2010 LLVM Developers' Meeting

OBJECT FILES IN LLVM

What was my goal in doing this object

file project...
— POl

0 | wanted a fast, free, and cross platform linker
o1 Integrated binary tool-chain

Why not replace all of binutils?

1 Needed to share object file handling code
throughout the tool-chain

Library!

2010 LLVM Developers' Meeting 11/4/2010

What is an Object File?

An Obiject File is a structured collection of binary
data

PE/COFF, ELF, MachQ, ...

Translation Units, Executables, and Dynamic Libraries
Archives

Raw “.bin” files
LLVM bitcode

Different formats provide a disjoint set of features

2010 LLVM Developers' Meeting 11/4/2010

What is an Obiject File? (cont)

There is a common subset of features
Symbols
Sections
Segments

Relocations

Every other feature is based off of these

eg C++ Construction and Destruction of static objects
must occur before main is run. This requires special
handling by the linker and loader.

2010 LLVM Developers' Meeting 11/4/2010

Current Technology

Not much has changed with object files

Libraries

libbfd — Binary File Descriptor
20 years old?

Linkers
gnu-ld — slow and GPL
gold — ELF only and GPL
link.exe — slow, COFF only, and proprietary

Various system linkers

2010 LLVM Developers' Meeting 11/4/2010

LLVM’s Current Support

The Machine Code (MC) library handles assembling
and writing out object files

Supports various formats
COFF
ELF
MachO

Assembler specific, not designed for generic object
file handling

2010 LLVM Developers' Meeting 11/4/2010

Why Obiject Files?

Freedom
Not GPL
Not Proprietary
Cross Platform Consistency
Toolset
API
Performance
IPO Through Shared Libraries
JIT Caching
Integrated Linker

2010 LLVM Developers' Meeting 11/4/2010

More Than Just a Linker

Make it easy to add link time features that would
normally require a “prelinker”

Constructors and Destructors

Already handled because of C++, but required changes to
linkers and loaders.

C++ Open Methods
LTO

2010 LLVM Developers' Meeting 11/4/2010

The LLVM Obiject File Library

1
1 Goals
Library based
Unified API for various formats
Access to details when needed
Provide replacements for all of binutils

Speed

2010 LLVM Developers' Meeting 11/4/2010

- Architecture

Normalization

EZTTE K

l

| Support 1

2010 LLVM Developers' Meeting 11/4/2010

Architecture

Layered

Low Level: Serialization

Base library that reads and writes
Depends only on the LLVM System and Support libraries

No interpretation is performed at this point
Provides symbols, sections, segments, and relocations

ed. In ELF the relocation section shows up here, even though other
object files store relocations differently

Useful for tools like objdump and nm

2010 LLVM Developers' Meeting 11/4/2010

Architecture

High Level: Normalization
Interprets data into a common representation

Provides a common API for tools to use to access the data
provided by the serialization layer

Understands and can perform relocations, layout, etc...

Common form -> {ELF, COFF, MachQO} -> Common Form will
end up with what you started with (if the format supports
the feature).

2010 LLVM Developers' Meeting 11/4/2010

How is libobj faster?

Lero-Copy

libbfd copies non-section data from the memory
mapped object file into a struct

libobj returns an object that contains a reference into
the memory mapped object file and knows how to
extract data from it

This lowers the physical memory usage and therefore
increases cache reuse and reduces swap file usage

2010 LLVM Developers' Meeting 11/4/2010

How is libobj faster? (cont)

Read data a field at a time

Object File formats are generally specified in terms of
C structs with a specified endianness and alignment

libbfd deals with these issues by reading a byte at a
time

libobj speeds this up by reading an entire field at a
time and byte swapping if necessary. It reverts to
reading a byte at a time only when the format does not
guarantee alignment and the host does not support
misaligned loads

2010 LLVM Developers' Meeting 11/4/2010

Implementation
—

71 Endianness and Alignment

Transparently and quickly dealt with using
packed_endian_specific_integral

// Read in some data from disk.

uint8_t *data = read_binary_data(); calll _read_binary_data

// Read a little endian int32 movl (%eax), Yoeax

int32_t value = *reinterpret_cast<little32_i*>(data); movl %eax, 4(%esp)
movl 4(%eax), Yoeax

// Read a big endian int32 bswapl %%eax

int32_t be_value = *reinterpret_cast<big32_t*>(data + 4); movl %eax, 8(%esp)

// Print the result movl $L_.str, (Y%esp)

printf("%d-%d", value, be_value); calll _printf

2010 LLVM Developers' Meeting 11/4/2010

Implementation
—

-1 Endianness and Alignment (cont...)

These can be combined into a POD struct.

typedef struct {
aligned_ulittle32_t r_offset;
aligned_ulittle32_t r_info;

} EIf32_Rel;

Elf32 Rel *reloc =
(EIf32_Rel*)read_binary_data(location_of_relocation_entry);

printf("Reloc{ addr: %p, info: %u }",
(void™)(reloc->r_offset),
unsigned(reloc->r_info));

2010 LLVM Developers' Meeting 11/4/2010

Performance

| added object file support to llvm-nm and tested it
vs binutils-nm.

2x faster on Linux
~30x faster on Windows (vs. nm via MinGW)

2010 LLVM Developers' Meeting 11/4/2010

Current Status

| have currently implemented symbols and sections
in the Serialization layer for COFF and ELF

| have also worked on some tools

llvm-nm
Modified to support object files
llvm-objdump
Added with support for disassembly via MC
Working on getting patches into trunk, please
review!

2010 LLVM Developers' Meeting 11/4/2010

2010 LLVM Developers' Meeting

OBJECT FILES IN LLVM

