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Context (1/2): Cellular Automata

I One-dimensional Cellular Automaton (CA): a discrete parallel
computation model composed of a finite array of n cells

I Each cell updates its state s ∈ {0,1} by applying a local rule
f : {0,1}d → {0,1} to itself and the d −1 cells to its right

Example: n = 6, d = 3, f(si ,si+1,si+2) = si ⊕si+1 ⊕si+2,

Truth table: Ω(f) = 01101001→ Rule 150

1 0 0 1

f(1,0,0) = 1

01 0 0 0 1

No Boundary CA – NBCA

01 0 1 0 0

f(1,1,0) = 0

01 0 0 0 1 1 0

Periodic Boundary CA – PBCA
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Context (2/2): Cryptography

Basic Goal of Cryptography: Enable two parties (Alice and Bob, A
and B) to securely communicate over an insecure channel, even in
presence of an opponent (Oscar, O)

Alice Encryption

KE

Channel

Oscar

Decryption

KD

Bob
PT CT CT PT

I PT : plaintext
I CT : ciphertext

I KE : encryption key
I KD : decryption key
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CA-based Crypto History: Wolfram’s PRNG

I General Idea: exploit the emergent complexity of CA to design
cryptosystems satisfying confusion and diffusion
criteria [Shannon49]

I CA-based Pseudorandom Generator (PRG) [Wolfram86]:
central cell of rule 30 CA used as a stream cipher keystream

Seed K

Keystream z

K

CA

z⊕
Encryption

PT CT

K

CA

z⊕
Decryption

CT PT

I This CA-based PRNG was later shown to be
vulnerable [Meier91]
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CA-Based Crypto History: Keccak χ S-box

I Local rule: χ(x1,x2,x3) = x1⊕ (1⊕ (x2 ·x3)) (rule 210)
I Invertible for every odd size n of the CA [Daemen94]

I Used as a PBCA with n = 5 in the Keccak specification of
SHA-3 standard [Keccak11]
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Motivations

Research Goal: investigate the cryptographic properties and the
combinatorial designs induced by CA to realize significant
cryptographic schemes

What do we mean by “significant”?

1. Secure: Satisfying strong security properties

2. Efficient: Leveraging CA parallelism for efficient
hardware-oriented cryptography

Main focus: Security aspect
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Summary of Contributions

Research lines investigated up to now:

I Line 1: CA cryptographic properties
I Bounds on the nonlinearity and differential uniformity of

CA-based S-boxes
I CA Cryptographic properties optimization through Genetic

Programming (GP)

I Line 2: Secret sharing schemes based on CA
I Orthogonal Latin Squares (OLS) from linear CA
I Evolutionary search of nonlinear CA generating OLS
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Summary of Contributions

Research Line 1: CA cryptographic properties
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CA-based cipher design

Design principle: the CA used in cryptographic primitives must
satisfy certain properties, to thwart particular attacks

State of the art, up to now:

0

↓ f : {0,1}d → {0,1}

110· · · 0 0 · · · I Focus on CA local rules,
viewed as Boolean functions

I Rationale: choose rule f
with best crypto properties

Our approach:

1 0 0 1 1 0

⇓ F : {0,1}n → {0,1}m

01 0 0 0 1 0 1 I Some attacks cannot be
formalized in a local way

I Idea: Analyze the CA global
rule as a S-box
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Summary of Contributions

Research Line 1: CA cryptographic properties

Contribution 1: Bounds on the nonlinearity and differential
uniformity of CA-based S-boxes
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Nonlinearity of Boolean Functions

I Linear Boolean function Lω : {0,1}n→ {0,1}:

Lω(x) = ω ·x = ω1x1⊕ · · ·⊕ωnxn

I Nonlinearity of f : {0,1}n→ {0,1}: minimum Hamming distance
of f from the set of all linear functions:

Nf = 2n−1−
1
2

(|Wmax(f)|)

where Wmax(f) is the maximum absolute value of the Walsh
transform of f :

Wf (ω) =
∑

x∈{0,1}n
(−1)f(x)⊕ω·x
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Nonlinearity of S-boxes

I A Substitution Box (S-box) is a mapping F : {0,1}n→ {0,1}m

defined by m coordinate functions fi : {0,1}n→ {0,1}
I The component functions v ·F : {0,1}n→ {0,1} for v ∈ {0,1}m

of F are the linear combinations of the fi

f1 f2 f3 f4 f5 f6

f1⊕ f3⊕ f5

⇓ F : {0,1}n → {0,1}m

x2x1 x3 x4 x5 x6 x7 x8

I The nonlinearity of a S-box F is defined as the minimum
nonlinearity among all its component functions

I S-boxes with high nonlinearity allow to resist to linear
cryptanalysis attacks
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Differential Uniformity of S-boxes

I delta difference table of F wrt a,b:

DF (a,b) =
{
x ∈ Fn

2 : F(x)⊕F(x ⊕a) = b
}
.

I Given δF (a,b) = |DF (a,b)|, the differential uniformity of F is:

δF = max
a ∈ {0,1}n∗
b ∈ {0,1}m

δF (a,b).

I S-boxes with low differential uniformity are able to resist
differential cryptanalysis attacks

Luca Mariot Cryptography by Cellular Automata



Nonlinearity and Differential Uniformity of CA S-Boxes)

I We proved the following upper bounds for NBCA and PBCA:

Theorem
The nonlinearity and differential uniformity of the S-box F of an
n-cell NBCA or PBCA with local rule f : {0,1}d → {0,1} satisfy

NF ≤ 2n−d ·Nf

δF ≤ 2n−d ·δf

I Remark: This explains why adding cells to a CA makes the
cryptographic properties of the S-box worse (see e.g. Keccak)
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Summary of Contributions

Research Line 1: CA cryptographic properties

Contribution 2: CA Cryptographic properties optimization
through Genetic Programming (GP)

(Joint work with Stjepan Picek and Domagoj Jakobovic)
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Problem Statement

I Goal: Find PBCA of length n and diameter d = n having
cryptographic properties equal to or better than those of other
real-world S-boxes (e.g. Keccak, ...)

I Considered S-boxes sizes: from n = 4 to n = 8
I Using tree encoding, exhaustive search is already unfeasible

for n = 4
I We adopted an evolutionary heuristic – Genetic Programming
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Genetic Programming (GP)

I Optimization method inspired by evolutionary principles,
introduced by Koza [Koza93]

I Each candidate solution (individual) is represented by a tree
I Terminal nodes: input variables
I Internal nodes: Boolean operators (AND, OR, NOT, XOR, ...)

I New solutions are created through genetic operators like tree
crossover and subtree mutation applied to a population of
candidate solutions

I Optimization is performed by evaluating the new candidate
solutions wrt a fitness function
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GP Tree Encoding – Example

OR

f(x1,x2,x3,x4) = (x1 AND x2) OR (x3 XOR x4)

AND XOR

x1 x2 x3 x4
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Fitness Function

I Considered cryptographic properties:
I balancedness/invertibility (BAL = 0 if F is balanced, −1

otherwise)
I nonlinearity NF
I differential uniformity δF

I Fitness function maximized:

fitness = BAL + ∆BAL ,0

(
NF +

(
1−

nMinNF

2n

)
+ (2n −δF )

)
.

where ∆BAL ,0 = 1 if F is balanced and 0 otherwise, and
nMinNF is the number of occurrences of the current value of
nonlinearity
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Experimental Setup

I Problem instance / CA size: n = 4 up to n = 8
I Maximum tree depth: equal to n
I Genetic operators: simple tree crossover, subtree mutation
I Population size: 2000
I Stopping criterion: 2000000 fitness evaluations
I Parameters determined by initial tuning phase on n = 6 case
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Results – Crypto Properties

Table : Statistical results and comparison.

S-box size T_max GP NF δF

Max Avg Std
dev

4×4 16 16 16 0 4 4

5×5 42 42 41.73 1.01 12 2

6×6 86 84 80.47 4.72 24 4

7×7 182 182 155.07 8.86 56 2

8×8 364 318 281.87 13.86 82 20

I From n = 4 to n = 7, we obtained CA rules inducing S-boxes
with optimal crypto properties

I Only for n = 8 the performances of GP are consistently worse
wrt to the theoretical optimum
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Summary of Contributions

Research Line 2: CA-based secret sharing schemes
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Secret Sharing Schemes

I Secret sharing scheme (SSS): a procedure enabling a dealer
to share a secret S among a set P of n players

I (k ,n) threshold SSS: at least k players to recover S

Example: (2,3)–scheme

S = B2

B1

B3

Setup

P1

P2

P3

P2 B2

B3

B1P1

P3

Recovery
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State of the art CA-based SSS

I All CA-based SSS (e.g. [Mariot14]) have a sequential
threshold, where shares must be adjacent

S
F−1 ↑

F−2 ↑

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · ·B1 Bk

S

· · · · · · · · ·

Bk+1

↑ ↑ ↑

P1 Pk Pk+1

(a) Sequential threshold CA SSS

S· · · · · · S S · · ·

w1· · · v1 w2 · · · wh−1 vh−1 w1 v1 w2 · · ·

h ≤ 22r copies of S

· · ·

(b) Period of spatially periodic preimage

I Question: Is it possible to design a CA-based threshold SSS
without adjacency constraint?
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Summary of Contributions

Research Line 2: CA-based secret sharing schemes

Contribution 1: Generating Orthogonal Latin Squares (OLS)
through Linear CA
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Latin squares and threshold SSS

I A Latin square (LS) is a N×N matrix where each row and
each column permutes [N] = {1, · · · ,N}

I L1, · · · ,Ln are mutually orthogonal (n-MOLS) if their pairwise
superposition yields all the pairs (x,y) ∈ [N]× [N]

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

(a) L1

1 4 2 3

3 2 4 1

4 1 3 2

2 3 4 1

(b) L2

1,1 3,4 4,2 2,3

4,3 2,2 1,4 3,1

2,4 4,1 3,3 1,2

3,2 1,3 2,1 4,4

(c) (L1,L2)

Remark: n-MOLS⇔ (2,n) threshold SSS
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Latin Squares through Bipermutive CA (1/2)

I Idea: determine which CA induce orthogonal Latin squares
I Bipermutive CA: local rule f is defined as

f(x1, · · · ,x2r+1) = x1⊕g(x2, · · · ,x2r)⊕x2r+1

Lemma
Let F be a m-cell bipermutive NBCA with diameter d s.t. (d −1)|m.
Then, the CA generates a Latin square of order N = 2m

x y

· · · · · · · · · · · · · · · · · · · · ·

L(x,y)

m

m m

L(x,y)

y

x
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Latin Squares through Bipermutive CA (2/2)

I Example: CA 〈F2,4,1, f〉, f(x1,x2,x3) = x1⊕x2⊕x3 (Rule 150)
I Encoding: 00 7→ 1,10 7→ 2,01 7→ 3,11 7→ 4

0 0 0 0
0 0

0 0 1 0
1 1

0 0 0 1
0 1

0 0 1 1
1 0

1 0 0 0
1 0

1 0 1 0
0 1

1 0 0 1
1 1

1 0 1 1
0 0

0 1 0 0
1 1

0 1 1 0
0 0

0 1 0 1
1 0

0 1 1 1
0 1

1 1 0 0
0 1

1 1 1 0
1 0

1 1 0 1
0 0

1 1 1 1
1 1

(a) Rule 150 on 4 bits

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

(b) Latin square L150
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Linear CA

I Local rule: linear combination of the neighborhood cells

f(x1, · · · ,xd) = a1x1⊕ · · ·⊕adxd , ai ∈ F2

I Associated polynomial:

f 7→ ϕ(X) = a1 + a2X + · · ·+ adXd−1

I Global rule: m× (m + d −1) (d −1)-diagonal transition matrix

MF =


a1 · · · ad 0 · · · · · · · · · · · · 0
0 a1 · · · ad 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 a1 · · · ad


x = (x1, · · · ,xn) 7→MFx>
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Orthogonal Latin Squares by Linear CA

Theorem
Let F ,G be linear bipermutive NBCA. The Latin squares induced
by F and G are orthogonal if and only if Pf (X) and Pg(X) are
coprime

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

(a) Rule 150

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

(b) Rule 90

1,1 4,2 3,3 2,4

2,2 3,1 4,4 1,3

4,3 1,4 2,1 3,2

3,4 2,3 1,2 4,1

(c) Superposition

Figure : P150(X) = 1 + X + X2, P90(X) = 1 + X2 (coprime)
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Counting linear CA-based OLS

https://xkcd.com/710/

I Number of coprime
polynomial pairs of degree n
and nonzero constant term:

a(n) = 4n−1 + a(n−1) =

=
4n−1−1

3
=

= 0,1,5,21,85, ...

I This sequence corresponds
to OEIS A002450, which
has several other
interpretations (e.g. Collatz
conjecture, ...)
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Summary of Contributions

Research Line 2: CA-based secret sharing schemes

Contribution 2: Evolutionary search of nonlinear CA
generating OLS

(Joint work with Stjepan Picek and Domagoj Jakobovic)
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Motivations and Goals

I Construction of OLS solved for linear CA [Mariot16]
I MOLS arising from nonlinear constructions have relevance in

cheater-immune Secret Sharing Schemes [Tompa88]

Goal: Design OLS based on CA by evolving pairs of nonlinear
bipermutive local rules through GA and GP

Twofold motivation:
I Theoretical: Understand the mathematical structure of the

space of nonlinear CA-based OLS
I EC perspective: Source of new problems for evolutionary

algorithms
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Search Space Size

I Number of Boolean functions of n variables: Fn = 22n

I Bipermutive rules of size n⇔ Generating functions of size
n−2 (which are Fn−2 = 22n−2

)
I Pairs of bipermutive rules of size n: Bn = 22n−1

= Fn−1

n 3 4 5 6 7 8

Bn 16 256 65536 ≈ 4.3×109 ≈ 1.8 ·1019 ≈ 3.4 ·1038

N×N 4×4 8×8 16×16 32×32 64×64 128×128
#OLS 8 72 1704 533480 ? ?

Remark: Exhaustive enumeration possible up to n = 6
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Fitness Functions (1/2)

I #rep(L1,L2): Number of occurrences of each pair (except the
first one) in the superposition of Latin squares L1 and L2

1 3 4 2

4 2 1 3

2 4 3 1

2 3 4 1

(a) L1

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

(b) L2

4,1 1,4 2,3 3,2

3,2 2,3 1,4 4,1

1,4 4,1 3,2 2,3

2,3 3,2 4,1 1,4

(c) #rep(L1,L2) = 12

I Let ϕ,γ be the generating functions of two bipermutive CA,
and let Lϕ,Lγ be the associated Latin squares

First fitness function: minimize fit1(ϕ,γ) = #rep(Lϕ,Lγ)
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Fitness Functions (2/2)

I Remark: fit1 does not consider the nonlinearity of ϕ and γ!
I Nonlinearity penalty factor:

NlPen(ϕ,γ) =


0 , if Nl(ϕ) > 0 AND Nl(γ) > 0

1 , if Nl(ϕ) = 0 XOR Nl(γ) = 0

2 , if Nl(ϕ) = 0 AND Nl(γ) = 0

Second fitness function: minimize

fit2(ϕ,γ) = #rep(Lϕ,Lγ) + NlPen(ϕ,γ) ·N2

I The N2 scaling factor balances the range of #rep(Lϕ,Lγ),
which is {0, · · · ,N2}
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GA Encoding: Single Bitstring

I Let ϕ,γ : {0,1}n−2→ {0,1} be a pair of generating functions,
with 2n−2-bit truth tables Ω(ϕ),Ω(γ), and let || denote
concatenation

First GA encoding: enc1(ϕ,γ) = Ω(ϕ)||Ω(γ)

Example:
ϕ(x1,x2,x3) = x1⊕x3⇒ Ω(ϕ) = (0,1,0,1,1,0,1,0)

γ(x1,x2,x3) = x1⊕x2⊕x3⇒ Ω(g) = (0,1,1,0,1,0,0,1)

enc1(ϕ,γ) = (0,1,0,1,1,0,1,0,0,1,1,0,1,0,0,1)

I Classic GA variation operators like one-point crossover and
bit-flip mutation are applied in this case
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GA & GP Encodings: Double Bitstring/Double Tree

I Idea: Keep the generating functions separated and evolve
them independently

Second GA encoding: enc2(ϕ,γ) = (Ω(ϕ),Ω(γ))

I We use the same idea for GP: the genotype is composed of
the two trees T(ϕ) and T(γ) representing ϕ and γ

GP encoding: encGP(ϕ,γ) = (T(ϕ),T(γ))

I Classic GA and GP variations operators are applied
independently on each of the two components
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GA Encoding: Balanced Quaternary Strings (1/2)

Definition
f ,g : {0,1}n→ {0,1} are pairwise balanced (PWB) if∣∣∣(f ,g)−1(0,0)

∣∣∣ =
∣∣∣(f ,g)−1(1,0)

∣∣∣ =

=
∣∣∣(f ,g)−1(0,1)

∣∣∣ =
∣∣∣(f ,g)−1(1,1)

∣∣∣ = 2n−2

Example:
I f(x1,x2,x3) = x1⊕x3 (Rule 90)
I f(x1,x2,x3) = x1⊕x2⊕x3 (Rule 150)

Ω(f) = (0,1,0,1,1,0,1,0) ,

Ω(g) = (0,1,1,0,1,0,0,1) .

Each of the pairs (0,0),(1,0),(0,1),(1,1) occurs 23−2 = 2 times
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GA Encoding: Balanced Quaternary Strings (2/2)

I Experimental observations on exhaustive search:
I Two bipermutive CA generate OLS⇒ the local rules are PWB
I Generating functions are PWB⇒ the local rules are PWB

Third GA encoding: enc3(ϕ,γ) is a quaternary string of length
2n−2 where each number from 1 to 4 occurs 2n−4 times

Example: n = 5,(0,0) 7→ 1,(1,0) 7→ 2,(0,1) 7→ 3,(1,1) 7→ 4

Ω(ϕ) = (0,1,0,1,1,0,1,0)

Ω(γ) = (0,1,1,0,1,0,0,1)

enc3(ϕ,γ) = (1,4,3,2,4,1,2,3)

I Balancedness-preserving variation operators for GA:
I Crossover: use counters to keep track of the multiplicities of

the 4 values in the offspring
I Mutation: use a swap-based operator
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Experimental settings

Common Parameters:
I Problem instances: rules of n = 7 and n = 8 variables
I Termination condition: 300000 fitness evaluations
I Each experiment is repeated over 50 independent runs
I Selection operator: steady-state with 3-tournament operator

GA Parameters:
I Population size: 30 individuals
I Crossover and mutation probabilities: pc = 0.95, pm = 0.2

GP Parameters:
I Boolean operators: AND, OR, XOR, XNOR, NOT, IF
I Population size: 500 individuals
I Mutation probability: pm = 0.5
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Results

I (GA ,n,enci): GA experiment with CA rules of n variables and
encoding enci , fitness function fit1

I (GP,n,fiti): GP experiment with CA rules of n variables and
encoding encGP , fitness function fiti

Exp. avg fit std fit #opt #lin #nlin

(GA ,7,enc1) 520.32 360.16 12/50 0 12
(GA ,7,enc2) 565.44 389.03 15/50 0 15
(GA ,7,enc3) 392.64 328.47 18/50 0 18
(GA ,8,enc1) 4165.44 604 1/50 0 1
(GA ,8,enc2) 4222.16 125.03 0/50 0 0
(GA ,8,enc3) 4696.48 135.51 0/50 0 0

(GP,7,fit1) 0 0 50/50 50 0
(GP,7,fit2) 0 0 50/50 0 50
(GP,8,fit1) 0 0 50/50 47 3
(GP,8,fit2) 0 0 50/50 0 50
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Discussion

For GP:
I GP always manages to converge to an optimal solution
I ... but under fit1, all solutions found are linear!
I Possible explanation: GP first converges to linear pairs (since

it has the XOR operator), then OLS are easily found

On the other hand, for GA:
I GA converged just once for n = 8 and the performances for

n = 7 are worse than GP
I ... but all solutions found are nonlinear, even under fit1
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Summary of Contributions

Conclusions
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Wrapping up

We investigated two applications of CA to cryptography, namely:

I Design of CA-based S-boxes:
I Study of the bounds on nonlinearity and differential uniformity

of S-boxes generated through CA
I Evolutionary search of CA-based S-boxes with good crypto

properties through GP
I Design of CA-based Secret Sharing Schemes:

I Characterization of OLS generated by linear CA
I Evolutionary search of nonlinear CA generating OLS
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Future developments

Research Line 1:
I Consider CA with respect to cryptographic properties related

to other kinds of attacks (algebraic attacks, ...)
I Prove lower bounds on the nonlinearity of CA induced by

specific classes of rules (bipermutive rules, plateaued
functions, ...)

Research Line 2:
I Investigate the behavior of GP in evolving CA generating OLS
I Generalize to higher thresholds (via orthogonal arrays)
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