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Abstract

We study the problem of distributed least-squares estimation over ad-hoc adaptive networks, where

the nodes have a common objective to estimate and track a parameter vector. We consider the case where

there is stationary additive colored noise on both the regressors and the output response, which results in

biased local least-squares estimators. Assuming that the noise covariance can be estimated (or is known

a-priori), we first propose a bias-compensated recursive least-squares algorithm (BC-RLS). However, this

bias compensation increases the variance or the mean-square deviation (MSD) of the local estimators, and

errors in the noise covariance estimates may still result in residual bias. We demonstrate that the MSD
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and residual bias can then be significantly reduced by applying diffusion adaptation, i.e. by letting nodes

combine their local estimates with those of their neighbors. We derive a necessary and sufficient condition

for mean-square stability of the algorithm, under some mild assumptions. Furthermore, we derive closed-

form expressions for its steady-state mean and mean-square performance. Simulation results are provided,

which agree well with the theoretical results. We also consider some special cases where the mean-square

stability improvement of diffusion BC-RLS over BC-RLS can be mathematically verified.

EDICS: ASP-ANAL, SEN-COLB, SEN-DIST

Index Terms

Adaptive networks, wireless sensor networks, distributed estimation, distributed processing, cooper-

ation, diffusion adaptation

I. INTRODUCTION

We study the problem of distributed least-squares estimation over ad-hoc adaptive networks, where the

nodes collaborate to pursue a common objective, namely, to estimate and track a common deterministic

parameter vector. We consider the case where there is stationary additive colored noise on both the

regressors and the output response, which results in biased local least-squares estimators. This is for

example a common problem in the analysis of auto-regressive (AR) processes1. If this bias is significant

and undesired, traditional adaptive methods, such as least mean squares (LMS) or recursive least squares

(RLS), are not effective.

For the white noise case, many methods have been developed that yield unbiased estimators, some

of which require prior knowledge of the noise variance. A popular method is total least-squares (TLS)

estimation. Several adaptive TLS algorithms have been proposed, e.g., recursive TLS [2], total least-

mean squares (TLMS) [3], and a distributed TLS method for ad-hoc networks [4]. Under the additional

assumption that the noise-free regressors are also white, the modified least-mean squares (MLMS) [5]

and modified recursive least-squares (MRLS) [6] algorithm have been proposed. Another important class

of algorithms are based on the bias compensation principle [7], where the idea is to subtract an estimate

of the asymptotic bias from the least-squares estimators [8]–[10].

In this paper, we consider the case where the regressor noise may be colored and correlated with the

noise on the output response. We also rely on the bias compensation principle, and we assume that we

1A possible task may be to estimate and track the AR coefficients of a speech signal recorded by a network of microphone
nodes that are spatially distributed over an environment. The noise in the microphone signals may then introduce a strong bias
on the estimated coefficients.
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have a good estimate of the noise covariance2. A bias-compensated recursive least-squares (BC-RLS)

algorithm is then proposed, to solve an exponentially-weighted least-squares estimation problem. The

latter allows to track the parameter vector when it changes over time, by putting less weight on older

samples in the estimation.

It is a common observation in estimation theory that any attempt to reduce bias usually results in

an increased variance3 or mean-square deviation (MSD) of the estimator. This is also the case with the

proposed BC-RLS algorithm. However, recent developments in adaptive filtering have demonstrated that

it is possible to significantly reduce the MSD by letting multiple nodes cooperate [11]–[17]. In this paper,

we rely on the idea of diffusion adaptation [11]–[14], [17], where nodes combine their local estimates with

the estimates of the nodes in their neighborhoods. It is known that diffusion adaptation usually results in

a smaller MSD at each node, without increasing bias. Diffusion adaptation has been successfully applied

to the LMS algorithm [11]–[13], and to the RLS algorithm [14]. In this paper, we apply diffusion to the

BC-RLS algorithm, which we refer to as diffusion BC-RLS (diffBC-RLS). Simulations demonstrate that

diffusion indeed reduces the MSD of the algorithm, and furthermore, that it reduces the residual bias

resulting from possible errors in the noise covariance estimates.

The main contribution of this paper is the derivation of the diffusion BC-RLS algorithm, as well as

the study of the steady-state performance, both for the diffusion BC-RLS and for the undiffused BC-RLS

algorithms. Under some assumptions that are common in the adaptive filtering literature, we will derive a

necessary and sufficient condition for the mean-square stability of (diff)BC-RLS. For some special cases,

it can be mathematically verified that diffusion improves the mean-square stability of the algorithm. This

has also been observed in [12] for the case of diffusion LMS, i.e., cooperation has a stabilizing effect.

We also derive a closed-form expression for the residual bias and the MSD in (diff)BC-RLS.

The outline of the paper is as follows. In Section II, we formally define the estimation problem, and

we introduce the BC-RLS algorithm. We then define the diffusion BC-RLS algorithm in Section III.

We analyze the diffBC-RLS algorithm (the undiffused BC-RLS algorithm is a special case) in terms of

its mean and mean-square performance in Section IV. In Section V, we consider some special cases

where some extra theoretical results can be obtained. Simulation results are presented in Section VI, and

conclusions are drawn in Section VII.

2For example, in speech analysis, this can be estimated during silent periods in between words and sentences.
3In the sequel, we will focus on the mean-square deviation of the estimator instead of its variance, since the former is usually

used to assess the mean-square performance of an adaptive filtering algorithm.
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Notation

In this paper, we use boldface letters for random quantities and normal font for non-random (deter-

ministic) quantities or samples of random quantities. We use capital letters for matrices and small letters

for vectors. The superscript H denotes complex-conjugate transposition. The index i is used to denote

time instants, and the index k is used to denote different nodes in a network with N nodes, defining the

set of nodes K. We use E{x} to denote the expected value of a random quantity x.

II. LEAST-SQUARES ESTIMATION WITH BIAS COMPENSATION

A. Problem Statement

Consider an ad-hoc sensor network with N nodes (the set of nodes is denoted by K). The objective

for each node is to estimate a common deterministic M ×1 parameter vector wo. At every time instant i,

node k collects a measurement dk(i) (referred to as the ‘output response’) that is assumed to be related

to the unknown vector wo by

dk(i) = uk,iw
o + vk(i) (1)

where the regressor uk,i is a sample of an 1×M stochastic row vector4 uk,i, and vk(i) is a sample of a

zero-mean stationary noise process vk with variance σ2
vk

. In [12]–[16], it was assumed that node k also

has access to the regressors {uk,i}. Here, we assume that node k observes noisy regressors {uk,i}, given

by

uk,i = uk,i + nk,i (2)

with the 1×M vector nk,i denoting a sample of a zero-mean stationary noise process nk with covariance

matrix Rnk
= E{nH

k nk}. We assume that nk is uncorrelated with the regressors uk,i, and that nk and

vk are correlated5 , yielding a non-zero covariance vector rnkvk
= E{nH

k vk}.

The local least-squares (LS) estimator of wo at node k at time instant i, based on the noisy regressors,

is the solution of the optimization problem

ŵk,i = arg min
w

i∑
j=1

(dk(j)− uk,jw)2 + δ‖w‖22 (3)

4We adopt the notation of [18], i.e., the regressors are defined as row vectors, rather than column vectors.
5For example, this may be the case for the estimation of the prediction coefficients of an auto-regressive (AR) process where

the data is corrupted by additive colored noise, e.g., in the analysis of speech signals.
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where δ is a small positive number that serves as a regularization parameter. The solution of (3) is given

by

ŵk,i = R̂−1
uk,ir̂ukdk,i (4)

where

R̂uk,i =
1

i+ 1

 i∑
j=1

uH
k,juk,j + δIM

 (5)

r̂ukdk,i =
1

i+ 1

i∑
j=1

uH
k,jdk(j) (6)

and where IM denotes the M ×M identity matrix. The normalization with 1/(i + 1) does not have

an influence on ŵk,i, but it is introduced such that R̂uk,i can be used as an estimate of Ruk
, assuming

stationarity and ergodicity. Since we use noisy regressors, the LS estimator is biased. In the case of

stationary and ergodic data, it can be verified that

wLS
k = wo +R−1

uk
rnkvk

−R−1
uk
Rnk

wo (7)

where wLS
k = limi→∞ ŵk,i = R−1

uk
rukdk

with Ruk
= E{uH

k,iuk,i} and rukdk
= E{uH

k,idk(i)}, for all

i ∈ N, where uk,i and dk(i) are defined as the stochastic processes that generate the samples uk,i and

dk(i) defined in (2) and (1), respectively. It is noted that wLS
k is in fact a minimum mean-square error

estimator (MMSE), but we keep the superscript LS to emphasize that it is a limit case of the LS estimate

(4). Let wb
k = wLS

k − wo, then the bias wb
k of the MMSE estimator wLS

k is equal to

wb
k = R−1

uk
(rnkvk

−Rnk
wo) . (8)

B. Bias-Compensated Least Squares (BC-LS)

Several BC-LS algorithms have been proposed for the white noise case (Rnk
= σ2

nk
IM ), which are

asymptotically unbiased when the number of observations goes to infinity [8]–[10]. All these BC-LS

algorithms are based on the bias compensation principle [7], i.e., an estimate ŵb
k,i of the asymptotic bias

wb
k can be subtracted from the LS estimator ŵk,i to obtain the unbiased estimator (generalized here to

incorporate colored noise and mutually correlated noise):

θk,i
∆= ŵk,i − ŵb

k,i = ŵk,i + R̂−1
uk,i

(
R̂nk

wo − r̂nkvk

)
(9)
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where ŵb
k,i = R̂−1

uk,i

(
r̂nkvk

− R̂nk
wo
)

, and where r̂nkvk
and R̂nk

are estimates of rnkvk
and Rnk

,

respectively. It is assumed that good estimates r̂nkvk
and R̂nk

are available. In the case of white noise,

these estimates can be computed blindly during operation of the algorithm [8]–[10].

Since wo is unknown in (9), it also has to be replaced with an estimate. The common approach is then

to use the previous bias-compensated estimate of wo instead of the exact wo in (9). We then obtain the

recursive bias-compensated algorithm

ψk,i = ŵk,i + R̂−1
uk,i

(
R̂nk

ψk,i−1 − r̂nkvk

)
(10)

where ψk,i replaces θk,i.

C. Bias-Compensated Recursive Least Squares (BC-RLS)

The BC-LS algorithm can be modified so that it fits into an adaptive filtering context, where also expo-

nential weighting can be incorporated (for tracking purposes). The exponentially-weighted LS estimator

(at node k) solves the optimization problem

ŵk,i = arg min
w

i∑
j=1

λi−j (dk(j)− uk,jw)2 + λiδ‖w‖22 (11)

where 0� λ ≤ 1 is a forgetting factor, putting more weight on more recent observations. The solution

of this problem is again given by (4), but the estimates R̂uk,i and r̂ukdk,i are now redefined as

R̂uk,i =
i∑

j=1

λi−juH
k,juk,j + λiδIM (12)

r̂ukdk,i =
i∑

j=1

λi−juH
k,jdk(j) . (13)

It is noted that the effective window length is equal to 1
1−λ =

∑∞
j=0 λ

j , and since there is no normalization

for the window length, R̂uk,i and r̂ukdk,i can be considered to be estimates of 1
1−λRuk

and 1
1−λrukdk

,

respectively [18]. From now on, ŵk,i refers to the solution of the exponentially weighted LS problem (11)

and not to the solution of the unweighted LS problem (3), and the same holds for R̂uk,i and r̂ukdk,i, now

defined by (12)-(13). In Section IV, we will show that, under certain assumptions, (11) is an unbiased

estimator of the local MMSE solution at node k, i.e., wLS
k .

The solution of (11) is recursively computed by means of the recursive least-squares (RLS) algorithm
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[18]:

Pk,i = λ−1

(
Pk,i−1 −

λ−1Pk,i−1u
H
k,iuk,iPk,i−1

1 + λ−1uk,iPk,i−1u
H
k,i

)
(14)

ŵk,i = ŵk,i−1 + Pk,iu
H
k,i (dk(i)− uk,iŵk,i−1) (15)

with ŵk,0 = 0 and Pk,0 = δ−1IM . At every time instant i, the matrix Pk,i is equal to R̂−1
uk,i as defined in

(12). With this fact, (10) is transformed into the recursion

ψk,i = ŵk,i +
1

1− λ
Pk,i

(
R̂nk

ψk,i−1 − r̂nkvk

)
(16)

where the factor 1
1−λ scales R̂nk

and r̂nkvk
to match with the new definition of R̂uk,i in (12). The

bias correction term in (16) can also be motivated by observing the bias of the exponentially-weighted

estimator (11), which will be calculated explicitly later on (see expression (40)). We will refer to the

above algorithm as bias-compensated RLS (BC-RLS). It is noted that (16) reduces to the BC-LS recursion

(10) if λ = 1 and if the scaling factor 1
1−λ in (16) is omitted. We do not provide a convergence analysis

of BC-RLS here, since it is a special case of the diffusion BC-RLS algorithm described in the sequel,

in particular when cooperation is turned off.

III. DIFFUSION BC-RLS

In a sensor network, each node k has its own node-specific BC-RLS estimator of wo, denoted by ψk,i.

It is often observed in estimation theory that bias removal introduces a larger MSD and vice versa (see,

e.g., [19]). This also often holds in the case of BC-RLS, since the bias compensation usually increases

the MSD of the estimators in each node due to the addition of the extra term. It is to be expected that

the spatial average of all the ψk,i’s provides a better estimate for wo, with a smaller MSD. This average

could in principle be computed in a distributed fashion by iterative consensus averaging algorithms [20].

The main idea of these algorithms is to collect the estimates {ψl,i} from the neighbors of node k at time

i and to iterate over them repeatedly by computing a weighted average, i.e.,

1) Initialize j ← 0 and ψ0
l,i = ψl,i.

2) Compute a weighted average

ψj+1
k,i =

∑
l∈Nk

aklψ
j
l,i (17)

3) j ← j + 1

4) Return to step 2.
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Here, Nk denotes the set of neighboring nodes of node k (node k included), and akl is the entry in row

k and column l of an N ×N combiner matrix6 A, where A satisfies

A1 = 1 (18)

with 1 = [1 . . . 1]H and where akl = 0 if l /∈ Nk. The matrix A can be any right-stochastic matrix, but

with some constraints due to the network topology. After convergence, the result of (17) becomes the

actual estimate ψk,i for node k at time i. Thus, observe that at every time instant i, multiple consensus

iterations need to be applied to the data {ψl,i} to approximate their mean and obtain an improved ψk,i.

Applying consensus averaging in the case of BC-RLS would therefore require a 2-step approach

involving two time-scales: one over i and another over j, in between successive i’s. First, the nodes

estimate a local ψk,i based on (16), after which an average consensus algorithm is started to iteratively

compute

ψk,i =
1
N

N∑
l=1

ψl,i (19)

at each node k ∈ K. This two-step approach is impractical in real-time systems with high sampling rates

since the consensus averaging requires multiple iterations over j for every single iteration i, resulting

in a large processing delay and a large amount of communication bandwidth and processing power. By

applying diffusion strategies instead (see, e.g., [12], [13]), the iterations of the consensus averaging are

merged with those of the BC-RLS algorithm, i.e., the consensus averaging is cut off after a single iteration

over j. As a result, only one iteration index remains, and the computational complexity and communication

bandwidth are significantly reduced while the network is endowed with improved learning and tracking

abilities. The following table summarizes the diffusion BC-RLS (diffBC-RLS) algorithm that would result

from a diffusion strategy. Observe how the left-hand side of (23) is a new variable wk,i, which then enters

into the update (22). In contrast, in a consensus implementation (apart from the second time-scale), the

variables that appear on both sides of (17) are the same ψ variables. In (22)-(23), a filtering operation is

embedded into (22) to map wk,i−1 to ψk,i at each node and all ψl,i are then combined into wk,i in (23).

6This combiner matrix has to satisfy some constraints to let the consensus averaging algorithm converge [20]. However, since
the diffusion BC-RLS algorithm, as derived in the sequel, does not require these constraints, we omit them here.
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Diffusion BC-RLS algorithm

Start with wk,0 = 0, ŵk,0 = 0 and Pk,0 = δ−1IM for each node k ∈ K. For every time instant

i > 0, repeat

1) RLS update: for every node k ∈ K, repeat

Pk,i = λ−1

(
Pk,i−1 −

λ−1Pk,i−1u
H
k,iuk,iPk,i−1

1 + λ−1uk,iPk,i−1u
H
k,i

)
(20)

ŵk,i = ŵk,i−1 + Pk,iu
H
k,i (dk(i)− uk,iŵk,i−1) . (21)

2) Bias correction update: for every node k ∈ K, repeat

ψk,i = ŵk,i +
1

1− λ
Pk,i

(
R̂nk

wk,i−1 − r̂nkvk

)
. (22)

3) Spatial update: for every node k ∈ K, repeat

wk,i =
∑
l∈Nk

aklψl,i (23)

Remark: It is noted that the RLS update (20)-(21) in node k is spatially isolated, i.e., it does not involve

cooperation between the nodes. One may be tempted to also apply diffusion to the RLS estimates, based

on the diffusion RLS algorithm in [14]. However, applying diffusion on (20)-(21) will change the local

bias in each node, i.e., the local bias at node k will not satisfy (8) anymore. Since the bias compensation

(22) is based on (8), and only relies on local statistics, it will not match with the actual bias. Therefore,

diffusion of the RLS estimates in combination with the bias compensation (22) is only possible when an

invariant spatial profile can be assumed, such that the bias (8) is the same in each node.

IV. ANALYSIS

In this section, we analyze the steady-state performance of the diffBC-RLS algorithm described in

Section III. First, we provide a closed-form expression for the bias if there are estimation errors in R̂nk

and r̂nkvk
(under some standard ergodicity assumptions). Second, if R̂nk

= Rnk
and r̂nkvk

= rnkvk
, we

show that the diffBC-RLS algorithm is asymptotically unbiased and we provide a closed-form expression

for the MSD, i.e.

MSDk = lim
i→∞

E{‖w̃k,i‖2} (24)
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where

w̃k,i = wo −wk,i . (25)

Observe that we are now denoting wk,i by a boldface letter to highlight the fact that it is a random

quantity whose variance we are interested in evaluating. It is noted that all results of the analysis of

diffBC-RLS also apply to the undiffused BC-RLS algorithm (16), by choosing the combiner matrix A

equal to the identity matrix.

A. Data Model

The performance analysis of adaptive filters is rather challenging [18], [21], [22], and it is common to

adopt some simplifying assumptions to gain insight in the properties of these algorithms. For the analysis

of the diffBC-RLS algorithm, we will introduce some assumptions that are similar to what is traditionally

used in the adaptive filtering literature. Simulations show that the theoretical results that are obtained

under these assumptions match well with the true performance of the algorithm, for forgetting factors λ

that are close to unity and for stationary data.

Assumption 1: The regressors uk,i and the additive noise components nk,i are both zero-mean and

temporally independent. Furthermore, the covariance matrix Ruk,i
= E{uH

k,iuk,i} is time-invariant, i.e.,

Ruk,i
= Ruk

, ∀ i ∈ N. We will therefore often omit the index i in the sequel, when referring to random

processes.

It is noted that this assumption also implies that the same conditions hold for the noisy regressors uk,i,

i.e. Ruk,i
= Ruk

, ∀ i ∈ N. Furthermore, since the stochastic processes uk and nk are assumed to be

uncorrelated, we find that

Ruk
= Ruk

+Rnk
. (26)

Assumption 2: All data is spatially uncorrelated, i.e., for k 6= l : E{uH
k ul} = 0, E{uH

k ul} = 0,

E{n∗knl} = 0, E{v∗kvl} = 0, E{v∗knl} = 0 and E{uH
k dl} = 0.

Since we only perform a steady-state analysis of the algorithm, we will consider the steady-state

behavior of the matrix Pk,i. As i→∞, we find from (12), and the fact that P−1
k,i = R̂uk,i, that

lim
i→∞

E{P−1
k,i} =

1
1− λ

Ruk
, P−1

k . (27)

The following two assumptions are made to make the analysis of diffBC-RLS tractable, and both of

them are common in the analysis of RLS-type algorithms (see for example [18]).
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Assumption 3: ∃ i0 such that for all i > i0, Pk,i and P−1
k,i can be replaced with their expected values,

i.e. ∃ i0, such that for all i > i0 :

Pk,i ≈ E{P k,i} (28)

P−1
k,i ≈ E{P

−1
k,i} . (29)

Assumption 3 implies that the time average of the observed regressors (denoted by P−1
k,i ) can be

replaced with the expected value of the stochastic variable that generates these observations. This is a

common ergodicity assumption in the analysis of the performance of RLS-type algorithms (see, e.g.,

[14], [18]), and often yields good results in practice.

Assumption 4: ∃ i0 such that for all i > i0 :

E{P k,i} ≈ E{P−1
k,i}

−1 = Pk = (1− λ)R−1
uk

. (30)

The last assumption is a coarse approximation, since the expected values E{P−1
k,i} and E{P k,i} do

not necessarily share the same inverse relation as their arguments. However, for λ close to unity and a

not too large condition number for Ruk
, this is a good approximation [14], [18]. However, even in cases

where this approximation is not very good, the formulas that are derived in the analysis are still useful to

analyze the influence of different parameters, i.e., they usually reflect the correct trends when parameters

are varied.

Remark I: Assumption 3 removes some temporal variations in the algorithm, which usually results

in an underestimate of the MSD. Assumption 4 increases this effect even more. This can be intuitively

explained as follows. Assume that we can approximate the stochastic matrix P k,i with the model P k,i =

Qk,iΛk,iQ
H
k,i, where Λk,i is a stochastic diagonal matrix, and Qk,i a deterministic unitary matrix. In this

case E{P k,i} = Qk,iE{Λk,i}QH
k,i. By using Jensen’s inequality, we know that for any random positive

diagonal matrix Σ

E{Σ−1} ≥ E{Σ}−1 (31)

(this is an elementwise inequality). By substituting Σ = Λ−1
k,i , we find that

E{Λk,i} ≥ E{Λ−1
k,i}

−1 . (32)

As a consequence, the norm of E{P k,i} will be larger than the norm of E{P−1
k,i}−1. Hence, when using

approximation (30), we replace E{P k,i} with a matrix that has a smaller norm. This will usually results
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in an underestimate of the MSD, as will be further explained at the end of Subsection IV-C.

Remark II: For notational convenience, we will replace the approximate equality signs ‘≈’ in (28)-(30)

with strict equality signs ‘=’ in the sequel.

B. Mean Performance

In this subsection, we analyze the steady-state mean performance of the diffBC-RLS algorithm, i.e.,

we derive a closed-form expression for E{w̃k,i} when i goes to infinity. In this analysis, we incorporate

possible estimation errors on the noise covariances, i.e.,

R̂nk
= Rnk

+ ∆Rnk
(33)

r̂nkvk
= rnkvk

+ ∆rnkvk
. (34)

We will first derive an expression for the asymptotic bias of the RLS estimator ŵk,i. Similar to (25),

we define w̌k,i = wo − ŵk,i. With (21), we readily find that

w̌k,i = w̌k,i−1 − Pk,iu
H
k,i (dk(i)− uk,iŵk,i−1) . (35)

Substituting (1) and (2) into (35), we obtain

w̌k,i = w̌k,i−1 − Pk,iu
H
k,iuk,iw

o − Pk,in
H
k,iuk,iw

o − Pk,iu
H
k,ivk(i) + Pk,iu

H
k,iuk,iŵk,i−1 . (36)

Taking the expectation of both sides, and using (26), (28)-(30), we find that for sufficiently large i

E{w̌k,i} = E{w̌k,i−1} − Pk(Ruk
−Rnk

)wo − Pkrnkvk
+ (1− λ)E{ŵk,i−1} . (37)

Again using (30), we obtain

E{w̌k,i} = λE{w̌k,i−1}+ Pk(Rnk
wo − rnkvk

) . (38)

Expanding the recursion in (38), we find that

E{w̌k,i} = λi−i0E{w̌k,i0}+
i−1∑
j=i0

λj−i0Pk(Rnk
wo − rnkvk

) (39)

where i0 is chosen such that Assumptions 3 and 4 remain valid. Letting i go to infinity, we obtain

lim
i→∞

E{w̌k,i} =
1

1− λ
Pk(Rnk

wo − rnkvk
) . (40)

Not surprisingly, we find that the asymptotic bias of the exponentially weighted RLS algorithm is equal
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to the asymptotic bias (8) of the unweighted least-squares estimator.

Let us now introduce some notation that is required to describe the diffusion process of diffBC-RLS,

based on stacked variables from all nodes. Let

wi = col{w1,i, . . . , wN,i} (MN × 1)

ŵi = col{ŵ1,i, . . . , ŵN,i} (MN × 1)

rnv = col{rn1v1 , . . . , rnNvN
} (MN × 1)

w o = 1⊗ wo (MN × 1)

A = A⊗ IM (MN ×MN)

Pi = blockdiag{P1,i, . . . , PN,i} (MN ×MN)

Rn = blockdiag{Rn1 , . . . , RnN
} (MN ×MN)

Ru = blockdiag{Ru1 , . . . , RuN
} (MN ×MN)

where col{.} denotes a stacked column vector, ⊗ denotes a Kronecker product and blockdiag{.} denotes

a block-diagonal matrix. All the derived quantities (such as w̃i, R̂n, etc.) have a similar notation for the

stacked case, but are omitted for conciseness. Using this notation, and by combining (22) and (23), the

recursion of the diffusion RLS algorithm can now be written as

wi = A
(

ŵi +
1

1− λ
Pi(R̂nwi−1 − r̂nv)

)
. (41)

Subtracting (41) from w o, and using the fact that w o = Aw o, yields

w̃i = A
(

w̌i −
1

1− λ
Pi(R̂nwi−1 − r̂nv)

)
. (42)

Taking the expectation of both sides, and using (33), (34) and (40), we obtain (for i > i0):

E{w̃ww i} =
1

1− λ
APRnE{w̃ww i−1} −

1
1− λ

AP (∆RnE{www i−1} −∆rnv) ,

=
1

1− λ
APRnE{w̃ww i−1} −

1
1− λ

AP (∆RnE{www i−1} −∆rnv + ∆Rnw o −∆Rnw o) ,

=
1

1− λ
APR̂nE{w̃ww i−1} −

1
1− λ

AP (∆Rnw o −∆rnv) . (43)

Notice that, in the last step, we incorporate the term with ∆Rn into the first term, such that Rn is

transformed into R̂n. Expanding the recursion (43), and using P = (1−λ)R−1
u (Assumption 4), we find

that

E{w̃ww i} =
(
AR−1

u R̂n

)i−i0
E{w̃ww i0} −

 i−1∑
j=i0

(
AR−1

u R̂n

)j−i0

AR−1
u (∆Rnw o −∆rnv) (44)
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where i0 is chosen such that Assumptions 3 and 4 remain valid. From this equation, it is observed that

stability in the mean7 of the diffBC-RLS algorithm is obtained if and only if

ρ
(
AR−1

u R̂n

)
< 1 (45)

where ρ(X) denotes the spectral radius of the matrix X , i.e., the magnitude of the eigenvalue of X with

largest absolute value. Indeed, if this spectral radius is strictly smaller than 1, the first term vanishes when

i → ∞ and the summation in the second term converges. The latter follows from the Taylor expansion

of a matrix (IM −X)−1 for any M ×M matrix X satisfying ρ(X) < 1, which is given by

(IM −X)−1 =
∞∑

j=0

Xj . (46)

Therefore, if (45) holds, it follows that the asymptotic bias of the diffBC-RLS estimators is equal to

limi→∞E{w̃ww i} =
(
IMN −AR−1

u R̂n

)−1
AR−1

u (∆rnv −∆Rnw o). (47)

A first important observation is that the estimator is asymptotically unbiased if ∆Rn = 0 and ∆rnv = 0,

i.e., if there is perfect knowledge of the noise covariance. The smaller the error in R̂n and r̂nv, the smaller

the resulting bias.

Note that setting A = IMN yields the bias of the undiffused BC-RLS estimators (16). It is not possible

to make general statements whether diffusion (A 6= IMN ) will decrease the bias of the estimators,

since this depends on the space-time data statistics (represented by R−1
u R̂n) and the network topology

(represented by A). This also holds for the stability condition (45). However, since A has a unity spectral

radius, it often has a ‘non-expanding’ effect, and therefore does not worsen the stability (i.e. the spectral

radius (45) does not increase). For some particular cases, it can be mathematically verified that the

stability indeed increases, and we refer to Section V for some examples. If the stability increases, this

often yields a smaller bias. To see this, observe that ρ
(
AR−1

u R̂n

)
≤ ρ

(
R−1

u R̂n

)
implies that

ρ

((
IMN −AR−1

u R̂n

)−1
)
≤ ρ

((
IMN −R−1

u R̂n

)−1
)
. (48)

This implies that a mapping based on the lefthand side of (48) is ‘more contractive’ or ‘less expanding’

than the mapping on the righthand side (corresponding to the undiffused case). Therefore, the bias given

in (47) with A 6= IMN is often (but not necessarily) smaller than with A = IMN . Note that, if diffusion

7In Subsection IV-C, we will show that condition (45) for stability in the mean also implies mean-square stability of the
diffBC-RLS algorithm.
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is applied, there is an additional effect, namely an averaging operator A applied to the error vector

R−1
u (∆rnv −∆Rnw o). If the combiner matrix A is symmetric, this is a non-expanding mapping, i.e.

‖Ax‖ ≤ ‖x‖ for all x.

Remark: It is noted that one has to be careful when using the stability condition (45), as it is derived

based on Assumption 4. For small values of λ, this assumption is not satisfied, and the algorithm may

become unstable, even if (45) holds. Decreasing λ is observed to make the algorithm less stable, since the

true matrix E{P k,i} has a larger norm than its replacement R−1
uk

due to Jensens inequality (see Remark

I in subsection IV-A).

C. Mean-Square Performance

In this subsection, we analyze the steady-state mean-square performance8 of the diffBC-RLS algorithm,

i.e., we derive a closed-form expression for MSDk = limi→∞E{‖w̃k,i‖2}. To make the analysis tractable,

we assume that ∆Rn = 0 and ∆rnv = 0.

Let

w LS = col{wLS
1 , . . . , wLS

N } (MN × 1) (49)

where wLS
k is the MMSE estimator in node k, defined in (7). From (7), we find that

w o = Aw o = A
(

w LS −R−1
u rnv +R−1

u Rnw o
)
. (50)

Subtracting wi from both sides in (50), and substituting the diffBC-RLS recursion (22)-(23), we obtain

for i > i0 (with Pi = P = (1− λ)R−1
u (Assumption 4)):

w̃i = Ami +AR−1
u Rnw̃i−1 (51)

where

mi , w LS − ŵi . (52)

By expanding the recursion (51), we find that

w̃i =
i∑

j=i0

(
AR−1

u Rn

)i−j
Amj +

(
AR−1

u Rn

)i−i0
w̃i0 (53)

8In the mean-square analysis of adaptive filters, one is usually also interested in the so-called excess mean-square error
(EMSE) defined by E{‖uk,iw̃k,i−1‖2}. However, since the goal of BC-RLS is to obtain an unbiased estimator for wo, and not
to minimize the EMSE, we do not consider the latter.
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where i0 is chosen such that Assumptions 3 and 4 remain valid. If the stability condition (45) is satisfied,

the second term in (53) vanishes when i→∞, so we will omit it in the sequel. For the sake of an easy

exposition, we will set i0 = 0, which does not affect the righthand side of (53) for i → ∞, and if (45)

holds. Using the notation ‖x‖2Σ = xHΣx, we find the following expression for the MSD of node k (in

steady-state):

MSDk = lim
i→∞

E{‖w̃ww i‖2Ek
} = lim

i→∞

∞∑
m=0

∞∑
n=0

E{mmmH
i−mBmn

k mmm i−n} (54)

where

Bmn
k = AH

(
RnR−1

u AH
)m
Ek
(
AR−1

u Rn

)n
A (55)

and where Ek = Ek⊗IM with Ek denoting an N×N matrix with zero-valued entries, except for a one on

the k-th diagonal entry. The matrix Ek serves as a selector matrix to select the part of w̃i corresponding

to the k-th node.

Expression (54) can be rewritten with a trace operator Tr(.):

E{‖w̃ww i‖2Ek
} =

∞∑
m=0

∞∑
n=0

Tr
(
Bmn

k E{mmm i−mmmmH
i−n}

)
. (56)

In Appendix A, the following expression is derived (for large enough i):

E{mmm i−mmmmH
i−n} = λ|m−n|E{mmm immmH

i } . (57)

With this result, we can rewrite (56) as

E{‖w̃ww i‖2Ek
} = Tr

(
MkE{mmm immmH

i }
)
. (58)

where

Mk =
∞∑

m=0

∞∑
n=0

λ|m−n|Bmn
k . (59)

In Appendix B the following approximation for limi→∞E{mmm immmH
i } is derived, based on a result from

[23]:

lim
i→∞

E{mmm immmH
i } ≈

1− λ
2
VR−1

u (60)

where

V = diag{σ2
1, . . . , σ

2
N} ⊗ IM (61)
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and with

σ2
k = wo Hbk − rH

nkvk
wo + σ2

vk
− bHk R−1

uk
bk (62)

where

bk = Rnk
wo − rnkvk

. (63)

It is possible to derive a closed form expression for Mk defined in (59), based on the eigenvalue

decomposition AR−1
u Rn = QΣQ−1 where Σ is a diagonal matrix with the eigenvalues as its diagonal

elements, and where Q contains the corresponding normalized eigenvectors in its columns. We also define

the MN -dimensional vector η containing the diagonal elements of ΣH (the conjugated eigenvalues) in

the same order as they appear on the diagonal. In Appendix C, the following closed form expression is

derived:

Mk = AH
(
Mk,2 +MH

k,2 −Mk,1

)
A (64)

with

Mk,1 = Q−H

(
QHEkQ

11H − ηηH

)
Q−1 (65)

Mk,2 = Q−H
(
IMN − λΣH

)−1
(

QHEkQ
11H − ηηH

)
Q−1 (66)

where the double-lined fraction denotes an elementwise division of the matrices in the numerator and

denominator (i.e. a Hadamard quotient).

We thus find a closed-form expression for the MSD at node k:

MSDk = 1−λ
2 Tr

(
MkVR−1

u

)
. (67)

It is noted that only the matrix Mk depends on the combiner matrix A, since it is incorporated in

the eigenvalue decomposition of AR−1
u Rn. Note that AR−1

u Rn is the same matrix that appears in the

stability condition (45). Note also that, if the stability condition (45) holds, the denominators in (65) and

(66) cannot become zero and
(
IMN − λΣH

)
cannot become singular, i.e., the algorithm is stable in the

mean-square sense.

Again, it is impossible to make general statements about the impact of diffusion on the MSD at a

certain node. However, from the Hadamard quotient in (65)-(66), one can expect that the norm of Mk

will be smaller if the norm of η is small. In many cases, setting the matrix A 6= IMN will decrease

the norm of η (although this is not true in general), and then diffusion indeed has a beneficial influence
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on the MSD. This means that, if diffusion increases the stability (i.e., the spectral radius of AR−1
u Rn

decreases), it often also improves the mean-square performance. In section V, we will consider some

special cases where it can indeed be mathematically verified that diffusion decreases the infinity norm

of η.

Remark: From (67), it can be seen that the norm of R−1
u has an influence on the MSD. Intuitively, if

R−1
u has a smaller norm, this will often result in a smaller MSD. This is not only because R−1

u explicitely

appears in the trace, but also because it has an influence through the matrix Mk in the same manner

(a smaller norm of R−1
u usually results in a smaller norm of η and therefore larger denominators in

(65)-(66)). As explained in Remark I of Subsection IV-A, the norm of the matrix (1 − λ)R−1
u = P is

smaller than the norm of E{PPP}. However, Assumption 4 replaces E{PPP} with P . This in effect, together

with the removal of some variability due to Assumption 3, usually results in an underestimate of the

MSD.

V. SPECIAL CASES

In this section, we consider some special cases where the diffBC-RLS algorithm is guaranteed to

be stable, or where it can be mathematically verified that diffusion improves stability of the BC-RLS

algorithm, i.e., (compare with (45))

ρ
(
AR−1

u R̂n

)
≤ ρ

(
R−1

u R̂n

)
. (68)

As mentioned earlier, if (68) holds, diffusion often (but not necessarily) also decreases the bias and the

MSD of the estimators. It is noted that diffusion in general provides better results (with respect to stability,

bias and MSD) due to the non-expanding effect of the combiner matrix A. The beneficial influence of

diffusion is therefore not limited to the special cases given below. These merely serve as “motivating”

examples where the beneficial influence of diffusion can be theoretically verified.

Remark: Unless stated otherwise, we assume that the combiner matrix A is symmetric, which is

required in most cases to make some conclusions. The Metropolis rule (see, e.g., [20]) offers a procedure

to select the weights, based on the network topology, that yields a symmetric combiner matrix A.

A. Invariant Spatial Profile

If the regressor and noise covariance matrices are the same in each node, i.e., Rnk
= Rn, Ruk

= Ru,

and if each node uses the same estimate R̂nk
= R̂n, for k ∈ {1, . . . , N}, we find that

AR−1
u R̂n = A⊗R−1

u R̂n . (69)
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Since the set of eigenvalues of X⊗Y is equal to the set of all pairwise products between the eigenvalues

of X and the eigenvalues of Y , we find that

ρ
(
AR−1

u R̂n

)
= ρ

(
R−1

u R̂n

)
(70)

i.e., the algorithm is stable if and only if the undiffused BC-RLS at a single node is stable. In this case,

diffusion has no effect on stability9. However, since the eigenvalues of A are inside the unit circle, many

eigenvalues of AR−1
u Rn = A ⊗ R−1

u Rn will be strictly smaller than the corresponding eigenvalues of

R−1
u Rn (and none of the eigenvalues can increase). This means that the norm of η in (65) will be smaller

than in the undiffused case (A = IN ), which mostly results in a smaller MSD. The same holds for the

asymptotic bias given in (47), since smaller eigenvalues of AR−1
u R̂n yield a more contractive or a less

expanding mapping
(
IMN −AR−1

u R̂n

)−1
. It is noted that the combiner matrix A does not need to be

symmetric to obtain the above results.

B. 2-norm Constraint (‖R−1
u R̂n‖2 < 1)

If ‖R−1
uk
R̂nk
‖2 < 1, for k ∈ {1, . . . , N}, where ‖.‖2 denotes the matrix 2-norm, the block-diagonal

structure of R−1
u R̂n implies that

‖R−1
u R̂n‖2 < 1 . (71)

Although the condition (71) does not imply (68), it is an interesting case since stability of the diffBC-RLS

algorithm is guaranteed when (71) holds. Indeed, we have that

ρ
(
AR−1

u R̂n

)
≤ ‖AR−1

u R̂n‖2 ≤ ‖A‖2‖R−1
u R̂n‖2 = ‖R−1

u R̂n‖2 < 1 . (72)

The first inequality follows from the fact that the spectral radius is the infimum of all induced norms of

a matrix (including the two-norm), and the second inequality follows from the fact that the two-norm is

sub-multiplicative. Since the two-norm and the spectral radius are the same for symmetric matrices (we

assume a symmetric A), we have that ‖A‖2 = ρ(A) = 1.

It is noted that ‖R−1
u R̂n‖2 < 1 is satisfied if either the noise nk,i or the regressors uk,i are white at

each node, and if R̂n = Rn (see subsections V-C and V-D).

9This is not surprising, since the invariant spatial profile assumption implies that either all nodes are stable, or none of them
are. In the latter case, diffusion adaptation cannot help.
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C. White Noise on Regressors

Assume that we have prior knowledge that Rnk
= σ2

nk
IM and R̂nk

= σ̂2
nk
IM , for k ∈ {1, . . . , N}. Let

UkΛkU
H
k denote the eigenvalue decomposition of the clean regressor covariance matrix Ruk

, then we

obtain

R−1
uk
R̂nk

= Ukdiag

{
σ̂2

nk

λk,1 + σ2
nk

, . . . ,
σ̂2

nk

λk,M + σ2
nk

}
U

H
k (73)

where λk,1 ≥ λk,2 ≥ . . . ≥ λk,M are the diagonal elements of Λk.

Note that R−1
u R̂n is symmetric in this case, and therefore

ρ
(
AR−1

u R̂n

)
≤ ‖AR−1

u R̂n‖2 ≤ ‖A‖2‖R−1
u R̂n‖2 = ρ (A) ρ

(
R−1

u R̂n

)
= ρ

(
R−1

u R̂n

)
(74)

i.e., (68) holds. Furthermore, ‖R−1
uk
R̂nk
‖2 =

σ̂2
nk

λk,1+σ2
nk

. If σ̂2
nk

< λk,1 + σ2
nk

for each k, i.e., if the

noise variances are not significantly overestimated, we know from subsection V-B that the diffBC-RLS

algorithm is stable.

D. White Regressors

Assume that we have prior knowledge that Ruk
= σ2

uk
IM , for k ∈ {1, . . . , N}. Furthermore, assume

that R̂n = Rn, i.e., a good estimate of the noise covariance is available. We thus have that

R−1
uk
R̂nk

=
(
σ2

uk
IM +Rnk

)−1
Rnk

. (75)

Since (αI +X)−1X = X (αI +X)−1 for every X and α, it follows that R−1
uk
R̂nk

is a symmetric

matrix. Therefore, with a similar reasoning as in subsection V-C, we again obtain (68). From (75), it is

also obvious that ‖R−1
uk
R̂nk
‖2 < 1, and therefore we know from subsection V-B that the diffBC-RLS

algorithm is stable.

VI. SIMULATION RESULTS

In this section, we provide simulation results to compare the performance of the BC-RLS and diffBC-

RLS algorithm, and we compare the simulation results with the theoretical results of Section IV.

The measurements dk(i) were generated according to (1), and the clean regressors uk,i were chosen

Gaussian i.i.d. with a covariance matrix Ruk
= Q1diag{5, 4, 3, 2, 1}QH

1 , where Q1 is a random unitary

matrix. The stacked vectors of the regressor noises and the measurement noises nk,i = [nk,i vk(i)] were

also chosen Gaussian i.i.d. with a random covariance matrix E{nH
k,ink,i} = skQ2diag{2, 1.8, 1.6, 1.4, 1.2, 1}QH

2 ,

where Q2 is again a random unitary matrix, and sk is a random scalar drawn from a uniform distribution
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Fig. 1. The norm of the stacked asymptotic bias as a function of p, using λ = 0.999.

in the interval [0.1, 1]. Note that, due to the scaling with sk, this is not an invariant spatial profile, since

there is a different SNR in each node. The network had N = 20 nodes, and the topology was chosen

randomly with a connectivity of 5 links per node on average. The size of the unknown vector wo was

M = 5, and the combiner matrix A was constructed using Metropolis weights. All results are averaged

over 200 experiments.

A. Bias

In this subsection, we add some errors to the noise estimates R̂nk
= Rnk

+ ∆Rnk
and r̂nkvk

=

rnkvk
+ ∆rnkvk

to investigate the effect on the bias of the BC-RLS and diffBC-RLS estimators. The

errors were modelled as

∆Rnk
=
√
p|Rnk

| �Rk (76)

∆rnkvk
=
√
p|rnkvk

| � rk (77)

where � denotes a Hadamard product (elementwise multiplication), the operator |.| denotes an elemen-

twise absolute value operator, and p is a positive scalar variable that is used to increase the error. The
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Fig. 2. The entries of limi→∞ E{w̃ww i} in the diffBC-RLS algorithm (steady state) for p = 0.2, using λ = 0.999.

entries of the M×M matrix Rk and the M -dimensional vector were independently drawn from a normal

distribution (i.e. with zero mean and unity variance).

Fig. 1 shows limi→∞ ‖E{w̃ww i}‖, i.e. the norm of the stacked asymptotic bias, as a function of p, both

for BC-RLS (without cooperation) and diffBC-RLS in steady state (with λ = 0.999). We see that the

theoretical results (47) match very well with the simulated results. Furthermore, we observe that diffusion

indeed significantly decreases the asymptotic bias of the BC-RLS estimators. Fig. 2 shows the entries of

the stacked bias vector limi→∞E{w̃ww i} resulting from the diffBC-RLS algorithm (with p = 0.2), again

demonstrating that the theoretical results are very accurate.

B. MSD

In Fig. 3, we show the MSD in the different nodes, for several values of λ. We see that the theoretical

results (67) match very well with the simulated results, especially when λ is close to unity. However, when

λ is too small (e.g. λ = 0.9), the algorithm becomes unstable in some iterations. The reason for this is the

fact that the approximation (30) in Assumption 4 becomes invalid. As mentioned at the end of subsection

IV-B, the algorithm may become unstable at some iterations due to Jensen’s inequality, even though the
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Fig. 3. The steady-state MSD values in each node, for different values of λ.
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stability condition (45) is satisfied. This is demonstrated10 in Fig. 4. Since the theoretical analysis does

not incorporate this effect, there is no match between the theoretical results and the simulation results

for this case.

In Fig. 5, the MSD is plotted as a function of the number of observations11 both for BC-RLS (without

cooperation) and diffBC-RLS. It is observed that the MSD is significantly smaller when the nodes diffuse

their estimations.

VII. CONCLUSIONS

We have addressed the problem of distributed least-squares estimation over adaptive networks when

there is stationary additive colored noise on both the regressors and the output response, which results in

a bias on the least-squares estimators. Assuming that the noise covariance can be estimated (or is known

a-priori), we have proposed a bias-compensated recursive least-squares (BC-RLS) algorithm. This bias

compensation significantly increases the MSD of the local estimators, and errors in the noise covariance

10There is no steady-state in this case. The plotted MSD is the time average of the last 3000 iterations of the algorithm.
11Since the norm of Pk,i can be very large in the beginning due to a small regularization parameter δ, the recursion usually

starts to diverge until i becomes large enough. Therefore, to obtain an intelligible figure, we initialized the matrices Pk,0 with
(1− λ)R−1

uk
, i.e., the convergence of the RLS part is removed.

July 25, 2011 DRAFT



25

estimates may still result in a significant residual bias. By applying diffusion, i.e., letting neighboring

nodes combine their local estimates, the MSD and residual bias can be significantly reduced. The latter

is referred to as diffusion BC-RLS (diffBC-RLS). We have derived a necessary and sufficient condition

for mean-square stability of the algorithm, under some mild assumptions. Furthermore, we have derived

closed-form expressions for the residual bias and the MSD, which match well with the simulation results

if the forgetting factor is close to unity. We have also considered some special cases where the stability

improvement of diffBC-RLS over BC-RLS can be mathematically verified.

A possible application of the diffBC-RLS algorithm is the AR analysis of a speech signal in a wireless

sensor network, with microphone nodes that are spatially distributed over an environment. RLS has

been demonstrated to be able to track speech AR parameters [24] in environments with limited noise.

For noisy recordings, bias compensation is crucial for AR analysis of speech signals. However, this bias

compensation usually severely increases the MSD of the estimated speech AR coefficients (often resulting

in unstable behavior), due to the ill-conditioned nature of the speech covariance matrix in certain speech

phonemes. Since all the microphones observe the same speech signal (possibly at a different SNR), the

stability of the algorithm and the MSD of the estimators can be greatly improved by applying diffusion

adaptation.

VIII. ACKNOWLEDGEMENTS

The first author would like to thank all the co-workers in the Adaptive Systems Laboratory at UCLA

for the fruitful discussions regarding several aspects of this manuscript, and the anonymous reviewers for

their valuable suggestions to improve the manuscript.

APPENDIX

A. Derivation of expression (57)

We first consider the case where m < n. Because of the steady-state assumption, only the difference t =

n−m is important, i.e. E{mmm i−mmmmH
i−n} = E{mmm immmH

i−t}. Because of the spatial independence assumption

and the fact that E{mmm i} = 0 (this follows from (40)), E{mmm immmH
i−t} will be a block-diagonal matrix

(note that there is no diffusion on the local RLS estimates). Therefore, we can focus on a single block

corresponding to node k, i.e. the submatrix E{mk,im
H
k,i−t} where mk,i , wLS

k − ŵk,i.
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From the RLS update (21), we find that (for large enough i and t > 0)

E{mk,im
H
k,i−t} = E{mk,i−1m

H
k,i−t}+ Pk,iRuk

E{ŵk,i−1m
H
k,i−t}

= E{mk,i−1m
H
k,i−t}+ (1− λ)E{ŵk,i−1m

H
k,i−t}

= E{mk,i−1m
H
k,i−t}+ (λ− 1)E{−ŵk,i−1m

H
k,i−t}+ (λ− 1)E{wLS

k mH
k,i−t}

= E{mk,i−1m
H
k,i−t}+ (λ− 1)E{mk,i−1m

H
k,i−t}

= λE{mk,i−1m
H
k,i−t} (78)

where we used Assumption 4 in the second step, and the fact that E{mk,i} = 0 (when i → ∞) in the

first and third step. By expanding the recursion (78), and because of the steady-state assumption, we find

that

E{mk,im
H
k,i−t} = λtE{mk,im

H
k,i} (79)

The case where m > n or t < 0 immediately follows from (79) by using a substitution j = i− t:

E{mk,im
H
k,i−t} = E{mk,j+tm

H
k,j}

= E{mk,jm
H
k,j+t}H

= λ−tE{mk,jm
H
k,j}

= λ−tE{mk,im
H
k,i} . (80)

Both cases (together with the trivial case m = n) can be handled simultaneously by using an absolute

value in the exponent of λ, which straightforwardly results in (57).

B. Derivation of expression (60)-(63)

Because of the spatial independence assumption, and the fact that E{mmm i} = 0 (this follows from (40)),

E{mmm immmH
i } will be a block-diagonal matrix (note that there is no diffusion on the local RLS estimates).

Therefore, we can focus on a single block corresponding to node k, i.e. the submatrix E{mk,im
H
k,i}

where mk,i , wLS
k − ŵk,i.

For an RLS algorithm that observes regressors ui and corresponding d(i) = uiφ
o + e(i) where e(i) is

zero-mean noise with variance σ2
e , the following approximation holds for i→∞ [23]:

E{(φo −wi) (φo −wi)
H} ≈ 1− λ

2
σ2

eE{uH
i ui} . (81)
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It is noted that the variable ŵk,i in the diffBC-RLS algorithm is an unbiased estimator of wLS
k . Therefore,

we can view ŵk,i as the outcome of an RLS algorithm that observes regressor uk,i = uk,i + nk,i and a

corresponding

dk(i) = uk,iw
LS
k + ek(i) . (82)

Since the observations dk(i) are actually equal to

dk(i) = uk,iw
o + vk(i) (83)

we have to rewrite it to the form (82). With (7), and setting (82) equal to (83), some straightforward

algebra yields

ek(i) = vk(i)− nk,iw
o + uk,iR

−1
uk

(Rnk
wo − rnk,vk

) . (84)

Using the approximation (81), we find that

E{mk,im
H
k,i} ≈

1− λ
2

σ2
ek
Ruk

(85)

where σ2
ek

= E{|ek(i)|2}. We will now derive an expression for σ2
ek

. For the sake of an easy exposition,

we omit the subscript k and the time index i in the sequel. We introduce the notation b , Rnw
o − rnv.

Observe that

E{(v − nwo) uH} = rnv −Rnw
o = −b . (86)

With this, we find that

E{|e|2} = E{|v − nwo|2}+ E{uR−1
u bbHR−1

u uH} − 2bHR−1
u b . (87)

The first term is equal to

E{|v − nwo|2} = wo ∗Rnk
wo − rH

nkvk
wo − wo ∗rnkvk

+ σ2
v . (88)

Using the trace operator, we find that the second term is equal to

E{uR−1
u bbHR−1

u uH} = Tr
(
R−1

u bbHR−1
u E{uHu}

)
= bHR−1

u b . (89)

Inserting (87)-(89) in (85), and repeating this for each node, we find expression (60)-(63).
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C. Derivation of expression (65)-(66)

We introduce the notation

D , AR−1
u Rn (90)

where the eigenvalue decomposition of D is given by D = QΣQ−1. The matrix Mk defined in (59) can

then be rewritten as

Mk = AH

( ∞∑
m=0

∞∑
n=0

λ|m−n|(DH)mEkDn

)
A . (91)

First, observe that

∞∑
m=0

∞∑
n=0

λ|m−n|(DH)mEkDn =
∞∑

m=0

(DH)mEkDm

+
∞∑

n=1

λn
∞∑

m=n

(DH)mEkDm−n

+
∞∑

n=1

λn
∞∑

m=n

(DH)m−nEkDm . (92)

We will first focus on the second term of (92), which we denote as T2. Note that the last term is the

conjugate transpose of T2. Using the eigenvalue decomposition of D, we find that

T2 = Q−H

( ∞∑
n=1

λn
∞∑

m=n

(ΣH)mQHEkQΣm−n

)
Q−1

= Q−H

( ∞∑
n=1

λn(ΣH)n
∞∑

m=n

(ΣH)m−nQHEkQΣm−n

)
Q−1

= Q−H

( ∞∑
n=1

λn(ΣH)n
((
QHEkQ

)
� E

))
Q−1 (93)

where � denotes a Hadamard product (elementwise multiplication), and with E a matrix where the entry

on the i-th row and the j-th column is given by

Eij =
∞∑

m=n

ηm−n
i (ηH

j )m−n (94)

where ηi is the i-th diagonal element of ΣH (the conjugate of the i-th eigenvalue). If the stability condition

(45) holds, then |ηiη
H
j | < 1, ∀ i, j ∈ {1, . . . ,M}. Based on a Taylor expansion similar to (46), but for

the complex scalar case, we find that

Eij =
1

1− ηiηH
j

. (95)
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Using this, (93) can be rewritten as

T2 = Q−H

( ∞∑
n=1

λn(ΣH)n

)
QHEkQ

11H − ηηH
Q−1 (96)

where the MN -dimensional vector η = col{η1, . . . , ηMN} contains the diagonal elements of ΣH (the

conjugated eigenvalues) in the same order as they appear on the diagonal.

Based on the expansion (46), we can rewrite (96) as

T2 = Q−H
((
IMN − λΣH

)−1
− IMN

)
QHEkQ

11H − ηηH
Q−1 . (97)

A closed-form expression for the first term of (92) can be derived in a similar way, which results in

T1 = Q−H QHEkQ
11H − ηηH

Q−1 . (98)

Since T1 + T2 + TH
2 =Mk,2 +MH

k,2 −Mk,1, we eventually find (65)-(66).
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