
OBJECT FILES IN LLVM

Michael Spencer11/4/2010

2010 LLVM Developers' Meeting

What was my goal in doing this object

file project…

 I wanted a fast, free, and cross platform linker

 Integrated binary tool-chain

Why not replace all of binutils?

 Needed to share object file handling code

throughout the tool-chain

 Library!

11/4/20102010 LLVM Developers' Meeting

What is an Object File?

 An Object File is a structured collection of binary

data

 PE/COFF, ELF, MachO, …

 Translation Units, Executables, and Dynamic Libraries

 Archives

 Raw “.bin” files

 LLVM bitcode

 Different formats provide a disjoint set of features

11/4/20102010 LLVM Developers' Meeting

What is an Object File? (cont)

 There is a common subset of features

 Symbols

 Sections

 Segments

 Relocations

 Every other feature is based off of these

 eg C++ Construction and Destruction of static objects

must occur before main is run. This requires special

handling by the linker and loader.

11/4/20102010 LLVM Developers' Meeting

Current Technology

 Not much has changed with object files

 Libraries

 libbfd – Binary File Descriptor

 20 years old?

 Linkers

 gnu-ld – slow and GPL

 gold – ELF only and GPL

 link.exe – slow, COFF only, and proprietary

 Various system linkers

11/4/20102010 LLVM Developers' Meeting

LLVM’s Current Support

 The Machine Code (MC) library handles assembling

and writing out object files

 Supports various formats

 COFF

 ELF

MachO

 Assembler specific, not designed for generic object

file handling

11/4/20102010 LLVM Developers' Meeting

Why Object Files?

 Freedom

 Not GPL

 Not Proprietary

 Cross Platform Consistency

 Toolset

 API

 Performance

 IPO Through Shared Libraries

 JIT Caching

 Integrated Linker

11/4/20102010 LLVM Developers' Meeting

More Than Just a Linker

 Make it easy to add link time features that would

normally require a “prelinker”

 Constructors and Destructors

 Already handled because of C++, but required changes to

linkers and loaders.

 C++ Open Methods

 LTO

11/4/20102010 LLVM Developers' Meeting

The LLVM Object File Library

 Goals

 Library based

 Unified API for various formats

 Access to details when needed

 Provide replacements for all of binutils

 Speed

11/4/20102010 LLVM Developers' Meeting

Architecture

11/4/20102010 LLVM Developers' Meeting

Architecture

 Layered

 Low Level: Serialization

 Base library that reads and writes

 Depends only on the LLVM System and Support libraries

 No interpretation is performed at this point

 Provides symbols, sections, segments, and relocations

 eg. In ELF the relocation section shows up here, even though other

object files store relocations differently

 Useful for tools like objdump and nm

11/4/20102010 LLVM Developers' Meeting

Architecture

 High Level: Normalization

 Interprets data into a common representation

 Provides a common API for tools to use to access the data

provided by the serialization layer

 Understands and can perform relocations, layout, etc…

 Common form -> {ELF, COFF, MachO} -> Common Form will

end up with what you started with (if the format supports

the feature).

11/4/20102010 LLVM Developers' Meeting

How is libobj faster?

 Zero-Copy

 libbfd copies non-section data from the memory

mapped object file into a struct

 libobj returns an object that contains a reference into

the memory mapped object file and knows how to

extract data from it

 This lowers the physical memory usage and therefore

increases cache reuse and reduces swap file usage

11/4/20102010 LLVM Developers' Meeting

How is libobj faster? (cont)

 Read data a field at a time

Object File formats are generally specified in terms of

C structs with a specified endianness and alignment

 libbfd deals with these issues by reading a byte at a

time

 libobj speeds this up by reading an entire field at a

time and byte swapping if necessary. It reverts to

reading a byte at a time only when the format does not

guarantee alignment and the host does not support

misaligned loads

11/4/20102010 LLVM Developers' Meeting

Implementation

 Endianness and Alignment

 Transparently and quickly dealt with using

packed_endian_specific_integral

// Read in some data from disk.

uint8_t *data = read_binary_data();

// Read a little endian int32

int32_t value = *reinterpret_cast<little32_t*>(data);

// Read a big endian int32

int32_t be_value = *reinterpret_cast<big32_t*>(data + 4);

// Print the result

printf("%d-%d", value, be_value);

calll _read_binary_data

movl (%eax), %eax

movl %eax, 4(%esp)

movl 4(%eax), %eax

bswapl %eax

movl %eax, 8(%esp)

movl $L_.str, (%esp)

calll _printf

11/4/20102010 LLVM Developers' Meeting

Implementation

 Endianness and Alignment (cont…)

 These can be combined into a POD struct.

typedef struct {

aligned_ulittle32_t r_offset;

aligned_ulittle32_t r_info;

} Elf32_Rel;

Elf32_Rel *reloc =

(Elf32_Rel*)read_binary_data(location_of_relocation_entry);

printf("Reloc{ addr: %p, info: %u }",

(void*)(reloc->r_offset),

unsigned(reloc->r_info));

11/4/20102010 LLVM Developers' Meeting

Performance

 I added object file support to llvm-nm and tested it

vs binutils-nm.

 2x faster on Linux

 ~30x faster on Windows (vs. nm via MinGW)

11/4/20102010 LLVM Developers' Meeting

Current Status

 I have currently implemented symbols and sections

in the Serialization layer for COFF and ELF

 I have also worked on some tools

 llvm-nm

Modified to support object files

 llvm-objdump

 Added with support for disassembly via MC

 Working on getting patches into trunk, please

review!

11/4/20102010 LLVM Developers' Meeting

OBJECT FILES IN LLVM

Questions?11/4/2010

2010 LLVM Developers' Meeting

