

University of Milano-Bicocca Department of Informatics, Systems and Communications

Cryptography by Cellular Automata

Luca Mariot

luca.mariot@disco.unimib.it

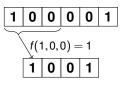
Zagreb - November 14, 2017

Context (1/2): Cellular Automata

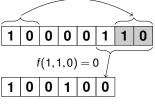
- One-dimensional Cellular Automaton (CA): a discrete parallel computation model composed of a finite array of n cells
- ► Each cell updates its state $s \in \{0, 1\}$ by applying a local rule $f : \{0, 1\}^d \rightarrow \{0, 1\}$ to itself and the d 1 cells to its right

Example: n = 6, d = 3, $f(s_i, s_{i+1}, s_{i+2}) = s_i \oplus s_{i+1} \oplus s_{i+2}$,

Truth table: $\Omega(f) = 01101001 \rightarrow \text{Rule } 150$



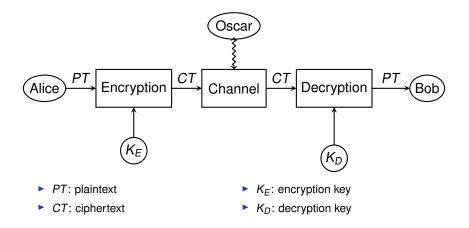
No Boundary CA – NBCA



Periodic Boundary CA – PBCA

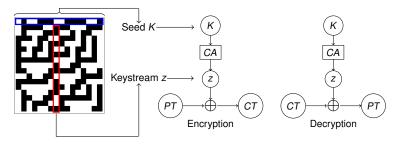
Context (2/2): Cryptography

Basic Goal of Cryptography: Enable two parties (Alice and Bob, A and B) to securely communicate over an insecure channel, even in presence of an opponent (Oscar, O)



CA-based Crypto History: Wolfram's PRNG

- General Idea: exploit the emergent complexity of CA to design cryptosystems satisfying confusion and diffusion criteria [Shannon49]
- CA-based Pseudorandom Generator (PRG) [Wolfram86]: central cell of rule 30 CA used as a stream cipher keystream

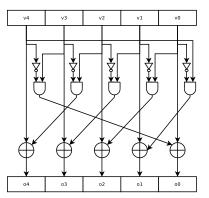


 This CA-based PRNG was later shown to be vulnerable [Meier91]

Luca Mariot

CA-Based Crypto History: Keccak χ S-box

- Local rule: $\chi(x_1, x_2, x_3) = x_1 \oplus (1 \oplus (x_2 \cdot x_3))$ (rule 210)
- Invertible for every odd size n of the CA [Daemen94]



 Used as a PBCA with n = 5 in the Keccak specification of SHA-3 standard [Keccak11]

Luca Mariot

Research Goal: investigate the cryptographic properties and the combinatorial designs induced by CA to realize significant cryptographic schemes

What do we mean by "significant"?

- 1. Secure: Satisfying strong security properties
- 2. Efficient: Leveraging CA parallelism for efficient hardware-oriented cryptography

Main focus: Security aspect

Research lines investigated up to now:

- Line 1: CA cryptographic properties
 - Bounds on the nonlinearity and differential uniformity of CA-based S-boxes
 - CA Cryptographic properties optimization through Genetic Programming (GP)
- Line 2: Secret sharing schemes based on CA
 - Orthogonal Latin Squares (OLS) from linear CA
 - Evolutionary search of nonlinear CA generating OLS

Research Line 1: CA cryptographic properties

Cryptography by Cellular Automata

CA-based cipher design

Design principle: the CA used in cryptographic primitives must satisfy certain properties, to thwart particular attacks

State of the art, up to now:

$$\cdots \boxed{0 1 1 0 0} \cdots \\ \downarrow f: \{0,1\}^d \to \{0,1\}$$

Our approach:

$$\bigcup F: \{0,1\}^n \to \{0,1\}^m$$

- Focus on CA local rules, viewed as Boolean functions
- Rationale: choose rule f with best crypto properties

- Some attacks cannot be formalized in a local way
- Idea: Analyze the CA global rule as a S-box

Research Line 1: CA cryptographic properties

Contribution 1: Bounds on the nonlinearity and differential uniformity of CA-based S-boxes

• Linear Boolean function L_{ω} : {0,1}^{*n*} \rightarrow {0,1}:

$$L_{\omega}(x) = \omega \cdot x = \omega_1 x_1 \oplus \cdots \oplus \omega_n x_n$$

Nonlinearity of f: {0, 1}ⁿ → {0, 1}: minimum Hamming distance of f from the set of all linear functions:

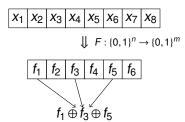
$$N_f = 2^{n-1} - \frac{1}{2}(|W_{max}(f)|)$$

where $W_{max}(f)$ is the maximum absolute value of the Walsh transform of *f*:

$$W_f(\omega) = \sum_{x \in \{0,1\}^n} (-1)^{f(x) \oplus \omega \cdot x}$$

Nonlinearity of S-boxes

- A Substitution Box (S-box) is a mapping F : {0,1}ⁿ → {0,1}^m defined by *m* coordinate functions f_i : {0,1}ⁿ → {0,1}
- The component functions v · F : {0,1}ⁿ → {0,1} for v ∈ {0,1}^m of F are the linear combinations of the f_i



- The nonlinearity of a S-box F is defined as the minimum nonlinearity among all its component functions
- S-boxes with high nonlinearity allow to resist to linear cryptanalysis attacks

Luca Mariot

delta difference table of F wrt a, b:

$$D_F(a,b) = \left\{ x \in \mathbb{F}_2^n : F(x) \oplus F(x \oplus a) = b \right\}.$$

• Given $\delta_F(a,b) = |D_F(a,b)|$, the differential uniformity of *F* is:

$$\delta_F = \max_{\substack{a \in \{0,1\}^{n_*}\\b \in \{0,1\}^m}} \delta_F(a,b).$$

 S-boxes with low differential uniformity are able to resist differential cryptanalysis attacks

Nonlinearity and Differential Uniformity of CA S-Boxes)

We proved the following upper bounds for NBCA and PBCA:

Theorem

The nonlinearity and differential uniformity of the S-box F of an n-cell NBCA or PBCA with local rule $f : \{0,1\}^d \rightarrow \{0,1\}$ satisfy

$$N_F \le 2^{n-d} \cdot N_f$$
$$\delta_F \le 2^{n-d} \cdot \delta_f$$

 Remark: This explains why adding cells to a CA makes the cryptographic properties of the S-box worse (see e.g. Keccak)

Research Line 1: CA cryptographic properties

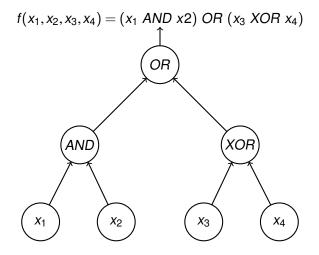
Contribution 2: CA Cryptographic properties optimization through Genetic Programming (GP)

(Joint work with Stjepan Picek and Domagoj Jakobovic)

- Goal: Find PBCA of length n and diameter d = n having cryptographic properties equal to or better than those of other real-world S-boxes (e.g. KECCAK, ...)
- Considered S-boxes sizes: from n = 4 to n = 8
- Using tree encoding, exhaustive search is already unfeasible for n = 4
- We adopted an evolutionary heuristic Genetic Programming

- Optimization method inspired by evolutionary principles, introduced by Koza [Koza93]
- Each candidate solution (individual) is represented by a tree
 - Terminal nodes: input variables
 - Internal nodes: Boolean operators (AND, OR, NOT, XOR, ...)
- New solutions are created through genetic operators like tree crossover and subtree mutation applied to a population of candidate solutions
- Optimization is performed by evaluating the new candidate solutions wrt a fitness function

GP Tree Encoding – Example



- Considered cryptographic properties:
 - balancedness/invertibility (BAL = 0 if F is balanced, -1 otherwise)
 - nonlinearity N_F
 - differential uniformity δ_F
- Fitness function maximized:

$$fitness = BAL + \Delta_{BAL,0} \left(N_F + \left(1 - \frac{nMinN_F}{2^n} \right) + (2^n - \delta_F) \right).$$

where $\Delta_{BAL,0} = 1$ if *F* is balanced and 0 otherwise, and $nMinN_F$ is the number of occurrences of the current value of nonlinearity

- Problem instance / CA size: n = 4 up to n = 8
- Maximum tree depth: equal to n
- Genetic operators: simple tree crossover, subtree mutation
- Population size: 2000
- Stopping criterion: 2000000 fitness evaluations
- Parameters determined by initial tuning phase on n = 6 case

Table : Statistical results and comparison.

S-box size	T_max		GP		N _F	δ_F
		Max	Avg	Std dev		
4×4	16	16	16	0	4	4
5×5	42	42	41.73	1.01	12	2
6×6	86	84	80.47	4.72	24	4
7×7	182	182	155.07	7 8.86	56	2
8×8	364	318	281.87	7 13.86	82	20

- From n = 4 to n = 7, we obtained CA rules inducing S-boxes with optimal crypto properties
- Only for n = 8 the performances of GP are consistently worse wrt to the theoretical optimum

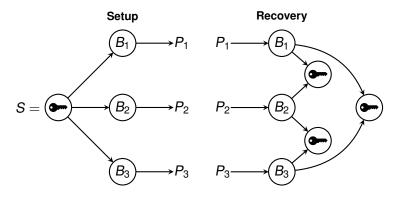
Research Line 2: CA-based secret sharing schemes

Cryptography by Cellular Automata

Secret Sharing Schemes

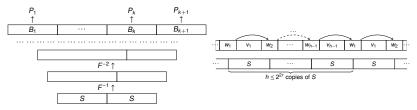
- Secret sharing scheme (SSS): a procedure enabling a dealer to share a secret S among a set P of n players
- ▶ (*k*, *n*) threshold SSS: at least *k* players to recover *S*

Example: (2,3)-scheme



State of the art CA-based SSS

 All CA-based SSS (e.g. [Mariot14]) have a sequential threshold, where shares must be *adjacent*



(a) Sequential threshold CA SSS

(b) Period of spatially periodic preimage

Question: Is it possible to design a CA-based threshold SSS without adjacency constraint?

Research Line 2: CA-based secret sharing schemes

Contribution 1: Generating Orthogonal Latin Squares (OLS) through Linear CA

Latin squares and threshold SSS

- A Latin square (LS) is a N×N matrix where each row and each column permutes [N] = {1, · · · , N}
- L₁,..., L_n are mutually orthogonal (n-MOLS) if their pairwise superposition yields all the pairs (x, y) ∈ [N] × [N]

1	3	4	2		1	4	2	3	1,1	3,4	4,2	2,3
4	2	1	3		3	2	4	1	4,3	2,2	1,4	3,1
2	4	3	1		4	1	3	2	2,4	4,1	3,3	1,2
3	1	2	4		2	3	4	1	3,2	1,3	2,1	4,4
(a) L ₁					(b) L ₂				(c) (<i>I</i>	_ ₁ , L ₂	2)

Remark: *n*-MOLS \Leftrightarrow (2, *n*) threshold SSS

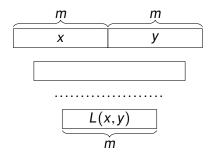
Latin Squares through Bipermutive CA (1/2)

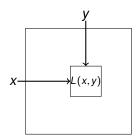
- Idea: determine which CA induce orthogonal Latin squares
- Bipermutive CA: local rule f is defined as

$$f(x_1, \cdots, x_{2r+1}) = x_1 \oplus g(x_2, \cdots, x_{2r}) \oplus x_{2r+1}$$

Lemma

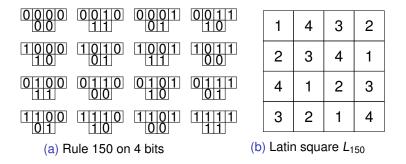
Let F be a m-cell bipermutive NBCA with diameter d s.t. (d-1)|m. Then, the CA generates a Latin square of order $N = 2^m$





Latin Squares through Bipermutive CA (2/2)

- Example: CA $\langle \mathbb{F}_2, 4, 1, f \rangle$, $f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3$ (Rule 150)
- Encoding: $00 \mapsto 1, 10 \mapsto 2, 01 \mapsto 3, 11 \mapsto 4$



Linear CA

Local rule: linear combination of the neighborhood cells

$$f(x_1,\cdots,x_d)=a_1x_1\oplus\cdots\oplus a_dx_d$$
, $a_i\in\mathbb{F}_2$

Associated polynomial:

$$f\mapsto \varphi(X)=a_1+a_2X+\cdots+a_dX^{d-1}$$

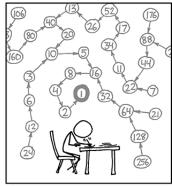
► Global rule: $m \times (m + d - 1) (d - 1)$ -diagonal transition matrix

$$M_{F} = \begin{pmatrix} a_{1} & \cdots & a_{d} & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & a_{1} & \cdots & a_{d} & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & a_{1} & \cdots & a_{d} \end{pmatrix}$$
$$x = (x_{1}, \cdots, x_{n}) \mapsto M_{F} x^{\top}$$

Theorem

Let F, G be linear bipermutive NBCA. The Latin squares induced by F and G are orthogonal if and only if $P_f(X)$ and $P_g(X)$ are coprime

1	4	3	2		1	2	3	4		1,1	4,2	3,3	2,4
2	3	4	1		2	1	4	3		2,2	3,1	4,4	1,3
4	1	2	3		3	4	1	2		4,3	1,4	2,1	3,2
3	2	1	4		4	3	2	1		3,4	2,3	1,2	4,1
(a) Rule 150 (b) Rule 90 (c) Superposition													
Figure : $P_{150}(X) = 1 + X + X^2$, $P_{90}(X) = 1 + X^2$ (coprime)													



THE COLLATZ CONJECTURE STATES THAT IF YOU PICK A NUMBER, AND IF ITS EVEN DIVIDE IT BY TWO AND IF IT'S OOD MULTIPLY IT BY THREE AND ADD ONE, AND YOU REPEAT THIS PROCEDURE LONG ENOUGH, EVENTUALLY YOUR FRIENDS WILL STOP CALLING TO SEE IF YOU WANT TO HANG OUT.

https://xkcd.com/710/

 Number of coprime polynomial pairs of degree n and nonzero constant term:

$$a(n) = 4^{n-1} + a(n-1) =$$

= $\frac{4^{n-1} - 1}{3} =$
= 0, 1, 5, 21, 85, ...

 This sequence corresponds to OEIS A002450, which has several other interpretations (e.g. Collatz conjecture, ...)

Research Line 2: CA-based secret sharing schemes

Contribution 2: Evolutionary search of nonlinear CA generating OLS

(Joint work with Stjepan Picek and Domagoj Jakobovic)

- Construction of OLS solved for linear CA [Mariot16]
- MOLS arising from nonlinear constructions have relevance in cheater-immune Secret Sharing Schemes [Tompa88]

Goal: Design OLS based on CA by evolving pairs of nonlinear bipermutive local rules through GA and GP

Twofold motivation:

- Theoretical: Understand the mathematical structure of the space of nonlinear CA-based OLS
- EC perspective: Source of new problems for evolutionary algorithms

- ▶ Number of Boolean functions of *n* variables: $\mathcal{F}_n = 2^{2^n}$
- Bipermutive rules of size n ⇔ Generating functions of size n-2 (which are 𝓕_{n-2} = 2^{2ⁿ⁻²})

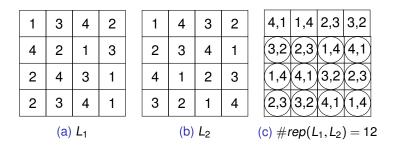
▶ Pairs of bipermutive rules of size *n*: $\mathcal{B}_n = 2^{2^{n-1}} = \mathcal{F}_{n-1}$

n	3	4	5	6	7	8
\mathcal{B}_n	16	256	65536	$\approx 4.3 \times 10^9$	$\approx 1.8 \cdot 10^{19}$	$pprox 3.4\cdot 10^{38}$
N×N	4×4	8×8	16×16	32×32	$\approx 1.8 \cdot 10^{19}$ 64×64	128×128
#OLS	8	72	1704	533480	?	
#OLS	8	72	1704	533480	?	?

Remark: Exhaustive enumeration possible up to n = 6

Fitness Functions (1/2)

#rep(L₁, L₂): Number of occurrences of each pair (except the first one) in the superposition of Latin squares L₁ and L₂



 Let φ, γ be the generating functions of two bipermutive CA, and let L_φ, L_γ be the associated Latin squares

First fitness function: minimize $fit_1(\varphi, \gamma) = \#rep(L_{\varphi}, L_{\gamma})$

Fitness Functions (2/2)

- **Remark**: *fit*₁ does not consider the nonlinearity of φ and γ !
- Nonlinearity penalty factor:

$$NIPen(\varphi, \gamma) = \begin{cases} 0 \ , \ \text{if } NI(\varphi) > 0 \ AND \ NI(\gamma) > 0 \\ 1 \ , \ \text{if } NI(\varphi) = 0 \ XOR \ NI(\gamma) = 0 \\ 2 \ , \ \text{if } NI(\varphi) = 0 \ AND \ NI(\gamma) = 0 \end{cases}$$

Second fitness function: minimize

$$\mathit{fit}_2(\varphi, \gamma) = \#\mathit{rep}(L_{\varphi}, L_{\gamma}) + \mathit{NIPen}(\varphi, \gamma) \cdot \mathit{N}^2$$

The N² scaling factor balances the range of #rep(L_φ, L_γ), which is {0, · · · , N²}

Let φ, γ : {0,1}ⁿ⁻² → {0,1} be a pair of generating functions, with 2ⁿ⁻²-bit truth tables Ω(φ), Ω(γ), and let || denote concatenation

First GA encoding: $enc_1(\varphi, \gamma) = \Omega(\varphi) || \Omega(\gamma)$

Example:

$$\begin{aligned} \varphi(x_1, x_2, x_3) &= x_1 \oplus x_3 \Rightarrow \Omega(\varphi) = (0, 1, 0, 1, 1, 0, 1, 0) \\ \gamma(x_1, x_2, x_3) &= x_1 \oplus x_2 \oplus x_3 \Rightarrow \Omega(g) = (0, 1, 1, 0, 1, 0, 0, 1) \\ enc_1(\varphi, \gamma) &= (0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1) \end{aligned}$$

 Classic GA variation operators like one-point crossover and bit-flip mutation are applied in this case Idea: Keep the generating functions separated and evolve them independently

Second GA encoding: $enc_2(\varphi, \gamma) = (\Omega(\varphi), \Omega(\gamma))$

We use the same idea for GP: the genotype is composed of the two trees T(φ) and T(γ) representing φ and γ

GP encoding: $enc_{GP}(\varphi, \gamma) = (T(\varphi), T(\gamma))$

 Classic GA and GP variations operators are applied independently on each of the two components

Definition

 $f, g: \{0, 1\}^n \rightarrow \{0, 1\}$ are pairwise balanced (PWB) if

$$|(f,g)^{-1}(0,0)| = |(f,g)^{-1}(1,0)| =$$

= $|(f,g)^{-1}(0,1)| = |(f,g)^{-1}(1,1)| = 2^{n-2}$

Example:

•
$$f(x_1, x_2, x_3) = x_1 \oplus x_3$$
 (Rule 90)

• $f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3$ (Rule 150)

$$\Omega(f) = (0, 1, 0, 1, 1, 0, 1, 0) ,$$

$$\Omega(g) = (0, 1, 1, 0, 1, 0, 0, 1) .$$

Each of the pairs (0,0), (1,0), (0,1), (1,1) occurs $2^{3-2} = 2$ times

GA Encoding: Balanced Quaternary Strings (2/2)

Experimental observations on exhaustive search:

- ► Two bipermutive CA generate OLS ⇒ the local rules are PWB
- Generating functions are PWB ⇒ the local rules are PWB

Third GA encoding: $enc_3(\varphi, \gamma)$ is a quaternary string of length 2^{n-2} where each number from 1 to 4 occurs 2^{n-4} times

Example: $n = 5, (0,0) \mapsto 1, (1,0) \mapsto 2, (0,1) \mapsto 3, (1,1) \mapsto 4$

$$\Omega(\varphi) = (0, 1, 0, 1, 1, 0, 1, 0)$$
$$\Omega(\gamma) = (0, 1, 1, 0, 1, 0, 0, 1)$$
$$enc_3(\varphi, \gamma) = (1, 4, 3, 2, 4, 1, 2, 3)$$

- Balancedness-preserving variation operators for GA:
 - Crossover: use counters to keep track of the multiplicities of the 4 values in the offspring
 - Mutation: use a swap-based operator

Luca Mariot

Cryptography by Cellular Automata

Common Parameters:

- Problem instances: rules of n = 7 and n = 8 variables
- Termination condition: 300000 fitness evaluations
- Each experiment is repeated over 50 independent runs
- Selection operator: steady-state with 3-tournament operator

GA Parameters:

- Population size: 30 individuals
- Crossover and mutation probabilities: $p_c = 0.95$, $p_m = 0.2$

GP Parameters:

- Boolean operators: AND, OR, XOR, XNOR, NOT, IF
- Population size: 500 individuals
- Mutation probability: $p_m = 0.5$

Results

- (GA, n, enc_i): GA experiment with CA rules of n variables and encoding enc_i, fitness function fit₁
- (GP, n, fit_i): GP experiment with CA rules of n variables and encoding enc_{GP}, fitness function fit_i

Exp.	avg fit	std fit	#opt	#lin	#nlin
$(GA, 7, enc_1)$	520.32	360.16	12/50	0	12
$(GA,7,enc_2)$	565.44	389.03	15/50	0	15
$(GA,7,enc_3)$	392.64	328.47	18/50	0	18
$(GA, 8, enc_1)$	4165.44	604	1/50	0	1
$(GA, 8, enc_2)$	4222.16	125.03	0/50	0	0
$(GA, 8, enc_3)$	4696.48	135.51	0/50	0	0
$(GP, 7, fit_1)$	0	0	50/50	50	0
(GP,7,fit ₂)	0	0	50/50	0	50
(<i>GP</i> , 8, <i>fit</i> ₁)	0	0	50/50	47	3
(GP, 8, fit ₂)	0	0	50/50	0	50

For GP:

- GP always manages to converge to an optimal solution
- ... but under fit₁, all solutions found are linear!
- Possible explanation: GP first converges to linear pairs (since it has the XOR operator), then OLS are easily found

On the other hand, for GA:

- ► GA converged just once for n = 8 and the performances for n = 7 are worse than GP
- ... but all solutions found are nonlinear, even under fit₁

Conclusions

Luca Mariot

Cryptography by Cellular Automata

We investigated two applications of CA to cryptography, namely:

- Design of CA-based S-boxes:
 - Study of the bounds on nonlinearity and differential uniformity of S-boxes generated through CA
 - Evolutionary search of CA-based S-boxes with good crypto properties through GP
- Design of CA-based Secret Sharing Schemes:
 - Characterization of OLS generated by linear CA
 - Evolutionary search of nonlinear CA generating OLS

Research Line 1:

- Consider CA with respect to cryptographic properties related to other kinds of attacks (algebraic attacks, ...)
- Prove lower bounds on the nonlinearity of CA induced by specific classes of rules (bipermutive rules, plateaued functions, ...)

Research Line 2:

- Investigate the behavior of GP in evolving CA generating OLS
- Generalize to higher thresholds (via orthogonal arrays)

References

[Keccak11] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G. 2011. The Keccak reference. http://keccak.noekeon.org/ (2011) [Daemen94] Daemen, J., Govaerts, R., Vandewalle, J. An efficient nonlinear shift-invariant transformation. In Proceedings of the 15th Symposium on Information Theory in the Benelux, pp. 108-115 (1994) [Koza93] J. R. Koza: Genetic programming – on the programming of computers by means of natural selection. Complex adaptive systems, MIT Press 1993 [Mariot16] Mariot, L., Formenti, E., Leporati, A.: Constructing Orthogonal Latin Squares from Linear Cellular Automata. In: Exp. Proceedings of AUTOMATA 2016 [Mariot14] Mariot, L., Leporati, A.: Sharing Secrets by Computing Preimages of Bipermutive Cellular Automata. In: Proceedings of ACRI 2014 [Meier91] Meier, W., Staffelbach, O. Analysis of Pseudo Random Sequence Generated by Cellular Automata. In EUROCRYPT, Vol. 91, pp. 186-200 (1991) [Shannon49] Shannon, C. E. Communication theory of secrecy systems. Bell Labs Technical Journal, 28(4), 656-715 (1949) [Tompa88] Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptology 1(2), 133-138 (1988) [Wolfram86] Wolfram, S.: Random Sequence Generation by Cellular Automata. Adv. Appl. Math. 7(2), 123-169 (1986)