watchdog for the pacing of two regions [SHM+18; SHM+20]. In this
regard, one future direction for SCCharts could be the extension of discrete
logical pacing mechanisms toward multiclocking. This would enable the
binding of the periodic activation of certain program parts not only to
physical time but to other subsystems.

6.3.3 Sleeping Programs

In the dynamic ticks experiment with the Furuta pendulum in Section 4.5.1,
the response time analyses revealed that a notable delay was caused by
the wake-up procedure. Subtracting the tick’s execution time, the system’s
sleep function (clock_nanosleep) increased the response time by 172 usecs
on average, with a minimum at 7 usecs and a maximum of 308 usecs.
In contrast to that, the busy waiting implementation for the DS demo in
Section 4.5.2 caused a smaller overhead. Admittedly, the used operating
system had no real-time capabilities and imprecisions can be expected
in such an environment. Real-time kernels with core isolation can yield
average delays of about 1 usec for the same sleep function [AJH+23]. Yet,
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such environments may not be always available, and the delays on the
non-real-time system already impacted the sound signal of the pendulum
by variations of up to one note, despite a relatively low octave.

While the busy waiting approach cancels out the efficiency benefits of
dynamic ticks, it could be used to improve the implementation in both
SCCharts and LF on non-real-time platforms. Anticipating a lag in the wake-
up process, one could invoke the sleep function with a reduced sleep time,
based on a fixed value or some learning strategy. If the sleep function would
then return before the intended wake-up time, the remaining time could be
bridged by a different mechanism, such as busy waiting. This may reduce
the wake-up lag on regular systems, but this requires further investigation.

Additionally, one could investigate padding strategies that dynamically
delay the outputs to compensate varying lags and execution times. This
would facilitate producing outputs with specific interval, such as the sound
signal. Precision timed architectures [EL07] could further facilitate such
strategies.

The experiments with dynamic ticks also illustrate that a sparse exe-
cution with explicit sleep or idle periods can drastically reduce the com-
putational load of a program. It might be worthwhile to additionally in-
vestigate the resulting energy consumption. This especially, since some
platforms provide software controlled power saving modes, such as the
LowPower.deepSleep2 functionality on some Arduino boards. However, this
might intensify the problem of wake-up lag.

6.3.4 Refining Object Orientation

As discussed in Section 5.5, some OO feature for SCCharts were conserva-
tively restricted to focus on the investigation of language design aspects
and to create a safe subset for the deterministic semantics of SCCharts. The
proposed approach lays a foundation for future development and further
refinement of OO concepts in SCCharts and synchronous languages.

References One limitation in the proposed OO language extension for
SCCharts is the restriction to constant references for objects. This facilitates

2https://www.arduino.cc/reference/en/libraries/arduino-low-power/lowpower.deepsleep/
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static analysis and compilation but also prevents passing around objects
at runtime, which is quite common in general purpose OO languages.
One direction for future work is to lift this restriction. Rust, discussed in
Section 5.1.1, illustrates a model that uses reference lifetimes and ownership
borrowing [Pea21] to address this issue statically. The same mechanism is
used in Blech to restrict mutable references.

With subtyping there is another dimension to this problem, since refer-
ences can hold subtype objects that have different behavior, and might access
data differently, affecting causality. Here SPs could be used to ensure a sched-
ule independent of subtypes. A subtype object that is policy-coherenent
to its supertype’s policy could be used as a replacement for its supertype
without the need to adjust the policy-conformant scheduling. A detailed
sketch of this approach can be found in the journal publication on OO in
SCCharts [SSM21].

An alternative approach can be found in Céu, mentioned in Section 5.1.2,
where concurrent intra-instant communication is prohibited and threads are
scheduled in lexical order. While this can be considered a harsh restriction,
the idea of adding constraints on concurrency can help in reducing the
complexity of the problem of causality. For example, reactors have no
shared state variables, only instantaneous events between reactors. The lean
state-based compilation approach for SCCharts by Smyth [Smy21] uses
a region-based scheduling granularity that limits interleaving and drops
support for instantaneous back and forth communication, similar to LF.

Behavioral Subtyping Section 5.3.3 presented different levels of sub-
type admissibility. While the proposed implementation with its white-box
scheduling does not require extensive subtyping restrictions and explicitly
refrains from creating built-in limitations for SCCharts that go beyond
minimal type safety, it is certainly relevant to further investigate means
to express advanced aspects of subtyping. As already mentioned, SPs can
be used to retain a scheduling interface in the face of type inheritance. A
more extensive approach comes in the form of behavioral subtyping. There
is already research in the context of Harel’s OO statecharts [HK02; SSL19]
that could be transferred to SCCharts. Lee and Xiong present a behavioral
type system for component-based designs that uses extended interface
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automata [LX04]. Furthermore, the existing model checking capabilities in
SCCharts [Sta19] could be utilized to introduce pre- and post-conditions for
methods and regions that must be fulfilled by subtype implementations.

Formal Semantics While the focus of this thesis lies on language design
and pragmatics-aware modeling with a proof of concept implementation,
future research for OO in SCCharts may include formal models for the pro-
posed concepts. This could involve a dedicated formalization of SCCharts
themself because their current semantics is grounded via model transforma-
tions [Mot17] in the SC semantics of the SCG/SCL. Alternatively, the SC kernel
language could be extended to capture aspects of OO. With the Sequentially
Constructive Procedural Language (SCPL), Gretz et al. made a first step in
this direction when they created an extension to formalize the semantics of
Blech [GGM+20; GGM+22]. Furthermore, there is a detailed theory on type
systems and subtyping [Pie02; Car88], as well as machine-checked proofs
of type soundness in languages such as Java [KN06] and C++ [WNS+06],
that could be adapted to express aspects of type inheritance in SCCharts.

6.3.5 Object-Oriented State-Based Code Generation

Section 5.3 used a high-level transformation approach for the proposed OO

features. In addition to that, the new OO features provide an opportunity to
create dedicated OO code generation approaches that do not remove aspects
of OO but transfer them into the host language, if supported. The state-based
code generation approach for SCCharts [SMH18; Smy21] is particularly well
suited for such a concept. It is designed to directly represent the stateful
structure of SCCharts in code, e. g., by synthesizing regions and states into
separate functions, and enumerations and switch statements to encode state
machines.

An OO state-based approach could modularize the code into separate
classes and express instantiation and inheritance directly at this level. List-
ing 6.1 illustrates a mockup in Java using the CountingCounterApplication in
Figure 5.4b and the CountingCounter in Figure 5.7a. Note that the code omits
some aspects for brevity, such as the handling of region termination, which
is irrelevant in this example, the transitions of the Wait and Reset states, and
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1 public class CountingCounterApplication {

2 enum RegionApplicationStates { Wait, Reset }

3

4 private CountingCounter counter;

5 private RegionApplicationStates

regionApplicationActiveState;

6

7 public CountingCounterApplication() {

8 reset();

9 }

10

11 public void reset() {

12 counter = new CountingCounter();

13 regionApplicationActiveState =

RegionApplicationStates.Wait;

14 }

15 public void tick() {

16 counter.regionCounting();

17 regionApplication();

18 }

19

20 private void regionApplication() {

21 switch (regionApplicationActiveState) {

22 case Wait: regionApplication_Wait(); break;

23 case Reset: regionApplication_Reset(); break;

24 }

25 }

26 private void regionApplication_Wait() {

27 // Check transition and set next state

28 }

29 private void regionApplication_Reset() {

30 // Check transition and set next state

31 }

32 }

(a) CountingCounterApplication

1 public class CountingCounter

extends Counter {

2 private boolean

regionCountingDelayEnabled = false;

3

4 public void reset() {

5 value = 0;

6 regionCountingDelayEnabled = false;

7 }

8 public void regionCounting() {

9 regionCounting_Counting();

10 }

11 private void regionCounting_Counting() {

12 if (regionCountingDelayEnabled) {

13 increment();

14 }

15 regionCountingDelayEnabled = true;

16 }

17 }

(b) CountingCounter

1 public class Counter {

2 protected int value = 0;

3

4 public void increment() {

5 value++;

6 }

7 public void decrement() {

8 value--;

9 }

10 public int getValue() {

11 return value;

12 }

13 }

(c) Counter

Listing 6.1. A mockup of the code structure generated by an OO state-based ap-
proach in Java for the CountingCounterApplication in Figure 5.4b and CountingCounter

with inheritance.
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optimizes the Counting region, which only has one state. In contrast to the
object instantiation via macro expansion, discussed in Section 5.3.1, this
approach keeps SCCharts-based classes as classes including their regions.
This is the case for the CountingCounter in Listing 6.1b that, in this example,
also utilizes Java’s inheritance mechanism to extend the Counter class in
Listing 6.1c. The CountingCounter is then kept as an object reference in the
CountingCounterApplication, see lines 4 and 12 of Listing 6.1a.

The CountingCounterApplication as the main program provides a tick func-
tion interface that invokes the Counting regions of the counter in line 16 and
the local Application region in line 17. This design follows the lean state-based
approach that treats regions as atomic scheduling units. Additionally, it
represents a refinement of the tick function modularity approach, proposed
by Smyth [Smy21; Lüd21]. Assuming scheduling information about each
region in an SCChart, e. g., in the form of an SP or a causality interface, the
container SCChart could invoke regions individually and schedule its own
regions in between. This would permit accepting more programs, since
this approach is more fine-grained than the one invoking tick functions of
submodules.

Still, with regions as atomic scheduling units, the approach does not
support interleaving of regions, which is required in the presence of in-
stantaneous back and forth communication. While this is a justified design
decision for the lean state-based approach, it means that the given Count-

ingCounterApplication SCChart cannot be compiled with this code generator.
The IURP prescribes that reset must be scheduled before the increment in
region Counting, while getValue must be ordered after this update, which
is impossible if region Application is not split up into separate scheduling
units. The code in Listing 6.1 actually assumes a CountingCounter with a
custom update-before-reset scheduling, discussed in the context of clocks
in Section 4.2.2. This allows and prescribes the scheduling of the Counting

region (line 16) before the Application region (line 17). To mitigate such a
limitation, future development could involve techniques to automatically
divide regions into subunits that enable interleaved scheduling, e. g., by
Pouzet and Raymond [PR10]. This would also benefit methods in SCCharts,
which are limited in the same way. Without inlining, they need to scheduled
atomically, which rules out interleaving at a statement level.
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6.4 Closing Remarks

This thesis discussed various aspects of language design for reactive systems
and illustrated the proposed solutions directly in SCCharts and LF. Now
that the contributions of my work have been presented and discussed, I
would like to close this thesis with some personal remarks and observations
adjacent to these topics.

Section 2.5 already sketched the idea of pragmatics-aware modeling and
automatically generated views. However, it deserves another mentioning
that this approach is a significant factor in working with SCCharts and
LF. Especially the interactivity plays a crucial role, and although the many
figures in this thesis are a result of these diagrams, a written document
cannot adequately convey the live experience. Moreover, the fact that this
approach represents the model in both a textual notation, for editing, and a
graphical notation, for perception with an adjustable degree of abstraction,
is (for now) a rare characteristic by itself. This thesis capitalizes on the
availability of this approach and uses the unique opportunity to set different
emphases in the notations for defining and visualizing certain language
constructs in SCCharts and LF. Fortunately, my work can build upon years
of development from previous Ph.D. students that laid the foundations
and provided the frameworks for automatic layout, diagram synthesis, and
interactive visualization. Likewise, open source solutions, such as Xtext, are
a cornerstone of tools such as KIELER or the LF editor. The combination of
these technologies not only enables crafting useful tools but also allows
rapid prototyping, which has proven itself valuable to me many times.
When meeting with members of the LF team for the first time, we were able
to quickly create the first diagrams and try out different graphical styles.

Another aspect that I would like to emphasize is the fact that both
LF and SCCharts (and KIELER in general) are developed and maintained
as feature-rich and lasting tools, instead of being just disposable proto-
types demonstrating a single concept. They are consistently reevaluated
in terms of their user experience and are actively integrated in teaching
and industrial collaboration. From my perspective, this has the benefit of
providing a sense of lasting purpose, which motivates creating high quality
and usable solutions. At the same time, it requires a lot of effort to orga-
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nize and maintain such projects. When I joined the KIELER team in 2013
in the context of my Bachelor’s thesis, it was already several years in use
and had a large codebase. It always took a team effort to maintain and
advance this project. And while such an endeavor provides valuable experi-
ences in software engineering and project management, the time spent on
maintaining and sometimes restructuring the codebase itself rarely directly
results in academic publications on that particular topic. In my experience,
it requires a careful balance between innovative research and maintenance
of the surrounded tooling. Additionally, it relies on the endorsement and
support from the academic advisory side, which I am glad to have received
plentifully. While LF is a younger project compared to KIELER, it likewise
carries the same aspiration for creating a lasting usable tool, maybe also in
the spirit of its predecessor Ptolemy.

Finally, I hope the concepts presented in this thesis provide a valuable
perspective on the topic of language design and maybe inspire new or
further refined approaches in the future. Equally, I hope that, also in the
long run, the extensions to the LF and the SCCharts language will support
users in modeling reactive systems.
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Glossary

ADT Abstract data type
An abstract data type combines a named type with operations to create, combine,

and observe values of that type [Coo09].

API Application programming interface
A contract for communication or interaction between software components.

ASAP As soon as possible
A colloquial abbreviation.

CCSL Clock Constraint Specification Language
A notation to handle clocks and to specify logical and chronometric time con-

straints [And09].

CFG Control-flow Graph
A directed graph notation in which nodes represent instructions or conditions

and edges specify control-flow paths [All70].

CPS Cyber Physical System
A system that contains behavior defined in both the cyber and the physical

domain [LS17].

ELK Eclipse Layout Kernel
A framework under the Eclipse umbrella that provides several layout algorithms,

as well as the surrounding infrastructure.

Available at: https://www.eclipse.org/elk

FPGA Field Programmable Gate Array
An integrated circuit that is designed to support configuration by a hardware

description language after manufacturing.

FSM Finite state machine
A form of automaton that uses a finite number of states.
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Glossary

GALS Globally Asynchronous Locally Synchronous System
A system design principle consisting of multiple locally synchronized subsystems

that use asynchronous communication between these units [Cha84].

IDE Integrated Development Environment
An application that provides advanced features for developing software.

IURP Initialize-Update-Read Protocol
A three-staged intra-instant synchronization protocol defined in the context of

sequential constructiveness to order concurrent variable accesses [HDM+14].

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client
A development environment for SCCharts and other synchronous languages in

combination with pragmatics-aware modeling technologies.

Available at: https://www.informatik.uni-kiel.de/rtsys/kieler

KLighD KIELER Lightweight Diagrams
A lightweight and extensible framework for automatic diagram synthesis and

pragmatics-aware visualization [SSH13].

Available at: https://github.com/kieler/KLighD

LF Lingua Franca
A reactor-oriented polyglot coordination language [LMB+21].

Available at: https://www.lf-lang.org

MDE Model-Driven Engineering
A software development methodology that uses specialized domain models to

express data or processes in a program.

MISRA Motor Industry Software Reliability Association
A collaboration between manufacturers, component suppliers, and engineering

consultancies to promote best practices in developing safety-related electronic

systems and software. See: https://www.misra.org.uk

MoC Model of Computation
A model that describes the computational process of a function producing outputs

for given inputs.
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Glossary

MVC Model-View-Controller
A design pattern that divides software components into a model, views that

represent the model, and controllers for interactions between the former [Ree79].

OO Object-Oriented
A programming paradigm that combines data and their operations into classes

and object, and supports relations between them.

PTIDES Programming Temporally Integrated Distributed Embedded Sys-
tems
A discrete-event model that acts as a programming specification for time-synchro-

nized distributed real-time systems [ZLL07].

ROOM Real-time Object-Oriented Modeling
A modeling concept for event-driven real-time distributed systems that leverages

object orientation for modularity and abstraction [SGW94].

SC Sequentially Constructive
A synchronous model of computation that considers sequential relations in the

source code, while ensuring deterministic behavior by a constructive analysis

approach [HDM+14].

SCADE Safety-Critical Application Development Environment
A graphical dataflow language based on Lustre semantics [CPP17].

SCG Sequentially Constructive Graph
A control-flow graph notation that includes synchronous elements and dependen-

cies for a low-level representation of sequentially constructive programs [HDM+14].

SCL Sequentially Constructive Language
A minimal imperative programming language with sequentially constructive

semantics [HDM+14].

SCPL Sequentially Constructive Procedural Language
An imperative synchronous language with sequentially constructive semantics

but stronger emphasis on procedural abstraction and shared memory communi-

cation [GGM+20; GGM+22].
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Glossary

SP Scheduling Policy
An object-based scheduling regime that uses automata for specifying precedence

relations of operations [AMP+18].

SSM Sparse Synchronous Model
A synchronous model of computation that incorporates the sparseness of events

into the execution regime [EH20].

UML Unified Modeling Language
A collection of modeling languages for the architectural design and behavior of

software systems [Obj11].

VHDL Very High Speed Integrated Circuit Hardware Description Lan-
guage
A standardized hardware description language supports specifying the structure

and behavior of digital circuits on different abstraction levels.
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