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Voorwoord

Na een avontuur van vier jaar ben ik aan het moeilijkste deel van mijn doc-
toraatstraject aanbeland: het schrijven van een voorwoord. Het opstellen van
de volgende vier paginas kan dan ook gezien worden als een korte samenvat-
ting van de voorbije vier jaar als doctoraatsstudent: een moeilijk proces, met
verschillende slapeloze nachten, maar een geweldig gevoel eenmaal de inspira-
tie (eindelijk) naar boven komt drijven. Het belangrijkste onderdeel van een
voorwoord is uiteraard een dankwoord, dus laat ik daarmee beginnen.

Op de eerste plaats komt -zoals het hoort1- mijn promotor Marc Moonen. Ik
wil Marc bedanken voor zijn vertrouwen, de opportuniteiten en de vrijheid
die hij me gaf, de goede begeleiding, de uitgebreide paper-verbeteringen, de
interessante ‘friday’ en e-mail discussies, en uiteraard zijn geweldige (en soms
wat scherpe) humor. En dit allemaal ondanks de grote tegenstrijdigheid inzake
onze muzikale interesses (‘Is er iets mis met je computer Alexander, die maakt
zo’n raar geluid?’).

Een andere -niet te onderschatten- factor voor de goede afloop van dit doctoraat
is het onderwerp waarover ik onderzoek kon doen. Ik ben de eerste om toe te
geven dat ik hiermee ontzettend veel geluk heb gehad. Hiervoor wil ik dan ook
Simon Doclo en Marc opnieuw bedanken. Zij hebben het lumineuze idee gehad
om het onderzoeksdomein van akoestische sensornetwerken aan te boren, wat
een onuitputtelijke bron van interessante problemen en nieuwe algoritmes bleek
te zijn. Ook het DB-MWF algoritme van Marc en Simon was een ontzettend
goede aanzet voor de ontwikkeling van het DANSE algoritme, dat zowat de
rode draad vormt in deze doctoraatsthesis.

Een doctoraat kan natuurlijk niet tot een goed einde gebracht worden zonder
een examencommissie. Therefore, I would like to thank all the members of the
jury for their efforts to read my text, their valuable comments and suggestions,
and their critical questions: Prof. Marc Moonen, Prof. Simon Doclo, Prof.
Joos Vandewalle, Prof. Hugo Van hamme, Prof. Dirk Van Compernolle, Prof.

1en geheel terecht!
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ii Voorwoord

Piet Sommen, Prof. Sharon Gannot en de voorzitter Prof. Paul Van Houtte.

Verder zijn er nog een aantal mensen die -binnen de context van deze thesis
wel te verstaan- in mijn ogen een speciale vermelding verdienen om diverse
redenen. Bram Cornelis, die samen met mij zijn doctoraat startte, en met
wie ik zowel tijdens als naast het werk menige DSP conversaties en discus-
sies heb gehad, soms tot groot ongenoegen van de rest van het gezelschap2.
William Vandenberghe, die als ‘allesweter’ altijd klaarstond om te luisteren en
te discussiëren over de lastige wiskundige obstakels die ik tegenkwam (ook al
bleken velen daarvan spijtig genoeg niet ‘William-oplosbaar’ te zijn). Paschalis
Tsiaflakis, die mij -hoorde ik achteraf- heeft aangeprezen bij Marc toen ik nog
een nietsvermoedende ingenieurstudent was, en die mij 3 maanden heeft moeten
verdragen als huisgenoot tijdens ons verblijf in Los Angeles. Peter Ruckebusch
van UGent, die heel wat werk heeft gestoken in het maken geluidsopnames met
het IBBT sensor netwerk testbed, en met wie ik (in samenwerking met Prof. I.
Moerman), ondanks de sterk verschillende wetenschappelijke jargons, heel wat
interessante discussies heb gehad.

A special thank you also goes to Prof. Ali H. Sayed, for giving me the opportu-
nity to visit his research group at UCLA. And of course, I want to thank all the
guys of the Adaptive Systems Laboratory at UCLA (Zaid, Paolo, Xiaochuan,
Jianshu, Victor, Shang Kee, Jae-Woo and Shine) for all the great moments
during my stay in LA, and all the help and discussions on the ‘big so’ white-
board.

Naast bovengenoemde personen zijn er natuurlijk nog heel wat mensen die
een vermelding verdienen, omdat zij onrechtstreeks een steuntje in de rug wa-
ren gedurende mijn doctoraat. Let me start with all my colleagues in the
DSP-group at ESAT. In spatio-temporal order, starting with my office bud-
dies: (Papa-)Pepe, Joe, Geert, Ann, Simon, Toon, Bram, Gert, Sam, Deepak,
Rodrigo, Kim, Sylwek, Pascal, Bruno, Javier, Vincent, Jan, Beier, Amir,
Romain, Prabin and Geert. Thanks for all the great times! Daarnaast ko-
men natuurlijk ook alle (andere) vrienden, en de hele familie. Om begrijpelijke
redenen zal ik jullie hier niet exhaustief opsommen, maar weet dat ik jullie niet
vergeten ben!

Ik ben IWT dankbaar voor de financiële ondersteuning van mijn onderzoek
gedurende mijn doctoraat, alsook FWO Vlaanderen voor de financiële onder-
steuning van mijn onderzoeksverblijf op UCLA.

Mijn gepromoveerde collega’s beweren dat de periode van het schrijven van de
doctoraatsthesis en de voorbereiding van de preliminaire verdediging een van de

2Een welgemeende sorry daarvoor aan Joris, Gerry, Lieboud, Bram, Karen, Fleur,
William, Joram, Eleonor, Pieter, en vooral Roel, die zijn ongenoegen hieromtrent vaak niet
onder stoelen of banken stak.
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moeilijkste en meest stresserende periodes is van een doctoraat. Na vier jaren
hard labeur om naar dit moment toe te werken is er echter toch iemand op
een of andere manier in geslaagd om net tijdens deze laatste cruciale fase mijn
hoofd op hol te doen slaan. Maar dit bleek uiteindelijk eerder een zegen te zijn
dan een hinderpaal, waardoor deze bewering van mijn collega’s absoluut niet
opging in mijn geval (integendeel). Lieve Eline, ook al was het op de valreep,
je was er bij op het belangrijkste moment en dat vond ik fijn.

En dan komen we uiteindelijk bij enkelen die eigenlijk niks -maar tegelijk ook
alles- aan dit doctoraat hebben bijgedragen.

Allereerst veel dank aan Nele, mijn allerliefste petekind en oudste zus Sophie,
‘de broeren’ Thomas en Simon, en mijn jongste zusje Louise a.k.a. Wieze, voor
alle fijne en gezellige momenten in Rumbeke en daarbuiten.

Dan is er nog iemand die ik heb moeten teleurstellen dat ik mijn doctoraat niet
heb afgekregen in de 3 jaar die hij in gedachten had (‘Duurt dat 4 jaar!? Zeg
maar tegen die prof dat 3 jaar meer dan genoeg is.’), maar stiekem wel blij was
dat er nog een sprankeltje hoop was om een van zijn zonen uiteindelijk toch
‘Dr.’ te zien worden (ook al was dat oorspronkelijk misschien in een andere
context). Dan is er ook iemand die me tijdens mijn doctoraat gelukkig af en
toe hielp herinneren dat ‘geen resultaat ook een resultaat is’3, en die me er
zo nu en dan op wees dat er betere alternatieven zijn om geld te verdienen in
plaats van een doctoraat in ‘elektromechanica’4, maar uiteindelijk wel heel fier
was ondanks mijn atypische carrièrekeuze. En tot slot was er nog iemand die
me altijd uitermate nuttige input gaf als ik vast zat met mijn werk (‘heb je het
al eens geprobeerd met determinanten?’), mij altijd de nodige complimentjes
en erkenning gaf wanneer ik fier mijn afgewerkte papers liet zien (‘zot ventje’),
maar vooral een geweldige broer is.

Papa, mama en Jan, zoals gewoonlijk zonder veel woorden, maar oprecht: ik
ben jullie heel dankbaar voor alles.

Ik zou deze thesis graag willen opdragen aan opa, van wie we met pijn in het
hart afscheid hebben moeten nemen vorig jaar. Hij vroeg altijd vol interesse
hoe het ging met mijn ‘onderzoek in de hoorapparaten’, waarna hij spontaan
alle praktische problemen met zijn gehoorapparaat begon op te sommen. Opa,
bedankt voor je eeuwige goedheid en positieve kijk op alles. Ik kon me geen
betere peter voorstellen.

Tot slot richt ik mij tot diegenen die nog wat verder zullen lezen dan deze eerste
vier bladzijden. Ik heb met hart en ziel gewerkt aan dit doctoraat, en heb een

3Een tip voor iedereen: beste pep-talk die je kan geven aan een onderzoeker die in een
dipje zit!

4Lees: elektrotechniek.
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ontzettend leerrijk traject ondergaan met veel ups en downs. Zoals elke onder-
zoeker is mijn grootste wens dan ook dat het hierbij niet stopt, en dat de kennis
en de ideeën die in dit boek staan uiteindelijk ook anderen zullen inspireren.
Ik hoop dan ook dat dit werk uiteindelijk iets kan betekenen voor toekomstige
nieuwe boeiende technologieën. Al is het maar dat ene dominosteentje die de
keten omver duwt, dat ene vonkje die de motor in gang zet...

Alexander Bertrand

Leuven, april 2011



Abstract

Recent academic developments have initiated a paradigm shift in the way spa-
tial sensor data can be acquired. Traditional localized and regularly arranged
sensor arrays are replaced by sensor nodes that are randomly distributed over
the entire spatial field, and which communicate with each other or with a mas-
ter node through wireless communication links. Together, these nodes form a
so-called ‘wireless sensor network’ (WSN). Each node of a WSN has a local sen-
sor array and a signal processing unit to perform computations on the acquired
data. The advantage of WSNs compared to traditional (wired) sensor arrays, is
that many more sensors can be used that physically cover the full spatial field,
which typically yields more variety (and thus more information) in the signals.
It is likely that future data acquisition, control and physical monitoring, will
heavily rely on this type of networks. Most contributions in this thesis focus on
(but are not limited to) the application of WSNs for distributed noise reduc-
tion in speech recordings. Noise reduction for speech enhancement is crucial
in many applications such as hearing aids, mobile phones, video conferencing,
hands-free telephony, automatic speech recognition, etc.

In this thesis, we develop novel signal and parameter estimation techniques that
rely on distributed in-network processing, i.e., without gathering all the sensor
data in a central processor as it is the case in centralized estimation algorithms.
In WSNs, a distributed approach is often preferred, especially so when it is scal-
able in terms of its communication bandwidth requirement, transmission power
and local computational complexity. In almost all distributed estimation tech-
niques that are proposed in this thesis, the goal is to obtain the same estimation
performance as in a centralized estimation algorithm. We distinguish between
two different types of distributed estimation problems: signal estimation and
parameter estimation. Both problems usually have to be tackled in very differ-
ent ways. In distributed signal estimation, the number of estimation variables
grows linearly with the number of temporal observations, i.e. for each sample
time of the sensors, a new sample of the desired signal(s) has to be estimated.
Iterative refinement of these signal estimates would require that intermediate
signal estimates are retransmitted multiple times between the same node pairs,
which is usually not feasible in real-time systems with high sampling rates. In

v



vi Abstract

distributed parameter estimation problems on the other hand, the number of
estimation variables are either fixed, i.e., it does not grow with the number
of temporal observations, or the data acquisition happens at a very low sam-
pling rate such that sufficient time is available to iteratively refine intermediate
estimates.

In the context of distributed signal estimation in WSNs, we propose a dis-
tributed adaptive node-specific signal estimation (DANSE) algorithm, which
operates in a fully connected WSN. The term ‘node-specific’ refers to the fact
that each node estimates a different signal, although the desired signals of all
nodes have to share a common low-dimensional signal subspace. In this case,
DANSE significantly reduces the exchange of data between nodes, while still
obtaining an optimal estimator in each node, as if all nodes have access to
all the sensor signal observations in the network. In the original version of
DANSE, the local fusion rules of each node are iteratively updated in a se-
quential round-robin fashion. The DANSE algorithm is then extended to the
case where nodes update their local fusion rules simultaneously, which allows
the algorithm to adapt more swiftly to changes in the environment. Both ver-
sions of the algorithm are then applied in a speech enhancement context. To
this end, the algorithm is extended to a more robust version, to avoid numeri-
cally ill-conditioned quantities that often arise in such practical settings. The
DANSE algorithm is also extended to operate in WSNs with a tree topology,
hence relaxing the constraint that the network has to be fully connected, i.e.,
each node only has to communicate with nearby nodes. Finally, the DANSE
algorithm is extended with node-specific linear constraints, yielding an optimal
node-specific linearly-constrained minimum variance beamformer in each node.

In the second part of this thesis, we tackle distributed linear regression prob-
lems, based on distributed parameter estimation techniques. In particular, we
focus on the case where the data or regression matrix is noisy, for which tra-
ditional least-squares methods yield biased results. To reduce this bias, we
propose two novel methods. The first one is a distributed version of the well-
known total least squares estimation technique, which yields unbiased estimates
if the regressor noise is white. A second method, that can also cope with col-
ored noise, is based on a bias-compensated recursive least squares algorithm
with diffusion adaptation. This algorithm is analyzed in an adaptive filtering
context, where it is demonstrated that the cooperation between nodes indeed
reduces the bias, and furthermore reduces the variance of the local parameter
estimates at each node.

In the third part of this thesis, we propose two supporting techniques that
can be used in WSNs for (acoustic) signal estimation. The first one is an
energy-based multi-speaker voice activity detection algorithm, that aims to
track the individual speech power of multiple speakers talking simultaneously.
Finally, we propose a technique for sensor subset selection, which is an efficient
greedy approach to select the subset of sensors that contribute the most to the
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estimation. The other nodes can then be put to sleep to save energy. This
method also yields efficient formulas to compute optimal fall-back estimators
in the case of link failure.
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Korte Inhoud

Recente academische ontwikkelingen hebben een paradigmaverschuiving teweeg
gebracht in de manier waarop we spatiale sensormetingen kunnen verkrijgen.
Traditionele gelokaliseerde en regelmatig geordende sensorroosters zullen in de
toekomst vervangen worden door sensoren die willekeurig over de geobserveerde
omgeving verspreid worden, en die draadloos met elkaar kunnen communice-
ren. Dit is het domein van de zogenaamde draadloze sensornetwerken (wireless
sensor networks, of WSNs). Een WSN bestaat uit sensornodes die elk over
een sensor(rooster) en een verwerkingseenheid beschikken om de geobserveerde
data te verwerken. Het voordeel in vergelijking met traditionele (bedrade) sen-
sorroosters is dat er meer sensoren kunnen gebruikt worden die fysisch een veel
grotere omgeving omspannen, wat typisch meer variëteit (en dus meer infor-
matie) in de opgemeten signalen oplevert. Er wordt verwacht dat toekomstige
data acquisitie en regel- en observatiesystemen veelvuldig gebruik zullen maken
van dergelijke sensornetwerken. De meeste contributies in dit doctoraatsproef-
schrift zijn gericht op (maar niet gelimiteerd tot) WSNs voor ruisonderdrukking
in spraakopnames. Ruisonderdrukking is cruciaal in vele spraaktoepassingen
zoals gehoorapparaten, mobiele telefonie, video conferenties, handenvrije tele-
fonie, automatische spraakherkenning, etc.

In dit doctoraatsproefschrift ontwikkelen we nieuwe gedistribueerde signaal-
en parameterschattingstechnieken voor WSNs, waarbij de sensordata binnen
het netwerk zelf wordt verwerkt, i.e., door de sensornodes zelf, zonder alle
sensorobservaties te verzamelen in een centrale verwerkingseenheid zoals in
gecentraliseerde schattingstechnieken. Gedistribueerde verwerking biedt vaak
schalingsvoordelen met betrekking tot communicatiebandbreedte, transmissie-
vermogen en lokale rekenkracht, en geniet daarom meestal de voorkeur. In bijna
alle voorgestelde gedistribueerde schattingstechnieken is het doel om dezelfde
schattingsperformantie te behalen als in een gecentralizeerd algoritme. We
onderscheiden twee verschillende types schattingsproblemen: signaalschatting
en parameterschatting. Beide problemen worden meestal op sterk verschillen-
de manieren opgelost. In gedistribueerde signaalschatting neemt het aantal
schattingsvariabelen lineair toe met het aantal sensorobservaties, d.w.z., voor
elk bemonsteringstijdstip aan de sensoren moet een nieuw monster van het

ix



x Korte Inhoud

gewenste signaal geschat worden. Iteratieve verbetering van deze signaalschat-
tingen zou dan betekenen dat tussentijdse schattingen van dezelfde signalen
meerdere keren moeten worden uitgewisseld tussen hetzelfde paar nodes, wat
meestal niet mogelijk is in real-time systemen met hoge bemonsteringsfrequen-
ties. In gedistribueerde parameterschatting is de situatie anders. Ofwel ligt
het aantal schattingsvariabelen vast, ofwel gebeurt de data acquisitie aan een
trage bemonsteringssnelheid zodat er genoeg tijd is om tussentijdse schattingen
iteratief te verbeteren.

In het kader van gedistribueerde signaalschatting in WSNs stellen we een gedis-
tribueerd adaptief node-specifiek signaalschattingsalgoritme voor (‘distributed
adaptive node-specific signal estimation’ of DANSE), dat eerst wordt beschre-
ven voor volledig geconnecteerde WSNs. De term ‘node-specific’ duidt aan
dat elke node een ander signaal schat, hoewel er verondersteld wordt dat deze
signalen een gemeenschappelijke laagdimensionele signaalruimte delen. Indien
hieraan voldaan is, dan kan DANSE de uitwisseling van data tussen de nodes
sterk reduceren, en toch de optimale schatter bekomen in elke node, alsof alle
nodes toegang hebben tot alle sensorsignalen in het volledige netwerk. In de
oorspronkelijke versie van DANSE worden de lokale schatters in elke node ite-
ratief en sequentieel aangepast. Het DANSE algoritme wordt daarna uitgebreid
zodat nodes hun lokale schatters gelijktijdig kunnen aanpassen, wat toelaat om
veel sneller te reageren op veranderingen in de omgeving. Beide versies van het
algoritme worden dan toegepast in een spraakverbeteringscontext. Hiervoor
wordt het DANSE algoritme uitgebreid naar een robuustere versie om nume-
rieke problemen -die regelmatig opduiken in dergelijke praktische opstellingen-
te vermijden. Het DANSE algoritme wordt daarna ook verder uitgebreid naar
netwerken met een boomtopologie, zodanig dat elke node niet per se hoeft te
communiceren met elke andere node in het netwerk. Een laatste uitbreiding
van DANSE bestaat erin dat er node-specifieke lineaire beperkingen kunnen
opgelegd worden in elk lokaal schattingsprobleem.

Een tweede deel van dit doctoraatsproefschrift richt zich op gedistribueerde pa-
rameterschatting, in het bijzonder op lineaire regressieproblemen waar de data-
of regressiematrix met ruis gecontamineerd is, waarvoor traditionele kleinste
kwadratenschatters een bias vertonen. Om deze bias the reduceren, stellen we
twee nieuwe methoden voor. De eerste is een gedistribueerde versie van total
least squares schatting, die de bias elimineert indien de regressieruis wit is. Een
andere methode, die ook voor gekleurde ruis werkt, past bias-compensatie toe
op een recursief kleinste kwadratenalgoritme met diffusie adaptatie. Dit algo-
ritme wordt geanalyseerd in een adaptieve filtering context, en we tonen aan
dat samenwerking tussen de nodes inderdaad de bias reduceert, en bovendien
de variantie op de lokale parameterschattingen verkleint.

In het laatste deel beschrijven we twee ondersteunende technieken voor (akoes-
tische) signaalschatting in WSNs. De eerste is een energie-gebaseerde multi-
spreker spraakdetector, die als doel heeft om het spraakvermogen van indivi-
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duele sprekers, die tegelijk aan het praten zijn, te schatten. Tenslotte stellen
we een efficiënte greedy sensorselectietechniek voor die de set van sensors selec-
teert die het meeste invloed hebben op de finale signaalschatting. De andere
-minder belangrijke- sensornodes kunnen dan uitgezet worden om energie te
besparen. Deze methode geeft als bijproduct ook efficiënte formules om de
optimale schatter te herberekenen indien er plots een draadloze link uitvalt.
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Glossary

Mathematical operators and constants

∀ for all
∃ there exists
∈ belongs to
⊂ is subset of
≈ approximately equal to
, defined as
� much less than
� much greater than
X � Y (X−Y) is positive (semi)definite
� Hadamard product (elementwise multiplication)
⊗ Kronecker product
(·)∗ complex conjugation
(·)T matrix transpose
(·)H matrix conjugate transpose
(·)−1 matrix inverse
(·)† (Moore-Penrose) pseudoinverse
ρ(.) spectral radius of a matrix
λmin(.) minimal eigenvalue
rank(.) rank of a matrix
D{X} sets all off-diagonal entries of the matrix X to zero
I identity matrix
1 or 1 vector containing only unity entries
O zero matrix
Tr{.} or tr(.) trace of a matrix, i.e., sum of diagonal constants
blockdiag{.} block-diagonal matrix with arguments on block-diagonal
col{.} column vector based on stacked arguments
diag{.} diagonal matrix with arguments on diagonal
∩ set intersection
∪ set union
\ set exclusion
∧ logic ‘and’

xiii
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| · | absolute value (real numbers)
or modulus (complex numbers)
or cardinality (set)

‖ · ‖ or ‖ · ‖2 Euclidian vector norm, L2 norm
‖ · ‖F Frobenius matrix norm
N the set of natural numbers
R the set of real numbers
R+

0 the set of strictly positive real numbers
C the set of complex numbers
RM×N the set of real M ×N matrices
CM×N the set of complex M ×N matrices
<z real part of complex number z
=z imaginary part of complex number z
∇J gradient of function J
x mod a x modulo a (remainder after dividing x by a)
sup{.} supremum
min{x, y} minimum of scalars x and y
max{x, y} maximum of scalars x and y
minx minimize over x
maxx maximize over x
E{.} expected value operator
Pr(A) Probability that event A happens

Acronyms and Abbreviations

AD-MoM alternating direction method of multipliers
AGSSS adaptive greedy sensor subset selection
AO alternating optimization
APA affine projection algorithm
AR auto-regressive
ASR automatic speech recognition
ATC adapt then combine
AWGN additive white Gaussian noise
BC-RLS bias-compensated recursive least squares
BHA binaural hearing aid
BLUE best linear unbiased estimator
BP belief propagation
BSS blind source separation
CA consensus averaging
CE compress-estimate
CGS centralized Gauss-Seidel
CO constrained optimization
CTA combine then adapt
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DANSE distributed adaptive node-specific signal estimation
dB decibel
DB-MWF distributed multi-channel Wiener filter
DBSA dual based subgradient algorithm
DEF direct estimation filter
DFT discrete Fourier transform
DKLT distributed Karhunen-Loeve transform
DRR direct-to-reverberant ratio
DSP digital signal processing
D-TLS distributed total least squares
EC estimate-compress
e.g. exempli gratia: for example
FC fusion center
GTLS generalized total least squares
HA hearing aid
HINT hearing-in-noise test
Hz Hertz
ICA independent component analysis
i.e. id est : that is
IP interior point
IP-KKT interior point Karush-Kuhn-Tucker
KLT Karhunen-Loeve transform
LASSO least-absolute shrinkage and selection operator
LC-DANSE linearly constrained DANSE
LCMV linearly constrained minimum variance
LLS linear least squares
LMMSE linear minimum mean squared error
LMS least mean squares
LPC linear predictive coding
LS least squares
MC Monte-Carlo
MIMO multiple-input multiple-output
MMSE minimum mean squared error
M-NICA multiplicative non-negative independent component analysis
MSD mean square deviation
MSE mean squared error
MVUE minimum variance unbiased estimator
MWF multi-channel Wiener filter
NBSS non-negative blind source separation
NICA non-negative independent component analysis
NMF non-negative matrix factorization
NPCA non-negative principal component analysis
PCA principal component analysis
pdf probability density function
QCQP quadratically constrained quadratic program
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Q.E.D. quod erat demonstrandum: what was required to be proved
R1-MWF rank-1 SDW-MWF
rA-DANSE relaxed asynchronous-DANSE
R-DANSE robust-DANSE
RFC receiver feedback cancellation
RIR room impulse response
RLS recursive least squares
rS-DANSE relaxed simultaneous-DANSE
s.t. subject to
S-DANSE simultaneous-DANSE
SDP semidefinite program
SDR signal-to-distortion ratio

or semidefinite relaxation
SDW-MWF speech-distortion-weighted MWF
SER signal-to-error ratio
SIMO single-input multiple-output
SNR signal-to-noise ratio
SSS sensor subset selection
SVD singular value decomposition
T-DANSE tree-DANSE
TDOA time difference of arrival
TFC transmitter feedback cancellation
TLS total least squares
VAD voice activity detection
WASN wireless acoustic sensor network
w.l.o.g. without loss of generality
WSN wireless sensor network
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Chapter 1

Introduction and Overview

This thesis addresses crucial problems in the domain of signal and parameter
estimation in wireless sensor networks (WSNs), and wireless acoustic sensor
networks (WASNs) in particular. Most chapters focus on (but are not lim-
ited to) the application of WASNs for distributed noise reduction in speech
recordings. Noise reduction for speech enhancement is important in many ap-
plications such as hearing aids, mobile phones, video conferencing, hands-free
telephony, automatic speech recognition, etc. By using WASNs, many more
microphone signals become available, which can greatly improve the noise re-
duction performance in these applications.

In Part I (this introduction), we first explain the concept of wireless sensor
networks, together with their major advantages and disadvantages, and we ad-
dress some important aspects in the algorithm design for estimation in WSNs
(Section 1.1). We then describe some basic concepts and state-of-the-art tech-
niques for acoustic noise reduction for speech enhancement (Section 1.2). These
acoustically-oriented problem statements will serve as target applications for
many of the distributed algorithms that are described in this thesis. We then
review some general estimation problems for WSNs, and we briefly describe
state-of-the-art distributed estimation techniques to solve them (Sections 1.3
and 1.4). Due to the extensive literature on sensor networks, and the large
variety in applications and estimation problems, we will only restrict ourselves
to certain types of problems that are either related to the contributions in this
thesis, or that allow us to position these contributions in the broad spectrum or
classification of distributed estimation problems. Throughout the introduction,
we will often comment on how the addressed techniques relate to the work in
this thesis. In Section 1.5, we define the problem statement and the challenges
that are addressed in this thesis. In Section 1.6, we provide a brief chapter-by-
chapter description of the main contributions. The introduction ends with an

3
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Figure 1.1: Schematic example of a
local regularly arranged sensor array.

Figure 1.2: Schematic example of a
randomly distributed sensor array.

overview of the publications that are included in the remaining chapters.

In Part II of this thesis, we focus on contributions that involve distributed sig-
nal estimation problems. In Part III, we propose techniques for distributed
linear parameter estimation for WSNs with noisy observations. In Part IV we
provide algorithms that can serve as supporting techniques for signal estima-
tion with spatially distributed sensors. Conclusions and comments on future
research challenges are given in Part V.

1.1 Wireless Sensor Networks (WSNs)

1.1.1 Background and Definition

Recent academic developments in the area of digital signal processing (DSP)
initiated a paradigm shift in the way sensor data can be acquired. For temporal
data acquisition, new and promising sampling techniques have been discovered
that break with the famous Nyquist-Shannon sampling theorem [1]. At the
same time, also spatial data acquisition is changing. Traditional localized and
regularly arranged sensor arrays (Fig. 1.1) are replaced by randomly placed
sensors, distributed over the entire spatial field (Fig. 1.2). This is the area of
‘wireless sensor networks’ (WSNs), which saw a tremendous boost during the
last couple of years [2–4]. It is likely that future data acquisition, control and
physical monitoring, will heavily rely on this type of networks.

A WSN consists of a set of sensor nodes, randomly distributed over an envi-
ronment, which communicate with each other or with a master node through
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Fusion Center

Figure 1.3: Schematic example of
centralized data fusion by means of
a fusion center.

Figure 1.4: Schematic example of dis-
tributed data fusion in a WSN with
an ad hoc topology.

wireless communication links. Each node has a local sensor (array) and a signal
processing unit to perform computations on the acquired data. The advantage
compared to traditional (wired) sensor arrays, is that many more sensors can
be used that physically cover the full spatial field, which typically yields more
variety (and thus more information) in the signals. A general objective is to
utilize all sensor signal observations available in the entire network to perform a
certain task, such as the estimation of a parameter or signal, or the detection of
a physical phenomenon (the latter is often referred to as distributed detection
or decision making). In this thesis, we will focus on the former, i.e., distributed
estimation.

One important challenge in designing algorithms for WSNs, is that the acquired
data from all the nodes must somehow be combined and processed to generate
a useful output. This process is often referred to as data fusion, which can
happen in a centralized fashion (Fig. 1.3), where all the nodes send their raw
data to a master node who does all the processing (the ‘fusion center’), or
in a distributed fashion (Fig. 1.4), where the processing is shared between
all the nodes, and the nodes in the network exchange data with each other.
Hybrid cases are also possible, where some local processing of the observed
data is performed at each node, e.g., for compression, and then transmitted to
a fusion center.

A centralized approach may require a large communication bandwidth and
transmission power. It also requires a dedicated device (the fusion center),
which must be able to receive and process many different communication chan-
nels in real-time. This is often a limiting factor, especially when operating at
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high sampling rates. The required communication bandwidth, and the compu-
tational power at the fusion center may increase drastically with the number of
sensor nodes1. A distributed approach is therefore often preferred, especially
so when it is scalable in terms of its communication bandwidth requirement
and local computational complexity. However, the design of such distributed
signal processing algorithms is a lot more challenging, and usually one needs
to settle for a suboptimal solution compared to the centralized case. Indeed,
in the centralized case, all data is available at one place, which allows to com-
pute variables that often cannot be computed in a distributed case, such as the
full cross-correlation between all the sensor signal observations. Therefore, a
centralized approach in general yields better estimates, which can be used as a
reference point to assess the performance of distributed estimation algorithms.

1.1.2 Design Aspects

In the algorithm design to solve estimation problems in WSNs, several aspects
should be taken into consideration, depending on the requirements of the target
application:

• Estimation performance : The main goal of the network is to obtain
a good estimate of a certain parameter or signal, based on as much ob-
servations as possible. The estimation performance of the algorithm is
therefore the main design parameter, and it is often highly influenced by
the choices that are made with respect to the other design parameters
that are mentioned in the sequel.

• Communication bandwidth : It is important that the network can op-
erate with a small communication bandwidth. A centralized approach,
where raw sensor data is transmitted to a fusion center, can be viewed as a
worst-case scenario with respect to bandwidth usage. If nodes only share
data with their closest neighbors (in a distributed setting), less trans-
mission power is required and spatial reuse of the frequency spectrum is
possible. Furthermore, to reduce the required communication bandwidth,
local compression of sensor data is of great importance. Compression and
estimation are often jointly attacked in WSNs, instead of treating them
as independent problems.

• Energy awareness: Since the nodes of a WSN are usually powered
by batteries and sometimes even by energy scavenging2, it is important
that the sensor nodes do not consume too much energy. Therefore, the
computational complexity of the algorithm should be as low as possible.

1For example, in multi-channel Wiener filtering (see Subsection 1.2.2), the computational
power increases quadratically with the total number of microphones.

2Energy scavenging is the process by which energy is derived from external sources (e.g.,
solar power, thermal energy, wind energy, kinetic energy, etc.), captured, and stored.
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Furthermore, the required transmission power is also an important fac-
tor3. The latter depends on the network topology and the distance (and
physical obstacles) between the different nodes. A fully connected topol-
ogy or a star topology4 are usually considered as the worst-case scenario
in terms of transmission power. The best approach with respect to trans-
mission power is the nearest-neighbor-based topology, where nodes only
share data with nodes that are close by and not obstructed by obstacles.

• Scalability : A distributed algorithm is scalable if the communication
bandwidth and/or the power consumption per node does not or only
partially depend on the total amount of nodes in the network. Basically,
it means that adding an extra sensor has no impact on the computational
load or transmission power of the nodes that are not directly connected
to this extra node. Scalability is very important in large-scale networks,
or networks for signal estimation at high sampling rates (where commu-
nication bandwidth usage and power consumption are a limiting factor,
even in small networks). Centralized algorithms or algorithms for fully
connected networks usually do not scale well (although this can be im-
proved in some cases, see Chapter 2). Distributed algorithms that allow
simply connected5 or ad hoc network topologies are usually scalable in
both communication bandwidth and power consumption.

• Robustness to noisy communication links: The data that is trans-
mitted between the nodes is usually compressed and quantized, which
introduces distortion (in the case of lossy compression) and quantization
noise. Furthermore, due to interference and fading, bit errors can oc-
cur during the transmission of data. Depending on the quality of the
links, it can be important to incorporate these aspects in the design of
the estimation algorithm, to make it more robust to distortions on the
transmitted data.

• Adaptivity : Adaptivity refers to the fact that the network or the algo-
rithm can adapt to changes in the environment, such as changes in po-
sitions of the nodes, changes in the topology of the network, or changes
in the physical processes that are sensed by the network. A fully adap-
tive algorithm also has the facilitating property that it does not require
a prior training or calibration phase before operation of the algorithm.
This is particularly interesting for WSNs with an ad hoc deployment. A
fixed algorithm (without adaptation) usually relies on prior knowledge
that cannot be measured during operation of the algorithm, such as the

3It can be shown that the energy required to transmit 1kb over 100m (i.e., 3 J) is equivalent
to the energy required to execute 3 million instructions [5, 6].

4This corresponds to a centralized approach, where all the nodes are connected with a
single master node, who forms the center of the star.

5Simply connected networks are networks that are not fully connected.
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cross-correlation between sensor signals of nodes that are not directly
connected by a wireless link. Hybrid cases are also possible, where the
algorithm can adapt to certain changes in the environment, but not to
all of them. For example, the noise scenario is sometimes assumed to be
fixed, while the statistics of the target sources can change during opera-
tion of the algorithm.

• Convergence speed : In iterative (adaptive) algorithms, the conver-
gence speed is important when the environment can change rapidly or
abruptly. To track or respond to these changes, the algorithm must have
good convergence properties.

• Blindness: In many cases, the positions of the sensor nodes are not
known a priori, due to the random placement of the sensor nodes. For
some estimation tasks, such as localization or signal estimation based
on spatial separation (beamforming), supporting algorithms are often re-
quired to estimate node and/or source positions. In the context of WSNs,
blind algorithms that do not require this side information are usually pre-
ferred.

• Network topology : Algorithms for WSNs can be designed for specific
network topologies, such as a centralized (star) topology [7–12], a ring
topology [13, 14], a tree topology (see Chapter 5), a fully connected
topology (see Chapter 2), etc. These four common topologies are depicted
in Fig. 1.5. Setting up such a predefined topology usually requires some
upper-layer protocol. Furthermore, such algorithms are often suboptimal
in the sense that they do not exploit all the available links (due to link
pruning to obtain the desired topology), or because they require extra
links over long distances or through obstacles, which usually have a very
bad quality. Therefore, algorithms that do not make any assumptions on
the topology are usually preferred, especially in ad hoc deployed WSNs.

• Self-healing properties: The communication links in a WSN are of-
ten not very robust, due to the low-power communication. This often
introduces significant packet loss, or even permanent failing of certain
links. The algorithm must therefore be able to cope with dynamic con-
figurations of the network, such that there is no single point of failure.
This ‘self-healing’ property is closely related to the adaptivity of the algo-
rithm, and the prior assumptions on the network topology. For example,
some algorithms require a so-called Hamiltonian cycle, i.e., a path in the
network that starts and ends in the same node, and visits every node
only once6 (see e.g. [13]). If a certain link on this cycle fails, a new cycle
needs to be determined.

6This corresponds to pruning the network to a ring topology (Fig. 1.5(b)).
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(a) Centralized or star topology (b) Ring topology

(c) Tree topology (d) Fully connected topology

Figure 1.5: Special network topologies.

• Uniformity : In some applications, it is important that each node es-
sentially performs the same task. Often, this requirement has economic
reasons, as it is cheaper to produce ‘many of the same’. However, it
can also be imposed to avoid points of failure in the network. If certain
nodes have important function or specific roles in the network, the failure
of these nodes can have severe consequences for the performance of the
WSN.

• Sensor subset selection : In many cases, it is not worth it to use the
data of all the nodes of the network. Often a good estimate can be com-
puted by only using a subset of nodes that have the most useful data. The
other (less useful) sensor nodes can then be put to sleep to save energy.
The selection of a useful subset is usually a difficult problem on its own,
which requires supporting algorithms that can either run independently
from the estimation algorithm, or that can use side information from the
estimation algorithm.
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• Clock synchronization : A critical component in WSNs is the clock
synchronization. Since each node has its own clock, and since each clock
has imperfections in its oscillator, the length of the clock cycles will be
slightly different at each node (usually around 40 µs difference per second
[6]). This results in sampled signals that drift away from each other
when time flows, with a speed that depends on the sampling frequency
and the clock imperfections. This signal drift can be very harmful for
both the estimation algorithm and the communication protocol in the
wireless links. A good clock synchronization algorithm should therefore
provide a common time frame for all the nodes, which is essential for
many algorithms. These supporting clock synchronization algorithms
can be classified in two different types of algorithms. The first one is
based on time stamps, often referred to as packet coupling, which is fully
implementable in software (see [6] for an overview). The other class
consists of pulse-coupling techniques, which use signal injection on the
physical communication layer [15–17].
Many estimation algorithms are very sensitive to clock drift, but some
can cope with significant clock drift and only require minor synchroniza-
tion constraints. The latter class usually contains all the energy-based
methods. Since the used data then consists of energy observations, which
are squared averages over blocks of many data samples, only very large
clock drifts will have a significant impact.

1.1.3 Signal vs. Parameter Estimation

In this thesis, we distinguish between two types of distributed estimation prob-
lems: signal estimation and parameter estimation. Although both terms are
often used interchangeably in the WSN sensor network literature, it is impor-
tant to make this distinction since both problems usually need to be tackled in
very different ways.

In distributed signal estimation, the goal is to estimate a signal in real-time,
while suppressing interfering noise. This means that the number of estimation
variables grows linearly with the number of temporal observations, i.e. for each
sample time of the sensors, a new sample of the desired signal(s) needs to be
estimated. In this case, fused or compressed sensor observations are exchanged
between nodes, rather than derived parameters (as it is the case in parameter
estimation). The estimation then usually relies on (lossy) ‘compress-and-fuse’
techniques [7–12], fusion of sensor data within a one-hop neighborhood [18],
or linear spatio-temporal filtering (beamforming), as often used in signal en-
hancement [19]. Distributed signal estimation often assumes some (short-term)
stationarity of the signal statistics or the spatial characteristics, such that fu-
sion rules are not sample-specific, i.e., the same fusion rules are used for ob-
servations at different time instances. In the case of adaptive signal estimation
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Figure 1.6: Two subsequent signal estimation iterations at node k.

algorithms, the fusion rules can be iteratively and recursively updated, based
on previous observations, to improve the overall estimation performance for
future signal observations. This means that the algorithm does not iterate over
the estimates themselves, but over the local fusion rules at the nodes. Iter-
ative refinement of the actual estimates, as it is often the case in parameter
estimation, would require that estimates of the same signal are retransmitted
multiple times between the same node pairs, which significantly increases the
communication bandwidth. Although the latter could improve the estimation
performance, it is usually not feasible in real-time systems with high sampling
rates. The wireless links of a WSN for signal estimation usually need to be
quite robust, since packet loss can result in instantaneous signal degradation
at the output.

A typical distributed signal estimation framework is schematically depicted in
Fig. 1.6 for a single sensor node with label k. The sensor signal yk is fused
with the signals zl and zm that node k receives from neighboring nodes l and
m, respectively. The output signal zk is then forwarded to the other nodes
in the neighborhood of node k. It should be noted that only the fusion rule
F is refined over the different iterations, which only has an effect on future
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signal observations. Previous (fused) signal observations are not retransmitted
or re-estimated.

In distributed parameter estimation problems on the other hand, the number
of estimation variables are either fixed, i.e., it does not grow with the num-
ber of temporal observations, or the data acquisition happens at a very low
sampling rate such that sufficient time is available to iteratively refine interme-
diate estimates [13, 20–29]. Often, only parameters that are derived from the
sensor observations (e.g., a regression vector) are exchanged between nodes,
without sharing actual sensor observations. Because these parameters usually
change rather slowly over time (compared to the sampling clock), this allows
for iterative and incremental strategies. The latter also holds in sensing appli-
cations where the sampling rate is low, e.g., for the estimation of temperature,
chemical compositions, wind speed, humidity, etc. Furthermore, the exchange
of parameters or low-data-rate measurements typically requires less communi-
cation bandwidth, such that the network usually consumes less energy than
in signal estimation applications, and the nodes can be kept small, cheap and
possibly even disposable.

A typical distributed parameter estimation framework is schematically depicted
in Fig. 1.7 for a single sensor node with label k, where the goal is to estimate
a latent parameter w. The local estimate at node k is denoted by wk. At
iteration i, node k refines this estimate, based on its previous estimate wi−1

k ,
and the estimates wi−1

l and wi−1
m that node k has received from nodes l and m,

respectively. If new sensor data is obtained, this new information can also be
incorporated in the new estimate. The refined estimate wi

k is then transmitted
to other nodes in the neighborhood, who will incorporate this in their local
estimate in the next iteration. It should be noted that the iterations are now
performed directly on the estimated parameter, which is retransmitted and
re-estimated multiple times.

This thesis contains contributions for both types of estimation problems. Signal
estimation for WSNs is addressed in Part II, and parameter estimation in Part
III.

1.1.4 Wireless Acoustic Sensor Networks (WASNs)

Wireless sensor networks can also be used for acoustical applications, and then
the network consists of randomly distributed microphones. This is often re-
ferred to as wireless acoustic sensor networks (WASNs). However, the high
data rates and the rapidly changing characteristics of typical audio signals
(e.g. speech signals) make the use of WSNs for acoustical applications very
challenging. As a result, the existing literature on WASNs is still very lim-
ited. However, many important acoustical problems can significantly benefit
from spatially distributed microphone arrays (some examples are source lo-
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Figure 1.7: Two subsequent parameter estimation iterations at node k.

calization, acoustic noise reduction, blind source separation, speech analysis,
voice activity detection, etc.). Traditional (wired) microphone arrays sample
the spatial acoustic field only locally (see Fig. 1.1), and then the array is often
at a large distance from the relevant sound sources, resulting in signals with
a low signal-to-noise ratio (SNR) and low direct-to-reverberant ratio (DRR).
As a rule of thumb, the sound level decreases by 6 dB for each doubling of
the distance between the microphone and the sound source7. Furthermore,
the physical size of the array and the number of available microphones are of-
ten limited due space or power constraints imposed by the target application.
For example, only two or three microphones can fit in a hearing aid, and the
available power is limited due to the small batteries.

7This is not always true in practice. In particular, if there is a lot of reverberation and/or
if the source-microphone distances are large, this model does not hold anymore.
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With a WASN, many more microphone signals become available, at places
where it is difficult or undesirable to place wired microphones. Furthermore
the microphones physically cover a much larger area, which increases the prob-
ability that a subset of microphones is close to a relevant sound source (see
Fig. 1.2). If this is a desired sound source, this will yield recordings with a
high SNR and DRR. Nodes that are close to an interfering sound source pro-
vide good noise references. In scenarios where some of the source positions are
known a priori, the microphones can be placed strategically near these sources.
For example, they can be placed close to noisy machinery or equipment, or
they can be pinned on the shirt of desired speakers. Because of the aforemen-
tioned advantages, since small microphones can now be produced at low cost,
and since the computational power exponentially increases over time, it is be-
lieved that WASNs will soon become very popular in both the academic and
industrial sector.

Originally, WASNs were only used for localization of sound sources with (cen-
tralized) methods based on long-term sound energy measurements, hence avoid-
ing the problems with large temporal variability of sound signals [30–32]. How-
ever, also spatio-temporal correlation methods for localization in low-reverberant
scenarios were developed, e.g., [33, 34]. In the context of noise reduction, only
simple heuristic methods have been developed. In [34], a suboptimal noise re-
duction scheme is described, based on a hierarchy of cascaded beamformers,
distributing the computational load evenly over the different nodes. In [35],
a technique is proposed for SNR-based spectral combining of two or more mi-
crophone signals that are recorded at significantly different positions. In the
context of hearing aids (HAs), systems are tested where a remote FM micro-
phone is used as a direct input for the HA, instead of the local microphones
in the HA itself [36, 37]. This is useful, for example, in a classroom scenario
where the lecturer’s microphone can be directly connected with a HA through
a wireless link. However, since only the unprocessed remote microphone signal
is played at the HA, the listener loses all other acoustic information about the
environment. Voice activity detection (VAD) with distributed sensor nodes
that transmit local decisions to a fusion center, has been considered in [38].
Finally, the influence of clock drift and some synchronization algorithms have
been considered for some well-known acoustic problems such as blind source
separation and echo cancellation [17, 39].

In the sparse literature on WASNs, it is almost always assumed that a fusion
center is available. Truly distributed algorithms for WASNs only started to
emerge during the past four years. The distributed multi-channel Wiener filter
(DB-MWF) [40] was one of the first practical distributed acoustic noise reduc-
tion algorithms (see Subsection 1.3.3). It was developed for a binaural hearing
aid setting, where a hearing aid is worn at both ears, both exchanging (com-
pressed) microphone signals through a wireless link. This is essentially a 2-node
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WASN. The DB-MWF algorithm forms the basis of the DANSE8 algorithm,
which is one of the main contributions in this thesis. An important target
application of DANSE is speech enhancement in WASNs, e.g., for automatic
speech recognition with spatially distributed microphone nodes, noise reduc-
tion in hearing aids or cochlear implants, audio surveillance in noisy buildings,
hands-free telephony, etc. It is also an important enabler for so-called ‘ambient
intelligence’ [41], where sensing and computing is (invisibly) distributed over
an area, and where the environment is aware of the presence and needs of the
user.

1.2 Acoustic Signal Estimation Problems

Before continuing our overview of state-of-the-art estimation techniques for
WSNs, we first have to address some basic concepts and algorithms in the
field of speech enhancement. The reason is that many contributions in this
thesis were implicitly designed for distributed noise reduction in WASNs. The
acoustically-oriented problem statements described in this section will therefore
often appear as target applications for the algorithms that are described in this
thesis.

1.2.1 Noise Reduction for Speech Enhancement

Noise reduction algorithms can significantly improve speech understanding in
background noise, which is crucial in many speech recording applications, such
as hearing aids, mobile phones, video conferencing, hands-free telephony, au-
tomatic speech recognition, etc.

Noise reduction algorithms for speech enhancement can be classified in single-
microphone techniques and multi-microphone techniques. Single-microphone
techniques can only exploit spectral characteristics of the noise and the tar-
get speech. Basically, their goal is to suppress frequencies where the noise
is dominant over the speech. This will always introduce a significant tempo-
ral and/or spectral distortion in the desired speech signal, and this distortion
usually increases with the amount of noise that is suppressed. Furthermore,
single-microphone techniques do not work well if the noise is non-stationary.

In this thesis, we will focus on multi-microphone techniques. Their major
advantage is that they can also exploit spatial characteristics of the acous-
tic scenario, in addition to the spectral characteristics of the sources. Since
the target speech source and the noise sources usually have different positions,
they can be spatially separated. These algorithms exploit the spatio-temporal

8DANSE = Distributed Adaptive Node-specific Signal Estimation.
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(cross-)correlation between all available microphone signals to compute a good
signal estimate of the target source. Due to the close relationship with the
literature on antenna arrays, they are often referred to as beamforming tech-
niques, since they basically ‘steer a beam’ in the direction of a target source,
while suppressing sounds from other directions.

There is a vast amount of literature on multi-microphone noise reduction or
acoustical beamforming. Many beamformers assume a fixed regularly arranged
microphone array with accurately known microphone positions, and they usu-
ally also require knowledge of the direction of the desired sound source. These
techniques often have the disadvantage that they are sensitive to microphone
mismatch9 and microphone positions, and therefore they need to be carefully
calibrated before operation, although techniques exist to make them more ro-
bust to such non-idealities [42–47].

Blind beamforming and blind source separation techniques also exist, which
do not assume prior knowledge of the microphone and source positions, and
which are usually also robust to microphone mismatch [42, 48–53]. They are
therefore well-suited for noise reduction in ad hoc deployed WASNs. In the re-
maining of this section, we will focus on two blind multi-channel noise reduction
techniques: the multi-channel Wiener filter and the blind linearly constrained
minimum variance (LCMV) beamformer. These techniques form the backbone
of the DANSE and linearly constrained DANSE algorithms, which will be in-
troduced in chapters 2 and 6, respectively.

1.2.2 Multi-channel Wiener Filtering (MWF)

The multi-channel Wiener filter (MWF) is a successful blind noise reduction
technique that estimates a desired speech signal in an arbitrarily chosen refer-
ence microphone [42, 48]. Consider a scenario as in Fig. 1.8, where a person
produces a speech signal s(ω), with ω denoting the frequency-domain vari-
able10. This signal is recorded by a microphone array with M microphones.
Due to reflections on the walls and the objects in the room, the signal xm(ω)
that is observed at microphone m is a distorted version of the dry source signal
s(ω), i.e., s(ω) is filtered by the room impulse response (RIR). Furthermore,
microphone m also observes an additive noise component vm(ω). The actual
recorded signal ym(ω) at microphone m can therefore be decomposed in

ym(ω) = xm(ω) + vm(ω), m = 1, ...,M (1.1)

9Different microphones usually have different gains when recording sound.
10For the sake of an easy exposition, we will describe the MWF estimation theory in

the frequency-domain. This allows us to describe all microphone signals as instantaneous
mixtures of source signals, instead of time-domain convolutive mixtures. Both domains are
theoretically equivalent, but they may give different results in practical applications due to
the use of finite DFT-sizes.
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Figure 1.8: A typical scenario for multi-channel noise reduction.

where xm(ω) is the desired speech component and vm(ω) the undesired noise
component. It should be noted that xm(ω) can be a superposition of multi-
ple desired speech signals, e.g., when recording a conversation. Furthermore,
although xm(ω) is referred to as the desired speech component, vm(ω) is not
necessarily non-speech, i.e., undesired speech sources may be included in vm(ω).
All microphone signals ym(ω) are stacked in an M -dimensional column vector
y(ω) = [y1(ω) y2(ω) . . . yM (ω)]T , and the vectors x(ω) and v(ω) are similarly
constructed. The data model for the full microphone array can then be written
as y(ω) = x(ω) + v(ω).

The goal is to estimate the desired speech component xm(ω) as it is observed in
the m-th microphone, selected to be the reference microphone. Without loss of
generality (w.l.o.g.), it is assumed that the reference microphone corresponds to
m = 1. We filter each microphone signal with a particular filter, and then sum
the M filter outputs to generate an estimate of x1(ω). Let the M -dimensional
column vector w(ω) denote the stacked version of the M filter coefficients at
frequency ω, then the estimate is generated with the filter-and-sum operation

x1(ω) = w(ω)Hy(ω) (1.2)

where the superscript H denotes the conjugate transpose operator. The fil-
ter coefficients of w(ω) are chosen based on a minimum mean squared error
(MMSE) criterion, i.e., by minimizing the following MSE cost function

J(w(ω)) = E
{
|x1(ω)−w(ω)Hy(ω)|2

}
(1.3)

where E{.} denotes the expected value operator. It should be noted that
such an optimization problem needs to be solved for each frequency ω. For
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conciseness, the frequency-domain variable ω will be omitted in the sequel. By
setting the gradient OJ(w) to zero, the minimum of (1.3) is found to be:

ŵ = R−1
yy Ryxe1 (1.4)

with Ryy = E{yyH}, Ryx = E{yxH} and e1 an M -dimensional vector with
the first entry set to 1 and all other entries set to 0, which selects the column
of Ryx corresponding to the reference microphone. The filter (1.4) is referred
to as the multi-channel Wiener filter.

The microphone signal correlation matrix Ryy can be estimated based on tem-
poral averaging. Long term averaging over long data windows will result in an
MWF that mainly exploits spatial characteristics and long-term noise spectra,
since rapidly varying temporal information cannot be captured in this way.
Since the desired signal x is unknown, we cannot directly compute Ryx. How-
ever, if the desired speech sources in x are uncorrelated to the noise in v, as it
is usually the case, then Ryx = Rxx = E{xxH}. The matrix Rxx is unknown,
but by again relying on independence between x and v, it can be computed as

Rxx = Ryy −Rvv (1.5)

with Rvv = E{vvH}. The noise correlation matrix Rvv can be (re-)estimated
during noise-only periods and Ryy can be (re-)estimated during speech-and-
noise periods, requiring a voice activity detection (VAD) mechanism (see, e.g.,
[54–56]). Even when the noise sources and the speech source are not stationary,
the MWF (1.4) is observed to yield good noise reduction performance for long-
term estimates of Ryy and Rxx [40, 48, 57], mainly due to the exploitation of
spatial information, which usually changes relatively slowly over time.

The MWF can be extended to include a trade-off between speech distortion
and noise reduction, referred to as the speech-distortion-weighted MWF (SDW-
MWF) [58]. To this end, we rewrite the MSE cost function (1.3) as

J(w) = E
{
|x1 −wHx|2

}
+ E

{
|wHv|2

}
(1.6)

where we used the additive-noise model y = x+v. It is observed that the first
term of (1.6) denotes the speech distortion due to the filter w, whereas the
second term denotes the actual noise reduction. To derive the SDW-MWF, we
add a trade-off parameter µ to the second term, to put more or less emphasis
on the noise reduction:

JSDW-MWF(w) = E
{
|x1 −wHx|2

}
+ µE

{
|wHv|2

}
. (1.7)

The SDW-MWF filters are then computed as

ŵ = (Rxx + µRvv)−1 Rxxe1 (1.8)

where a large value of µ puts more weight on the noise reduction, but generally
results in more speech distortion. When µ→∞, all the weight is on the noise



1.2. Acoustic Signal Estimation Problems 19

reduction, and distortion is ignored, yielding the trivial filter w = 0. The
limit case where µ → 0, corresponds to a distortionless response, where the
remaining degrees of freedom are used for the noise reduction.

For the case of a single desired speech source, the speech correlation matrix Rxx

has rank 1, and then the SDW-MWF solution (1.8) can be rewritten as [59]

ŵR1-MWF = R−1
vv Rxxe1

1
µ+ Tr{R−1

vv Rxx}
(1.9)

where Tr{.} denotes the trace operator, i.e., the sum of the diagonal elements
of the matrix. This is referred to as the rank-1 SDW-MWF (R1-MWF), and
it is shown in [59] that the implementation based on (1.9) is numerically more
favorable than an implementation based on the general SDW-MWF formula
(1.8). Based on this rank-1 assumption, it can also be shown that the case
where µ = 0 is equivalent to the minimum variance distortionless response
(MVDR) beamformer (see Subsection 1.2.3).

It should be noted that (1.5) and (1.9) are theoretical results. The esti-
mated Rxx will not have rank 1 in practice and it may even not be positive
(semi-)definite. Although these properties are not required to be able to use
(1.9), the noise reduction performance of the MWF-based algorithms may be
affected if these properties are not enforced. Furthermore, (1.9) may become
unstable or ill-conditioned if Rxx becomes indefinite.

1.2.3 LCMV Beamforming

Linearly constrained minimum variance (LCMV) beamforming is a well-known
beamforming technique [19, 60, 61], which aims to reduce the output variance
of a filter-and-sum operator, under certain linear constraints, e.g., to preserve
the target source signals. In the context of speech enhancement, its main
advantage over SDW-MWF is that it is able to reduce noise without distorting
the target speech sources. Furthermore, it allows to add extra constraints to
fully suppress certain spatially located noise sources.

Assume an acoustic scenario where there are K relevant spatial point sources
(we consider a point source as relevant, if this source is incorporated in the
constraints of the LCMV beamformer, as explained later). We can then assume
that y is generated by the following linear data model (in the frequency domain)

y(ω) = A(ω)s(ω) + v(ω) (1.10)

where s(ω) is a stacked signal vector containing the K relevant source signals,
A(ω) is an M×K steering matrix that contains the transfer functions from the
K sources to the M microphones (modelling the room acoustics), and v(ω) is a
noise component. Sources that are not used in the linear constraints (see below)
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are incorporated in v(ω), even when they are spatially located and therefore in
principle could be described by the first term. For conciseness, we will again
omit the frequency variable ω in the sequel.

Let us first assume that the matrix A is known (this requires a fixed determin-
istic scenario, and it involves a prior training and calibration phase). The goal
is to design a filter-and-sum beamformer to generate a signal d = wHy with
minimum variance, and hence removing as much noise as possible. However,
to avoid the trivial solution w = 0, several linear constraints are added. For
example, if the goal is to obtain an undistorted estimate of sk, i.e., the k-th
source in s, we need to make sure that wHak = 1, where ak denotes the k-th
column of A. If we also want to fully suppress the q-th source in s, we also
need that wHaq = 0. The general LCMV optimization problem is given by

min
w

E{‖wHy‖2} (1.11)

s.t.
AHw = f (1.12)

where f contains the desired responses for each of the signals in s. Usually,
fk = 1 if source k is desired, and fk = 0 if source k is an interferer, where fk

denotes the k-th entry of f . The solution of (1.11)-(1.12) is [19]:

ŵ = R−1
yy A

(
AHR−1

yy A
)−1

f . (1.13)

In many cases, a blind approach is preferred, where there is no prior knowledge
required on the acoustic scenario, i.e., where the steering matrix A is unknown.
This is especially important in adaptive beamforming applications where the
source and microphone positions can change. Blind LCMV beamforming [51]
then usually relies on a detection algorithm that detects if a desired source is
active or not. Let Id denote the set of indices that correspond to the N desired
sources from s we want to preserve in the output of the LCMV beamformer.
The other P = K −N sources from s are assumed to be interferers, and their
indices define the set In. Let Qd denote the M ×N matrix with its columns
defining a unitary basis for the desired subspace spanned by the columns of
A with indices in Id. Similarly, let Qn denote the M × P matrix containing
a unitary basis for the interferer subspace corresponding to In. Although it
is usually difficult or impossible to estimate the individual columns of A in a
blind fashion, the matrices Qd and Qn can often be estimated blindly from the
sensor signals y (see e.g. [50]). In the sequel, we assume that these matrices
can indeed be estimated blindly.

Since there is no knowledge on the true steering matrix, we aim to obtain a
distortionless estimate of the mixture of the N desired signals from s as they
impinge on one of the microphones, referred to as the reference microphone
(assume w.l.o.g. that this is the first sensor, i.e. y1). It is noted that we do not
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necessarily intend to unmix the sources in Id, since this requires the estimation
of each column of A. In a multiple speaker scenario, to estimate the steering
vectors of each speaker separately, the VAD must be able to distinguish between
different speakers (e.g., with [62] or the technique proposed in Chapter 10).
Furthermore, there should be sufficient segments with non-overlapping speech,
for each speaker separately, to blindly estimate the subspace of each speaker.
By estimating a mixture of desired sources, the problem is relaxed to estimating
multi-dimensional subspaces, such that overlapping signal segments within Id

and In can also be used for the estimation of the desired and interference
subspaces.

To this end, we compute the w that minimizes the variance of d = wHy,
while preserving the desired signals in Id. If required, other constraints can be
added, e.g. to (fully or partially) block the interferers in In. More specifically,
we solve the following centralized LCMV problem:

min
w

E{|wHy|2} (1.14)

s.t.
QHw = f (1.15)

with

Q =
[

Qd Qn
]

(1.16)

f =
[

qd
1

εqn
1

]
(1.17)

where qd
1 and qn

1 denote the first column of Qd H and Qn H respectively (cor-
responding to the reference microphone), and where ε is a user-defined gain11.
Similarly to (1.13), the solution of this problem is given by:

ŵ = R−1
yy Q

(
QHR−1

yy Q
)−1

f . (1.18)

It can be shown [50] that the signal components of s in the output d̂ = ŵHy,
are equal to the signals as they impinge on the reference microphone (except
for a scaling by ε), i.e., we obtain

d̂ =
∑
l∈Id

a1lsl + ε
∑
l∈In

a1lsl + ŵHv (1.19)

with akl denoting the entry in the k-th row and l-th column of A. It should be
noted that this procedure yields a distortionless response, which is not the case
in SDW-MWF based beamforming techniques (see Subsection 1.2.2). However,

11Usually ε = 0 to fully cancel the interferers. However in some cases it may be important
to retain some undistorted residual noise, e.g. for hearing aid users to be able to mentally
reconstruct the acoustic environment.
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the constraints that enforce this distortionless response remove some degrees
of freedom, yielding less noise reduction in the residual ŵHv.

It should be noted that the minimum variance distortionless response (MVDR)
beamformer [60, 61, 63] is a special case of LCMV beamforming, where In is
empty and where Id is a singleton, i.e., there is a single desired source which is
the only relevant signal (K = 1). In this case, the steering matrix A becomes
a steering vector a, and the multi-channel signal s becomes a single-channel
signal s. Let x = as denote the desired speech component in each microphone
of the array, and let Ps denote the signal power of s, i.e., Ps = E{|s|2}. The
desired speech correlation matrix Rxx = E{xxH} can then be written as

Rxx = PsaaH . (1.20)

Using (1.5) and (1.20), we can rewrite (1.18) as

ŵ =
(
Rvv + Ps‖a‖2qqH

)−1
q

1

qH (Rvv + Ps‖a‖2qqH)−1 q

a∗1
‖a‖

(1.21)

where q = 1
‖a‖a, and where we set f = a∗1

‖a‖ with a1 denoting the first entry of a
(this corresponds to the choice of f in (1.17)). By applying the matrix inversion
lemma [64], and using the notation ρ = qHR−1

vv q, we can rewrite (1.21) as

ŵ = R−1
vv q

1−
(

1
Ps‖a‖2 + ρ

)−1

ρ

ρ−
(

1
Ps‖a‖2 + ρ

)−1

ρ2

a∗1
‖a‖

= R−1
vv q

1
ρ

a∗1
‖a‖

. (1.22)

Since ρ = qHR−1
vv q = Tr{qHR−1

vv q} = Tr{R−1
vv qqH} = 1

Ps‖a‖2 Tr{R−1
vv Rxx},

we eventually obtain

ŵ = R−1
vv Rxxe1

1
Tr{R−1

vv Rxx}
. (1.23)

As mentioned earlier, this is exactly the same expression as the rank-1 SDW-
MWF in (1.9) with µ = 0. Therefore, MVDR beamforming can be considered
as a special case of SDW-MWF.

1.3 Techniques for Distributed Signal Estima-
tion in WSNs

In this section, we give an overview of some state-of-the-art linear signal esti-
mation techniques for wireless sensor networks. As mentioned in Section 1.1.3,
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Figure 1.9: A typical compress-and-fuse scenario.

signal estimation usually cannot rely on iterative techniques since the number
of variables that are estimated increases linearly with the number of sensor ob-
servations. Due to the large amount of literature on linear estimation in WSNs,
we restrict this overview to a particular selection of algorithms and estimation
problems, including (w.l.o.g.) some acoustically-oriented distributed signal es-
timation algorithms. However, the latter can also be applied to more general
(non-acoustical) signal estimation problems. Although not truly being a signal
estimation problem per se, we also incorporate distributed source coding in this
section (see Subsection 1.3.4), since it is closely related and highly relevant in
signal estimation problems.

1.3.1 Compress and Fuse

General Problem Statement

A lot of work on signal estimation in WSNs adopts a centralized architecture
with one-way data transmission from the sensor nodes to a fusion center (FC)
[7–12]. The idea is then to let each node compress its sensor observations
locally, and transmit the compressed observations to the FC who computes the
final signal estimate, as depicted in Fig. 1.9. We will denote this as ‘compress
and fuse’.

Consider a WSN with a set of J nodes J = {1, . . . , J}. At time t, node k
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observes an M -dimensional data vector yk[t], which can be a set of time sam-
ples of a single sensor signal, or a stacked version of samples of multiple sensor
signals available at node k. It is assumed that these samples are generated by
stationary stochastic processes. Node k compresses this sample vector with a
K ×M compression matrix Wk to obtain a K-dimensional12 vector zk[t] with
reduced dimension (K < M), i.e., zk[t] = Wkyk[t]. The FC then collects the
stacked data vector z[t] = [z1[t]T . . . zJ [t]T ]T and computes the final estimate
d[t] = Gz[t], where G is a Q × (KJ) matrix13. It is noted that for each ob-
servation time t, a new vector d[t] is estimated, which should be as close as
possible to the true desired vector d[t], according to some optimality criterion,
e.g., best linear unbiased estimation (BLUE), also known as linear minimum
mean squared error (LMMSE). The challenge is then to design the local com-
pression rules at the nodes (the Wk’s), and the fusion rule (the matrix G) at
the FC. It is noted that, if all the Wk’s are equal to the M×M identity matrix
IM , then there is no compression, which is referred to as centralized fusion.

One way to tackle this problem, is the so-called standard estimation fusion
[7, 65]. In this case, a node k computes a local estimate dk[t], according to
the same optimality criterion as used in the FC. This local estimate is then
transmitted to the FC which combines the local estimates of the different nodes
to a single final estimate d[t]. This approach is of course only useful if Q < M ,
otherwise there is no compression in the transmitted data. In this way, the
design of all the Wk’s and G is decoupled into J + 1 separate estimation
problems, and therefore no joint statistics are required. The limitations of
this approach are however obvious. It is almost surely suboptimal, since the
design is partitioned in decoupled sub-problems. Furthermore, it does not
incorporate explicit bandwidth constraints, as the dimension of the transmitted
data vectors is always Q.

To obtain a better or optimal estimation fusion, all the Wk’s and G should
be designed jointly. However, except for some special cases, the design of such
compress-and-fuse algorithms usually relies on prior knowledge of the signal
statistics and cross-correlations between sensor signals and/or the target signal.
Therefore, the compression and fusion rules are usually computed offline before
operation of the estimation algorithm, and hence there is no adaptation. In
the remaining of this subsection, we address some strategies for optimal and
suboptimal compress-and-fuse estimation.

Best Linear Unbiased Estimator

12For the sake of an easy exposition, it is assumed here (w.l.o.g.) that the dimensions of
all the yk’s are equal (M) and the dimensions of all the zk’s are equal (K). However, the
dimension for all these vectors may also be node-specific.

13In many cases, Q = M , e.g., when yk contains time samples of a single sensor signal,
and the goal is to estimate a hidden signal component in this sensor signal.
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For notational convenience, we omit the time index t in the sequel, and we
assume (w.l.o.g.) that the true vector d, and all sensor observations yk are zero-
mean. The goal is to obtain the BLUE or LMMSE estimator that minimizes

arg min
G,W

J(G,W) = E{‖d−GWy‖2} (1.24)

s.t.

W = blockdiag{W1, . . . ,WJ} (1.25)

where blockdiag{.} is a block-diagonal matrix with its arguments on the block
diagonal, and where y =

[
yT

1 . . . yT
J

]T .

In [7, 10], the matrix G is a priori chosen as the BLUE estimator14 with respect
to the collected compressed data vector z, i.e.,

GBLUE = RdzR−1
zz (1.26)

where Rdz = E{dzH} and Rzz = E{zzH}. Note how this is similar to the
MWF solution in a single frequency bin (1.4), which is also a BLUE estimator.
This fusion rule minimizes the MSE between d and Gz. The local compression
rules at the nodes, i.e., the entries in W, can be obtained by minimizing

arg min
W

J̃(W) = E{‖d−GBLUEWy‖2} (1.27)

= Tr
{
Rdd −RdyW

(
WHRyyW

)−1
WHRH

dy

}
(1.28)

s.t.

W = blockdiag{W1, . . . ,WJ} (1.29)

where Rdd = E{ddH}, Rdy = E{dyH} and Ryy = E{yyH}.

Special Cases

There is no general closed-form expression for the solution of the highly non-
convex optimization problem (1.27)-(1.29). However, in [7], three special cases
are considered for which a closed form expression can be found: the single-node
case (J = 1), the case where the sensor signals are uncorrelated (E{ykyH

q } =
0 for any k 6= q), and the case with identically correlated sensor signals
(E{ykyH

q } = R1, ∀ k, q ∈ J and E{dyH
k } = R2, ∀ k ∈ J ). However, these

special cases rarely match with practical scenarios.

The case with uncorrelated sensor signals (E{ykyH
q } = 0 for any k 6= q) is also

addressed in [9], based on the general formulation (1.24)-(1.25). It is shown that
14In [9], it is shown that this a priori choice may yield suboptimal results, i.e., sometimes

a lower MSE can be obtained at the same compression rate.



26 Chapter 1. Introduction and Overview

the optimal strategy is then to let node k compute a local LMMSE estimate dk,
based on the locally15 available yk, and then compress this estimate by means
of a local principal component analysis (PCA) implemented by a Karhunen-
Loève transform (KLT) [66]. The matrix G is then chosen as the stacked
decompression matrices of the local KLTs. This is referred to as ‘estimate-
compress’ (EC), since first an estimate is computed, which is then compressed
to reduce the communication bandwidth. It is also shown that the reversed
approach (compress-estimate or CE), as in [10], is usually suboptimal.

The fact that EC outperforms CE is often observed in WSNs with limited or
partial spatial correlation. The intuitive reason is that, in CE, the compression-
scheme does not incorporate the fact that noise needs to be reduced, and there-
fore also preserves the information in the noise component. This means that
the available bandwidth is allocated to both the noise and the signal compo-
nent. In EC, the noise is first reduced by a prior estimation stage, and then the
compression stage will focus more on the desired signal, and will spill less band-
width on transmitting the noise. It is noted that this is only advantageous in
the case where the noise is uncorrelated in the different nodes (see also Subsec-
tion 1.3.3, where a similar result is obtained in a speech enhancement context).
If there is spatial correlation in the noise component, it may be beneficial to
also include the noise component in the signals that are transmitted to the FC.
In this case, EC may yield highly suboptimal results.

The General Case

A common method to solve (1.27)-(1.29) [7] or (1.24)-(1.25) [8] for the general
case, is to use an offline Gauss-Seidel iteration algorithm, which is basically
a block-coordinate descent method [7, 67]. In each iteration a single variable
is optimized, while fixing the other variables to their current value, until all
optimization variables have converged. However, this only provides a stationary
point of the cost function, which is not necessarily the optimum. Simulation
results in [7, 9] demonstrate that this procedure often works well, and usually
an estimator is obtained that is close to the optimal solution with respect to
the imposed constraints. It should be noted that this procedure yields fixed
fusion rules, based on full knowledge of the sensor signal cross-correlations.

It is obvious that, in general

J̃(W) ≥ J̃(IMJ) (1.30)

i.e., compression results in a larger MSE than in the case of centralized fusion.
However, if16 K ≥ P = rank

(
RH

dyRdyR−1
yy

)
, the data can be compressed

15The fact that only locally available data is required for an optimal performance facilitates
adaptive and distributed implementations.

16For example, this is satisfied if K ≥ Q, i.e., the dimension of the compressed sensor data
zk is at least as large as the dimension of the final estimate d.
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without information loss for estimation fusion [7, 8], i.e., we obtain the same
performance as the centralized fusion. To obtain the optimal performance, the
compression matrices need to be chosen as W1

...
WJ

 = R−1
yy U (1.31)

where the columns of U contain the eigenvectors corresponding to the P non-
zero eigenvalues of RH

dyRdyR−1
yy . It is noted that the data compression still

relies on prior knowledge on the correlation between sensor signal observations.
If a sensor compresses its observations by only considering its local information,
generally there is information loss, unless extra assumptions are imposed [8].

The fact that the centralized BLUE estimator can be obtained if K ≥ Q, will
also be exploited in Chapter 2 to derive a distributed adaptive node-specific
signal estimation (DANSE) algorithm. However, the latter does not require
prior knowledge of Ryy. Instead, it estimates and re-estimates all required
statistical quantities on the compressed data during operation, which makes it
fully adaptive, as opposed to the fixed fusion rules obtained with a centralized
Gauss-Seidel approach. Furthermore, in DANSE, each node is allowed to es-
timate a node-specific signal, which allows for blind estimation based on local
reference sensors.

Extension: Linear Sensor Data Model

Up to this point, we have not imposed any assumptions on the signal observa-
tions in y (except for stationarity). By doing so, some other interesting cases
can be solved and analyzed. In [8], a linear sensor data model is adopted, i.e.,

yk = Akd + vk (1.32)

where Ak is a fixed M × Q matrix, and vk is additive zero-mean white noise
that is independent of d. Furthermore, it is assumed that the noise is white
(E{vkvH

k } = IM ) and spatially uncorrelated (E{vkvH
q } = 0 if k 6= q).

It is assumed that the Ak’s are known, which removes the need for Rdy, i.e., the
signal statistics of d do not need to be known. If K ≥ Q, the resulting MMSE
problem based on the general formulation (1.24)-(1.25) has a closed-form so-
lution that, in contrast to (1.31), does not depend on the cross-correlation
between sensor data [8]. Only knowledge on the local mixing matrix Ak is re-
quired to compute Wk. If this matrix can be estimated and communicated to
the FC during operation of the algorithm, this allows for an adaptive compress-
and-fuse algorithm.

The DANSE algorithm introduced in Chapters 2 to 5 is able to obtain the
centralized LMMSE solution in an adaptive iterative fashion, without knowl-
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edge of the Ak’s (and actually without imposing a sensor data model such as
(1.32)). However, this is only possible if there is 2-way communication such
that information can also flow to the sensor nodes, i.e., the sensor nodes must
know what is going on in the rest of the network.

1.3.2 Distributed Signal Estimation in Ad hoc Sensor
Networks

In the previous subsection, it is explained how signal estimation is tackled in a
network with a star topology, where the center node is a fusion center. Signal
estimation in networks with an ad hoc topology is very different, and is usually
tackled in an ad hoc way, by a priori choosing a local fusion rule for the sensor
nodes, and then optimizing the parameters to obtain minimum variance over
all the estimates of all the nodes. An extra challenge is to guarantee that
the estimated signals remain stable in each node, which is non-trivial due to
feedback paths through the network.

As an example, we briefly address the estimator proposed in [18]. It is an
adaptive algorithm for signal estimation in networks with an ad hoc topology,
based on the following observation model at node k:

yk[t] = d[t] + vk[t] (1.33)

where d is the desired signal that needs to be estimated, vk is a zero-mean
white noise signal that is uncorrelated with d, and yk is the signal as observed
by node k. Note that there is no mixture or steering matrix as in (1.32),
i.e., each node observes an undistorted version of the desired signal d[t] (when
ignoring the uncorrelated noise component). The noise is also assumed to be
spatially uncorrelated, i.e., E{vkvq} = 0 if k 6= q. This restrictive data model
and the aforementioned assumptions on the noise are important to perform a
stability analysis of the algorithm, and to define a cost function that can be
solved locally by each node.

Using this data model, the following local estimator is a priori assumed at node
k:

dk[t] =
∑

q∈Nk∪{k}

gkq[t]dq[t− 1] +
∑

q∈Nk∪{k}

wkq[t]yq[t] (1.34)

where Nk denotes the set of nodes that are directly connected to node k (node
k excluded). This estimator makes a linear combination of the new sensor ob-
servations and the estimates of the previous sample from all the nodes in the
neighborhood. The weights {gkq} and {wkq} are time-dependent to obtain an
adaptive algorithm. It is noted that this is a heuristic estimator that is very
different from traditional centralized BLUE estimators, and therefore highly
suboptimal. It only uses instantaneous measurements from a 1-hop neighbor-
hood of node k. Observations that originated beyond this neighborhood can
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only be incorporated in the estimate of future samples. Therefore, it is ex-
pected that the estimator only exploits data of the full network if the target
signal d changes slowly over time, i.e. if d[t − L] ≈ d[t], where L denotes the
maximum number of hops between any pair of nodes. This implies that the
signal d should be heavily oversampled when the algorithm is applied in large
networks.

The minimum variance unbiased estimator (MVUE) for (1.34) is obtained if
gkq[t] = 0 for any k, q and t, and if

wkq[t] = wqk[t] =
{ 1
|Nk|+1 if q ∈ Nk ∪ {k}
0 otherwise

(1.35)

where |S| denotes the cardinality of the set S. This means that an unbiased
estimate can only be obtained in a partially isolated case where each node only
uses raw measurements from nodes in a one-hop neighborhood. To further
reduce the error variance, biased estimates need to be considered. To this end,
let G[t] and W[t] denote the weighting matrices, i.e., the entry at the k-th row
and the q-th column of G[t] is gkq[t], where gkq[t] = 0 if node k and q are not
connected, and similarly for wkq[t] in W[t]. It can be shown that the bias of
the estimator (1.34) is bounded if ∀ t ∈ N,∃ δ > 0 : |d[t]− d[t− 1]| < δ, and if
the following two conditions are satisfied:

(G[t] + W[t])1 = 1 (1.36)

where 1 is a vector with each entry set to unity. Furthermore assume that
there exists a 0 ≤ σ0 < 1 such that

σmax (G[t]) ≤ σ0 (1.37)

where σmax (G[t]) denotes the largest singular value of G[t]. The upperbound
on the bias is then given by

lim
t→∞

|E{d− dk}| ≤
√
Jδσ0

1− σ0
(1.38)

where J denotes the number of nodes in the network. This means that the
bias tends to increase if the number of nodes J increases, and if the desired
signal d changes more rapidly (δ increases). However, the increase of these
variables usually yields a decrease in the error variance E{|ek − E{ek}|2},
where ek = d− dk.

In [18], it is explained how the weights of node k, i.e., {gkq} and {wkq}, ∀ q ∈
Nk ∪ {k}, can be computed adaptively in a fully distributed fashion, such that
the local variance of the estimator (1.34) is minimized. It is noted that this
is based on local minimization problems, and hence this is not a minimization
of the overall variance

∑J
k=1E{|ek − E{ek}|2}, since the weights of different

nodes influence each other.
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The advantage of signal estimation techniques as in the above example, is that
they have many of the properties that are desired in large-scale WSNs, i.e. scal-
ability, ad hoc topologies, adaptation, uniformity, and self-healing properties.
However, this comes at the price of obtaining a signal estimate that is usually
biased and highly suboptimal, and there are no steady-state convergence re-
sults. Furthermore, the estimation algorithm relies on restrictive sensor data
models such as (1.33), and the spatial correlation can only be fully exploited
if the sensor signals are heavily oversampled, i.e., if the signal varies slowly in
comparison to the sampling clock. Although this is strictly spoken a signal
estimation algorithm, the latter assumption actually implies that the method
is more or less based on iterative refinement of previous estimates, and there-
fore akin to a parameter estimation framework where a slowly varying scalar
parameter is tracked.

From the example above, it should be clear that signal estimation in simply
connected networks (without fusion center) is a difficult problem, and one often
has to settle for suboptimal heuristic techniques to solve it. In Chapter 5 of
this thesis, we tackle this problem in a more fundamental way, i.e., we aim to
compute the optimal centralized LMMSE or BLUE estimate in an adaptive
distributed fashion, and without imposing any assumptions on the sensor data
model. It is shown that it is only possible to achieve this optimal performance
if there are no feedback paths in the signal flow graph. Therefore, the network
links need to be pruned to a tree topology to avoid cycles or loops in the
network graph. For such networks, the tree-DANSE (T-DANSE) algorithm is
then defined, based on a similar (but slightly different) parametrization as in
(1.34), and which can be shown to converge to the optimal centralized LMMSE
estimator.

1.3.3 Distributed Noise Reduction in Binaural Hearing
Aids

In this subsection, we address a specific distributed signal estimation problem,
i.e., MWF-based acoustic noise reduction in hearing aids (HAs). In particular,
we consider the case of binaural hearing aids (BHAs), i.e., a pair of wirelessly-
connected hearing aids (one at both ears). The hearing aids can then exchange
audio signals to improve their local noise reduction performance. This is es-
sentially a two-node WASN, where both nodes have multiple microphones (the
current-generation HAs usually have 2 or 3 microphones to allow for multi-
microphone noise reduction). Assuming that there are bandwidth constraints
on the wireless link that do not allow transmission of all the microphone signals,
an important question is then how the microphone signals can be optimally
combined and compressed to satisfy these constraints.

Decoupled Distributed Noise Reduction
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Figure 1.10: The decoupled distributed noise reduction problem in binaural
hearing aids.

One way to tackle this problem is to decouple the noise reduction problems
in the left HA and the right HA, i.e., ignoring the fact that there is two-way
communication between the HAs. This is schematically depicted in Fig. 1.10:
the (frequency-domain) microphone signals of the left HA, stacked in yL, are
linearly combined with a compression filter wL→R to obtain a single-channel
audio signal zL→R that is transmitted to the right HA, which combines it with
its own microphone signals. Notice that this is basically a compress-and-fuse
problem, where the left HA serves as a sensor node, and where the right HA
is the fusion center17. We assume that the filtering at the right HA is based
on the MWF (see Chapter 1.2.2) with the signals yR and zL→R as its inputs,
and with one of the channels of yR selected to be the reference microphone18.
This decoupled MWF-based noise reduction problem has been investigated
in [40, 68] for different choices of the compression filter wL→R:

• Fixed superdirective beamformer [40]: Choose wL→R as a fixed su-
perdirective beamformer steered towards the front. The obvious disad-
vantage of this approach is that it relies on the assumption that the target
source is exactly in front of the HA user, which is not always the case.

• Desired speech estimate [40, 68]: Choose wL→R as the MWF that
estimates the desired speech source based on the microphone signals of
the left HA. In [40], this was referred to as MWF-Contra.

• Interferer estimate [68]: Instead of transmitting an estimate of the
target signal, an alternative is to transmit a noise reference to the right
HA. In this case, wL→R creates an estimate of the interferer (in LMMSE
sense).

• Raw microphone signal [40, 68]: Choose wL→R = em, where em is

17The microphone signals from the right HA can be treated as uncompressed sensor ob-
servations that the fusion center receives from another virtual sensor node.

18The goal for the right HA is to estimate the desired speech signal as it impinges on one
of its own microphones. This means that each HA estimates a different version of the same
signal. This is important to preserve auditory cues for spatial hearing [57].
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an all-zero vector, except for the m-th entry, which is equal to one. This
corresponds to the case where the m-th microphone signal is selected and
transmitted to the right HA.

The above choices have been investigated in different acoustic scenarios, and
their performance is observed to heavily depend on the scenario in which they
are used. For the cases that are investigated in [68], a rate-distortion analysis
is also provided, where rate constraints in the wireless link are explicitly in-
corporated (see also Subsection 1.3.4). This means that, before transmission,
the signal zL→R is optimally compressed (in an information-theoretic sense) to
match a given bit rate.

In general, the fixed superdirective beamformer is observed to give the worst
performance, unless for some particular scenarios with properties that more or
less match with the design requirements of the beamformer. The MWF-contra
has a good overall performance, i.e., in most scenarios it performs better than
transmitting a raw microphone signal or a fixed beamformer output. It is also
shown in [40] that this distributed estimator is LMMSE-optimal in a scenario
where the noise at the two hearing aids is uncorrelated. This is similar to the
optimality of the estimate-compress (EC) strategy in the case of uncorrelated
sensor observations in compress-and-fuse techniques, as addressed in Subsection
1.3.1.

The analysis in [68] demonstrates that, in scenarios with a significantly loud
interfering source, transmitting a raw microphone signal performs better than
transmitting a desired signal estimate or a noise reference. An intuitive reason
could be that both the desired signal estimate and the interferer estimate re-
move important information (i.e., the cancelled source) that can be useful for
the receiving HA. In absence of a significant interferer, transmitting a desired
signal estimate only gives a marginal improvement in SNR compared to trans-
mitting the raw signal. Therefore, it is suggested in [68] to always transmit a
raw microphone signal, since it yields the best performance in the most relevant
scenarios, and it requires much less computational power at the transmitting
node. However, it is important to remark that the results obtained in [68] only
hold for scenarios with a single interfering source, and therefore do not con-
tradict the results in [40], where MWF-contra was observed to be the better
strategy.

Optimal Distributed Noise Reduction

Obviously, the above addressed ad hoc techniques are -in most scenarios- sub-
optimal compared to the case where both HAs have access to all the microphone
signals of both ears (from now on referred to as the centralized MWF). How-
ever, under the assumption of a single desired speech source, it is possible to
obtain the optimal centralized MWF solution, without increasing the commu-
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Figure 1.11: The distributed multi-channel Wiener filter for noise reduction in
binaural hearing aids.

nication bandwidth, if we couple the noise reduction problems of both HAs.
In [40], an iterative distributed noise reduction algorithm has been proposed,
referred to as distributed MWF (DB-MWF), which indeed converges to the
optimal centralized MWF as if both hearing aids have access to all microphone
signals.

A schematic illustration of the DB-MWF algorithm is depicted in Fig. 1.11.
The algorithm is similar to the MWF-contra procedure, but instead of choosing
wL→R as the MWF with yL as its input signals, we compute the MWF with yL

and zR→L as input signals, i.e., we exploit the availability of a filtered mixture
of the microphone signals of the right HA. The compression filter wL→R is
then defined by the part of this local MWF that is applied to the microphone
signals of the left HA itself. The part of the local MWF that is applied to the
signal zR→L is denoted by gL. The dual problem is then solved at the right
HA. In particular, the DB-MWF algorithm consists of the following steps:
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The DB-MWF Algorithm [40]

1. Initialize wL→R with a random non-zero filter w0
L→R.

2. Initialize i← 0.
3. At the left HA, compute zi

L→R = wi H
L→RyL, and transmit this signal

to the right HA.
4. At the right HA, compute the MWF with inputs yR and zi

L→R,
i.e., [

wi+1
R→L

gi+1
R

]
= arg min

w
E

{∣∣∣∣xR −wH

[
yR

zi
L→R

]∣∣∣∣2
}

(1.39)

where xR is the speech component in the reference microphone of
the right HA.

5. At the right HA, compute zi+1
R→L = wi+1 H

R→L yR, and transmit this
signal to the left HA.

6. At the left HA, compute the MWF with inputs yL and zi+1
R→L, i.e.,[

wi+1
L→R

gi+1
L

]
= arg min

w
E

{∣∣∣∣xL −wH

[
yL

zi+1
R→L

]∣∣∣∣2
}

(1.40)

where xL is the speech component in the reference microphone of
the left HA.

7. i← i+ 1
8. Return to step 3.

In each iteration, each HA minimizes a local MWF cost function, similar to
(1.3), for a local reference microphone. In [40] it is shown that this procedure
converges in the case of a single desired speech source. Furthermore, it turns
out that the resulting filters obtain the same output signals as the centralized
MWF that has access to all the microphones of both hearing aids, i.e.,[

w∞R→L

w∞L→R g∞R

]
= wR (1.41)

where wR is the centralized MWF solution at the right HA, i.e.,

wR = arg min
w

E

{∣∣∣∣xR −wH

[
yR

yL

]∣∣∣∣2
}
. (1.42)

The MWF cost functions in the DB-MWF algorithm can also be replaced
by SDW-MWF cost functions (1.6), without harming the convergence and
optimality results. In [69], a similar distributed algorithm is considered for
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distributed MVDR beamforming in binaural HAs, for which convergence and
optimality is proven, again for the case of a single speech source. DB-MWF
can be easily transformed to this distributed MVDR by using the R1-MWF
formula (1.9) to solve (1.39) and (1.40), where the trade-off parameter is set to
µ = 0 (see also Subsection 1.2.3).

The DB-MWF algorithm suggests that a block of data is iteratively refined,
i.e., re-estimated and retransmitted multiple times. However, this may require
a bandwidth and computational power19 that is larger than transmitting the
raw microphone signals, i.e., directly computing the centralized MWF. Further-
more, for short data blocks (e.g. for real-time processing), it is not possible
to compute this iterative refinement, since both the local speech correlation
matrix and speech-plus-noise correlation matrix (represented by Ryy and Rxx

in Subsection 1.2.2) need to be re-estimated in each iteration. This is only
possible if there is both a noise-segment and a speech-plus-noise segment in the
considered block of data. However, the different iterations of the DB-MWF
algorithm can be spread out over different data blocks in a time-recursive im-
plementation, such that each block of data is transmitted and estimated only
once. Since the spectrum of speech signals changes rapidly in time, these rapid
variations will probably not be captured by the estimation process i.e., mostly
spatial information will be exploited.

The DANSE algorithm that is introduced in Chapter 2, and further extended
and modified in Chapters 3 to 6, is based on the DB-MWF algorithm for BHAs.
DANSE generalizes DB-MWF to the multi-speaker case, and to fully connected
WSNs with any number of nodes. Further extensions are simultaneous node
updating (Chapter 3), robust estimation (Chapter 4), tree topology networks
(Chapter 5), and node-specific distributed LCMV beamforming (Chapter 6).

1.3.4 Source Coding in WSNs

All techniques that were previously addressed aimed to estimate a signal in a
distributed fashion, by fusing multi-sensor observations into a final estimate,
while decreasing the required bandwidth based on dimensionality reduction.
To further reduce the bandwidth, and to match specific rate constraints in the
wireless links, the transmitted signals must be encoded with efficient source
coding techniques, and then reconstructed at the the receiving node. The
goal is then to transmit a signal as efficient as possible, without adding too
much distortion between the original and the decoded signal. Although coding
and estimation are actually different research fields, they have an important
mutual interaction in a WSN context. Indeed, if the distortion due to coding
is large, this may result in a significant performance decrease in the estimation
algorithm.

19Experiments in [40], demonstrate that the DB-MWF algorithm usually converges after
two or three iterations.
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Figure 1.12: A typical source coding scenario in a WSN: three nodes encode
their locally preprocessed signals and transmit it to a fourth node, who decodes
all three signals.

Theoretical optimal bounds can be derived for many source coding problems
based on rate-distortion theory, which is an important branch of information
theory [70]. These bounds are described by so-called rate-distortion curves,
which show the minimum bit rate that needs to be available to not exceed a
specific distortion value or, vice versa, the minimum distortion that can be
achieved for a given bit rate. However, these are theoretical bounds based on
information theory, but they do not provide any practical coding scheme to
achieve these bounds. Another important aspect of coding theory is then to
construct coding schemes that aim to reach the bounds given by rate-distortion
curves.

Since all signal estimation algorithms in the following chapters assume lossless
transmission of data between nodes, we only briefly address some state-of-
the-art results on distributed source coding in WSNs. However, the impact of
source coding on DB-MWF (see Subsection 1.3.3) and on the DANSE algorithm
(see Chapter 2) has been investigated in other work [71, 72].

Source Coding vs. Estimation in WSNs

A typical distributed source coding scenario is depicted in Fig. 1.12. The
receiving node on the right collects encoded versions of three different signals
(z1, z2 and z3) from three different nodes. The decoder at the receiving node
needs to decode all three original signals and provide the reconstructed signals
(ẑ1, ẑ2 and ẑ3) to the local estimation algorithm. For node 1, the goal is thus
to transmit the signal z1 with the smallest possible distortion, i.e., minimize
E{|z1 − ẑ1|2}, given a certain available bit rate in the wireless link. It is noted
that this problem is significantly different from the compress-and-fuse problem
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statement described in Subsection 1.3.1 (see Fig. 1.9) or distributed estimation
in general, where the main goal is to estimate a hidden signal while reducing the
dimensionality of the transmitted data at the same time. In the source coding
problem, a signal is given that needs to be preserved as a whole, i.e., there is
no distinction between desired and noise signal components. Notice that, in
Fig. 1.12, the goal is to reconstruct all the transmitted signals at the receiver,
while in Fig. 1.9, the goal is to estimate a signal component that is hidden in
the data that is obtained from the sensor nodes. Estimation and coding can be
viewed as complimentary techniques at different layers: the former is solved in
the application layer, while the latter is solved in the coding/communication
layer. There is also limited work where both layers are jointly analyzed in an
information-theoretic framework [73].

Side Information Unaware vs. Side Information Aware Coding

The encoders in the distributed source coding scenario in Fig. 1.12 can be
designed in two different ways. The simplest way is to merely encode the sig-
nal z1 by removing the inherent redundancy in the signal z1 itself. This is
often referred to as ‘side information unaware’ (SIU) coding, since it ignores
the mutual information in the signals of other nodes. However, since the re-
ceiving node also has access to encoded versions of z2 and z3, and since these
signals usually contain a lot of the inherent information in z1, the latter can be
transmitted with significantly less bits while keeping the same distortion. This
is referred to as ‘side information aware’ (SIA) coding, i.e., the encoders are
designed to jointly remove the mutual redundancy in all the signals z1, z2 and
z3. Obviously, SIA usually performs better than SIU, but the former cannot
be designed without prior knowledge on the mutual information in z1, z2 and
z3.

A remarkable and very important result for the SIA case, was established by
Slepian and Wolf [74], and later generalized by Wyner and Ziv [75]. They
proved that, to optimally encode z1 in an information-theoretic sense, the sig-
nals z2 and z3 do not need to be available at node 1, i.e., there exists an optimal
encoding scheme that can be implemented without providing the encoder with
instantaneous signal observations of the other signals that are available in the
decoder. However, the encoder at node 1 must have certain knowledge on the
cross-correlation structure between all three signals, but does not need the ac-
tual signals z2 and z3 to optimally encode z1. Therefore, SIA coding is able to
provide optimal encoding schemes in distributed architectures such as WSNs.
Furthermore, it shifts the computational complexity from the encoder side to
decoder side.

The results established in [74] and [75] are however theoretical, and do not
provide any insight in how to achieve this optimal encoding. Practical (but
suboptimal) approaches for SIA coding and rate-constrained coding in WSNs
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can be found in, e.g., [76–78]. Besides a practical bit allocation scheme for
compression, [78] also describes a linear (suboptimal) distributed compression
technique, referred to as the distributed Karhunen-Loève transform (DKLT),
since it is a distributed implementation of the traditional and well-known KLT
[66]. The DKLT aims for dimensionality reduction of local multi-dimensional
sensor data at the nodes, while taking into account that the receiving node
has extra side information obtained from other nodes. Similar to the general
compress-and-fuse problem (see Chapter 1.3.1), it is solved by an offline Gauss-
Seidel type iteration. Again, it is noted that there is a subtle difference between
DKLT and compress-and-fuse techniques, in the fact that the former aims to
compress data for rate-constrained transmission with small distortion, while
the latter compresses data with the goal to have a good final estimate in the
fusion center.

Influence of Distributed Source Coding for Distributed Acoustical
Noise Reduction

Most literature on distributed speech enhancement focuses on the specific case
of binaural hearing aids where compressed audio signals are transmitted be-
tween the two hearing aids over a wireless link. The influence of SIU source
coding in several distributed speech enhancement algorithms has also been in-
vestigated in such a BHA context [68, 71, 73]. For a given bit rate in the wireless
link, information-theoretic bounds for several noise reduction algorithms are
derived. These bounds can only be achieved in practice if the optimal source
coding scheme is known for the signals that are transmitted, which is not the
case. However, they provide useful theoretical insights in the rate-constrained
distributed noise reduction problem for BHAs.

In [68], the influence of optimal source coding on the suboptimal decoupled
noise reduction strategies listed in Subsection 1.3.3 is investigated for differ-
ent bit rates. The case of distributed MWF is investigated in [71], where it
is demonstrated that DB-MWF also performs well in rate-constrained scenar-
ios with low bit-rates, unless the available bit rate is shared between multiple
iterations of the DB-MWF, i.e., if DB-MWF would be used for iterative re-
finement of a single data block. The influence of SIU source coding in the
DANSE algorithm, introduced in Chapter 2, has also been investigated in an
information-theoretic framework [72].

Besides the case of SIU-coding, [73] also provides bounds for SIA rate-constrained
signal estimation in BHAs, without distinguishing between estimation and
source coding as independent cascaded techniques. This means that rate-
distortion curves are derived for the case where the distortion is defined as
the MSE between the speech component in the reference sensor and the esti-
mated signal at the HA output. For a given bit rate, this yields bounds on
the optimal performance of any distributed noise reduction technique. These
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rate-distortion curves can however only be computed if both the speech and
the noise sources are modeled as jointly Gaussian stationary random processes,
which usually does not match with reality, especially in the case of speech sig-
nals which are known to follow a Laplacian distribution [79]. Furthermore, it
is doubtful that these optimal bounds can be achieved without exploiting prior
knowledge on the mutual information between the microphone signals.

For a scenario where the noise is uncorrelated over the microphones, SIA coding
is only useful for high SNR scenarios. If the SNR decreases, the benefit of SIA
coding over SIU disappears, and both techniques give almost the same rate-
distortion curves if the SNR is 0 dB [73]. The authors also address the case
where the bit rate of the wireless link needs to be divided by the left and the
right HA to obtain minimum overall distortion. The optimal strategy for SIA
coding is then to let the HA with smallest SNR not transmit any data, unless
the total available bit rate is larger than a given threshold. It is re-iterated
that all these results only hold in scenarios with spatially uncorrelated noise
and jointly Gaussian stationary random processes. In practical experiments, it
is found that SIA is only beneficial over SIU in simple acoustic scenarios with
a small amount of localized noise sources.

1.4 Techniques for Distributed Parameter Esti-
mation in WSNs

In this section, we give an overview of some state-of-the-art linear parameter
estimation techniques for wireless sensor networks. As mentioned in Section
1.1.3, parameter estimation techniques usually operate at low sampling rates,
or they estimate or track a fixed set of variables over time. These techniques
can therefore rely on iterative refinement of intermediate estimates. Due to the
large amount of literature on linear parameter estimation in WSNs, we restrict
this overview to a particular selection of algorithms and estimation problems
that are more or less related to the contributions in this thesis.

1.4.1 Consensus Averaging

One of the most elegant and best-known distributed parameter estimation tech-
niques is consensus averaging (CA). Assuming an ad hoc connected sensor net-
work containing J nodes (the set of nodes is denoted by J ), where each node
observes an M -dimensional vector yk, ∀ k ∈ J , then the goal of CA is to
compute the average vector y = 1

J

∑
k∈J yk in a distributed iterative fashion.

This is the BLUE estimator for the hidden parameter d if the observation yk

is assumed to satisfy the sensor observation model

yk = d + nk (1.43)
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where the noise nk is zero-mean, spatially uncorrelated and white (E{nknT
k } =

IM ).

The basic CA algorithm is given by the following iterative procedure:

The CA Algorithm

1. Each node collects a sensor measurement y0
k, ∀ k ∈ J .

2. Choose weighting coefficients αkq, ∀ k ∈ J ,∀ q ∈ Nk ∪ {k}.
3. i← 0
4. Repeat for all nodes k ∈ J simultaneously:

• Node k transmits yi
k to all of its neighboring nodes in Nk.

• Node k updates its local estimate according to

yi+1
k =

∑
q∈Nk∪{k}

αkqyi
q . (1.44)

• i← i+ 1

The CA algorithm iteratively refines each local estimate based on a weighted
average of its own previous estimate and previous estimates of neighboring
nodes. Let A denote the network-wide weighting matrix, i.e., the entry on the
k-th row and q-th column of A is equal to αkq if nodes k and q are connected,
and zero otherwise. It can then be shown that [80, 81]

lim
i→∞

yi
k = y, ∀ k ∈ J (1.45)

if and only if

1T A = 1T , A1 = 1, ρ
(
A− 1

J
11T

)
< 1 (1.46)

where ρ(.) denotes the spectral radius of a matrix, i.e., the eigenvalue with
largest absolute value. If (1.46) is satisfied, then the estimate in each node will
converge to y, i.e., the nodes will reach a consensus.

For a fixed graph, the weighting matrix A can be optimized to obtain the
fastest asymptotic convergence rate, based on semi-definite programming [80].
However, in an ad hoc deployed WSN, it is preferable to compute a weight-
ing matrix, satisfying (1.46), in a distributed fashion without computationally
expensive algorithms. Two popular rules can be used to this end:
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• Maximum-degree weights:

αkq =


1
J if q ∈ Nk

1− |Nk|
J if q = k

0 otherwise
(1.47)

• Metropolis weights:

αkq =


1

1+max{|Nk|,|Nq|} if q ∈ Nk

1−
∑

l∈Nk
αkl if q = k

0 otherwise
(1.48)

If the network graph is connected, both techniques yield weighting matrices
that satisfy (1.46). The Metropolis weights are only based on local information,
whereas for the maximum-degree weights, the number of nodes J needs to be
known to each node (or at least an upper bound20).

There is a large amount of literature on the CA problem, with many exten-
sions, e.g., CA in stochastic graphs with randomly changing topology [82],
adaptive weighting matrices [83], and running consensus averaging where new
observations are included during the averaging step [84].

1.4.2 Distributed Regression Problems

Another important parameter estimation problem for WSNs is distributed lin-
ear regression and its time-recursive implementations, extending well-known
linear adaptive filtering algorithms, such as least mean squares (LMS) [13, 20,
22, 24, 25], recursive least squares (RLS) [21, 26], affine projection algorithm
(APA) [14], Kalman filtering [85], etc., to the distributed case.

The distributed linear regression problem is formulated as follows. Consider
an ad hoc WSN with the set of nodes J = {1, . . . , J} and with a random
(connected) topology. Node k collects observations of an M × P data matrix
Uk and an M -dimensional data vector dk. The goal is then to solve a network-
wide least-squares (LS) problem, i.e. to compute the P -dimensional regression
vector ŵ defined by

ŵ = arg min
w

J(w) =
∑
k∈J

‖dk −Ukw‖2 . (1.49)

The goal is to find the common network-wide regression vector ŵ in a dis-
tributed fashion, without gathering all the data in a fusion center.

The above regression problem can also be analyzed in a stochastic framework,
where the rows of Uk correspond to observations of a stochastic row-vector21

20Replacing J in (1.47) with N ≥ J still yields a weighting matrix that satisfies (1.46).
21The regressor vector uk is defined as a row vector to be consistent with the notation in

Chapter 8, which adopts the notation of [86].
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variable uk, and where the entries in dk correspond to observations of a scalar
stochastic variable dk. Assume that these processes are related to each other
according to the linear model

dk(i) = uk,iwo + vk(i) (1.50)

where dk(i) is the i-th observation of dk, uk,i is the i-th observation22 of uk, wo

is the fixed parameter vector that we want to estimate, and vk(i) is spatially
uncorrelated white noise, then ŵ is the BLUE estimator for wo. It is noted
that this is an unbiased estimate, only if the observed uk,i’s are the same as in
(1.50), i.e., the rows of Uk are not corrupted by noise. In Chapters 7 and 8,
we consider the case where there is indeed noise on the regressors uk,i, and we
propose two different methods to improve the estimation.

In adaptive scenarios, the latent vector wo may change over time, and the
number of observations collected by each sensor will also increase over time (i.e.
M increases). It is then preferred to track the changes in w by incorporating
the new samples in the estimation, and by removing the influence of older
samples. This is the domain of adaptive filtering [86, 87], where w can be
viewed as a linear adaptive filter with a signal uk as an input, and dk as an
output (at node k). The rows of Uk then consist of subsequent samples of uk

(each row corresponds to a different time window), and the vector dk contains
corresponding output samples of dk.

There are three well-known strategies to solve the aforementioned deterministic
and/or adaptive distributed regression problem: consensus-based strategies,
incremental strategies and diffusion strategies. In the sequel, we will briefly
describe all three strategies, and apply them to LMS-type adaptive-filtering
techniques.

Consensus-based strategies

The idea of consensus-based linear regression is to decouple the network-wide
LS cost function (1.49) by letting each node compute a local estimate of w,
and then to explicitly add consensus constraints to obtain the same estimate
in each node. To this end, the optimization problem (1.49) is transformed into
the constrained optimization problem

min
w1,w2,...,wJ

∑
k∈J

‖dk −Ukwk‖2 (1.51)

s.t. wk = wq, k ∈ J , q ∈ Nk . (1.52)

Due to the coupling of the optimization variables in each node, based on the
consensus constraints (1.52), the optimal wk’s will all be equal to the opti-
mal solution ŵ of (1.49). The cost function can now be decoupled, such that

22In this section, we use the notation of [86], i.e., observations of stochastic vector variables
are not written in bold face.
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each node can locally compute a term of (1.51). However, due to the consen-
sus constraints, the problem is still not fully separable into local optimization
problems. To obtain a fully distributed algorithm, the optimization problem
is solved by means of ‘dual decomposition’ [67, 88]. Without going into de-
tail (dual decomposition is also addressed in Chapter 7), it can be shown that
(1.51)-(1.52) can be solved iteratively with the following updating steps, which
are based on the method of multipliers23 (MoM) [25]:

1. ∀ k ∈ J ,∀ q ∈ Nk, initialize the P -dimensional Lagrange multiplier
vector λ0

kq with a random real value.
2. ∀ k ∈ J , initialize the P -dimensional local estimator w0

k with a random
real value.

3. i← 0.
4. Choose a stepsize c > 0.
5. Perform the following updates for all nodes k ∈ J simultaneously, until

convergence:
• ∀ q ∈ Nk : λi+1

kq = λi
kq + c

2

(
wi

k −wi
q

)
.

• wi+1
k = arg min

wk

∥∥dk −Ukwi
k

∥∥2 +
∑

q∈Nk
(λi+1

kq − λ
i+1
qk )T wk

+c
∑

q∈Nk
‖wk − 1

2 (wi
k −wi

q)‖2.
• i← i+ 1

Although this procedure converges for any value of c, the latter should be tuned
to obtain a practical convergence speed. It is noted that, besides the local
estimates (the wk’s), the multipliers (the λkq’s) also need to be communicated
between neighboring nodes. This can be eliminated if the latter are initialized
as λ0

kq = −λ0
qk, since in this case λi

kq = −λi
qk, ∀ i ∈ N. However, in [25],

it is shown that exchanging the multipliers makes the algorithm more robust
to communication noise in the wireless links (this holds for all MoM-based
distributed algorithms).

The distributed least-squares regression algorithm described above solves the
fixed deterministic optimization problem (1.49). In each iteration, a local un-
constrained quadratic optimization problem is solved at each node. To make
the algorithm adaptive, e.g. to track changes in wo, it is sufficient to replace
the matrix Uk and the data vector dk with their updated versions in each itera-
tion, including the most recently collected samples, i.e., they become dependent
on the iteration index i. Assuming that the solutions of the local optimization
problems do not change much over different iterations, it is also possible to rely
on time-recursive algorithms. For example, in [25], a stochastic gradient descent
approach is used, as in the well-known LMS algorithm [86, 87]. However, the
local optimization problem is then not fully solved in each iteration, and there-

23This updating procedure is the result of an alternating-direction method of multipliers
(AD-MoM) [67], which is a particular dual decomposition algorithm to solve problems like
(1.51)-(1.52). More details can be found in [25].
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fore convergence of the algorithm cannot be guaranteed anymore. Nevertheless,
this approach seems to yield good estimation and tracking performance, and
it can be analyzed in an adaptive filtering framework [25]. Consensus-based
RLS-type algorithms have also been derived in [26].

A similar consensus-based technique is used in [89] for sparse linear regression,
based on the least-absolute shrinkage and selection operator (LASSO), which
is capable of performing both estimation and variable selection. In Chapter
7, we propose another24 consensus-based strategy to solve a distributed total
least squares (D-TLS) problem, which can cope with white noise25 in both the
Uk’s and the dk’s. However, due to the non-convex norm constraint in the
problem statement of D-TLS, some additional techniques are required before
the dual decomposition can be performed.

Incremental strategies

Incremental strategies are distributed approximations of a gradient-descent al-
gorithm, exploiting the separability of the gradient of the LS cost function
(1.49), which is given by

∇J(w) = 2
J∑

k=1

(RUk
w − rUkdk

) (1.53)

with

RUk
= UT

k Uk (1.54)

rUkdk
= UT

k dk . (1.55)

A (centralized) gradient-descent algorithm would then apply the following up-
dating procedure to find the solution ŵ (we omit the factor 2 in the gradient):

wi+1 = wi − µ∇J(wi) (1.56)

= wi − µ
J∑

k=1

(
RUk

wi − rUkdk

)
(1.57)

with a small enough stepsize µ > 0 to achieve convergence. In the distributed
case, the full gradient vector cannot be computed, since the RUk

’s and rUkdk
’s

are distributed over the different nodes. Assume (hypothetically) that each
node has access to the current estimate wi, and define a so-called Hamiltonian
cycle, i.e., a cyclic path through the network that visits each node once (see
Fig. 1.13), then (1.57) can be computed in a distributed fashion:

24The derivation of the distributed total least squares algorithm in Chapter 7 is also based
on dual decomposition, but it does not use the AD-MoM, but a dual-based subgradient
algorithm (DBSA) instead.

25A traditional least-squares estimate, as in (1.49), is biased when the data matrix Uk is
contaminated with white noise.
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Figure 1.13: Information exchange in
incremental strategies.

Figure 1.14: Information exchange in
diffusion strategies.

• ψ0 ← wi

• ψk ← ψk−1 − µ
(
RUk

wi − rUkdk

)
, k = 1, . . . , J

• wi+1 ← ψJ

where we assume that the nodes are labeled according to their respective order
in the Hamiltonian cycle. In each iteration, node k − 1 forwards its partially
updated gradient ψk−1 to the next node in the cycle. However, also wi must
be transmitted in each step, to provide every node with the current value of the
estimate, and then the required communication bandwidth is effectively dou-
bled. To avoid the latter, the gradient-descent algorithm can be approximated
as follows:

• ψ0 ← wi

• ψk ← ψk−1 − µ
(
RUk

ψk−1 − rUkdk

)
, k = 1, . . . , J

• wi+1 ← ψJ .

Notice that we just replaced wi with the new intermediate estimate ψk−1. This
is known as an incremental technique, which has been studied extensively in
literature, e.g., [90]. In [2, Ch. 22], it is shown that this incremental procedure
converges as fast as the steepest-descent algorithm for vanishing stepsizes. Fur-
thermore, the incremental procedure converges over a wider range of stepsizes,
especially so when the number of nodes is large.

In an adaptive (stochastic) framework, the LS estimation becomes an LMMSE
estimation, and the RUk

’s and rUkdk
’s can then be replaced with second order

statistics, i.e., Ruk
= E{uT

k uk} and rukdk
= E{uT

k dk}, respectively. Instead of
using these second-order statistics in the incremental procedure given above, we
can replace them with instantaneous estimates, i.e. Ruk

≈ uT
k,iuk,i and rukdk

≈
uT

k,idk(i) where uk,i and dk(i) denote a sample of uk and dk, respectively,
collected at iteration i. We then obtain the incremental LMS algorithm [13]:
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The incremental LMS algorithm

1. Initialize i ← 0 and initialize w0 with a random P -dimensional
vector.

2. ψ0 ← wi

3. ψk ← ψk−1 − µuT
k,i

(
dk(i)− uk,iψk−1

)
, k = 1, . . . , J

4. wi+1 ← ψJ

5. i← i+ 1
6. Return to step 2.

A detailed mean-square and stability analysis of this algorithm is performed
in [13], where it is shown that the cooperation yields an equalization effect
on the variance of the estimators throughout the network, i.e., the variance
of the estimators is the same for each node. A similar incremental strategy is
described for the affine projection algorithm in [14].

Incremental algorithms usually yield good estimation performance, i.e., bet-
ter than the diffusion-type algorithms that are described below. Furthermore,
they have the advantage that each node only needs to communicate with one
other node, which is efficient in terms of both the communication and compu-
tational load. There are however a couple of disadvantages, i.e., the fact that
a Hamiltonian cycle needs to be defined, and that the network processing has
to be faster than the measurement process, since a full communication cycle
is required for each measurement. Furthermore, incremental strategies are not
robust to node and link failure.

Diffusion Strategies

The drawbacks of incremental cooperation can be avoided at the price of a
slightly worse estimation performance and larger communication and compu-
tational load. In a diffusion-based technique (Fig. 1.14), every node commu-
nicates with all of its neighbors, as dictated by the network. The need for a
Hamiltonian cycle is therefore eliminated, yielding distributed algorithms that
are robust to node and link failure. It is noted that, if the communication
protocol allows local broadcasts rather than reserved links between node pairs,
the required communication bandwidth is similar to the incremental mode.

To emphasize the close relationship between diffusion and consensus averaging
(see Subsection 1.4.1), we explain diffusion slightly different then in [20, 22]. We
start with combining the stochastic gradient-descent algorithm with consensus
averaging. To this end, let us define the gradient of the local cost function at
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node k:
∇Jk(wk) = RUk

wk − rUkdk
(1.58)

where Jk denotes one node-specific term of the network-wide LS cost function
(1.49), i.e., J(w) =

∑
k∈J Jk(w). Similarly, define the local gradient-descent

step:
ψi

k = wi
k − µ∇Jk(wi

k) . (1.59)

If we assume that there is consensus on the current estimate at iteration i, i.e.,
wi

k = wi, ∀ k ∈ J , then the centralized gradient-descent algorithm (1.57) can
be computed as the average of the local gradient-descent steps, i.e.,

wi+1 =
1
J

∑
k∈J

ψi
k (1.60)

where we assume that µ in (1.57) is equal to µ = µ
J . Expression (1.60) can

be iteratively computed by means of a CA algorithm, which would require a
second iteration index j that runs on the level of the CA algorithm. We then
obtain the following procedure:

1. Initialize i ← 0 and w0
k = w, ∀ k ∈ J , where w is a random P -

dimensional vector.
2. At each node k ∈ J simultaneously, perform the local gradient-descent

step
ψ0

k = wi
k − µ∇Jk(wi

k) . (1.61)

3. Set j ← 0 and perform the following CA steps for each node k ∈ J
simultaneously, until convergence:
• ψj+1

k =
∑

q∈Nk∪{k} αkqψ
j
q

• j ← j + 1 .
4. At each node k ∈ J , set wi

k = ψ∞k , where ψ∞k is the result from the
previous step at node k.

5. i← i+ 1.
6. Return to step 2.

If µ is chosen small enough, then this procedure will converge to the optimal
vector in each node, i.e., w∞k = ŵ, ∀ k ∈ J . This directly follows from conver-
gence of CA and gradient descent. However, for each gradient-descent iteration,
a large number of intermediate estimates have to be exchanged between nodes
to obtain consensus over the global gradient. Especially in adaptive scenarios,
where wo changes over time, this approach is too slow or too computationally
intensive. The idea of adaptive diffusion is then to merge the two iteration
indices i and j, and to relax the consensus assumption, yielding the following
algorithm:

1. Initialize i ← 0 and w0
k = w, ∀ k ∈ J , where w is a random P -

dimensional vector.
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2. At each node k ∈ J simultaneously, compute

ψi
k = wi

k − µ∇Jk(wi
k) (1.62)

and broadcast the result to the nodes in Nk.
3. At each node k ∈ J simultaneously, compute

wi+1
k =

∑
q∈Nk∪{k}

αkqψ
i
q . (1.63)

4. i← i+ 1.
5. Return to step 2.

By replacing the gradient ∇Jk(wi
k) with a stochastic gradient based on in-

stantaneous second-order statistics, we obtain the diffusion LMS algorithm
from [20, 22]:

The diffusion LMS algorithm

1. Initialize i ← 0 and w0
k = w, ∀ k ∈ J , where w is a random

P -dimensional vector.
2. At each node k ∈ J simultaneously, compute

ψi
k = wi

k − µuT
k,i

(
dk(i)− uk,iwi

k

)
(1.64)

and broadcast the result to the nodes in Nk.
3. At each node k ∈ J simultaneously, compute

wi+1
k =

∑
q∈Nk∪{k}

αkqψ
i
q . (1.65)

4. i← i+ 1.
5. Return to step 2.

The weighting coefficients αkq at node k have to be non-negative and add up
to one, i.e. ∑

q∈Nk∪{k}

αkq = 1, ∀ k ∈ J . (1.66)

It can be shown that, if (1.66) holds and if µ is small enough, the estimates {wi
k}

are stable in the mean and unbiased , i.e., E{wi
k−wo} = 0, if i→∞. Similarly

to an incremental cooperation mode, diffusion also improves the stability of the
algorithm, i.e., it converges over a wider range of stepsizes.
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It should be noted that the above algorithm is a special case of the ‘adapt-then-
combine’ (ATC) diffusion LMS algorithm, as introduced in [22], since node k
first adapts its previous estimate wi

k according to its new local observations,
and then combines this with the intermediate estimates ψi

q of its neighbors to
compute the final estimate. The exchanged intermediate estimates then also
contain the most recent information of the nodes in Nk. In the ‘combine-then-
adapt’ (CTA) approach [20, 22] node k first combines its previous estimates
with those of its neighbors, and then updates this combined intermediate esti-
mate with a stochastic gradient descent step based on this combined estimate
and the node’s last local observation. Intuitively, since the most recent obser-
vations of its neighbors are not incorporated in the case of CTA, ATC should
perform better26 than CTA. In [22], this is indeed confirmed based on a theo-
retical steady-state analysis and by means of simulations.

The diffusion strategy is also applicable to RLS implementations instead of
LMS [21]. However, both the LMS estimate and the RLS estimate are biased
in the case when there is noise on the observations of the regressors {uk}. If
this noise is white, the distributed total least squares algorithm, derived in
Chapter 7, provides an unbiased estimate of wo. In Chapter 8, we consider
the case where the noise is colored, and we extend the RLS algorithm with a
bias compensation. Removing the bias generally results in a larger variance on
the estimate, and therefore diffusion is applied to limit this variance increase.
Furthermore, we show that the diffusion-based cooperation also decreases the
residual bias due to errors in the estimates of the noise statistics.

1.5 Problem Statement and Challenges

Most chapters in this thesis contribute to a general target application, i.e.,
distributed acoustic noise reduction for speech enhancement in WASNs. Noise
reduction is crucial in many speech recording applications, such as hearing aids,
mobile phones, video conferencing, hands-free telephony, automatic speech
recognition, etc. By using a WASN, many more microphone signals become
available, which can greatly improve the noise reduction performance in these
applications. In many cases, the desired signal should be available in multiple
devices (multiple nodes), e.g., in binaural HAs or collaborating HAs of multiple
users. Furthermore, it is often desired that the node-specific localization cues
are preserved in each node, e.g., for spatial hearing or when the noise reduction
is followed by a speaker localization algorithm. This means that the signal

26At first sight, ATC and CTA appear to be the same algorithm, since they both alternate
between the adaptation step (1.64) and the combination step (1.65). However, there is a
subtle but important difference: CTA uses ψk from (1.64) as the final estimate whereas
ATC uses wk from (1.65), which could both serve as an estimate of wo. However, the latter
can be shown to be a better estimate.
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estimates at each node are node-specific, i.e., each node estimates the desired
speech component as locally observed by one of its own microphones.

We aim to perform distributed noise reduction for speech enhancement in a
WASN consisting of multiple wirelessly connected nodes, each having a local
microphone array and a local processing unit, such that a node-specific noise-
reduced speech signal is available in each node. The WASN should operate
in complex acoustic scenarios with multiple desired sources and multiple noise
sources. This is a computationally intensive signal estimation task due to the
high sampling rates, and therefore communication bandwidth and processing
power are considered to be highly limited resources, especially in small de-
vices such as HAs. We therefore aim to reduce the amount of data that is
communicated between the nodes, and to limit the local computational com-
plexity. For reasons of scalability, and since each node has to be provided with
a node-specific noise-reduced signal, we avoid the use of a fusion center, i.e.,
the computations have to be fully distributed. Traditional compress-and-fuse
techniques (see Subsection 1.3.1) cannot be used in this case, since they rely
on one-way communication between the microphones and a fusion center. Fur-
thermore, we envisage an ad hoc placement of the microphone nodes, i.e., we
cannot rely on prior knowledge of the microphone positions, array geometry,
or the position of the sound sources, and we assume that the environment is
dynamic, i.e., microphone and positions can change during operation of the
algorithm. Therefore, the noise reduction procedure must be blind and able to
swiftly adapt to changes in the environment, which is generally not the case
in compress-and-fuse techniques, since they mostly require prior knowledge on
sensor signal cross-correlations.

As a general target, we aim to develop distributed noise reduction algorithms
that achieve the same noise reduction performance as in a centralized approach
where the nodes have access to all the microphone signals of the network. This
means that we cannot rely on ad hoc estimators such as in Subsection 1.3.2.
Instead, we need to properly parametrize the optimal centralized estimator,
such that its components can be distributed over the different nodes of the net-
work. Eventually, we should obtain a noise reduction algorithm that operates
in simply connected networks, where nodes only share (compressed) micro-
phone signals with nodes in their local neighborhood. Besides the fundamental
and theoretical aspects, the resulting techniques should also work effectively
in practical acoustic scenarios. Therefore, the algorithm needs to be robust
against numerically ill-conditioned situations, and it should be able to cope
with sudden link failures, which are common in W(A)SNs. Furthermore, it is
to be expected that there exists a significant set of microphone nodes that do
not contribute much to the noise reduction due to lack of acoustical coupling
with relevant sound sources or due to lack of coherence with other microphone
signals. In this case, we also aim to select the subset of nodes that contributes
the most in the noise reduction task, such that the less useful nodes can be put
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to sleep to save energy, and to avoid noise injection from acoustically uncoupled
nodes.

Since LCMV-beamforming and MWF are blind multi-channel noise reduction
techniques, they are well-suited for noise reduction with ad hoc microphone
arrays such as in WASNs. However, the lack of prior knowledge on microphone
and sound source positions requires a robust VAD algorithm. In complex en-
vironments with multiple speakers, it is often required to have a VAD that can
distinguish between different speakers. To this end, we can again rely on the
significant amount of spatial information that becomes available when using a
WASN.

Finally, when the WASN is used for speech analysis, e.g., for automatic speech
recognition (ASR) or speech coding, the network should be able to extract
relevant speech parameters from the noise-reduced microphone signals. For
example, a well-known speech analysis technique is linear predictive coding
(LPC), which extracts the auto-regressive (AR) coefficients that are represen-
tative for the different speech sounds or phonemes27. However, this linear
regression technique is very sensitive to noise on the speech signals, even so
when the signals are preprocessed with a noise reduction algorithm. To this
end, we aim to exploit the cooperation between nodes to improve such linear
parameter estimation based on noisy signals.

1.6 Thesis Contributions

In this section, we provide an overview of the different chapters in this thesis,
and we briefly describe their main points, and how they relate to the state of
the art described in the previous sections.

Part II: Distributed Signal Estimation Techniques

Chapter 2: Fully Connected DANSE with Sequential Node-Updating

In this chapter, we introduce the distributed adaptive node-specific signal esti-
mation (DANSE) algorithm for linear minimum mean squared error (MMSE)
estimation in a fully connected broadcasting sensor network. This is basically
an extension of the DB-MWF (see Subsection 1.3.3) to the case of multiple
nodes and multiple desired sources, which requires a completely different con-
vergence and optimality proof. The estimation is node-specific because each

27It should be noted that LPC analysis is not the state of the art anymore for ASR
feature extraction. However, it is still an important speech analysis technique in many other
applications, e.g. in speech coding.
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node estimates a different mixture of the target sources as observed by its local
reference sensor. The DANSE algorithm exploits the fact that the node-specific
desired signals at the nodes share a common latent signal subspace. The al-
gorithm can then significantly reduce the required communication bandwidth
and still provide the same optimal linear MMSE estimators as in the central-
ized case. DANSE is somewhat related to compress-and-fuse techniques (see
Subsection 1.3.1) where each node acts as a different fusion center. However,
DANSE has the important advantage that everything can be computed adap-
tively, and the required statistics can be estimated from the compressed sensor
signals. This avoids the need of a training phase or prior knowledge on the
cross-correlation between all sensor pairs. Because of its adaptive nature, the
algorithm is suited for real-time signal estimation in dynamic environments,
such as speech enhancement with acoustic sensor networks (see also Chapter
4). In this chapter, we only consider the case where nodes update their fusion
rules in a sequential round-robin fashion. The case where the nodes update
simultaneously is addressed in the next chapter. The influence of SIU source
coding on the acoustic-noise reduction performance of DANSE has been inves-
tigated in [72].

Chapter 3: Fully Connected DANSE with Simultaneous Node-Updating

In the original DANSE algorithm, the nodes update their parameters in a
sequential round-robin fashion, which may yield a slow convergence of the esti-
mators, especially so when the number of nodes in the network is large. In this
chapter, we consider the fully connected DANSE algorithm for the case where
nodes update simultaneously. This allows the algorithm to adapt more swiftly,
but simulations show that convergence can no longer be guaranteed. We then
provide an extension to the DANSE algorithm, in which we apply an addi-
tional relaxation in the updating process. The new algorithm is then proven
to converge to the optimal estimators when nodes update simultaneously or
asynchronously, be it that the computational load at each node increases in
comparison with the algorithm with sequential updates. Finally, based on
simulations it is demonstrated that a simplified version of the new algorithm,
without any extra computational load, can also provide convergence to the op-
timal estimators. Similar results are obtained for the case where nodes update
asynchronously, i.e., each node decides for itself when and how often it updates
its parameters.

Chapter 4: Robust DANSE for Speech Enhancement

In this chapter, the results obtained in Chapters 2 and 3 are applied to acous-
tical noise reduction in fully connected wireless acoustic sensor networks. This
can be considered as an extension of DB-MWF in BHAs to the case where
extra external acoustic sensor nodes are wirelessly connected to the BHA. The
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benefit of using external sensor nodes for noise reduction is demonstrated in a
simulated acoustic scenario with multiple sound sources. Batch-mode simula-
tions compare the noise reduction performance of a centralized MWF algorithm
with DANSE. In the simulated scenario, DANSE is observed not to be able to
achieve the same performance as the centralized MWF, although in theory
both should generate the same set of filters. A modification to DANSE is then
proposed to increase its robustness, yielding smaller discrepancy between the
performance of DANSE and the centralized MWF. This algorithm is referred to
as robust-DANSE or R-DANSE. Furthermore, the influence of several param-
eters such as the DFT size used for frequency domain processing and possible
delays in the communication link between nodes is investigated. It is noted
that all results in this chapter also apply to the SDW-MWF estimation proce-
dure as described in Subsection 1.2.2, i.e., it can be shown that DANSE and
R-DANSE also converge to the optimal centralized SDW-MWF filters for any
value of the weighting factor [91]. This also holds for the T-DANSE algorithm
as described in Chapter 5.

Chapter 5: DANSE in Networks with Tree Topology

In this chapter, we extend the fully connected DANSE algorithm to operate
in simply connected networks. Different from the distributed ad hoc estimator
described in Subsection 1.3.2, we aim to obtain a node-specific estimator in each
node that provides the same output as a centralized estimator. We show that
this is only possible if there is no feedback in the signal paths. This motivates
the use of a tree topology, since the latter does not have any loops in the network
graph, and hence removes feedback paths. We refer to the new algorithm as
tree-DANSE (T-DANSE). If the node-specific desired signals share a common
latent signal subspace, it is shown that T-DANSE converges to the same linear
MMSE solutions as obtained with the centralized version of the algorithm. The
computational load is then shared between the different nodes in the network,
and nodes exchange only linear combinations of their sensor signal observations
and data received from their neighbors. Despite the low connectivity of the
network and the multi-hop signal paths, the algorithm is fully scalable in terms
of communication bandwidth and computational power. Two different cases are
considered concerning the communication protocol between the nodes: point-
to-point transmission and local broadcasting. The former assumes that there
is a reserved communication link between node pairs, whereas with the latter,
nodes communicate the same data to all of their neighbors simultaneously.

Chapter 6: Linearly-Constrained DANSE

In this chapter, we extend the DANSE algorithm with node-specific linear con-
straints to generate a node-specific LCMV beamformer (see Subsection 1.2.3)
at each node. This is referred to as linearly constrained DANSE (LC-DANSE).
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The LC-DANSE algorithm is again able to significantly reduce the number of
signals that are shared between nodes, but obtains the node-specific LCMV
beamformers as if each node has access to all the signals in the network. The
number of signals that are broadcast by each node needs to be equal to the
number of relevant sources, i.e., the source signals for which linear constraints
are applied in at least one of the nodes. We formally prove convergence and
optimality of the LC-DANSE algorithm under this assumption. We also con-
sider the case where nodes update simultaneously, and we demonstrate with
simulations that applying relaxation is often required to obtain a converging al-
gorithm for this case. We provide application-oriented simulation results that
demonstrate the effectiveness of the algorithm for speech enhancement in a
wireless acoustic sensor network.

Part III: Distributed Parameter Estimation Techniques

Chapter 7: Distributed Total Least Squares

In this chapter, we consider a distributed linear regression problem, as described
in Subsection 1.4.2, where both the right-hand side and the input data matrix
are assumed to be noisy. For this case, the common least-squares estimation
will have a bias, which may be undesired in some applications. Total least
squares (TLS) is a popular solution technique to solve such linear regression
problems with noisy data matrices, and usually results in significantly better
estimates. Furthermore, it can be shown that the TLS estimate is unbiased if
the noise is white. We consider a TLS problem in an ad hoc wireless sensor
network, where each node collects observations that yield a node-specific subset
of linear equations. The goal is to compute the TLS solution of the full set
of equations in a distributed fashion, without gathering all these equations in
a fusion center. Our method is based on a consensus approach (see Subsec-
tion 1.4.2). However, dual decomposition techniques, which are traditionally
used in consensus-based optimization, cannot be used due to the non-convex
nature of the TLS problem. To facilitate the use of the dual based subgradi-
ent algorithm (DBSA), we transform the TLS problem to an equivalent con-
vex semidefinite program (SDP), based on semidefinite relaxation (SDR). This
allows us to derive a distributed TLS (D-TLS) algorithm, that satisfies the
conditions for convergence of the DBSA, and obtains the same solution as the
original (unrelaxed) TLS problem. Even though we make a detour through
SDR and SDP theory, the resulting D-TLS algorithm relies on solving local
TLS-like problems at each node, rather than computationally expensive SDP
optimization techniques. The algorithm is flexible and fully distributed, i.e.
it does not make any assumptions on the network topology and nodes only
share data with their neighbors through local broadcasts. Due to the flexibility
and the uniformity of the network, there is no single point of failure, which
makes the algorithm robust to sensor failures. Monte-Carlo simulation results
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are provided to demonstrate the effectiveness of the method.

Chapter 8: Diffusion Bias-Compensated RLS Estimation

In this chapter, we again study the distributed linear regression problem, where
both the right hand side and the input data matrix are assumed to be noisy.
This time, we aim to fully remove the bias, even if the noise is colored. Fur-
thermore, we tackle the problem in an adaptive filtering context, i.e., the nodes
have a common objective to estimate and track a latent vector parameter. For
example, this is a common problem in auto-regressive (AR) modeling of speech
that is corrupted by additive noise. Assuming that the noise covariance can
be estimated (or is known a priori), we first propose a bias-compensated re-
cursive least-squares algorithm. However, this bias compensation increases the
variance of the local estimates, and errors in the noise covariance estimates
may still result in a residual bias. We demonstrate that the variance and the
residual bias can be significantly reduced by applying diffusion adaptation, i.e.
letting nodes combine their local estimate with those of their neighbors, similar
to diffusion LMS described in Subsection 1.4.2. We derive a necessary and suf-
ficient condition for mean-square stability of the algorithm, under some mild
assumptions. Furthermore, we derive closed-form expressions for its steady-
state mean and mean-square performance. Simulation results are provided,
which agree well with the theoretical results. We also consider some special
cases where the mean-square stability improvement of diffusion BC-RLS over
undiffused BC-RLS can be mathematically verified.

Part IV: Supporting Techniques for Signal Estimation

Chapter 9: Blind Separation of Non-Negative Source Signals

In this chapter, we derive an algorithm, referred to as multiplicative non-
negative independent component analysis (M-NICA), that is able to unmix
independent non-negative source signals from a set of observed instantaneous
mixtures of the original source signals. It serves as an enabling algorithm for
the multi-speaker voice activity detector that is described in Chapter 10. Since
the M-NICA is based on a multiplicative update rule, it has the facilitating
property that it does not depend on a user-defined learning rate, as opposed
to existing gradient based updates such as in the non-negative PCA (NPCA)
algorithm. We provide batch mode and sliding-window simulations for differ-
ent types of signals, and compare the performance of M-NICA with NPCA.
It is observed that M-NICA generally yields a better unmixing accuracy, but
converges slower than NPCA. Especially when the amount of data samples
is small, M-NICA significantly outperforms NPCA, which makes it more use-
ful for adaptive sliding-window implementations, as required in voice activity
detection in dynamic environments (see Chapter 10).
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Chapter 10: Energy-Based Multi-Speaker VAD

In this chapter, the goal is to track the individual speech power of multiple
simultaneous speakers as observed by different microphones of a spatially dis-
tributed microphone array with unknown microphone positions. By threshold-
ing the power of each speaker, we can easily create a voice activity detector for
each speaker independently. The latter can be used for speaker extraction, e.g.,
by using LCMV beamforming techniques [51]. By considering the short-term
power of the microphone signals, the problem can be converted into a non-
negative blind source separation (NBSS) problem. We use the M-NICA algo-
rithm described in Chapter 9 to solve the problem in an adaptive fashion. Since
this is an energy-based method, the data rate is low and clock synchronization
is not that crucial, which is a desirable property in WASNs. We provide sim-
ulation results that demonstrate the effectiveness of the presented algorithm,
and we show that M-NICA outperforms NPCA in this specific application.

Chapter 11: Link Failure Response and Sensor Subset Selection

In distributed signal estimation problems with WSNs, energy saving is very
important. In many cases, only a subset of the nodes observe useful signals
that significantly contribute to the signal estimation. The other nodes can
then be put to sleep to save energy. In this chapter, we provide a greedy sensor
subset selection (SSS) algorithm for an MMSE signal estimation problem in a
WSN with a fusion center. However, the technique can also be used in DANSE-
type algorithms, where each node serves as a local fusion center. Besides the
SSS, we also consider link failure response, i.e., to provide a quick update of
the signal estimator in case one of the links suddenly breaks down. SSS and
link failure response problems are related since they require knowledge of the
new optimal estimator when sensors are removed or added, and both are very
important in low-delay signal estimation with high sampling frequency. We
derive formulas to efficiently compute the optimal fall-back estimator in case
of a link failure, and we derive formulas to efficiently monitor the utility of
each sensor signal. Simulation results demonstrate that a significant amount of
energy can be saved at the cost of a slight decrease in estimation performance.

1.7 Chapters and Publications Overview

The following publications are included in this thesis:

Part II: Distributed Signal Estimation Techniques

Chapter 2: Fully Connected DANSE with Sequential Node-Updating
A. Bertrand and M. Moonen, “Distributed adaptive node-specific signal es-
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timation in fully connected sensor networks – Part I: sequential node updat-
ing,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5277 -
5291, 2010.
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Loève transform,” IEEE Transactions on Information Theory, vol. 52,
no. 12, pp. 5177 –5196, 2006.



65

[79] B. Chen and P. C. Loizou, “A Laplacian-based MMSE estimator for speech
enhancement,” Speech Communication, vol. 49, pp. 134–143, February
2007.

[80] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, no. 1, pp. 65 – 78, 2004.

[81] D. Scherber and H. Papadopoulos, “Locally constructed algorithms for dis-
tributed computations in ad-hoc networks,” in Proc. International Sym-
posium on Information Processing in Sensor Networks (IPSN), 2004, pp.
11 – 19.

[82] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in Proc. International Symposium on
Information Processing in Sensor Networks (ISPN), 2005, pp. 63 – 70.

[83] M. S. Talebi, M. Kefayati, B. H. Khalaj, and H. R. Rabiee, “Adaptive
consensus averaging for information fusion over sensor,” in Proc. IEEE
International Conference on Mobile Ad-hoc and Sensor Systems (MASS),
2006.

[84] P. Braca, S. Marano, and V. Matta, “Running consensus in wireless sensor
networks,” in Proc. International Conference on Information Fusion, July
2008, pp. 1 –6.

[85] F. S. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed
kalman filtering and smoothing,” IEEE Transactions on Automatic Con-
trol, vol. 55, no. 9, pp. 2069 –2084, 2010.

[86] A. H. Sayed, Adaptive Filters. NJ: John Wiley & Sons, 2008.

[87] B. Widrow and S. Stearns, Adaptive Signal Processing. Englewood Cliffs,
NJ: Prentice-Hall, 1985.

[88] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univer-
sity Press, 2004.

[89] G. Mateos, J. Bazerque, and G. Giannakis, “Distributed sparse linear
regression,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp.
5262 –5276, 2010.

[90] D. P. Bertsekas, “A new class of incremental gradient methods for least
squares problems,” SIAM Journal on Optimization, vol. 7, pp. 913–926,
April 1997.

[91] A. Bertrand, J. Callebaut, and M. Moonen, “Adaptive distributed noise
reduction for speech enhancement in wireless acoustic sensor networks,”
in Proc. International Workshop on Acoustic Echo and Noise Control
(IWAENC), Tel Aviv, Israel, Aug. 2010.



66 Bibliography



Part II

Distributed Signal

Estimation Techniques



68



Chapter 2

Fully Connected DANSE
with Sequential Node
Updating

Distributed adaptive node-specific signal

estimation in fully connected sensor networks –

Part I: sequential node updating

Alexander Bertrand and Marc Moonen

Published in IEEE Transactions on Signal Processing, vol. 58,
no. 10, pp. 5277 - 5291, Oct. 2010.

c©2010 IEEE. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

69



70 Chapter 2. Fully Connected DANSE with Sequential Node Updating

Contributions of first author

• literature study
• co-development of the DANSEK algorithm
• co-establishment of proof of convergence and optimality of DANSEK

• design of simulation scenarios
• software implementation and computer simulations
• co-interpretation of simulation results
• text redaction and editing



2.1. Introduction 71

Abstract

We introduce a distributed adaptive algorithm for linear minimum mean squared
error (MMSE) estimation of node-specific signals in a fully connected broad-
casting sensor network where the nodes collect multi-channel sensor signal ob-
servations. We assume that the node-specific signals to be estimated share a
common latent signal subspace with a dimension that is small compared to
the number of available sensor channels at each node. In this case, the al-
gorithm can significantly reduce the required communication bandwidth and
still provide the same optimal linear MMSE estimators as the centralized case.
Furthermore, the computational load at each node is smaller than in a cen-
tralized architecture in which all computations are performed in a single fusion
center. We consider the case where nodes update their parameters in a se-
quential round robin fashion. Numerical simulations support the theoretical
results. Because of its adaptive nature, the algorithm is suited for real-time
signal estimation in dynamic environments, such as speech enhancement with
acoustic sensor networks.

2.1 Introduction

In a sensor network [1] a general objective is to utilize all sensor signal ob-
servations available in the entire network to perform a certain task, such as
the estimation of a parameter or signal. Gathering all observations in a fusion
center to calculate an optimal estimate may however require a large commu-
nication bandwidth and computational power. This approach is often referred
to as centralized fusion or estimation. An alternative is a distributed approach
where each node has its own processing unit and the estimation relies on dis-
tributed processing and cooperation. This approach is preferred, especially so
when it is scalable in terms of its communication bandwidth requirement and
computational complexity.

In many sensor network estimation frameworks the sensor signal observations
are used to estimate a common network-wide desired parameter or signal, de-
noted here by d. This means that all nodes contribute to a common goal,
i.e. the estimation of the globally defined variable d, which is the same for
all nodes (see for example [2–8]). This can be viewed as a special case of the
more general problem, which is considered here, where each node in the net-
work estimates a different node-specific desired signal, i.e. node k estimates
the locally defined signal dk. This means that all nodes have a different lo-
cal objective, which they pursue through cooperation with other nodes. We
describe a distributed adaptive node-specific signal estimation (DANSE) algo-
rithm that operates in an ideal fully connected network. The nodes broadcast
compressed multi-channel sensor signal observations that can be captured by
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all other nodes in the network, possibly with the help of relay nodes. The
computational load is distributed over the different nodes in the network.

The DANSE algorithm is designed for the case where the node-specific desired
signals share a common (unknown) latent signal subspace. If this signal space
has a small dimension compared to the number of available sensor channels at
each node, the DANSE algorithm exploits this common interest of the nodes to
significantly compress the data to be broadcast, and yet converge to the optimal
linear minimum mean squared error (MMSE) estimators as if all sensor signal
observations were available at each node. Although the DANSE algorithm
implicitly assumes a specific structure in the relationship between the desired
signals of the different nodes, it is noted that the actual parameters of these
latent dependencies are not assumed to be known, i.e. nodes do not know how
their desired signal is related to the desired signals of other nodes. The model
that is assumed in the DANSE algorithm naturally emerges in adaptive signal
estimation problems in dynamic scenarios where the target signal statistics and
the transfer functions to the sensors are not known and may change during
operation of the algorithm. Therefore, the original target signal cannot be
recovered, and so an option is then to let the nodes optimally estimate the
signal as it is observed locally by the node’s sensors. In this case, the desired
signals of the different nodes are differently filtered versions of the same target
signal, i.e. they share a common latent signal subspace.

Because of its adaptive nature, the DANSE algorithm is suited for real-time
applications in dynamic environments. Typical applications are vibration mon-
itoring, wireless acoustic sensor networks (for surveillance, video conferencing,
domotics, audio recording...), and noise reduction in hearing aids with exter-
nal sensor nodes and/or cooperation between multiple hearing aids [9, 10].
Node-specific estimation is particularly important in applications where a tar-
get signal needs to be estimated as it is observed at a specific local position.
For instance, in acoustic surveillance, it is often required to be able to locate
a sound source, so spatial information in the observations of different nodes
must be retained in the estimation process. In cooperating hearing aids, it is
important to estimate the signal as it impinges at the hearing aid itself, to
preserve the auditory cues for directional hearing [11, 12].

The DANSE algorithm is based on linear compression of multi-channel sen-
sor signal observations. Linear compression of sensor signal observations for
data fusion has been the topic of earlier work, e.g. [5–8]. The presented
techniques, however, assume prior knowledge of the intra- and inter-sensor
(cross-)correlation structure in the entire network. This must be obtained by
a priori training using all uncompressed sensor signal observations, or must be
derived from a specific data model. Such assumptions make it difficult to apply
the resulting algorithms in adaptive networks or dynamic environments where
the statistics of the desired signals or sensor signals may change. The DANSE
algorithm can adapt to these changes because nodes estimate and re-estimate
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all required statistical quantities on the compressed data during operation. For
this, we assume that each node can adaptively estimate the cross correlation
between its local sensor signals and its desired signal. It is noted that the acqui-
sition of these signal statistics is often difficult or impossible, since the target
signal is assumed to be unknown. However, we will explain that in particular
cases, it is possible to estimate the required statistics, e.g. when the target sig-
nal has an on-off behavior (such as speech signals), or when the target source
periodically transmits a priori known training sequences. In cases where the
local statistics cannot be estimated adaptively, the DANSE algorithm can still
be used in a semi-adaptive context, i.e. scenarios with static noise statistics
but with changing target signal statistics or vice versa, assuming that the static
correlation structure is a priori known.

In [13], a batch-mode description of the DANSE algorithm was briefly intro-
duced. In this paper, we provide more details, i.e. we include a convergence
proof and introduce a truly adaptive version. In addition, we address implemen-
tation aspects, and provide extensive simulation results, both in batch mode
and in a dynamic scenario. We only consider the case where nodes update their
parameters in a sequential round robin fashion. The case where nodes update
simultaneously or asynchronously is treated in a companion paper [14]. In [10],
a pruned version of the DANSE algorithm has been used for microphone-array
based speech enhancement in binaural hearing aids, where it was referred to
as distributed multi-channel Wiener filtering. In this application, two hearing
aids in a binaural configuration exchange a linear combination of their micro-
phone signals to estimate the target sound that is recorded by their reference
microphone. Convergence of the 2-node system has been proven for the special
case where there is a single target speaker. The more general DANSE algo-
rithm provided in this paper allows for a non-trivial extension to a scenario
with multiple target speakers and a network with more than 2 nodes. Using
extra acoustic sensor nodes that communicate with the hearing aids generally
improves the noise reduction performance, since the acoustic sensors physically
cover a larger area [9].

The paper is organized as follows. The problem formulation and notation are
presented in Section 2.2. In Section 2.3, we first address the simple case in
which the node-specific desired signals are scaled versions of each other and
we prove convergence of the DANSE algorithm to the optimal linear MMSE
estimators when nodes update their parameters sequentially. In Section 2.4,
this algorithm is generalized to the case in which the node-specific desired sig-
nals share a common latent Q-dimensional signal subspace. In Section 2.5, we
address some implementation details of DANSE and we study the complexity
of the algorithm. Finally, Section 2.6 illustrates the convergence results with
numerical simulations. Conclusions are given in Section 2.7.
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2.2 Problem Formulation and Notation

2.2.1 Node-Specific Linear MMSE Estimation

We consider an ideal fully connected network with sensor nodes {1, . . . , J} =
J , in which data broadcast by a node can be captured by all other (J − 1)
nodes in the network through an ideal link. Node k collects observations of
a complex1 valued Mk-channel signal yk[t], where t ∈ N is the discrete time
index, and where yk[t] is an Mk-dimensional column vector. Each channel
ykn[t], ∀ n ∈ {1, . . . ,Mk}, of the signal yk[t] corresponds to a sensor signal
to which node k has access. We assume that all signals are stationary and
ergodic. In practice, the stationarity and ergodicity assumption can be relaxed
to short-term stationarity and ergodicity, in which case the theory should be
applied to finite signal segments that are assumed to be stationary and ergodic.
For the sake of an easy exposition, we will omit the time index when referring
to a signal, and we will only write the time index when referring to one specific
observation, i.e. yk[t] is the observation of the signal yk at time t. We define
y as the M -channel signal in which all yk are stacked, where M =

∑J
k=1Mk.

This scenario is described in Fig. 2.1.

It is noted that this problem formulation also allows for hierarchical network
architectures, in which the sensors are grouped in J clusters. The sensors of a
specific cluster then transmit their observations to a nearby fusion center, i.e. a
‘higher level’ node. The J fusion centers then correspond to the J nodes in the
above framework, and the collected observations in sensor cluster k correspond
to theMk-channel signals yk as explained above. Fig. 2.2 shows such a scenario
for a network with 3 fusion centers (J = 3).

We first consider the centralized estimation problem, i.e. we assume that each
node has access to the observations of the entire M -channel signal y. This cor-
responds to the case where nodes broadcast their uncompressed observations
to all other nodes. In Sections 2.3 and 2.4, the general goal will be to compress
the broadcast signals, while preserving the estimation performance of this cen-
tralized estimator. The objective for node k is to estimate a complex valued
node-specific signal dk, referred to as the desired signal, from the observations
of y. We consider the general case where dk is not an observed signal, i.e. it
is assumed to be unknown, as it is the case in signal enhancement (e.g. in
speech enhancement, dk is the speech component in a noisy microphone sig-
nal). Node k uses a linear estimator wk to estimate dk as dk = wH

k y where wk

is a complex valued M -dimensional vector, and where superscript H denotes
the conjugate transpose operator. We assume that the M -channel signal y
is correlated to the node-specific desired signals, but unlike [6, 8], we do not
restrict ourselves to any data model generating the sensor signals, nor do we

1Throughout this paper, all signals are assumed to be complex valued to permit frequency-
domain descriptions.
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Figure 2.1: Description of the scenario. The network contains J sensor nodes,
k = 1 . . . J , where node k collects Mk-channel sensor signal observations and
estimates a node-specific desired signal dk, which is a mixture of the Q channels
of a common latent signal d.
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Figure 2.2: A hierarchical architecture with 3 fusion centers (J = 3), each one
collecting sensor signals from nearby sensors.
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make any assumptions on the probability distributions of the involved signals.
We consider linear MMSE estimation based on a node-specific estimator ŵk,
i.e.

ŵk = arg min
wk

E{|dk −wH
k y|2} (2.1)

with E{.} the expected value operator. Assuming that the correlation matrix
Ryy = E{yyH} has full rank2, the unique solution of (2.1) is [15]:

ŵk = R−1
yy rydk

(2.2)

with rydk
= E{yd∗k}, where d∗k denotes the complex conjugate of dk. Based on

the assumption that the signals are ergodic, Ryy and rydk
can be estimated by

time averaging. The Ryy is directly estimated from the sensor signal observa-
tions. Since dk is assumed to be unknown, the estimation of the correlation
vector rydk

has to be done indirectly, based on specific strategies, e.g. by
exploiting the on-off behavior of the target signal (e.g. for speech enhance-
ment [9, 10]), by using training sequences, or by using partial prior knowledge
when the estimation is performed in a semi-adaptive context. We will provide
more details on these strategies in Section 2.5.1. In the sequel, we assume that
rydk

can be estimated during operation of the algorithm.

In the above estimation procedure, temporal correlation appears to be ignored.
However, differently delayed versions of one or more sensor signals at node k can
be added to the channels of yk, to also exploit the temporal information in the
signals. For example, assume that node k has access to 4 sensor signals. Then
each of these signals is delayed with 1, up to N − 1 sample delays, resulting in
N − 1 extra (delayed) channels. In this case, the dimension of yk is Mk = 4N .

It is noted that our problem statement differs from [2–4], where each node
collects different spatio-temporal observations of two correlated signals y and
d. The objective is then to find the best common linear fit between these
observations, with a single set of coefficients w, which is assumed to be the
same for each node. Since the coefficients in w are of interest, only the locally
estimated w’s must be shared between nodes, whereas the sensor observations
themselves are only used locally to update the estimate of w. Since all nodes
are assumed to estimate the same set of coefficients, incremental or diffusive
averaging strategies can be used.

2.2.2 Common Latent Signal Subspace

In our problem statement, each node k only collects observations of yk which
corresponds to a subset of the channels of the full signal y. To find the optimal

2This assumption is mostly satisfied in practice because of a noise component at every
sensor that is independent of other sensors, e.g. thermal noise. If not, pseudo-inverses should
be used. A further comment on the rank-deficient case is made in Section 2.4.3.
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MMSE solution (2.2), each node k therefore in principle has to broadcast its
observations of yk to all other nodes in the network, which requires a large com-
munication bandwidth. One possibility to reduce the required bandwidth is to
broadcast only a few linear combinations of the components of the yk observa-
tions instead of all Mk components. Finding the optimal linear compression is
often a non-trivial task, and in general this will not lead to the optimal solu-
tions (2.2). In many practical cases, however, the dk signals share a common
latent signal subspace, and then this can be exploited in the compression. The
most simple case is when all dk = d, i.e. the desired signal is the same for
all nodes. We will first handle the slightly more general case where all dk are
scaled versions of a common latent single-channel signal d. For this scenario,
we will introduce the DANSE1 algorithm, in which the data to be broadcast
by each node k is compressed by a factor Mk. Despite this compression, the
algorithm converges to the optimal node-specific solution (2.2) at every node
as if no compression were used for the broadcasts.

This scenario can then be extended to the more general case where the desired
signals share a common Q-dimensional signal subspace, i.e.

∀ k ∈ J : dk = aH
k d (2.3)

with ak defining an unknown Q-dimensional complex vector, and d a latent
complex valued Q-channel signal defining the Q-dimensional signal subspace
that contains all dk signals. This model applies to situations where the desired
signal is generated by multiple latent processes simultaneously (e.g. measuring
vibrations when there are multiple exciters, or recording a conversation be-
tween multiple speakers [9]). Since the statistics of the latent signals as well as
the propagation properties to the different sensors are generally unknown, the
signal estimation procedure can only use statistics that can be obtained from
the local sensor signal observations. The desired signal of each node is then
the linear mixture of the latent target signals as locally observed by a reference
sensor.

In the sequel, we consider the general case where node k estimates a K-channel
desired signal dk

∀ k ∈ J : dk = Akd (2.4)

with Ak a K ×Q complex valued matrix. This data model is depicted in Fig.
2.1. It is noted that the matrix Ak and the latent signal d are assumed to be
unknown, i.e. nodes do not know how their node-specific desired signals dk are
related to each other. Since we also consider complex valued signals, (2.4) can
correspond to a frequency domain description of a convolutive mixture in the
time domain, as in [9, 10]. Expression (2.4) then defines a different estimation
problem for each specific frequency. This yields frequency dependent estimators
wk(f), which translate to multi-tap filters in the time domain.

Notice that, if K ≥ Q, the desired signal dk spans the complete signal subspace
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defined by the Q-channel signal d (provided that the K × Q matrix Ak has
full rank). If this holds for each node in the network, we will show that the
data to be broadcast by node k can be compressed by a factor Mk

Q . This means
that node k only needs to broadcast Q linear combinations of the components
of its observations of yk, while the optimal node-specific solution (2.2) is still
obtained at all nodes. Notice that in practical applications, the actual signal(s)
of interest can be a subset of the entries in dk, in which case the other entries
should be seen as auxiliary channels to capture the latent Q-dimensional signal
subspace that contains the dk’s. For instance, consider the case where nodes
estimate the target signal as observed by their reference sensor, i.e. node k
estimates the node-specific desired signal dk as in (2.3). Node k then selects
K − 1 extra auxiliary reference sensors, and also estimates the target signal
as it arrives on these sensors. The resulting K-channel desired signal dk then
spans the complete signal subspace if K ≥ Q.

2.3 DANSE with Single-Channel Broadcast Sig-
nals (K=1)

The algorithm introduced in this paper is an iterative scheme referred to as
distributed adaptive node-specific signal estimation (DANSE), since its objec-
tive is to estimate a node-specific signal at each node in a distributed fashion.
In the general scheme, each node k broadcasts min{K,Mk}-component com-
pressed sensor signal observations. We will refer to this as DANSEK , where
the subscript K refers to the number of channels of the broadcast signals. For
the sake of an easy exposition, we first introduce the DANSE algorithm for
the simple case where K = 1 and we will show that DANSE1 converges to the
optimal filters if Q = 1, i.e. if the single-channel desired signals dk are non-zero
scaled versions of the same latent single-channel signal d. In Section 2.4 we
generalize this to the more general DANSEK algorithm, and we will show that
this algorithm converges to the optimal filters if Q = K and if all Ak in (2.4)
have rank K.

2.3.1 DANSE1 Algorithm

The goal for each node k is to estimate the signal dk with a linear estimator that
uses all observations in the entire network, i.e. dk = wH

k y. We aim to obtain
the MMSE solutions (2.2), without the need for each node to broadcast all Mk

components of the yk observations. For this, we define a partitioning of the
estimator wk as wk = [wT

k1 . . . wT
kJ ]T with wkq denoting the Mk-dimensional

subvector of wk that is applied to yq, and with superscript T denoting the
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Figure 2.3: The DANSE1 scheme with 3 nodes (J = 3). Each node k estimates
a signal dk using its own Mk-channel sensor signal observations, and 2 single-
channel signals broadcast by the other two nodes.

transpose operator. In this way, (2.1) is equivalent to

ŵk =

 ŵk1

...
ŵkJ

 = arg min
{wk1,...,wkJ}

E{|dk −
J∑

q=1

wH
kq yq|2} . (2.5)

Since node k only has access to the sensor signal observations of yk, it can
only control a specific part of the estimator wk, namely wkk. In the DANSE1

algorithm, each node k broadcasts the output of this partial estimator, i.e.
observations of the compressed signal zk = wH

kkyk. This reduces the data to be
broadcast by a factor Mk. It is noted that wkk acts both as a compressor and
as a part of the estimator wk, i.e. the observations of the compressed signal
zk that is broadcast by node k is also used in the estimation of dk at node k
itself.

A node k now has access to Mk + J − 1 input channels, i.e. its own Mk sensor
signals and (J − 1) signals that it receives from the other nodes. Node k will
compute the optimal linear combiner of these Mk + J − 1 input channels to
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estimate dk. The coefficient that is applied to the signal observations of zq at
node k is denoted by gkq. A schematic illustration of this scheme (for J=3) is
shown in Fig. 2.3. Notice that there is no decompression involved, i.e. node k
does not expand the observations of the zq signal, but only scales these with
a scaling factor gkq. As visualised in Fig. 2.3, the parametrization of the wk

now effectively applied at node k is therefore

w̃k =


gk1w11

gk2w22

...
gkJwJJ

 (2.6)

i.e. each wk is now defined by the set of wqq’s (q ∈ J ) together with a vector
gk = [gk1 . . . gkJ ]T , defining the scaling parameters. We use a tilde to indicate
that the estimator is parametrized according to (2.6), which defines a solution
space for (w1, . . . ,wJ) with a specific structure. In this parametrization, node
k can only manipulate the parameters wkk and gk. In the sequel, we set
gkk = 1 to remove the ambiguity in gkkwkk (hence gkk is omitted in Fig. 2.3).
Notice that the solution space (w̃1, . . . , w̃J) of DANSE1 is (M + J(J − 1))-
dimensional, which is smaller3 than the originalMJ-dimensional solution space
(w1, . . . ,wJ) corresponding to the centralized algorithm, i.e. the solution space
of the optimization problem (2.1). Still, the goal of the DANSE1 algorithm is to
iteratively update the parameters of (2.6) until (w̃1, . . . , w̃J) = (ŵ1, . . . , ŵJ).

In the sequel, we will use the following notation and definitions. In general, we
will use Xi to denote X at iteration i, where X can be a signal or a parameter.
The J-channel signal z is defined as z = [z1 . . . zJ ]T . We define gk−q as the
vector gk with entry gkq omitted. Similarly, we define z−k as the vector z with
entry zk omitted.

At every iteration i in the DANSE1 algorithm, one specific node k will update
its local parameters wi

kk and gi
k−k, by solving its local node-specific MMSE

problem with respect to its input signals, consisting of its own sensor signal
observations yk and the compressed signal observations of zi

−k, i.e. it solves

[
wi+1

kk

gi+1
k−k

]
= arg min

wkk,gk−k

E

{∣∣∣∣dk −
[

wH
kk gH

k−k

] [ yk

zi
−k

]∣∣∣∣2
}
. (2.7)

Let ỹi
k denote the stacked version of the local input signals at node k, i.e.

ỹi
k =

[
yk

zi
−k

]
. (2.8)

3It is assumed here that J < M , i.e. Mk ≥ 1, ∀ k ∈ J , and there is at least one node k
for which Mk > 1.
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Then the solution of (2.7) is[
wi+1

kk

gi+1
k−k

]
=
(
Ri

ỹkỹk

)−1
ri

ỹkdk
(2.9)

with

Ri
ỹkỹk

= E{ỹi
kỹ

i H
k } (2.10)

ri
ỹkdk

= E{ỹi
kd
∗
k} . (2.11)

Since there is no decompression involved, the local estimation problems (2.7)
have a smaller dimension than the original network-wide estimation problems
(2.1), ∀ k ∈ J , i.e. the matrix Ri

ỹkỹk
is smaller than the Ryy matrix in (2.2).

We define a block size B which denotes the number of observations that the
nodes collect in between two successive node updates, i.e. in between two
increments of i. The DANSE1 algorithm is described in Table 2.1 on the next
page.

Remark I: Notice that the different iterations are spread out over time. There-
fore, iterative characteristics of the algorithm do not have an impact on the
amount of data that is transmitted, i.e. each sample is only broadcast once
since the time index in (2.12) and (2.14) shifts together with the iteration index.

Remark II: In the above algorithm description, it is not mentioned how the
correlation matrix Ri

ỹkỹk
and the correlation vector ri

ỹkdk
should be estimated.

This estimation process depends on the application and the signals involved.
In Section 2.5.1, we will suggest some possible strategies to estimate Ri

ỹkỹk
and

ri
ỹkdk

.

Remark III: It is noted that, when a node k updates its node-specific pa-
rameters wi

kk and gi
k−k, the signal statistics of zk change, i.e. zi

k changes to
zi+1
k . Therefore, the next node to perform an update needs a sufficient number

of observations of zk to reliably estimate the correlation coefficients involving
this signal. Therefore, the block-length B should be chosen large enough.
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The DANSE1 Algorithm

1. Initialize: i← 0, u← 1
Initialize w0

kk and g0
k−k with random vectors, ∀ k ∈ J

2. Each node k ∈ J performs the following operation cycle:
• Collect the sensor observations yk[iB + n], n = 0 . . . B − 1.
• Compress these Mk-dimensional observations to

zi
k[iB + n] = wi H

kk yk[iB + n], n = 0 . . . B − 1 . (2.12)

• Broadcast the compressed observations zi
k[iB + n], n =

0 . . . B − 1, to the other nodes.
• Collect the (J − 1)-dimensional data vectors zi

−k[iB + n],
n = 0 . . . B − 1, which are stacked versions of the compressed
observations received from the other nodes.

• Update the estimates of Ri
ỹkỹk

and ri
ỹkdk

, by including the
newly collected data.

• Update the node-specific parameters:

[
wi+1

kk

gi+1
k−k

]
=


(
Ri

ỹkỹk

)−1
ri

ỹkdk
if k = u[

wi
kk

gi
k−k

]
if k 6= u

(2.13)

• Compute the estimate of dk[iB + n], n = 0 . . . B − 1, as

dk[iB + n] =wi+1 H
kk yk[iB + n]

+ gi+1 H
k−k zi

−k[iB + n] .
(2.14)

3. i← i+ 1
4. u← (u mod J) + 1
5. return to step 2

Table 2.1: The DANSE1 algorithm
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2.3.2 Convergence and Optimality of DANSE1 if Q = 1
and Non-Zero Desired Signals

We now assume that all dk are a non-zero scaled version of the same signal d,
i.e. dk = ρkd, with ρk a non-zero complex scalar but unknown to the individual
nodes. Formula (2.2) shows that in this case, all ŵk are parallel, i.e.

ŵk = ρkqŵq ∀ k, q ∈ J (2.15)

with ρkq = ρ∗k
ρ∗q

. Therefore, the set (ŵ1, . . . , ŵJ) belongs to the solution space
used by DANSE1, as specified by (2.6), i.e. (ŵ1, . . . , ŵJ) ∈ (w̃1, . . . , w̃J).

In the theoretical convergence analysis infra, we assume that the correlation
matrices Ri

ỹkỹk
and the correlation vectors ri

ỹkdk
, ∀ k ∈ J , are perfectly esti-

mated, i.e. as if they are computed over an infinite observation window. Under
this assumption, the following theorem guarantees convergence and optimality
of the DANSE1 algorithm.

Theorem 2.1 If the sensor signal correlation matrix Ryy has full rank, and
if dk = ρkd, ∀ k ∈ J , with d a complex valued single-channel signal and
ρk ∈ C\{0}, then the DANSE1 algorithm converges for any initialization of
its parameters to the MMSE solution (2.2) for all k ∈ J .

Before proving this theorem, we introduce some additional notation. The vector
w (without subscript) denotes the stacked vector of all wkk vectors, i.e.

w =


w11

w22

...
wJJ

 . (2.16)

We also define the following MSE cost functions corresponding to node k:

Jk(wk) = E{|dk −wH
k y|2} (2.17)

J̃k (w,gk) = Jk(w̃k) (2.18)

where w̃k is defined from w and gk as in (2.6). Notice that gk contains the
entry gkk, which is a fictitious variable that is never actually computed by the
DANSE1 algorithm. We define Fk(wi) as the function that generates wi+1

kk

according to (2.9), i.e.

Fk(wi) = wi+1
kk =

[
IMk

OMk×(J−1)

] (
Ri

ỹkỹk

)−1
ri

ỹkdk
(2.19)

with IP denoting a P×P identity matrix and OP×Q denoting an all-zero P×Q
matrix. It is noted that the right-hand side of (2.19) depends on all entries of
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the argument wi through the signal zi
−k, which is not explicitly revealed in this

expression.

The proof of Theorem 2.1 provided here differs from the proof in [10], where
a scheme similar to DANSE1 with J = 2 has been proved to converge to the
optimal solution. Unlike the proof in [10], our proof allows for a generalization
to the DANSEK case with K > 1, it allows J > 2, and provides more insight
in the convergence properties of the algorithm. We first prove the convergence
statement of Theorem 2.1, and then the optimality statement.

Proof : [Proof of convergence] We prove that the sequence
(
wi
)
i∈N and the

sequences
(
gi

k

)
i∈N ∀ k ∈ J converge to a limit point w∞ and g∞k respectively.

When node k performs an update of its variables wkk and gk−k at iteration i,
these are replaced by the solution of the local MMSE problem (2.7), repeated
here for convenience:

min
wkk,gk−k

E

{∣∣∣∣dk −
[

wH
kk gH

k−k

] [ yk

zi
−k

]∣∣∣∣2
}
. (2.20)

If node q were to optimize the variables wkk and gq−k with respect to its own
node-specific estimation problem, it would solve the problem

min
wkk,gq−k

E

{∣∣∣∣dq −
[

wH
kk gH

q−k

] [ yk

zi
−k

]∣∣∣∣2
}
. (2.21)

Since d∗k = ρkqd
∗
q with ρkq = ρ∗k

ρ∗q
, the solution of (2.20) and (2.21) are identical

up to a scalar ρkq. This means that an update of wkk and gk−k at node k, which
is an optimization leading to a decrease of J̃k, will also lead to a decrease of J̃q

for any q ∈ J if node q were allowed to also perform a responding optimization
of its gq. This shows that for any i (independent of the selection of the node u
that actually performs an update at iteration i)

∀ k ∈ J : min
gk

J̃k

(
wi+1,gk

)
≤ min

gk

J̃k

(
wi,gk

)
. (2.22)

Since all J̃k have a lower bound, each sequence
(
mingk

J̃k

(
wi,gk

))
i∈N

con-

verges to a limit Lk, i.e.
∀ k ∈ J :

i→∞ : min
gk

J̃k

(
wi+1,gk

)
= min

gk

J̃k

(
wi,gk

)
= Lk . (2.23)

If we again assume that node k performs an update at iteration i, then because
of the strict convexity of the cost function in (2.20), the following expression
holds:

min
gk

J̃k

(
wi+1,gk

)
= min

gk

J̃k

(
wi,gk

)
⇔ wi+1

kk = βkwi
kk (2.24)
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with

βk = arg min
gkk

(
min
gk−k

J̃k

(
wi,gk

))
. (2.25)

This shows that, after convergence of the sequences(
min
gk

J̃k

(
wi,gk

))
i∈N

, ∀ k ∈ J

any update of a wkk must correspond to a scaling. Notice however that

Fk


 wi

11
...

wi
JJ


 = Fk


 β1wi

11
...

βJwi
JJ


 (2.26)

i.e. a scaling of a wqq in node q does not change the update of wkk in node k,
since the scaling is implicitly compensated in Fk by the parameter gkq. This
proves convergence of the sequence

(
wi
)
i∈N to a limit point w∞ and therefore

also the sequences
(
gi

k

)
i∈N must converge to a limit point g∞k , ∀ k ∈ J . Notice

that after convergence, based on what was stated earlier

∀ k, q ∈ J : w̃∞kq = ρkqw∞qq (2.27)

or equivalently
∀ k, q ∈ J : g∞kq = ρkq . (2.28)

2

From the proof of convergence, one can also conclude that convergence of the
cost functions Jk will be monotonic, when sampled at the iteration steps in
which node k updates its parameters. Indeed, whenever node q optimizes its
own local MMSE problem, it also optimizes the corresponding MMSE problem
in node k, at least when the latter is allowed to perform a responding update
of its parameter gkq. This shows that the DANSE1 algorithm is at least as
fast as a centralized equivalent that would use an alternating optimization
(AO) technique [16], which is often referred to as the nonlinear Gauss-Seidel
algorithm [17], with partitioning following directly from the parameters J and
Mk for each node.

Proof : [Proof of optimality] We now prove that w̃∞k is the solution of (2.1)
for every node k, which is equivalent to proving that the gradient of Jk is zero
when evaluated at equilibrium, i.e.

∀ k ∈ J : OJk(w̃∞k ) = 0 . (2.29)

Because the solution of (2.20) sets the partial gradient of J̃k with respect to
wkk to zero, we find that

∀ k ∈ J : Owkk
J̃k(w∞,g∞k ) = Owkk

Jk(w̃∞k ) = 0 . (2.30)
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Since d∗k = ρkqd
∗
q , we can show that

∀ k, q ∈ J : Owqq
Jq(wq) = 0⇔ Owkq

Jk(ρkqwq) = 0 . (2.31)

Combining (2.30) and (2.31) yields

∀ k, q ∈ J : Owkq
Jk(ρkqw̃∞q ) = 0 . (2.32)

Notice that (2.27) is equivalent with

∀ k, q ∈ J : w̃∞k = ρkqw̃∞q . (2.33)

Substituting (2.33) in (2.32) yields

∀ k, q ∈ J : Owkq
Jk(w̃∞k ) = 0 (2.34)

which is equivalent to (2.29). This proves the theorem. 2

2.4 DANSE with K-Channel Broadcast Signals

2.4.1 DANSEK Algorithm

In the DANSEK algorithm, each node broadcasts min{K,Mk}-component com-
pressed sensor signal observations to the other nodes. This compresses the data
to be sent by node k by a factor of max{Mk

K , 1}. We assume that each node k
estimates a K-channel desired signal dk = [dk(1) . . . dk(K)]T . Assuming that
the desired signals dk share a common Q-dimensional latent signal subspace,
we will show in Section 2.4.2 that DANSEK achieves the optimal estimators if
K is chosen equal to Q. Notice that the actual signal(s) of interest can be a
subset of the vector dk, and the other entries should then be seen as auxiliary
channels to fully capture the latent signal subspace, as explained in Section
2.2.2. Generally, these auxiliary channels are obtained by choosing K−1 extra
reference sensors at node k.

Again, we use a linear estimator Wk to estimate dk as dk = WH
k y, where

Wk = [wk(1) ...wk(K)]. The objective for node k is to find the linear MMSE
estimator

Ŵk = arg min
Wk

E
{
‖dk −WH

k y‖2
}
. (2.35)

The solution of (2.35) is
Ŵk = R−1

yy Rydk
(2.36)

with Rydk
= E

{
ydH

k

}
. Again, we define a partitioning of the estimator Wk

as Wk =
[
WT

k1 . . . WT
kJ

]T with Wkq denoting the Mk ×K submatrix of Wk

that is applied to yq. We wish to obtain (2.36) without the need for each node
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to broadcast all Mk components of the yk observations. Instead each node k
will broadcast observations of the K-channel compressed signal zk = WH

kkyk.
Since the K channels of zk will be highly correlated, further joint compression
is possible, but we will not take this into consideration throughout this paper.

A node k can transform the observations of zq that it receives from node q
by a K × K transformation matrix Gkq. Again, it is noted that Gkq does
not decompress the observations of the signal zq, but makes K new linear
combinations of their components. The parametrization of the Wk effectively
applied at node k is then

W̃k =

 W11Gk1

...
WJJGkJ

 (2.37)

which is a generalization of (2.6). Here, node k can only optimize the parame-
ters Wkk and Gk = [GT

k1 . . . GT
kJ ]T . We set Gkk = IK with IK denoting the

K ×K identity matrix.

The (KJ)-channel signal z =
[
zT
1 . . . z

T
J

]T is a stacked version of all the broad-
cast signals. Similarly to the notation in Section 2.3, we define the signal z−k

as the signal z with zk omitted, and we define Gk−q as the matrix Gk with
the submatrix Gkq omitted. The MMSE problem that is solved at node k, at
iteration i, is now[

Wi+1
kk

Gi+1
k−k

]
= arg min

Wkk,Gk−k

E

{∥∥∥∥dk −
[

WH
kk GH

k−k

] [ yk

zi
−k

]∥∥∥∥2
}
. (2.38)

The solution of (2.38) is[
Wi+1

kk

Gi+1
k−k

]
=
(
Ri

ỹkỹk

)−1
Ri

ỹkdk
(2.39)

with Ri
ỹkỹk

defined as in (2.10) and with

Ri
ỹkdk

= E{ỹi
kd

H
k } . (2.40)

The DANSEK algorithm is described in Table 2.2 on the next page. It is a
straightforward generalization of the DANSE1 algorithm as explained in Sec-
tion 2.3.1, where all vector-variables are replaced by their matrix equivalent.
Similarly, expressions (2.16)-(2.19) can be straightforwardly generalized to their
matrix equivalent.
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The DANSEK Algorithm

1. Initialize: i← 0, u← 1
Initialize W0

kk and G0
k−k with random matrices, ∀ k ∈ J

2. Each node k ∈ J performs the following operation cycle:
• Collect the sensor observations yk[iB + n], n = 0 . . . B − 1.
• Compress these Mk-dimensional observations to K-

dimensional vectors

zi
k[iB + n] = Wi H

kk yk[iB + n], n = 0 . . . B − 1 (2.41)

• Broadcast the compressed observations zi
k[iB + n], n =

0 . . . B − 1, to the other nodes.
• Collect the K(J − 1)-dimensional data vectors zi

−k[iB + n],
n = 0 . . . B − 1, which are stacked versions of the compressed
observations received from the other nodes.

• Update the estimates of Ri
ỹkỹk

and Ri
ỹkdk

, by including the
newly collected data.

• Update the node-specific parameters:

[
Wi+1

kk

Gi+1
k−k

]
=


(
Ri

ỹkỹk

)−1
Ri

ỹkdk
if k = u[

Wi
kk

Gi
k−k

]
if k 6= u

(2.42)

• Compute the estimate of dk[iB + n], n = 0 . . . B − 1, as

dk[iB + n] =Wi+1 H
kk yk[iB + n]

+ Gi+1 H
k−k zi

−k[iB + n] .
(2.43)

3. i← i+ 1
4. u← (u mod J) + 1
5. return to step 2

Table 2.2: The DANSEK algorithm
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2.4.2 Convergence and Optimality of DANSEK if Q = K
and Ak Full Rank

We now assume that dk = Akd, ∀ k ∈ J , with Ak a K ×K matrix of rank K
and d a complex valued K-channel signal. This means that all desired signals
dk share the same K-dimensional latent signal subspace (i.e. Q = K). Formula
(2.36) shows that in this case all Ŵk have the same column space, i.e.

∀ k, q ∈ J : Ŵk = ŴqAkq (2.44)

with Akq = A−H
q AH

k . Therefore, the set
(
Ŵ1, . . . ,ŴJ

)
belongs to the so-

lution space used by DANSEK , as specified by (2.37), i.e.
(
Ŵ1, . . . ,ŴJ

)
∈(

W̃1, . . . ,W̃J

)
. The following theorem generalizes Theorem 2.1:

Theorem 2.2 If the sensor signal correlation matrix Ryy has full rank, and
if dk = Akd, ∀ k ∈ J , with d a complex valued K-channel signal and Ak

a K × K matrix of rank K, then the DANSEK algorithm converges for any
initialization of its parameters to the MMSE solution (2.36) for all k ∈ J .

Proof : The proof of Theorem 2.1 can straightforwardly be generalized to
prove Theorem 2.2, by replacing every w and g by its matrix version W and
G. 2

In practice, the matrices Ak should be well-conditioned to obtain the optimal
estimators, which is reflected in Theorem 2.2 by the condition that Ak has full
rank. If the K-channel desired signal dk is defined as the target signal in K
reference sensors at node k, this matrix can be ill-conditioned if the reference
sensors are close to each other. This problem is investigated in [9], where the
DANSE algorithm is used for noise reduction in acoustic sensor networks, and
a solution is proposed to tackle this problem.

2.4.3 DANSE Under Rank Deficiency

Until now, we have avoided the case where Ryy does not have full rank or
when the parameter K is overestimated, i.e. K > Q. Both cases can result in
broadcast data for which the correlation matrix is rank deficient4. In this case,
(2.38) becomes ill-posed since singular correlation matrices are involved. The
DANSEK algorithm can cope with these situations by adding a minimum-norm
constraint to the local MMSE problems (2.38), i.e. using the pseudo-inverse

4In the case where K > Q, (2.44) has multiple solutions for Akq since rank(Ŵk) = Q,
∀ k ∈ J . Therefore, the correlation matrix of the broadcast signal zi

k becomes singular, once

the Mk ×K submatrix Wi
kk reaches this rank deficiency.
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instead of a matrix inverse in the computation of the solution of (2.38) [15].
Extensive simulations have shown that with this modification, the DANSEK

algorithm still converges to an MMSE solution for rank deficient estimation
problems (see Section 2.6).

However, if the matrix Ryy does not have full rank, the solution of (2.1) is
not unique. Simulations have shown that the solutions W̃∞

k obtained by the
DANSEK algorithm, although leading to a minimal MSE cost at node k, are
generally different from the solutions provided by the centralized minimum
norm version, i.e.

Ŵk = R†yyRydk
(2.45)

where superscript † denotes the pseudo-inverse.

2.5 DANSEK Implementation Aspects

2.5.1 Estimation of the Signal Statistics

In the theoretical analysis of the DANSEK algorithm, it is assumed that the
second order signal statistics, which are needed to solve the MMSE problem
(2.38) are perfectly known. However, in a practical application, the correlation
matrices Ri

ỹkỹk
and Ri

ỹkdk
have to be estimated, based on the collected signal

observations. In this section, we will describe some strategies to estimate these
quantities.

Estimation of signal correlation matrices is typically done by time averaging.
This means that some assumptions are made on short-term ergodicity and sta-
tionarity of the signals involved. However, this stationarity assumption is not
necessarily strict. Even when the signals involved are non-stationary (such as in
speech processing), the DANSEK algorithm can provide good estimators. By
using long-term correlation matrices, the influence of rapidly changing tempo-
ral statistics is smoothed out, yielding estimators that mainly exploit the spa-
tial coherence between the sensors. Since spatial coherence typically changes
slowly, the DANSEK algorithm is able to provide good estimators, even when
the signals themselves are highly non-stationary (this is e.g. demonstrated by
the multi-channel speech enhancement experiments in [9]).

We let Ri
ỹkỹk

[t] denote the estimate of Ri
ỹkỹk

at time t. Signal correlation
matrices are often estimated in practice by means of a forgetting factor 0 <
λ < 1, i.e.

Ri
ỹkỹk

[t] = λRi
ỹkỹk

[t− 1] + (1− λ)ỹi
k[t]ỹi

k[t]H . (2.46)

Notice that in the DANSEK algorithm, the statistics change every time a node
updates its parameters. Therefore, (2.46) is not suited to compute Ri

ỹkỹk
[t]

and Ri
ỹkdk

[t], since it uses an infinite time window. A better alternative is a
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simple time averaging in a finite observation window, i.e.

Ri
ỹkỹk

[t] =
1
L

t∑
n=t−L+1

ỹi
k[n]ỹi

k[n]H (2.47)

where L is the length of the observation window. The procedure (2.46) puts
more emphasis on the most recent samples, whereas (2.47) applies an equal
weight to all past samples in the observation window. The procedure (2.47)
can be implemented recursively by means of an updating and a downdating
term, i.e.

Ri
ỹkỹk

[t] =Ri
ỹkỹk

[t− 1] +
1
L

ỹi
k[t]ỹi

k[t]H

− 1
L

ỹi
k[t− L+ 1]ỹi

k[t− L+ 1]H .

(2.48)

Notice that the window length L introduces a trade-off between tracking per-
formance and estimation performance. Indeed, to have a fast tracking, the
statistics must be estimated from short signal segments, yielding larger estima-
tion errors in the correlation matrices that are used to compute the estimators
at the different nodes. However, as will be demonstrated in Section 2.6.2, the
DANSEK algorithm is more robust to these errors, compared to the equivalent
centralized algorithm, due to the fact that DANSEK uses correlation matrices
with smaller dimensions than the network-wide estimation problem.

The estimation of Ri
ỹkdk

is less straightforward since the signal dk cannot
be observed directly. However, depending on the application and the signals
involved, some strategies can be developed to estimate Ri

ỹkdk
, as explained in

the following two examples.

If the transmitting sources are controlled by the application itself, as it is the
case in a communications scheme, the source signals that define the different
channels in d can be manipulated directly. At periodic intervals, a determin-
istic training sequence can be broadcast by the transmitters. If the nodes
have knowledge about these training sequences, they can use this to compute
Ri

ỹkdk
[t] in a similar way as in (2.48), during the broadcast of these training se-

quences. After the broadcast, the estimate is fixed until new training sequences
are broadcast.

A different strategy can be applied if the desired signal dk has an on-off behav-
ior5. Assume that the sensor signals in y consist of a desired component x and
an additive noise component n, i.e. y = x+n, where x has an on-off behavior,
and where then dk = [xk1 . . . xkK ]T . In many practical applications, it can

5This is often used in speech enhancement applications, since a speech signal typically
contains a lot of silent pauses in between words or sentences.
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also be assumed that x and n are independent, and therefore6

E{xxH} = E{yyH} − E{nnH} . (2.49)

If there is a detection mechanism available that detects whether the signal x is
present or not, one can estimate E{nnH} in time segments where only noise is
observed (“noise-only segments”). Since the noise is uncorrelated to the desired
component dk, we find that

Ri
ỹkdk

= E{x̃i
kx̃

i H
k }EK (2.50)

with

EK =
[

IK

O(Mk+(J−2)K)×K

]
(2.51)

where x̃i
k is the desired component in the signal ỹi

k. The selection matrix EK is
used to select the first K columns corresponding to dk = [xk1 . . . xkK ]T . Define
the noise correlation matrix

Ri
ñkñk

= E{ñi
kñ

i H
k } (2.52)

where ñi
k denotes the noise component in the signal ỹi

k. With (2.50), and
similarly to (2.49), we readily find that

Ri
ỹkdk

=
(
Ri

ỹkỹk
−Ri

ñkñk

)
EK . (2.53)

Using (2.53), one can compute Ri
ỹkdk

[t] as the difference between Ri
ỹkỹk

[t] and
Ri

ñkñk
[t], where the latter is computed as in (2.48), during noise-only periods.

Notice that, even if the target signal does not have this on-off behaviour, the
above strategy can be used in a semi-adaptive context, i.e. where the target
signal statistics may change but the noise statistics are static and a priori
known (or vice versa). Indeed, if E{nnH} is known, then (2.53) can be used to
compute the required statistics. Notice that Ri

ñkñk
in (2.53) is a compressed

version of E{nnH}, i.e. it depends on the current parameters in Wi. Therefore,
each node k has to broadcast the entries of Wi

kk, which are needed in the
other nodes to compress the corresponding submatrices in E{nnH}. Since
these values change only once for each JB observations that are collected by
the sensors, the resulting increase in bandwidth is negligible compared to the
transmission of the samples of zi

k.

2.5.2 Computational Complexity

The estimation of the correlation matrices Ri
ỹkỹk

and Ri
ỹkdk

, and the inversion
of the former, are the most computationally expensive steps of the DANSEK

6For the sake of an easy exposition, we assume that the signals x and n have zero mean.
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algorithm. From (2.48) it follows that an update of Ri
ỹkỹk

[t] at node k, has a
computational complexity of

O
(
(Mk +K(J − 1))2

)
(2.54)

i.e. it is quadratic in the number of nodes J , the number of channels K in the
broadcast signals, and the number of channels Mk of the signal yk. If node k
updates its parameters Wi

kk and Gi
k−k according to (2.39), it performs a ma-

trix inversion, which is computationally more expensive than (2.54). However,
instead of computing this inversion, node k can directly update the inverse of
Ri

ỹkỹk
[t] at each time t by means of the matrix inversion lemma [15], i.e.

(
Ri temp

ỹkỹk

)−1

=
(
Ri

ỹkỹk
[t− 1]

)−1

−
(
Ri

ỹkỹk
[t− 1]

)−1
ỹi

k[t]ỹi
k[t]H

(
Ri

ỹkỹk
[t− 1]

)−1

1 + ỹi
k[t]H

(
Ri

ỹkỹk
[t− 1]

)−1

ỹi
k[t]

(2.55)

(
Ri

ỹkỹk
[t]
)−1

=
(
Ri temp

ỹkỹk

)−1

+

(
Ri temp

ỹkỹk

)−1

ỹi
k[t− L+ 1]ỹi

k[t− L+ 1]H
(
Ri temp

ỹkỹk

)−1

1− ỹi
k[t− L+ 1]H

(
Ri temp

ỹkỹk

)−1

ỹi
k[t− L+ 1]

.
(2.56)

This update also has computational complexity (2.54), and therefore this is the
overall complexity for a single node in the DANSEK algorithm.

2.6 Numerical Simulations

In this section, we provide simulation results to demonstrate the behavior of
the DANSEK algorithm. In Section 2.6.1, we perform batch mode simula-
tions where the required statistics are computed over the full length signals,
and where the dk’s are available7 to compute Ri

ỹkdk
. In the batch version of

DANSEK , all iterations are performed on the same set of signal observations.
In Section 2.6.2, a more practical scenario with moving sources is considered.
The DANSEK algorithm adapts to the changes in the scenario, and each set of
observations is only broadcast once, i.e. subsequent iterations are performed
over different observation sets. Furthermore, a practical estimation of the cor-
relation matrices is used, where the dk’s are assumed to be unavailable.

7This is similar to using a priori known training sequences.



94 Chapter 2. Fully Connected DANSE with Sequential Node Updating

2.6.1 Batch Mode Simulations

In this section, we simulate the DANSEK algorithm in batch mode. This
means that all iterations are performed on the full signal length. The network
consists of 4 nodes (J = 4), each having 10 sensors (M=40). The dimension
of the latent signal subspace defined by d is Q = 3. All 3 channels of d are
uniformly distributed random processes on the interval [−0.5, 0.5] from which
N = 10000 samples are generated. The coefficients in Ak are generated by a
uniform random process on the unit interval. The sensor signals in y consist
of the different random mixtures of the latent Q-channel signal d to which
zero-mean white noise is added with half the power of the channels of d. The
initial values of all Wkk and Gk are taken from a uniform random distribution
on the unit interval.

The batch mode performance of the DANSE1 algorithm as well as the DANSE3

algorithm is simulated for this particular scenario. All evaluations of the MSE
cost functions Jk are performed on the equivalent least-squares (LS) cost func-
tions, i.e.

N∑
t=0

‖dk[t]−WH
k y[t]‖2 . (2.57)

Also, the correlation matrices are replaced by their least squares equivalent,
i.e. E{yyH} is replaced by YYH where Y denotes the M ×N sample matrix
that contains samples of the variable y in its columns.

The results are illustrated in Fig. 2.4, showing the LS cost of node 1 versus
the iteration index i. Node 1 is the first node that performs an update. It
is observed that the DANSE3 algorithm converges to the optimal linear LS
solution, whereas the DANSE1 algorithm does not since K < Q in this case.
Downsampling the curve corresponding to DANSE3 by a factor J = 4, keep-
ing only the iterations in which node 1 updates its parameters, results in a
monotonically decreasing cost. This is because of expression (2.22), showing
that the cost indeed monotonically decreases whenever a node optimizes its G
parameters. If the curve corresponding to DANSE1 is downsampled with the
same factor, we do not obtain a monotonically decreasing cost, since expression
(2.22) is not valid anymore for this case.

In Fig. 2.5, we vary the number of nodes J , keeping all other parameters
unchanged. All nodes again have 10 sensors. Not surprisingly, the convergence
time of DANSE3 increases linearly with J since the effective number of updates
per time unit in node 1 is reduced. As soon as each node has updated its
parameters three times, the cost is almost at its minimum at each node.

In Fig. 2.6(a), we increase the value of K while keeping Q = 3. Notice that
this corresponds to the case where K is overestimated and hence communi-
cation bandwidth is used inefficiently. The estimation problem becomes rank
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Figure 2.4: LS error of node 1 versus iteration i for four different scenarios in
a network with J = 4 nodes. Each node has 10 sensors.
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Figure 2.5: LS error of node 1 versus iteration i for networks with J = 4, J = 8
and J = 15 nodes respectively. Each node has 10 sensors.
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(a) Different values of K, keeping Q = 3
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Figure 2.6: LS error of node 1 versus iteration i in a network with J = 4 nodes.
Each node has 10 sensors.
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deficient in this case, and so the algorithm should be modified by replacing
matrix inversions by pseudo-inversions (see Section 2.4.3). The algorithm still
converges, and the optimal LS cost is again reached after two iterations per
node when K is overestimated. In Fig. 2.6(b), we increase the value of K
together with Q, keeping Q = K. This is again observed to have a negligible
effect on convergence time.

As a general conclusion, we can state that for all settings of the parameters K,
Q, J , the DANSEK algorithm approximately achieves convergence as soon as
each node has updated its parameters three times.

Simulation results with speech signals are provided in a follow-up paper [9].
In this paper, a distributed speech enhancement algorithm based on DANSEK

and its variations, is tested in a simulated acoustic sensor network scenario.

2.6.2 Adaptive Implementation

In this section, we show simulation results of a practical implementation of the
DANSEK algorithm in a scenario with moving sources. The main difference
with the batch mode simulations is that subsequent iterations are now per-
formed on different signal segments, i.e. the same data is never used twice.
This yields larger estimation errors, since shorter signal segments are used to
estimate the statistics of the input signals. Furthermore, we will use a practi-
cal estimation procedure to estimate the correlation matrices Ri

ỹkỹk
and Ri

ỹkdk
,

yielding larger estimation errors.

The scenario is depicted in Fig. 2.7. The network contains J = 4 nodes (3).
Each node has a reference sensor at the node itself, and can collect observations
of 5 additional sensors (◦) that are uniformly distributed within a 1.6 m radius
around the node. Eight localized white Gaussian noise sources (5) are present.
Two target sources (�) move back and forth over the indicated straight lines
at a speed of 1 m/s, and halt for 2 seconds at the end points of these lines. The
first source (moving on the vertical line) transmits a low-pass filtered white
noise signal with a cut-off frequency of 1600 Hz. The other source transmits
a band-pass filtered white noise signal in the frequency range 1600 - 3200 Hz.
Both target sources have an on-off behavior with a period of 0.2 seconds and
both are active 66% of the time. It is assumed that at each time t, all nodes can
detect whether the sources are active or not. The time between two consecutive
updates is 0.4 s, which corresponds to 2 on-off cycles of the target sources. This
means that, every 0.4 seconds, the iteration index i changes to i+1. The sensors
observe their signals at a sampling frequency of fs = 16 kHz.

The target source signals have half the power of the noise sources. In addition to
the spatially correlated noise, independent white Gaussian sensor noise is added
to each sensor signal. This noise component is 10% of the power of the localized
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Figure 2.7: Description of the simulated scenario. The network contains 4
nodes (3), each node collecting observations in a cluster of 6 sensors (◦). One
sensor of each cluster is positioned at the node itself. Two target sources (�)
are moving over the indicated straight lines. Eight noise sources are present
(5).

noise signals. The individual signals originating from the target sources and
the noise sources that are collected by a specific sensor are attenuated in power
and summed. The attenuation factor of the signal power is 1

r , where r denotes
the distance between the source and the sensor. We assume that there is no
time delay in the transmission path between the sources and the sensors8.
Each node collects 6 sensor signal observations, and uses 5 differently delayed
versions of each of these signals in its estimation process to exploit the temporal
correlation in the target source signals. This means that Mk = 30.

We let yk1 denote the signal that is collected at the reference sensor of node k.
It consists of an unknown mixture dk1 of the two target source signals, and a

8Since the time delays are the same for all sensors, the spatial information is purely energy
based in this case. Therefore, the nodes cannot perform any beamforming towards specific
locations by exploiting different delay paths between sources and sensors.
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noise component nk1, i.e.

yk1 = dk1 + nk1 = aT
k1d + nk1 (2.58)

where d is the 2-channel signal containing the two target source signals, and
where ak1 denotes an unknown mixture vector. The goal for node k is to
estimate the signal dk1, i.e. the target source component in its reference sensor.
Since Q = 2, the DANSE2 algorithm is used, and therefore an auxiliary desired
channel is used to obtain a 2-channel desired signal dk at every sensor. The
auxiliary channel of dk consists of the target source component dk2 in the signal
yk2 that is collected by another sensor of node k. This component consists
of another unknown mixture of the target sources, so that the conditions of
Theorem 2.2 are satisfied.

The correlation matrix Ri
ỹkdk

[t] is computed according to (2.53). The estimates
Ri

ỹkỹk
[t] and Ri

ñkñk
[t] are computed similarly to (2.48) with a window length

of L1 = 4200 and L2 = 2200 respectively, which matches the time between two
consecutive updates.

We will use the signal-to-error ratio (SER) as a measure to assess the perfor-
mance of the estimators. The instantaneous SER for node k at time t and
iteration i is computed over 3200 samples, and is defined as

SERi
k[t] =

∑t+3200
n=t+1 |dk1[n]|2∑t+3200

n=t+1 |dk1[n]− w̃i
k(1)Hy[n]|2

(2.59)

where w̃i
k(1) denotes the first column of the estimator W̃i

k, as defined in (2.37).
Notice that this is the estimator that is of actual interest, since it estimates
the desired component dk1 in the reference sensor. The other column of W̃i

k is
viewed as an auxiliary estimator that is used for the generation of the second
channel of the broadcast signal zi

k.

Fig. 2.8 shows the SER of the four nodes at different time instants. Dashed
vertical lines are plotted to indicate the points in time where both sources
start moving, and full vertical lines indicate when they stop moving. The
sources stand still in the time intervals [0-4] s, [10-12] s and [18-20] s. The
performance is compared to the centralized version, in which all sensor signals
are centralized in a single fusion center that computes the optimal estimators
according to (2.2).

In the first 4 seconds, both sources stand still. The DANSE2 algorithm needs
some time to reach a good estimator at each node (about 2 seconds), whereas
the centralized algorithm converges much faster. This is because the DANSE2

algorithm updates its nodes one at a time, with 0.4 seconds in between two
consecutive updates. The centralized algorithm on the other hand, can update
its estimators every time a new sample is collected. After a number of iterations
however, the DANSE2 algorithm converges to the optimal estimators.
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Figure 2.8: SER vs. time at the 4 nodes depicted in Fig. 2.7. The centralized
version is added as a reference. Window lengths are L1 = 4200 and L2 = 2200.

Not surprisingly, it is observed that the centralized algorithm has better track-
ing capabilities than the DANSE2 algorithm. This is again a consequence of
the fact that the centralized version computes a new estimator each time a new
sample is collected, yielding a much faster convergence. However, the DANSE2

algorithm is able to react to changes in the scenario and always regains opti-
mality after a number of iterations.

Notice that, once the DANSE2 algorithm has converged, it outperforms the
centralized algorithm. This can be explained by the fact that the DANSE2

algorithm uses correlation matrices with smaller dimension compared to the
correlation matrices that are used by the centralized algorithm. Small matri-
ces are generally better conditioned and have a smaller estimation error than
larger matrices. This performance increase of DANSEK compared to its cen-
tralized version is observed to become more significant when the number of
sensors M increases, yielding larger matrices, or when the window length L
decreases, yielding larger estimation errors in the correlation matrices. Fig.
2.9 shows the performance of DANSE2 and its centralized version, now with
window lengths L1 = 2100 and L2 = 1100, i.e. roughly half the sizes of the first
experiment. It is observed that the estimation performance of the centralized
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Figure 2.9: SER vs. time at the 4 nodes depicted in Fig. 2.7. The centralized
version is added as a reference. Window lengths are L1 = 2100 and L2 = 1100.

algorithm significantly decreases compared to the first experiment, whereas
the DANSE2 algorithm is less influenced by the short window length. This
observation demonstrates that DANSEK is more robust to estimation errors
in the correlation matrices compared to its centralized equivalent. Notice that
DANSEK converges much faster in the second experiment, since the time be-
tween two consecutive updates is now 0.2 seconds instead of 0.4 seconds, due
to the shorter window lengths. As already mentioned in Section 2.5, this faster
tracking comes with the drawback that the estimation performance decreases
due to larger errors in the estimation of the correlation matrices.

In [14], a modified DANSEK algorithm is studied, where an improved tracking
performance is obtained, by letting nodes update simultaneously.

2.7 Conclusion

In this paper, we have introduced a distributed adaptive algorithm (DANSEK)
for linear MMSE estimation of node-specific signals in a fully connected broad-
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casting sensor network, where each sensor node collects multi-channel sensor
signal observations. The algorithm significantly compresses the data to be
broadcast, and the computational load is shared amongst the nodes. It is shown
that, if the node-specific desired signals share a common low-dimensional latent
signal subspace, DANSEK converges and provides the optimal linear MMSE
estimator for every node-specific estimation problem, as if all nodes have access
to all the sensor signals in the network. Simulations demonstrate that the al-
gorithm achieves the same performance as a centralized algorithm. A practical
adaptive implementation of the algorithm is described and simulated, demon-
strating the tracking capabilities of the algorithm in a dynamic scenario. It is
observed that the DANSEK algorithm is more robust to estimation errors in
the correlation matrices, compared to its centralized equivalent. In this paper,
we have only considered the case where nodes update their parameters in a
sequential round robin fashion. A modified DANSEK algorithm is studied in
a companion paper [14], where an improved tracking performance is obtained,
by letting nodes update simultaneously.

Acknowledgements

The authors would like to thank B. Cornelis and the anonymous reviewers for
their valuable comments after proof-reading this paper.

Bibliography

[1] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the
world with wireless sensor networks,” Proc. IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, pp.
2033–2036 vol.4, 2001.

[2] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over dis-
tributed networks,” IEEE Transactions on Signal Processing, vol. 55,
no. 8, pp. 4064–4077, Aug. 2007.

[3] ——, “Diffusion least-mean squares over adaptive networks: Formula-
tion and performance analysis,” IEEE Transactions on Signal Processing,
vol. 56, no. 7, pp. 3122–3136, July 2008.

[4] F. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive least-
squares for distributed estimation over adaptive networks,” IEEE Trans-
actions on Signal Processing, vol. 56, no. 5, pp. 1865–1877, May 2008.



103

[5] I. Schizas, G. Giannakis, and Z.-Q. Luo, “Distributed estimation using
reduced-dimensionality sensor observations,” IEEE Transactions on Sig-
nal Processing, vol. 55, no. 8, pp. 4284–4299, Aug. 2007.

[6] Z.-Q. Luo, G. Giannakis, and S. Zhang, “Optimal linear decentralized es-
timation in a bandwidth constrained sensor network,” Proc. International
Symposium on Information Theory (ISIT), pp. 1441–1445, Sept. 2005.

[7] K. Zhang, X. Li, P. Zhang, and H. Li, “Optimal linear estimation fusion
- part VI: sensor data compression,” Proc. Sixth International Conference
of Information Fusion, vol. 1, pp. 221–228, 2003.

[8] Y. Zhu, E. Song, J. Zhou, and Z. You, “Optimal dimensionality reduction
of sensor data in multisensor estimation fusion,” IEEE Transactions on
Signal Processing, vol. 53, no. 5, pp. 1631–1639, May 2005.

[9] A. Bertrand and M. Moonen, “Robust distributed noise reduction in hear-
ing aids with external acoustic sensor nodes,” EURASIP Journal on Ad-
vances in Signal Processing, vol. 2009, Article ID 530435, 14 pages, 2009.
doi:10.1155/2009/530435.

[10] S. Doclo, T. van den Bogaert, M. Moonen, and J. Wouters, “Reduced-
bandwidth and distributed MWF-based noise reduction algorithms for
binaural hearing aids,” IEEE Trans. Audio, Speech and Language Pro-
cessing, vol. 17, pp. 38–51, Jan. 2009.

[11] T. Klasen, T. Van den Bogaert, M. Moonen, and J. Wouters, “Binaural
noise reduction algorithms for hearing aids that preserve interaural time
delay cues,” IEEE Transactions on Signal Processing, vol. 55, no. 4, pp.
1579–1585, April 2007.

[12] S. Doclo, T. Klasen, T. Van den Bogaert, J. Wouters, and M. Moonen,
“Theoretical analysis of binaural cue preservation using multi-channel
Wiener filtering and interaural transfer functions,” Proc. Int. Workshop on
Acoustic Echo and Noise Control (IWAENC), Paris, France, Sep. 2006.

[13] A. Bertrand and M. Moonen, “Distributed adaptive estimation of cor-
related node-specific signals in a fully connected sensor network,” Proc.
IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), pp.
2053–2056, April 2009.

[14] ——, “Distributed adaptive node-specific signal estimation in fully con-
nected sensor networks – part II: Simultaneous and asynchronous node
updating,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp.
5292 –5306, Oct. 2010.

[15] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed. Baltimore:
The Johns Hopkins University Press, 1996.



104 Bibliography

[16] J. C. Bezdek and R. J. Hathaway, “Some notes on alternating optimiza-
tion,” in Advances in Soft Computing. Springer Berlin / Heidelberg, 2002,
pp. 187–195.

[17] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Belmont, Massachusetts: Athena Scientific, 1997.



Chapter 3

Fully Connected DANSE
with Simultaneous Node
Updating

Distributed adaptive node-specific signal

estimation in fully connected sensor networks –

Part II: simultaneous & asynchronous node

updating

Alexander Bertrand and Marc Moonen

Published in IEEE Transactions on Signal Processing, vol. 58,
no. 10, pp. 5292 - 5306, Oct. 2010.

c©2010 IEEE. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

105



106 Chapter 3. Fully Connected DANSE with Simultaneous Node Updating

Contributions of first author

• literature study
• co-development of the S-DANSEK , rS-DANSEK and rS-DANSE+

K algo-
rithms, and their asynchronous variants

• co-establishment of proof of convergence and optimality of rS-DANSE+
K

and rA-DANSE+
K

• design of simulation scenarios
• software implementation and computer simulations
• co-interpretation of simulation results
• text redaction and editing



3.1. Introduction 107

Abstract

In this paper, we revisit an earlier introduced distributed adaptive node-specific
signal estimation (DANSE) algorithm that operates in fully connected sensor
networks. In the original algorithm, the nodes update their parameters in
a sequential round-robin fashion, which may yield a slow convergence of the
estimators, especially so when the number of nodes in the network is large.
When all nodes update simultaneously, the algorithm adapts more swiftly, but
convergence can no longer be guaranteed. Simulations show that the algorithm
then often gets locked in a suboptimal limit cycle. We first provide an extension
to the DANSE algorithm, in which we apply an additional relaxation in the
updating process. The new algorithm is then proven to converge to the optimal
estimators when nodes update simultaneously or asynchronously, be it that the
computational load at each node increases in comparison with the algorithm
with sequential updates. Finally, based on simulations it is demonstrated that
a simplified version of the new algorithm, without any extra computational
load, can also provide convergence to the optimal estimators.

3.1 Introduction

A wireless sensor network [1] consists of multiple sensor nodes that are con-
nected with each other through a wireless link, and where each sensor node has
its own processing unit. It allows to collect spatially diversed observations of
a certain physical process, and to process these observations in a distributed
fashion. A general objective is to utilize all sensor signal observations available
in the entire network to perform a certain task, such as the estimation of a
parameter or signal (see for example [2–10]).

In [9, 10], we have introduced a distributed adaptive node-specific signal esti-
mation (DANSE) algorithm that operates in a fully connected sensor network.
The term ‘node-specific’ refers to the fact that each node estimates a differ-
ent desired signal. The nodes in the network broadcast compressed versions
of their sensor signal observations, yet the algorithm converges to the optimal
node-specific linear MMSE estimators, as if all sensor signal observations were
available at each node, assuming that the desired signals of the different nodes
share a common latent signal subspace with small dimension.

In the DANSE algorithm, as introduced in [9, 10], nodes update in a sequential
round-robin fashion. The algorithm typically converges in a small number of
iterations (about two iterations per node). However, due to the sequential up-
dating scheme, only one node at a time can estimate the statistics of its input
signals and perform an update of its parameters. Since every such parameter
update at a specific node changes the statistics of the node’s broadcast signal,



108 Chapter 3. Fully Connected DANSE with Simultaneous Node Updating

it takes some time before the next node can collect enough data to compute a
reliable estimate of the modified signal statistics and then update its param-
eters. As a result, even though the DANSE algorithm converges in a small
number of iterations, it may converge slowly in time, especially so when the
number of nodes is large.

If alternatively, nodes would perform their updates simultaneously, the algo-
rithm can adapt more swiftly, and all nodes can then estimate the signal statis-
tics in parallel. However, convergence can no longer be guaranteed in this case,
as will be shown by simulations. We will therefore extend the DANSE algo-
rithm with a relaxation operation. We prove that this new algorithm converges
when nodes update simultaneously or asynchronously. With the latter, we re-
fer to the case where each node decides independently when and how often it
updates its parameters, possibly simultaneously with other nodes. This avoids
the need for a network-wide updating protocol that coordinates the updates
between the different nodes.

We will also present a simplified version of the new algorithm, which reduces
the computational load at each node. Although a theoretical convergence proof
is not available for this simplified version of the algorithm, in simulations it is
indeed observed to converge to the same optimal estimators. The tracking ca-
pabilities of the presented algorithm are tested in a simulated dynamic scenario,
showing that simultaneous node updating significantly improves the adaptation
speed of the DANSE algorithm, while maintaining its optimality.

The paper is organized as follows. The problem formulation and notation are
given in Section 3.2. In Section 3.3, we briefly review the DANSE algorithm
of [9, 10]. In Section 3.4, we extend this algorithm with a relaxation operation
to guarantee convergence and optimality when nodes update simultaneously or
asynchronously, allowing for parallelization and uncoordinated computation. In
Section 3.5 the convergence results are illustrated with numerical simulations
in batch mode, and the tracking capabilities are demonstrated with an adaptive
implementation of the algorithm. Conclusions are given in Section 3.6.

3.2 Problem Formulation and Notation

We consider an ideal fully connected network with sensor nodes {1, . . . , J} = J ,
in which data broadcast by a node can be captured by all other (J − 1) nodes
in the network through an ideal link. Sensor node k collects observations of
a complex1 valued Mk-channel signal yk[t], where t ∈ N is the discrete time
index, and where yk[t] is an Mk-dimensional column vector. Each channel

1Throughout this paper, all signals are assumed to be complex valued to permit frequency
domain descriptions.
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Figure 3.1: Description of the scenario. The network contains J sensor nodes,
k = 1 . . . J , where node k collects Mk-channel sensor signal observations and
estimates a node-specific desired signal dk, which is a mixture of theK channels
of a common latent signal d.

ykn[t], ∀ n ∈ {1, . . . ,Mk}, of the signal yk[t] corresponds to a sensor signal
to which node k has access. We assume that all signals are stationary2 and
ergodic. For the sake of an easy exposition, we will omit the time index when
referring to a signal, and we will only write the time index when referring to
one specific observation, i.e. yk[t] is the observation of the signal yk at time
t. We define y as the M -channel signal in which all yk are stacked, where
M =

∑J
k=1Mk. This scenario is depicted in Fig. 3.1.

We first consider the centralized estimation problem, i.e. we assume that each
node has access to the observations of the entire M -channel signal y. This
corresponds to the case where nodes broadcast their uncompressed observa-
tions to all other nodes. In Sections 3.3 and 3.4, the general goal will be to
compress the broadcast signals, while preserving the estimation performance
of this centralized estimator. The objective for each node k is to optimally
estimate a node-specific desired K-channel signal dk that is correlated to y.
We consider the general case where dk is not an observed signal, as it is the
case in signal enhancement [11, 12]. As shown in Fig. 3.1, we assume that the
node-specific desired signals dk share a common Q-dimensional latent signal

2In practice, the stationarity and ergodicity assumption can be relaxed to short-term sta-
tionarity and ergodicity, in which case the theory should be applied to finite signal segments
that are assumed to be stationary and ergodic.
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subspace, defined by an unknown Q-channel latent signal d, i.e.

dk = Akd, ∀ k ∈ J (3.1)

with Ak a full rank K × Q matrix with unknown coefficients. Without loss
of generality, we assume that K is chosen equal to Q in the sequel. In many
practical cases, only a subset of the channels of dk may be of actual interest,
in which case the other channels should be viewed as auxiliary channels to
capture the entire Q-dimensional signal space spanned by all the desired signals
of interest.

Node k uses a linear estimator Wk to estimate dk as

dk = WH
k y (3.2)

where Wk is a complex M ×K matrix, and where superscript H denotes the
conjugate transpose operator. We consider linear MMSE estimation based on
a node-specific estimator Ŵk, i.e.

Ŵk = arg min
Wk

E
{
‖dk −WH

k y‖2
}
, (3.3)

where E{.} denotes the expected value operator. The objective is to solve all
J node-specific MMSE problems (3.3), i.e. one for each node. Assuming that
the correlation matrix Ryy = E{yyH} has full rank, the solution of (3.3) is

Ŵk = R−1
yy Rydk

(3.4)

with Rydk
= E{ydH

k } [13]. Based on the assumed ergodicity, Ryy and Rydk

can be estimated by time averaging. The Ryy is directly estimated from the
sensor signal observations. A possible way to estimate Rydk

, where dk is not an
observed signal, is to use periodic training sequences, or by exploiting the on-off
behavior of the desired signal. The latter is often used in speech enhancement
applications since speech signals contain pauses in between words and sentences
[11, 12, 14]. In the sequel, we will assume that Rydk

can be estimated during
operation of the algorithm. Some example strategies to estimate Rydk

can be
found in [10].

Notice that each node k only has access to observations of yk which is a subset of
the channels of the full signal y. Therefore, to find the optimal MMSE solution
(3.4) in each node, the observations of yk in principle have to be communicated
to all nodes in the network, which requires a large communication bandwidth.
However, the DANSEK algorithm, reviewed in the next section, significantly
compresses this communication bandwidth, yet still achieves the optimal linear
MMSE estimator (3.4) at each node.
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3.3 The DANSEK Algorithm

In this section, we briefly review the DANSEK algorithm. For a more de-
tailed description and analysis, we refer to [10]. In DANSEK , the sensor nodes
broadcast K linear combinations of their Mk-channel sensor signal observa-
tions. The DANSEK algorithm thus yields a compression with a factor of Mk

K
for the broadcasting by node k.

We define a partitioning of the estimator Wk as Wk = [WT
k1 . . . WT

kJ ]T with
Wkq denoting the Mk ×K submatrix of Wk that is applied to yq, and where
superscript T denotes the transpose operator. In this way, (3.3) is equivalent
to

Ŵk =

 Ŵk1

...
ŴkJ

 = arg min
{Wk1,...,WkJ}

E

{
‖dk −

J∑
q=1

WH
kq yq‖2

}
. (3.5)
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In the DANSEK algorithm, each node k broadcasts observations of the K-
channel compressed signal zk = WH

kkyk to the other nodes. Notice that Wkk

thus both acts as a compressor and a part of the estimator Wk. A node k can
transform the K-channel signal zq that it receives from another node q by a
K ×K transformation matrix Gkq. Notice that, as Gkq is a square matrix, no
decompression is involved. The parametrization of the Wk effectively applied
at node k is therefore

W̃k =

 W11Gk1

...
WJJGkJ

 . (3.6)

We use a tilde to indicate that the estimator is parametrized according to
(3.6). In this parametrization, node k can only control the parameters Wkk

and Gk = [GT
k1 . . . GT

kJ ]T . To remove the ambiguity in WkkGkk, we assume
that Gkk = IK with IK denoting the K × K identity matrix. A schematic
illustration of this scheme in a 3-node network (J = 3), is shown in Fig. 3.2.
The goal of the DANSEK algorithm is to iteratively update the parameters of
(3.6) until

(
W̃1, . . . ,W̃J

)
=
(
Ŵ1, . . . ,ŴJ

)
.

In the sequel, we will use the following notation and definitions. In gen-
eral, we will use Xi to denote X at iteration i, where X can be a signal
or a parameter. We let z =

[
zT
1 . . . zT

J

]T , and we use the notation z−k =[
zT
1 . . . z

T
k−1z

T
k+1 . . . z

T
J

]T , i.e. the vector z without the subvector zk. Similarly,
we will use Gk−q to denote the matrix Gk without Gkq.

The DANSEK algorithm will iteratively update the parameters in (3.6) by
solving local MMSE problems at each node k ∈ J . For node k, at iteration i,
this update is computed as[

Wi+1
kk

Gi+1
k−k

]
= arg min

Wkk,Gk−k

E

{∥∥∥∥dk −
[

WH
kkG

H
k−k

] [ yk

zi
−k

]∥∥∥∥2
}
. (3.7)

In this local MMSE problem, the node-specific desired signal dk is estimated
by means of the input signals of node k, i.e. its Mk-channel sensor signal yk

and the K(J − 1)-channel signal z−k containing the broadcast signals of the
other nodes. Let ỹi

k denote the stacked version of these local input signals at
node k, i.e.

ỹi
k =

[
yk

zi
−k

]
. (3.8)

Then the solution of (3.7) is[
Wi+1

kk

Gi+1
k−k

]
=
(
Ri

ỹkỹk

)−1
Ri

ỹkdk
(3.9)
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with

Ri
ỹkỹk

= E{ỹi
kỹ

i H
k } (3.10)

Ri
ỹkdk

= E{ỹi
kd

H
k } . (3.11)

We define a block size B which denotes the number of observations that the
nodes collect in between two successive node updates, i.e. in between two
increments of i. The DANSEK algorithm is described in Table 3.1 on the next
page.

Remark I: Notice that the different iterations are spread out over time. There-
fore, the iterative characteristics of the algorithm do not have an impact on
the amount of data that is transmitted, i.e. each sample is only broadcast
once since the time index in (3.12) and (3.14) shifts together with the iteration
index. Therefore, an update of the estimator parameters only has an impact
on future samples and old samples are not re-estimated.

Remark II: For implementation aspects regarding the estimation of the cor-
relation matrices Ri

ỹkỹk
and Ri

ỹkdk
, we refer to [10].

It is noted that the nodes update in a sequential round robin fashion. At
each iteration, one specific node estimates the signal statistics of its input
channels, and updates its parameters by optimizing its local node-specific es-
timation problem (3.7), while the parameters at the other nodes are freezed.
The following theorem guarantees convergence of the DANSEK algorithm to
the optimal estimators3:

Theorem 3.1 If the sensor signal correlation matrix Ryy has full rank, and
if (3.1) is satisfied with K = Q, then for the DANSEK algorithm as described
above, the sequence

(
W̃i

k

)
i∈N

converges to the optimal solution (3.4), ∀k ∈ J ,

for any initialization of the parameters.

Proof : See [10]. 2

3.4 Simultaneous and Uncoordinated Updating

As mentioned in Section 3.3, the nodes in the DANSEK algorithm update
their parameters in a sequential round-robin fashion. When node k performs an

3Theorem 3.1, and all convergence theorems in the sequel, assume that the signal statistics
are perfectly known by the algorithm, i.e. as if an infinite observation window is used. In
other words, estimation errors in Ri

ỹk ỹk
and Ri

ỹkdk
are not taken into account.
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The DANSEK Algorithm

1. Initialize: i← 0, u← 1
Initialize W0

kk and G0
k−k with random matrices, ∀ k ∈ J .

2. Each node k ∈ J performs the following operation cycle:
(a) Collect the sensor observations yk[iB+n], n = 0 . . . B−1.
(b) Compress these Mk-dimensional observations to K-

dimensional vectors

zi
k[iB + n] = Wi H

kk yk[iB + n], n = 0 . . . B − 1 . (3.12)

(c) Broadcast the compressed observations zi
k[iB + n], n =

0 . . . B − 1, to the other nodes.
(d) Collect the K(J − 1)-dimensional data vectors zi

−k[iB +
n], n = 0 . . . B − 1, which are stacked versions of the
compressed observations received from the other nodes.

(e) Update the estimates of Ri
ỹkỹk

and Ri
ỹkdk

, by including
the newly collected data.

(f) Update the node-specific parameters:

[
Wi+1

kk

Gi+1
k−k

]
=


(
Ri

ỹkỹk

)−1
Ri

ỹkdk
if k = u[

Wi
kk

Gi
k−k

]
if k 6= u

(3.13)

(g) Compute the estimate of dk[iB + n] as

dk[iB + n] =Wi+1 H
kk yk[iB + n]

+ Gi+1 H
k−k zi

−k[iB + n] .
(3.14)

3. i← i+ 1
4. u← (u mod J) + 1
5. return to step 2

Table 3.1: The DANSEK algorithm
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update at iteration i, the signal zi
k changes to zi+1

k , which generally has different
statistics. Therefore, the next node to perform an update needs sufficient
time to collect a sufficient number of observations of zi+1

k to reliably estimate
the correlation coefficients involving this signal. Therefore, even though the
DANSEK algorithm converges fast in terms of number of iterations, it may
converge rather slowly in time, which affects its tracking performance.

This problem obviously becomes worse when the number of nodes is large,
such that one round of updates takes a long time. We may expect that the net-
work can react much faster to changes in the environment when nodes would
be able to update simultaneously. Simulations in Section 3.5 will show that
convergence is indeed faster in this case, both in time and in number of iter-
ations. Unfortunately, these simulations will also show that convergence is no
longer guaranteed. Therefore, in this section, we first extend the DANSEK

algorithm, to restore convergence, and then consider a number of algorithmic
simplifications.

3.4.1 The S-DANSEK Algorithm

Consider the case where all nodes update simultaneously, i.e. (3.9) is applied for
all k simultaneously in iteration i. We refer to this as simultaneous-DANSEK

or S-DANSEK . In a network with two nodes (J = 2), convergence of DANSEK

under sequential updating also implies convergence4 of S-DANSEK . Unfortu-
nately, this is not always true if J > 2. Extensive simulations show that the
S-DANSEK algorithm does not always converge to a stable estimator, but may
get locked in a suboptimal limit cycle (see Fig. 3.5). This means that the
parameters at the different nodes keep switching between multiple subopti-
mal estimators. The occurrence of these limit cycles heavily depends on the
scenario, but a clear rule to predict whether the S-DANSEK algorithm will con-
verge to a stable estimator or get locked in a limit cycle, has not been found.
In the white noise experiments described in Section 3.5.1, the S-DANSEK al-
gorithm mostly converges to the optimal solution. However, in the scenario
of Section 3.5.2, and in the simulations in acoustic sensor networks described
in [12], limit cycle behavior has been observed quite frequently.

The reason why S-DANSEK often fails to converge can be intuitively explained
as follows. Assume that node k computes (3.9), i.e. it optimizes its estimators
with respect to the current statistics of the broadcast signals in zi

−k. If the
other nodes update simultaneously, all the signals in zi

−k immediately switch
to zi+1

−k . Since the newly applied estimator W̃i+1
k was optimized with respect

to the signal statistics of zi
−k, it immediately becomes suboptimal again due to

simultaneous updates of the other nodes. In fact, the MSE of the node-specific

4This can be shown by similar arguments as in [15], where it is explained that convergence
of Gauss-Seidel iteration implies convergence of Jacobi iteration in the 2-node case.
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estimators may therefore increase after the update, i.e. the new estimator
d

i+1

k = Wi+1 H
k y for node k may be worse than the old estimator d

i

k = Wi H
k y

before the update.

This fundamental difference between the convergence properties of DANSEK

and S-DANSEK is similar to the difference between the convergence prop-
erties of non-linear Gauss-Seidel iteration and non-linear Jacobi iteration, as
described in [16]. In both the Gauss-Seidel and Jacobi procedures, subsequent
optimization steps are performed over a subset of the variables of an objective
function, while keeping the other variables fixed. However, both methods dif-
fer in the way they update the new iteration point. In Gauss-Seidel iteration,
the iteration point is immediately updated after the optimization of a single
subset of variables, whereas in Jacobi iteration, the actual iteration point is
updated after an optimization of all the subsets simultaneously with respect
to the current iteration point. In particular, for a cost function f(w) with
w = (w1, w2), the non-linear Gauss-Seidel and Jacobi procedure are as follows
(both are illustrated in Fig. 3.3):

Non-linear Gauss-Seidel:

1. Initialize w0 = (w0
1, w

0
2) randomly.

2. i← 0.

3.
{
wi+1

1 ← arg minw1 f(w1, w
i
2)

wi+1
2 ← wi

2{
wi+2

1 ← wi+1
1

wi+2
2 ← arg minw2 f(wi+1

1 , w2)
4. i← i+ 2
5. Return to step 3.

Non-linear Jacobi:

1. Initialize w0 = (w0
1, w

0
2) randomly.

2. i← 0.

3.
{
wi+1

1 ← arg minw1 f(w1, w
i
2)

wi+1
2 ← arg minw2 f(wi

1, w2)
4. i← i+ 1
5. Return to step 3.

It is obvious that the Gauss-Seidel procedure will always result in a decrease
of the objective function in each iteration, i.e. f(wi+1) ≤ f(wi), and therefore
convergence is generally not an issue. In the Jacobi procedure however, this
argument fails since an update can result in f(wi+1) > f(wi), as illustrated
in Fig. 3.3(b). This is because each variable is optimized with respect to the
previous value of the other variables, which are not retained after the update.
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w
i w

i+1

w
i+2

w1

w2

(a) non-linear Gauss-Seidel iteration

w
i+1

w
i

(1− α)wi + αw
i+1

w2

(wi+1
1 , w

i

2) w1

(wi

1, w
i+1
2 )

(b) non-linear Jacobi iteration and its relaxed version

Figure 3.3: Illustration of non-linear Gauss-Seidel iteration and non-linear Ja-
cobi iteration.
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Therefore, Jacobi iteration often fails to converge5.

The DANSEK algorithm sequentially optimizes a specific element of {W11, . . . ,
WJJ} with respect to the current values of the other elements (corresponding
to the other nodes). Notice that this is akin to Gauss-Seidel iteration. From
the same point of view, the S-DANSEK algorithm is akin to Jacobi iteration
since the elements in {W11, . . . ,WJJ} are again optimized with respect to the
current values of the other elements, but all of them are updated simultaneously.
This relationship illustrates why S-DANSEK often fails to converge whereas
DANSEK always converges to the optimal estimators. However, keep in mind
that the similarity between DANSEK and S-DANSEK on the one hand and
the Gauss-Seidel and Jacobi procedure on the other hand, only holds up to
a certain level. Indeed, in DANSEK and S-DANSEK none of the variables
are actually fixed. If node k optimizes Wkk, it can also partially manipulate
the Wqq of other nodes q 6= k by means of the variable Gkq. Furthermore,
the objective function is different at each node, and therefore each element in
{W11, . . . ,WJJ} is optimized with respect to a different cost function.

3.4.2 The rS-DANSE+
K Algorithm

In the previous subsection, we explained that the S-DANSEK algorithm often
fails to converge since each node optimizes its estimators with respect to signal
statistics that immediately become invalid after the update. The idea is now
to partially counter these dynamics by letting each node k perform a relaxed
update of its partial estimator Wkk to a convex combination of Wi

kk and
Wi+1

kk , i.e. (1−α)Wi
kk +αWi+1

kk with α ∈ (0, 1]. This allows the old estimator
to remain partially active and to generate broadcast signals zi+1

−k that have
partial components equal to the old broadcast signals zi

−k. This corresponds
to some first order memory in the updating dynamics6, which is absent in
the S-DANSEK algorithm. The intuition behind this relaxation procedure is
illustrated in Fig. 3.3(b), where it is observed that relaxation dampens the
Jacobi-iteration. If α is chosen small enough, the objective function decreases
due to the relaxed update.

In this section, we will modify the S-DANSEK algorithm accordingly, to enforce
convergence when nodes update simultaneously. Although this procedure may
appear to be quite heuristic at first sight, it can be theoretically justified, i.e.
we will prove that the new algorithm enforces convergence if the relaxation

5In the illustration of Fig. 3.3, the Jacobi iteration eventually will converge since the
variables of the cost function are divided into two subsets ({w1} and {w2}). Jacobi iteration
always converges in this case [15]. However, this is generally not true when more than 2
variable subsets are used [16].

6The same technique is sometimes used in game theory to enforce convergence to a Nash
equilibrium when all players simultaneously perform a best-reply to the current strategy
setting (see e.g. [15, 17]). However, this technique only works for specific games that satisfy
certain assumptions, which are mostly very technical and stringent.
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stepsize satisfies certain properties.

Before describing the algorithm, we introduce some additional notation. The
matrix W (without subscript) denotes the stacked matrix of all Wkk matrices,
i.e.

W =
[

WT
11 WT

22 . . . WT
JJ

]T
. (3.15)

We also define the MSE cost functions corresponding to node k, namely

Jk(Wk) = E
{
‖dk −WH

k y‖2
}

(3.16)

as used in (3.3), and
J̃k (W,Gk) = Jk(W̃k) (3.17)

where W̃k is defined from W and Gk as in (3.6). Notice that Gk contains
the entry Gkk, which is never actually computed in the original DANSEK

algorithm. We define Fk(Wi) as the function that generates Wi+1
kk according

to (3.9), i.e.

Fk(Wi) = Wi+1
kk (3.18)

=
[

IMk
OMk×K(J−1)

] (
Ri

ỹkỹk

)−1
Ri

ỹkdk
(3.19)

with OP×Q denoting an all-zero P ×Q matrix. It is noted that the right-hand
side of (3.19) depends on all entries of the argument Wi through the signal
zi
−k, which is not explicitly revealed in this expression. We also define the

correlation matrices: Ri
zz = E{zizi H} and Ri

zdk
= E{zidH

k }.

Now consider the algorithm algorithm described in Table 3.2 on the next
page. We will refer to this algorithm as relaxed simultaneous-DANSE+

K or
rS-DANSE+

K , where the superscript + is added because of the extra optimiza-
tion (3.21). Notice that in rS-DANSE+

K , the variable Gi+1
kk is indeed explicitly

computed, unlike in the DANSEK algorithm with sequential updating. How-
ever, it is merely applied as a transformation for Wi

kk before the relaxed update
(3.23). After the update (3.23), the Gkk that is actually applied to Wkk in the
parametrization (3.6) is again fixed to an identity matrix, i.e. the schematic
representation shown in Fig. 3.2, in which the Gkk’s are omitted, also holds
for the rS-DANSE+

K algorithm.

Due to the strict convexity of the cost function Jk(Wk), the simultaneous
update function F (W) =

[
F1(W)T . . . FJ(W)T

]T has only one fixed point
satisfying W = F (W), namely the optimal solution Ŵ to which DANSEK

converges if sequential updating is used. Notice that for any αi, this point
Ŵ is also the equilibrium point of (3.21)-(3.23). The choice of αi is critical
and decides whether or not (3.21)-(3.23) converges to this fixed point. The
following theorem presents a strategy for choosing the stepsize parameter αi,
that guarantees convergence to the optimal solution:
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The rS-DANSE+
K Algorithm

1. Initialize: i← 0
Initialize W0

kk and G0
k−k with random matrices, ∀ k ∈ J .

2. Each node k ∈ J performs the following operation cycle simulta-
neously:

(a) Collect the sensor observations yk[iB + n], n = 0 . . . B − 1.
(b) Compress these Mk-dimensional observations to K-

dimensional vectors

zi
k[iB + n] = Wi H

kk yk[iB + n], n = 0 . . . B − 1 . (3.20)

(c) Broadcast the compressed observations zi
k[iB + n], n =

0 . . . B − 1, to the other nodes.
(d) Collect the K(J − 1)-dimensional data vectors zi

−k[iB + n],
n = 0 . . . B− 1, which are stacked versions of the compressed
observations received from the other nodes.

(e) Update the estimates of Ri
ỹkỹk

, Ri
zz, Ri

ỹkdk
, and Ri

zdk
by

including the newly collected data.
(f) Compute a new estimate for Gi

k:

Gi+1
k = arg min

Gk

J̃k

(
Wi,Gk

)
(3.21)

=
(
Ri

zz

)−1
Ri

zdk
(3.22)

(g) Choose an αi ∈ (0, 1], and compute a new estimate for Wi
kk:

Wi+1
kk = (1− αi)Wi

kkG
i+1
kk + αiFk(Wi) . (3.23)

(h) Compute the estimate of dk[iB + n] as

dk[iB + n] =Wi+1 H
kk yk[iB + n]

+ Gi+1 H
k−k zi

−k[iB + n] .
(3.24)

3. i← i+ 1
4. return to step 2

Table 3.2: The rS-DANSE+
K algorithm
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Theorem 3.2 If the sensor signal correlation matrix Ryy has full rank, and if
(3.1) is satisfied with K = Q, then for the rS-DANSE+

K algorithm as described
above, with stepsizes αi satisfying

αi ∈ (0, 1] (3.25)

lim
i→∞

αi = 0 (3.26)

∞∑
i=0

αi =∞ , (3.27)

the sequence
(
W̃i

k

)
i∈N

converges to the optimal solution (3.4), ∀ k ∈ J , for

any initialization of the parameters.

Proof : See Appendix 3.A. 2

A possible choice for the sequence
(
αi
)
i∈N is αi = 1

i or a slower decreasing
sequence, e.g. αi = 1

log10(10+i) . The conditions on the sequence
(
αi
)
i∈N in

Theorem 3.2 are however quite conservative. Extensive simulations indicate
that there appears to exist a critical α̂ and a corresponding i∗ such that rS-
DANSE+

K converges as long as αi < α̂, ∀i > i∗. Since this critical α̂ is generally
not known a priori, a good strategy consists in initially choosing αi = 1, i.e. no
relaxation, in combination with a limit cycle detector. Only when a limit cycle
is detected, αi is decreased until the limit cycle disappears. The algorithm
then converges with fixed αi to an equilibrium point of F , i.e. the matrix
W that corresponds to solution (3.4). It is noted that, even if the above
mentioned critical α̂ does not exist, this procedure automatically guarantees
that the conditions (3.25)-(3.27) on the stepsize αi are satisfied, and therefore
the algorithm will converge under all circumstances.

3.4.3 The rS-DANSEK Algorithm

Update rule (3.21) in rS-DANSE+
K increases the computational load in every

node, since it represents an extra MSE minimization in addition to the implicit
MSE minimization in Fk(Wi). However, extensive simulations indicate that
this extra MSE minimization is not crucial to enforce convergence. The Gi+1

k−k

defined in (3.9) that are generated as a by-product in the evaluation of Fk(Wi),
may be used instead. We will refer to this modification as rS-DANSEK , with-
out the superscript +. The rS-DANSEK algorithm is described in Table 3.3
on the next page. Even in cases where S-DANSEK results in a suboptimal
limit cycle, the rS-DANSEK algorithm is observed to converge to the optimal
solution (3.4) under similar conditions as the rS-DANSE+

K algorithm, i.e. if
αi satisfies (3.25)-(3.27), or if it becomes smaller than a critical value. This
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The rS-DANSEK Algorithm

1. Initialize: i← 0
Initialize W0

kk and G0
k−k with random matrices, ∀ k ∈ J .

2. Each node k ∈ J performs the following operation cycle simulta-
neously:

(a) Collect the sensor observations yk[iB + n], n = 0 . . . B − 1.
(b) Compress these Mk-dimensional observations to K-

dimensional vectors

zi
k[iB + n] = Wi H

kk yk[iB + n], n = 0 . . . B − 1 . (3.28)

(c) Broadcast the compressed observations zi
k[iB + n], n =

0 . . . B − 1, to the other nodes.
(d) Collect the K(J − 1)-dimensional data vectors zi

−k[iB + n],
n = 0 . . . B− 1, which are stacked versions of the compressed
observations received from the other nodes.

(e) Update the estimates of Ri
ỹkỹk

and Ri
ỹkdk

by including the
newly collected data.

(f) Compute [
Wtemp

kk

Gi+1
k−k

]
=
(
Ri

ỹkỹk

)−1
Ri

ỹkdk
. (3.29)

(g) Choose an αi ∈ (0, 1], and compute a new estimate for Wi
kk:

Wi+1
kk = (1− αi)Wi

kk + αiWtemp
kk . (3.30)

(h) Compute the estimate of dk[iB + n] as

dk[iB + n] =Wi+1 H
kk yk[iB + n]

+ Gi+1 H
k−k zi

−k[iB + n] .
(3.31)

3. i← i+ 1
4. return to step 2

Table 3.3: The rS-DANSEK algorithm
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is stated here as an observation based on extensive simulation (see Section
3.5, and [12]), but without a formal proof7. Notice that the extra optimiza-
tion (3.21) generally speeds up the convergence, especially so when αi is small,
which makes rS-DANSE+

K faster than rS-DANSEK (see Section 3.5). However,
this faster convergence is mostly insignificant compared to the increase in con-
vergence speed that is obtained by letting nodes update simultaneously instead
of sequentially. Therefore, it may be desirable to use rS-DANSEK instead of
rS-DANSE+

K , to decrease the computational load at each node.

3.4.4 Asynchronous Updating

The DANSEK algorithm and its variations described in the previous sections,
all imply the need for a network wide update protocol that coordinates the up-
dating of nodes in the network. Here we consider the case in which the updating
happens in an asynchronous8 fashion, i.e. nodes can decide independently when
and how often they update their parameters and nodes do not know when the
other nodes perform an update. This can be viewed as the hybrid case between
simultaneous updating and sequential round-robin updating.

The iterations in which node k updates its parameters is given by a binary
sequence

(
si

k

)
i∈N, with si

k ∈ {0, 1}, where si
k = 1 implies that node k performs

an update at iteration i and where si
k = 0 implies that node k does not perform

an update at iteration i. We will assume that

∀ k ∈ J :
∞∑

i=0

si
k =∞ (3.32)

which means that none of the nodes permanently stops the updating process
of its parameters. It is noted that the sequences

(
si

k

)
i∈N, ∀ k ∈ J , can be

totally random and they are not known to the other nodes q 6= k. Therefore,
the updates of each node can happen ex tempore, i.e. each node can decide on
the fly when and how often it performs an update of its parameters. By setting
the block size to B = 1, the iteration index i coincides with the time index t.
This models the case where nodes are allowed to perform an update at any9

sampling time t, i.e. fully asynchronously.

The relaxed asynchronous-DANSE+
K or rA-DANSE+

K algorithm is defined equiv-

7Due to a subtle difference, some parts of the proof of Theorem 3.2 are not applicable to
the case of rS-DANSEK . However, the main idea behind relaxation, as illustrated in Fig.
3.3(b), remains.

8The term ‘asynchronous’ here refers to the fact that there is no synchronization at the
iteration level. However, at the sample level, an accurate synchronization of the sample
clocks at the different nodes is still required.

9It is noted that setting B = 1 does not imply that nodes update at every sampling time
t. As mentioned earlier, it is usually better to leave some time between successive updates
of a certain node, i.e. using sparse sequences

`
si
k

´
i∈N.
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alently to rS-DANSE+
K , but the update (3.22)-(3.23) is replaced with

Gi+1
k =

{ (
Ri

zz

)−1
Ri

zdk
if si

k = 1
Gi

k if si
k = 0

(3.33)

Wi+1
kk =

{
(1− αi)Wi

kkG
i+1
kk + αiFk(Wi) if si

k = 1
Wi

kk if si
k = 0

(3.34)

Theorem 3.3 If the sensor signal correlation matrix Ryy has full rank, and if
(3.1) is satisfied with K = Q, then for the rA-DANSE+

K algorithm as described
above, with stepsizes αi satisfying (3.25)-(3.27) and sequences

(
si

k

)
i∈N satis-

fying (3.32), the sequence
(
W̃i

k

)
i∈N

converges to the optimal solution (3.4),

∀ k ∈ J , for any initialization of the parameters.

Proof : The proof is a straightforward modification of the proof of Theorem
3.2, as given in Appendix 3.A. 2

The rA-DANSE+
K algorithm can also be simplified to the rA-DANSEK algo-

rithm, similarly to the rS-DANSEK algorithm as described in Section 3.4.3.

3.5 Numerical Simulations

3.5.1 Batch Mode Simulations

In this section, we simulate the different algorithms mentioned in this paper
in batch mode. This means that all iterations are performed on the full signal
length, including the estimation of the correlation matrices. We first evaluate
the convergence speed of DANSEK and S-DANSEK in a scenario for which
S-DANSEK converges. Then, we demonstrate the convergence of rS-DANSE+

K

and rS-DANSEK in a scenario for which S-DANSEK gets locked in a limit
cycle.

The node-specific desired signals dk are random mixtures of the Q channels of a
latent signal d, where Q = 3. All three channels of d are uniformly distributed
random processes from which N = 10000 samples are generated. The Mk

sensor signals of node k in yk consist of different random mixtures of the three
channels of the latent signal d, with some uncorrelated Gaussian white noise
added with half the power of the channels of d. Each node has 10 sensors, i.e.
Mk = 10, ∀k ∈ J . All evaluations of the MSE cost functions Jk are performed
on the equivalent least-squares (LS) cost functions, i.e.

N∑
t=0

‖dk[t]−WH
k y[t]‖2 . (3.35)
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Figure 3.4: LS error of node 1 versus iteration i for fully connected networks
with J = 4, J = 8 and J = 15 nodes respectively.
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Also, the correlation matrices are replaced by their least squares equivalent,
i.e. E{yyH} is replaced by YYH where Y denotes an M ×N sample matrix
that contains samples of the variable y in its columns.

The DANSE3 algorithm and the S-DANSE3 algorithm are simulated in net-
works with J = 4, J = 8 and J = 15 nodes. The result for node 1 is shown
in Fig. 3.4. Notice that this is a case where S-DANSE3 converges, and there-
fore no relaxation is required. Not surprisingly, the convergence time of the
DANSE3 algorithm, using sequential round-robin updates, increases linearly
with the number of nodes. On the other hand, the convergence time of the
S-DANSE3 algorithm is unaffected when the number of nodes is increased.
This shows that the simultaneous updating procedure generally yields faster
convergence, especially when the number of nodes is large. Notice that in both
algorithms, the algorithm has converged once each node has updated three
times, irrespective of the number of nodes in the network.

Fig. 3.5(a) shows a simulation result with Q = 1 where S-DANSE1 does not
converge to the optimal solution, but gets locked in a limit cycle. The network
has J = 4 nodes with Mk = 10 for all k. All sensor signals are random mixtures
of three white noise signals. Differently scaled versions of one of these white
noise signals are used as desired signals for all four nodes. The other curves
in figure 3.5(a) correspond to 3 versions of the rS-DANSE1 algorithm. In the
first version, αi = 0.7 ∀ i ∈ N, again resulting in a limit cycle. In the second
version, αi is set to αi = 0.3 ∀ i ∈ N, now yielding convergence to the optimal
solution. In the third version, we choose the sequence

(
αi
)
i∈N equal to αi = 1

i ,
again yielding convergence.

Fig. 3.5(b) compares the convergence speed of rS-DANSE1 with rS-DANSE+
1

for the same scenario. Two relaxed versions are tested: αi = 0.3 ∀ i ∈ N,
and αi = 1

i . It is observed that rS-DANSE+
1 converges faster due to the

extra update (3.21). Notice that the version with αi = 1
i has an initial fast

convergence, but eventually becomes very slow due to the decreasing stepsize.

Simulation results with speech signals are provided in a follow-up paper [12].
In this paper, a distributed speech enhancement algorithm, based on the S-
DANSEK algorithm and its relaxed variations, is tested in a simulated acoustic
sensor network scenario. It is observed that limit cycles occur quite frequently,
and therefore relaxation is required when nodes update simultaneously. Even
though relaxation affects the adaptation speed, it is observed that rS-DANSE
converges faster than DANSE with a sequential updating procedure.

3.5.2 Adaptive Implementation

In this section, we evaluate the tracking performance of the adaptive imple-
mentation of the rS-DANSE algorithm. The main difference with the batch
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Figure 3.5: Log-plot of the least square (LS) error of node 1 versus iteration i,
for a case in which S-DANSE1 does not converge. The network has J = 4 nodes
with Mk = 10 for all k, and with K = Q = 1. By decreasing the relaxation
parameter in the rS-DANSE1 or rS-DANSE+

1 algorithm, convergence occurs to
the optimal value.
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Figure 3.6: Description of the simulated scenario. The network contains 4
nodes (3), each node collecting observations in a cluster of 6 sensors (◦). One
sensor of each cluster is positioned at the node itself. Two target sources (�)
are moving over the indicated straight lines. Eight noise sources are present
(5).

mode simulations is that subsequent iterations are now performed on different
signal segments, i.e. the same data segment is never used twice. This intro-
duces a trade-off between tracking performance and estimation performance,
which should be taken into account when a window length is chosen for the
estimation of the signal statistics. Indeed, to have a fast tracking, the statis-
tics must be estimated from short signal segments, yielding larger estimation
errors in the correlation matrices that are used to compute the estimators at
the different nodes. Another major difference with the previous section is that
the correlation matrices are now estimated in a specific fashion by exploiting
the on-off behavior of the target sources. We refer to [10] for further details.

The scenario is depicted in Fig. 3.6. The network contains J = 4 nodes (3).
Each node has a reference sensor at the node itself, and can collect observations
of 5 additional sensors (◦) that are uniformly distributed within a 1.6 m radius
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Figure 3.7: SER of DANSE2 and rS-DANSE2 vs. time at the 4 nodes depicted
in Fig. 3.6, when the sources move at 1 m/s. The centralized version is added
as a reference.

around the node. Eight localized white Gaussian noise sources (5) are present.
Two (Q = 2) target sources (�) move back and forth over the indicated straight
lines, and halt for 2 seconds at the end points of these lines. The goal for each
node is to estimate the desired component dk1 in its reference sensor, which is
a signal that consists of an unknown mixture of the two target sources, without
any noise. Since the simulated scenario is exactly the same as in [10], we refer
to the latter for further details on the data model and the signals involved.

We will use the signal-to-error ratio (SER) as a measure to assess the perfor-
mance of the estimators. The instantaneous SER for node k at time t and
iteration i is computed over 3200 samples, and is defined as

SERi
k[t] =

∑t+3200
n=t+1 |dk1[n]|2∑t+3200

n=t+1 |dk1[n]− w̃i
k(1)Hy[n]|2

(3.36)

where w̃i
k(1) denotes the first column of the estimator W̃i

k, as defined in (3.6).
Notice that this is the estimator that is of actual interest, since it estimates
the desired component dk1 in the reference sensor.
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Figure 3.8: SER of DANSE2 and rS-DANSE2 vs. time at the 4 nodes depicted
in Fig. 3.6, when the sources move at 3 m/s. The centralized version is added
as a reference.

Fig. 3.7 shows the SER over time in the outputs of the four nodes, both for
DANSE2 and rS-DANSE2, where the latter uses the relaxation parameter10

αi = 0.5, ∀ i ∈ N, for the four different nodes. The window lengths for the
estimation of the sensor signal correlation matrices and the noise correlation
matrices11 are L1 = 4200 and L2 = 2200, respectively. The time between two
consecutive updates is 0.4 s, i.e. the iteration index i changes to i+1 every 0.4
seconds. The sources move at a speed of 1 m/s. Dashed vertical lines are plotted
to indicate the points in time where both sources start moving, and full vertical
lines indicate when they halt. The sources stand still in the time intervals [0-4]
s, [10-12] s and [18-20] s. The performance is compared to the performance of
the centralized version, in which all sensor signals are centralized in a single
fusion center that computes the optimal estimators according to (3.4). The
centralized version updates its estimators at every sample time, which results

10The value of the relaxation parameter is chosen manually. The S-DANSE2 algorithm
without relaxation is observed not to converge in this adaptive experiment.

11The noise correlation matrix is a sensor signal correlation matrix that is computed during
noise-only periods, i.e. when the target sources are off. We refer to [10] for further details
on why this noise correlation matrix has to be computed.
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in very fast convergence.

It is observed that the rS-DANSE2 algorithm has better tracking performance
than the DANSE2 algorithm with sequential updating. The latter has dips in
the SER, corresponding to the time it takes to update all the nodes to obtain
a good estimator for the current position of the sources. The rS-DANSE2 can
react more swiftly to the changing positions of the target sources, and is more
or less able to follow the centralized estimators.

The same experiment is performed with the target sources moving three times
faster, i.e. at a speed of 3 m/s. Now, the sources stand still in the time intervals
[0-4] s, [6-8] s and [10-12] s. The results are shown in Fig. 3.8. It is observed
that rS-DANSE2 now has more difficulty following the centralized algorithm.
However, once the sources stand still, the rS-DANSE2 algorithm always regains
optimality. The difference between rS-DANSE2 and DANSE2 is now even more
significant, especially at nodes 3 and 4, where DANSE2 shows some large SER
dips.

3.6 Conclusion

In this paper, we have investigated the case in which the nodes in the DANSEK

algorithm perform their parameter updates simultaneously or asynchronously.
We have pointed out that the convergence and optimality of the DANSEK

algorithm can no longer be guaranteed in this case. We have then modified
the DANSEK algorithm with a relaxation operation to restore convergence and
optimality under simultaneous and asynchronous updating. Convergence of the
new algorithm is proven if the relaxation parameter satisfies certain conditions.
Simulations indicate that a simplified version of the new algorithm can also be
used, with a lower computational load, while maintaining convergence. Since all
nodes can estimate the required statistics in parallel, the new algorithm adapts
faster than the original DANSEK algorithm, especially so when the number of
nodes is large. The convergence results are demonstrated with simulations in
batch mode as well as with an adaptive version of the algorithm.

Appendix

3.A Proof of Theorem 3.2

Proof : For the sake of an easy exposition, we assume here that all signals are
real valued. As explained in Appendix 3.B, the case with complex valued signals
can be transformed to a real valued case for which the proof infra immediately
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applies. In the proof, we also assume that all signal statistics are perfectly
known, i.e. it is as if the algorithm uses an infinite observation window.

We define the cost function

Jp
k (wk) = |dk(p)−wH

k y|2 (3.37)

where dk(p) denotes the p-th entry of the vector dk. The cost function of the
MMSE problem (3.3) is then equal to

Jk(Wk) =
K∑

p=1

Jp
k (wk(p)) (3.38)

where wk(p) denotes the p-th column of Wk. Similarly, we define gk(p) as the
p-th column of Gk, and

W
i

k =

 Wi
11G

i+1
k1

...
Wi

JJGi+1
kJ

 (3.39)

where Gi+1
k = [Gi+1 T

k1 . . .Gi+1 T
kJ ]T is computed according to (3.22).

From (3.1), it readily follows that dH
k = dH

q Akq, where Akq = A−H
q Ak. Using

this, we can show that the results of update (3.22) are the same for all k, up
to a transformation with the K ×K matrix Akq, and therefore

W
i

k = W
i

qAkq . (3.40)

We define the M -dimensional vector

si
k(p) =

[
oT

M1
. . . oT

Mk−1
wi T

kk (p) oT
Mk+1

. . . oT
MJ

]T
(3.41)

where oMk
denotes an all-zero Mk-dimensional vector, and where wi

kk(p) de-
notes the p-th column of Wi

kk. We define the following relationship between
the matrix Wi and a KJ-dimensional subspace Si of RM :

Wi → Si = Span{si
1(1), . . . , si

1(K), . . . , si
J(1), . . . , si

J(K)} . (3.42)

By definition, any column of Wi is inside Si. The same holds true for all
M -dimensional vectors of the form Wi

11h1

...
Wi

JJhJ

 (3.43)

where hq ∈ RK , ∀ q ∈ J . Therefore, after update (3.22), the following expres-
sion holds:

Jp
k (wi

k(p)) = min
wk∈Si

Jp
k (wk) , (3.44)
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i.e. (3.22) defines the solution of the constrained optimization problem defined
by the righthand side of (3.44), ∀ p ∈ {1, . . . ,K}, where Si defines the search
space. This means that the subspace Si is tangent to a sublevel set of Jp

k in
the point wi

k(p), i.e. the p-th column of wi
k. Therefore the gradient ∇Jp

k is
orthogonal to Si in wi

k(p), and therefore orthogonal to all vectors si
k(l), ∀k ∈ J ,

∀ l ∈ {1, . . . ,K}. With (3.41), it is clear that the partitions of the gradient
therefore satisfy

∀ k, q ∈ J , ∀ p, l ∈ {1, . . . ,K} :

∇wkq
Jp

k

(
wi

k(p)
)
⊥wi

qq(l) . (3.45)

Now assume hypothetically, and without loss of generality, that node 1 updates
the current values Wi

11 and Gi+1
1 to W(i+1)

11 and G(i+1)
1 respectively, following

update (3.9) of the DANSEK algorithm. We added brackets to the iteration
index to avoid confusion with update (3.21)-(3.27). From the proof of Theorem
3.1, as given in [10], it is found that

∀ k ∈ J , ∀Hk ∈ RK×K :

Jk




W(i+1)
11

Wi
22G

(i+1)
12

...
Wi

JJG(i+1)
1J

Ak1

 ≤ Jk


 Wi

11H1

...
Wi

JJHJ


 . (3.46)

We can show that this expression also holds for every cost function Jp
k sepa-

rately. Therefore, the following inequality holds:

∀ k ∈ J , ∀ p ∈ {1 . . .K} :

Jp
k




W(i+1)
11

Wi
22G

(i+1)
12

...
Wi

JJG(i+1)
1J

ak1(p)

 ≤ Jp
k


 Wi

11g
i+1
k1 (p)
...

Wi
JJgi+1

kJ (p)


 (3.47)

where ak1(p) denotes the p-th column of Ak1. By using (3.47), and since the
cost functions are strictly convex, the directional vector 4w(i+1)

k (p), defined
by

4w(i+1)
k (p) =


W(i+1)

11 ak1(p)−Wi
11g

i+1
k1 (p)

Wi
22(G

(i+1)
12 ak1(p)− gi+1

k2 (p))
...

Wi
JJ(G(i+1)

1J ak1(p)− gi+1
kJ (p))

 (3.48)

defines a non-increasing direction of Jp
k in the current point wi

k(p). This means
that

∀ k ∈ J , ∀ p ∈ {1, . . . ,K} :
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∇Jp
k

(
wi

k(p)
)T 4w(i+1)

k (p) ≤ 0 . (3.49)

With (3.45), and the fact that W(i+1)
11 = F1(Wi), this yields

∀ k ∈ J , ∀ p ∈ {1, . . . ,K} :

K∑
p=1

(
∇wk1J

p
k

(
wi

k(p)
)T
F1(Wi)ak1(p)

)
≤ 0 . (3.50)

By using a similar reasoning as above for any hypothetical update of any node
q, we can show that

∀ k, q ∈ J , ∀ p ∈ {1, . . . ,K} :

K∑
p=1

(
∇wkq

Jp
k

(
wi

k(p)
)T
Fq(Wi)akq(p)

)
≤ 0 (3.51)

or equivalently, when using the matrix-valued gradient of the global cost func-
tion Jk(Wk)

∀ k ∈ J , ∀ q ∈ J :

tr
(
∇Wkq

Jk

(
W

i

k

)T

Fq

(
Wi
)
Akq

)
≤ 0 (3.52)

with tr(A) denoting the trace of matrix A. It is noted that there is at least
one q ∈ J for which the inequality in (3.52) is a strict inequality, as long as
the equilibrium point has not been reached, i.e. as long as W

i

k 6= Ŵk, where
Ŵk denotes the optimal solution (3.4). Indeed, due to the strict convexity of
the cost function Jk, the inequality in expression (3.47) is strict for at least one
p ∈ {1, . . . , J} and at least one hypothetically updating node q ∈ J (although
it might be required to choose another hypothetically updating node instead
of node 1, which was chosen w.l.o.g. in expression (3.47)). Therefore, we find
that

W
i

k 6= Ŵk ⇔ ∀ k ∈ J , ∃ q ∈ J :

tr
(
∇Wkq

Jk

(
W

i

k

)T

Fq

(
Wi
)
Akq

)
< 0 . (3.53)

By defining
4Wi+1

kk = Fk(Wi)−W
i

kk (3.54)

we can rewrite (3.23) as

Wi+1
kk = W

i

kk + αi 4Wi+1
kk . (3.55)

With this, the following expression is obtained

Jk(W
i+1

k ) = min
Gk

Jk


 Wi+1

11 Gk1

...
Wi+1

JJ GkJ


 (3.56)
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≤ Jk



(
W

i

11 + αi 4Wi+1
11

)
Ak1

...(
W

i

JJ + αi 4Wi+1
JJ

)
AkJ


 . (3.57)

With (3.40), the righthand side of (3.57) is equal to

Jk

W
i

k + αi

 4Wi+1
11 Ak1

...
4Wi+1

JJ AkJ


 . (3.58)

By using a first order approximation of the function Jk in the point W
i

k, we
can rewrite (3.58) as

Jk

(
W

i

k

)
+ αitr

∇Jk

(
W

i

k

)T

 4Wi+1
11 Ak1

...
4Wi+1

JJ AkJ




+ ε(W
i

k, α
i)

(3.59)

with the error term satisfying

lim
αi→0

ε(W
i

k, α
i)

αi
= 0 . (3.60)

The error term only depends on W
i

k and αi, i.e. the difference vector is implic-
itly computed from these two variables. With (3.54) and (3.45), we can rewrite
expression (3.59) as

Jk

(
W

i

k

)
+ αitr

∇Jk

(
W

i

k

)T

 F1

(
Wi
)
Ak1

...
FJ

(
Wi
)
AkJ




+ ε(W
i

k, α
i) .

(3.61)

We can condense the chain (3.57)-(3.61) to

Jk

(
W

i+1

k

)
≤ Jk

(
W

i

k

)
+ αi

(
Vk(W

i

k) +
ε(W

i

k, α
i)

αi

)
, (3.62)

where Vk(W
i

k) denotes the function12 described by the second term of (3.61).
Because of (3.52) and (3.53), we know that

Vk(W
i

k) < 0⇔W
i

k 6= Ŵk . (3.63)

12Since F (W
i
k) = F (Wi), only W

i
k is explicitly stated in the argument of the function

Vk.
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Using this observation, we can prove that the sequence
(
W̃i

k

)
i∈N

converges to

Ŵk. Since convergence of
(
W̃i

k

)
i∈N

to Ŵk is equivalent to convergence of the

sequence
(
W

i

k

)
i∈N

to Ŵk, we only prove the latter. We do this by proving

that
∀ δ ∈ R+

0 ,∃ L ∈ N : i > L⇒ ‖Ŵk −W
i

k‖ < δ . (3.64)

Let B1 = B
(
Ŵk, δ

)
denote a ball with center point Ŵk and radius δ that

is open, i.e. it does not contain its boundary. Since Jk is a convex quadratic
function, there exists a sublevel set C of Jk that satisfies C ⊆ B1. We choose
any open ball B2 = B

(
Ŵk, δ2

)
⊂ C.

We now show by contradiction that the sequence
(
W

i

k

)
i∈N

contains an infinite

number of elements in B2. Let C0 be the sublevel set of Jk that satisfies

C0 = {Wk|Jk (Wk) ≤ Jk (OM×K)} (3.65)

where OM×K denotes an M × K all-zero matrix. Because of (3.21), W
i

k is
always inside C0. We define

β = max
Wk∈C0\B2

Vk (Wk) . (3.66)

Because of (3.63) and the fact that B2 is an open set, we know that this
maximum exists, and that β < 0. We define

ε∗(αi) = max
Wk∈C0\B2

ε
(
Wk, α

i
)
. (3.67)

Because of (3.60), we know that

∃L1 ∈ N : i > L1 ⇒
ε∗(αi)
αi

< |β| − κ , (3.68)

with an a priori chosen κ ∈ (0, |β|). Let

γ = sup{ε
∗(αi)
αi
|i > L1} , (3.69)

and
φ = β + γ . (3.70)

By construction, φ must be strictly negative. By using (3.66)-(3.69), it follows
from expression (3.62) that

(i > L1 ∧W
i

k /∈ B2)⇒ Jk

(
W

i+1

k

)
≤ Jk

(
W

i

k

)
+ αiφ , (3.71)
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with ∧ denoting the logic ‘and’ operator. Now suppose that ∃ L2 > L1 : i >
L2 ⇒W

i

k /∈ B2, then, because of (3.27) and the fact that φ is strictly negative,

lim
i→∞

Jk

(
W

i

k

)
= −∞ . (3.72)

However, Jk has a lower bound, and therefore no such L2 exists. This shows
that there are an infinite number of elements in

(
W

i

k

)
i∈N

that are inside B2.

Because of (3.26), the following expression holds:

∃L3 ∈ N : i > L3

⇓
max

Wk∈B2
‖Zi

k(Wk)−Wk‖ < min
U1∈∂C, U2∈B2

‖U1 −U2‖ ,
(3.73)

where ∂C is the boundary of the sublevel set C, and where Zi
k(Wk) is defined as

the function such that W
i+1

k = Zi
k(Wi

k) according to the parallel update rules
(3.21)-(3.27). Choose L4 > max(L1, L3). Since there are an infinite number
of elements in

(
W

i

k

)
i∈N

that are inside B2, there exists an i∗ > L4 such that

W
i∗

k is inside B2. Now we prove the induction hypothesis

∀ i > L4 : W
i

k ∈ C ⇒W
i+1

k ∈ C . (3.74)

Assume that W
i

k ∈ C, then either W
i

k ∈ C\B2 or W
i

k ∈ B2. In the case
where W

i

k ∈ C\B2, we know that W
i+1

k ∈ C because of (3.71) and the fact
that φ < 0. If W

i

k ∈ B2, then W
i+1

k ∈ C because of (3.73).

By applying the induction hypothesis (3.74) to W
i∗

k , we find that

∀ i > i∗ : W
i

k ∈ C . (3.75)

Because C ⊂ B1, we have proved that expression (3.64) holds when choosing
L = i∗. This completes the proof. 2

3.B Transformation of Complex-Valued to Real-
Valued DANSE

In this section, we briefly show how the DANSE scheme with complex valued
signals can be tranformed to an isomorph scheme with only real valued signals.
We define the following isomorphism between a complex number z and the 2×2
real matrix ž:

z ↔ ž =
[
<z −=z
=z <z

]
, (3.76)
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where <z and =z denote the real and the imaginary part of z. We also define
z̀ and ź as the first and second column of ž. The isomorphism (3.76) defines
another isomorphism between matrices

A ∈ Cm×n ↔ Ǎ ∈ R2m×2n (3.77)

in such a way that each entry Aij in A is replaced by the 2 × 2 matrix Ǎij .
Similarly, we define À and Á as the matrices in which Aij is replaced by Àij

and Áij , respectively. Notice that

z∗ ↔ žT (3.78)

AH ↔ ǍT . (3.79)

The cost function Jk(Wk), defined in (3.16), can now be transformed13 to

J̌k(Ẁk) =
1
2
E
{
‖ďk − W̌T

k y̌‖2F
}
, (3.80)

with ‖.‖F denoting the Frobenius norm. This cost function has real valued
variables, and satisfies J̌k(Ẁk) = Jk(Wk). The cost functions J̌p

k are defined
similarly. If we let D denote the gradient of Jp

k in a certain point wk, then

∇J̌p
k (ẁk) = D̀ . (3.81)

The proof of Theorem 3.2 can now be extended to the complex valued case, by
applying some minor changes using the above isomorphisms. The main changes
that have to be made are as follows:

• Apply the isomorphisms (3.76) and (3.77) whenever a complex number
or matrix is involved. For instance, (3.6) becomes:

ˇ̃W
i

k =

 W̌i
11Ǧ

i
k1

...
W̌i

JJǦi
kJ

 . (3.82)

• Change all cost functions into their equivalent with real valued variables,
similarly to (3.80).

• TheKJ dimensional subspace Si in (3.42) now becomes the 2KJ-dimensional
subspace

Si = Span{s̀i
1(1), śi

1(1), . . . , s̀i
1(K), śi

1(K), . . . ,

s̀i
J(1), śi

J(1), . . . , s̀i
J(K), śi

J(K)} .
(3.83)

13We deliberately use (3.80) instead of E
n
‖d̀k − W̌T

k ỳ‖2
o

, because this makes the relation

between Jk and J̌k easier. The reason is that in (3.80), the full matrix W̌k can be treated

as a variable in the derivation of the gradient, instead of the argument Ẁk. The resulting
gradient Ď = 2Ry̌y̌W̌k − 2ry̌ďk

will automatically have the correct structure, i.e. a matrix

that is isomorph to the equivalent complex gradient D = 2RyyWk − 2rydk
, according to

(3.77). This also holds in other cases, such as the update of Ǧi+1 according to (3.22).
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• All inner products between a gradient-vector or -matrix D and a second
vector or matrix V are applied according to D̀T V̀. In this case, (3.49)
and similar expressions remain valid because of (3.81), and the fact that
4ẁk(p) is a descent direction of J̌p

k if and only if 4wk(p) is a descent
direction of Jp

k .
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Abstract

In this paper, the benefit of using external acoustic sensor nodes for noise re-
duction in hearing aids is demonstrated in a simulated acoustic scenario with
multiple sound sources. A distributed adaptive node-specific signal estima-
tion (DANSE) algorithm, that has a reduced communication bandwidth and
computational load, is evaluated. Batch-mode simulations compare the noise
reduction performance of a centralized MWF algorithm with DANSE. In the
simulated scenario, DANSE is observed not to be able to achieve the same per-
formance as its centralized multi-channel Wiener filtering (MWF) equivalent,
although in theory both should generate the same set of filters. A modification
to DANSE is proposed to increase its robustness, yielding smaller discrepancy
between the performance of DANSE and the centralized MWF. Furthermore,
the influence of several parameters such as the DFT size used for frequency do-
main processing and possible delays in the communication link between nodes
is investigated.

4.1 Introduction

Noise reduction algorithms are crucial in hearing aids to improve speech un-
derstanding in background noise. For every increase of 1 dB in signal-to-noise
ratio, speech understanding increases by roughly 10% [1]. By using an array
of microphones, it is possible to exploit spatial characteristics of the acoustic
scenario. However, in many classical beamforming applications, the acoustic
field is sampled only locally because the microphones are placed close to each
other. The noise reduction performance can often be increased when extra
microphones are used at significantly different positions in the acoustic field.
For example, an exchange of microphone signals between a pair of hearing aids
in a binaural configuration, i.e. one at each ear, can significantly improve the
noise reduction performance [2–11]. The distribution of extra acoustic sensor
nodes in the acoustic environment, each having a signal processing unit and
a wireless link, allows further performance improvement. For instance, small
sensor nodes can be incorporated into clothing, or placed strategically either
close to desired sources to obtain high SNR signals, or close to noise sources to
collect noise references. In a scenario with multiple hearing aid users, the dif-
ferent hearing aids can exchange signals to improve their performance through
cooperation.

The set-up envisaged here requires a wireless link between the hearing aid and
the supporting external acoustic sensor nodes. A distributed approach using
compressed signals is needed, since collecting and processing all available mi-
crophone signals at the hearing aid itself would require a large communication
bandwidth and computational power. Furthermore, since the positions of the
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external nodes are unknown, the algorithm should be adaptive and able to cope
with unknown microphone positions. Therefore, a multi-channel Wiener filter
(MWF) approach is considered, since an MWF optimally estimates the clean
speech signal in MMSE sense without relying on prior knowledge on the mi-
crophone positions [12]. In [13, 14], a distributed adaptive node-specific signal
estimation (DANSE) algorithm is introduced for MMSE signal estimation in
a sensor network, which significantly reduces the communication bandwidth
while still obtaining the optimal MMSE estimators, i.e. the Wiener filters, as
if each node has access to all signals in the network. The term ‘node-specific’
refers to the scenario in which each node acts as a data-sink and estimates a
different desired signal. This situation is particularly interesting in the context
of noise reduction in binaural hearing aids where the two hearing aids estimate
differently filtered versions of the same desired speech source signal, which is
indeed important to preserve the auditory cues for directional hearing [15–18].
In [19], a pruned version of the DANSE algorithm, referred to as distributed
multi-channel Wiener filtering (DB-MWF), has been used for binaural noise
reduction. In the case of a single desired source signal, it was proven that DB-
MWF converges to the optimal all-microphone Wiener filter settings in both
hearing aids. The more general DANSE algorithm allows the incorporation of
multiple desired sources and more than two nodes. Furthermore, it allows for
uncoordinated updating where each node decides independently in which itera-
tion steps it updates its parameters, possibly simultaneously with other nodes.
This in particular avoids the need for a network wide protocol that coordinates
the updates between nodes.

In this paper, batch-mode simulation results are described to demonstrate the
benefit of using additional external sensor nodes for noise reduction in hearing
aids. Furthermore, the DANSE algorithm is reformulated in a noise reduc-
tion context, and a batch-mode analysis of the noise reduction performance
of DANSE is provided. The results are compared to those obtained with the
centralized MWF algorithm that has access to all signals in the network to
compute the optimal Wiener filters. Although in theory the DANSE algorithm
converges to the same filters as the centralized MWF algorithm, this is not
the case in the simulated scenario. The resulting decrease in performance is
explained and a modified algorithm is then proposed to increase robustness
and to allow the algorithm to converge to the same filters as in the centralized
MWF algorithm. Furthermore, the effectiveness of relaxation is shown when
nodes update their filters simultaneously, as well as the influence of several
parameters such as the DFT size used for frequency domain processing, and
possible delays within the communication link. The simulations in this paper
show the potential of DANSE for noise reduction, as suggested in [13, 14], and
provide a proof-of-concept for applying the algorithm in cooperative acoustic
sensor networks for distributed noise reduction applications, such as hearing
aids.
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Figure 4.1: Data model for a sensor network with J sensor nodes, in which
node k collects Mk noisy observations of the Q source signals in s.

The outline of this paper is as follows. In Section 4.2, the data model is intro-
duced and the multi-channel Wiener filtering process is reviewed. In Section
4.3, a description of the simulated acoustic scenario is provided. Moreover, an
analysis of the benefits achieved using external acoustic sensor nodes is given.
In Section 4.4, the DANSE algorithm is reviewed in the context of noise reduc-
tion. A modification to DANSE increasing robustness is introduced in Section
4.5. Batch-mode simulation results are given in Section 4.6. Since some practi-
cal aspects are disregarded in the simulations, some remarks and open problems
concerning a practical implementation of the algorithm, are given in Section
4.7.

4.2 Data Model and Multi-Channel Wiener Fil-
tering

4.2.1 Data Model and Notation

A general fully connected broadcasting sensor network with J nodes is consid-
ered, in which each node k has direct access to a specific set of Mk microphones,
with M =

∑J
k=1Mk (see Fig. 4.1). Nodes can be either a hearing aid or a

supporting external acoustic sensor node. Each microphone signal m of node
k can be described in the frequency domain as

ykm(ω) = xkm(ω) + vkm(ω), m = 1, ...,Mk (4.1)
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where xkm(ω) is a desired speech component and vkm(ω) an undesired noise
component. Although xkm(ω) is referred to as the desired speech component,
vkm(ω) is not necessarily non-speech, i.e. undesired speech sources may be
included in vkm(ω). All subsequent algorithms will be implemented in the
frequency domain, where (4.1) is approximated based on finite-length time-
to-frequency domain transformations. For conciseness, the frequency-domain
variable ω will be omitted. All signals ykm of node k are stacked in an Mk-
dimensional vector yk, and all vectors yk are stacked in an M -dimensional
vector y. The vectors xk, vk and x, v are similarly constructed. The network-
wide data model can now be written as y = x + v. Notice that the desired
speech component x may consist of multiple desired source signals, for example
when a hearing aid user is listening to a conversation between multiple speakers,
possibly talking simultaneously. If there are Q desired speech sources, then

x = As (4.2)

where A is an M×Q-dimensional steering matrix and s a Q-dimensional vector
containing the Q desired sources. Matrix A contains the acoustic transfer
functions (evaluated at frequency ω) from each of the speech sources to all
microphones, incorporating room acoustics and microphone characteristics.

4.2.2 Centralized Multi-Channel Wiener Filtering

The goal of each node k is to estimate the desired speech component xkm in
its m-th microphone, selected to be the reference microphone. Without loss
of generality, it is assumed that the reference microphone always corresponds
to m = 1. For the time being, it is assumed that each node has access to
all microphone signals in the network. Node k then performs a filter-and-sum
operation on the microphone signals with filter coefficients wk that minimize
the following MSE cost function

Jk(wk) = E
{
|xk1 −wH

k y|2
}

(4.3)

in which the superscript H denotes the conjugate transpose operator. Notice
that at each node k, one such MSE problem is to be solved for each frequency
bin. The minimum of (4.3) corresponds to the well-known Wiener filter solu-
tion:

ŵk = R−1
yy Ryxek1 (4.4)

with Ryy = E{yyH}, Ryx = E{yxH} and ek1 an M -dimensional vector with
only one entry equal to 1 and all other entries equal to 0, which selects the
column of Ryx corresponding to the reference microphone of node k. This
procedure is referred to as multi-channel Wiener filtering (MWF). If the desired
speech sources are uncorrelated to the noise, then Ryx = Rxx = E{xxH}. In
the remaining of this paper, it is implicitly assumed that all Q desired sources
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may be active at the same time, yielding a rank-Q speech correlation matrix
Rxx. In practice, Rxx is unknown, but can be estimated from

Rxx = Ryy −Rvv (4.5)

with Rvv = E{vvH}. The noise correlation matrix Rvv can be (re-)estimated
during noise-only periods and Ryy can be (re-)estimated during speech-and-
noise periods, requiring a voice activity detection (VAD) mechanism. Even
when the noise sources and the speech source are not stationary, these practical
estimators are found to yield good noise reduction performance [15, 19].

4.3 Simulation Scenario & the Benefit of Exter-
nal Acoustic Sensor Nodes

The performance of microphone array based noise reduction typically increases
with the number of microphones. However, the number of microphones that
can be placed on a hearing aid is limited, and the acoustic field is only sampled
locally, i.e. at the hearing aid itself. Therefore, there is often a large distance
between the location of the desired source and the microphone array, which
results in signals with low SNR. In fact, the SNR decreases with 6 dB for
every doubling of the distance between a source and a microphone. The noise
reduction performance can therefore be greatly increased by using supporting
external acoustic sensor nodes that are connected to the hearing aid through a
wireless link.

To assess the potential improvement that can be obtained by adding external
sensor nodes, a multi-source scenario is simulated using the image method
[20]. Fig. 4.2 shows a schematic illustration of the scenario. The room is
cubical (5m × 5m × 5m) with a reflection coefficient of 0.4 at the floor, the
ceiling and at every wall. According to Sabine’s formula this corresponds to a
reverberation time of T60 = 0.222 s. There are two hearing aid users listening
to speaker C, who produces a desired speech signal. One hearing aid user has
2 hearing aids (node 2 and 3) and the other has one hearing aid at the right
ear (node 4). All hearing aids have three omnidirectional microphones with a
spacing of 1 cm. Head shadow effects are not taken into account. Node 1 is an
external microphone array containing six omnidirectional microphones placed 2
cm from each other. Speakers A and B both produce speech signals interfering
with speaker C. All speech signals are sentences from the HINT (‘Hearing in
Noise Test’) database [21]. The upper left loudspeaker produces multi-talker
babble noise (Auditec) with a power normalized to obtain an input broadband
SNR of 0 dB in the first microphone of node 4, which is used as the reference
node. In addition to the localized noise sources, all microphone signals have
an uncorrelated noise component which consist of white noise with power that
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Figure 4.2: The acoustic scenario used in the simulations throughout this paper.
Two persons with hearing aids are listening to speaker C. The other sources
produce interference noise.

is 10% of the power of the desired signal in the first microphone of node 4.
All nodes and all sound sources are in the same horizontal plane, 2 m above
ground level.

Notice that this is a difficult scenario, with many sources and highly non-
stationary (speech) noise. This kind of scenario brings many practical issues,
especially with respect to reliable VAD decisions (cfr. Section 4.7). Through-
out this paper, many of these practical aspects are disregarded. The aim here
is to demonstrate the benefit that can be achieved with external sensor nodes,
in particular in multi-source scenarios. Furthermore, the theoretical perfor-
mance of the DANSE algorithm, introduced in Section 4.4, will be assessed
with respect to the centralized MWF algorithm. To isolate the effects of VAD
errors and estimation errors on the correlation matrices, all experiments are
performed in batch mode with ideal VAD’s.
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Two performance measures are used to assess the quality of the noise reduction
algorithms, namely the broadband signal-to-noise ratio (SNR) and the signal-
to-distortion ratio (SDR). The SNR and SDR at node k are defined as

SNR = 10 log10

E
{
x̂k[t]2

}
E {n̂k[t]2}

(4.6)

SDR = 10 log10

E
{
xk1[t]2

}
E
{

(xk1[t]− x̂k[t])2
} (4.7)

with n̂k[t] and x̂k[t] the time domain noise component and the desired speech
component respectively at the output at node k, and xk1[t] the desired time
domain speech component in the reference microphone of node k.

The sampling frequency is 32 kHz in all experiments. The frequency domain
noise reduction is based on DFT’s with size equal to L = 512 if not specified
otherwise. Notice that L is equivalent to the filter length of the time domain
filters that are implicitly applied to the microphone signals. The DFT size
L = 512 is relatively large, which is due to the fact that microphones are far
apart from each other, leading to higher time differences of arrival (TDOA)
demanding longer filters to exploit spatial information. If the filter lengths are
too short to allow a sufficient alignment between the signals, then the noise
reduction performance degrades. This is evaluated in Section 4.6.4. To allow
small DFT-sizes, yet large distances between microphones, delay compensation
should be introduced in the local microphone signals or the received signals at
each node. However, since hearing aids typically have hard constraints on the
processing delay to maintain lip synchronization, this delay compensation is
restricted. This, in effect, introduces a trade-off between input-output delay
and noise reduction performance.

Fig. 4.3(a) shows the output SNR and SDR of the centralized MWF procedure
at node 4 when five different subsets of microphones are used for the noise
reduction:

1. The microphone signals of node 4 itself.
2. The microphone signals of node 1 in addition to the microphone signals

of node 4 itself.
3. The microphone signals of node 2 in addition to the microphone signals

of node 4 itself.
4. The first microphone signal at every node in addition to all microphone

signals of node 4 itself. This is equivalent to a scenario where the network
supporting node 4 consists of single-microphone nodes, i.e. Mk = 1, for
k = 1, . . . , 3.

5. All microphone signals in the network.

The benefit of adding external microphones is very clear in this graph. It
also shows that microphones with a significantly different position contribute
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(a) Scenario of Fig. 4.2
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(b) Scenario of Fig. 4.2 with vertical position of node 1 reduced by 0.5 m

Figure 4.3: Comparison of output SNR and SDR of MWF at node 4 for five
different microphone subsets.
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more than microphones that are closely spaced. Indeed, cases 2, 3 and 4 both
add three extra microphone signals, but the benefit is largest in case 4, in
which the additional microphones are relatively set far apart. However, using
multi-microphone nodes (case 5) still produces a significant benefit of about
25% (2 dB) in comparison to single-microphone nodes (case 4). Notice that
the benefit of placing external microphones, and the benefit of using multi-
microphone nodes in comparison to single-microphone nodes, is of course very
scenario specific. For instance, if the vertical position of node 1 is reduced by
0.5 m in Fig. 4.2, then the difference between single-microphone nodes (case
4) and multi-microphone nodes (case 5) is more than 3 dB, as shown in Fig.
4.3(b), which correponds to an improvement of almost 50%.

4.4 The DANSE Algorithm

In Section 4.3, simulations showed that adding external microphones in addi-
tion to the microphones available in a hearing aid may yield a great benefit in
terms of both noise suppression and speech distortion. Not surprisingly, adding
external nodes with multiple microphones boosts the performance even more.
However, the latter introduces a significant increase in communication band-
width, depending on the number of microphones in each node. Furthermore,
the dimensions of the correlation matrix to be inverted in formula (4.4) may
grow significantly. However, if each node has its own signal processor unit, this
extra communication bandwidth can be reduced and the computation can be
distributed by using the distributed adaptive node-specific signal estimation
(DANSE) algorithm, as proposed in [13, 14]. The DANSE algorithm computes
the optimal network wide Wiener filter in a distributed, iterative fashion. In
this section this algorithm is briefly reviewed and reformulated in a noise re-
duction context.

4.4.1 The DANSEK Algorithm

In the DANSEK algorithm, each node k estimates K different desired signals,
corresponding to the desired speech components in K of its microphones (as-
suming that K ≤ Mk, ∀ k ∈ {1, . . . , J}). Without loss of generality, it is
assumed that the first K microphones are selected, i.e. the signal to be es-
timated is the K-channel signal xk = [xk1 . . . xkK ]T . The first entry in this
vector corresponds to the reference microphone, whereas the other K−1 entries
should be viewed as auxiliary channels. They are required to fully capture the
signal subspace spanned by the desired source signals. Indeed, if K is chosen
equal to Q, the K channels of xk define the same signal subspace as defined by
the channels in s, i.e.

xk = Aks (4.8)
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where Ak denotes a K × K submatrix of the steering matrix A in formula
(4.2). K being equal to Q is a requirement for DANSEK to be equivalent to
the centralized MWF solution (see Theorem 4.1). The case in which K 6= Q
is not considered here. For a more detailed discussion why these auxiliary
channels are introduced, we refer to [13].

Each node k estimates its desired signal xk with respect to a corresponding
MSE cost function

Jk(Wk) = E
{
‖xk −WH

k y‖2
}

(4.9)

with Wk an M×K matrix, defining a multiple-input multiple-output (MIMO)
filter. Notice that this corresponds to K independent estimation problems in
which the sameM -channel input signal y is used. Similarly to (4.3), the Wiener
solution of (4.9) is given by

Ŵk = R−1
yy RxxEk (4.10)

with

Ek =
[

IK

O(M−K)×K

]
(4.11)

with IK denoting the K ×K identity matrix and OU×V denoting an all-zero
U×V matrix. The matrix Ek selects the first K columns of Rxx, corresponding
to the K-channel signal xk. The DANSEK algorithm will compute (4.10) in
an iterative, distributed fashion. Notice that only the first column of Ŵk

is of actual interest, since this is the filter that estimates the desired speech
component in the reference microphone. The auxiliary columns of Ŵk are
by-products of the DANSEK algorithm.

A partitioning of the matrix Wk is defined as Wk = [WT
k1 . . . WT

kJ ]T where
Wkq denotes the Mk × K submatrix of Wk that is applied to yq in (4.9).
Since node k only has access to yk, it can only apply the partial filter Wkk.
The K-channel output signal of this filter, defined by zk = WH

kkyk, is then
broadcast to the other nodes. Another node q can filter this K-channel signal
zk that it receives from node k by a MIMO filter defined by the K ×K matrix
Gqk. This is illustrated in Fig. 4.4 for a three-node network (J = 3). Notice
that the actual Wk that is applied by node k is now parametrized as

Wk =


W11Gk1

W22Gk2

...
WJJGkJ

 . (4.12)

In what follows, the matrices Gkk, ∀ k ∈ {1, . . . , J}, are assumed to be K ×K
identity matrices IK to minimize the degrees of freedom (they are omitted in
Fig. 4.4). Node k can only manipulate the parameters Wkk and Gk1 . . . GkJ .
If (4.8) holds, it is shown in [13] that the solution space defined by the para-
metrization (4.12) contains the centralized solution Ŵk.
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Figure 4.4: The DANSEK scheme with 3 nodes (J = 3). Each node k estimates
the desired signal xk using its own Mk-channel microphone signal, and 2 K-
channel signals broadcast by the other two nodes.

Notice that each node k broadcasts a K-channel1 signal zk, which is the output
of the Mk×K MIMO filter Wkk, acting both as a compressor and an estimator
at the same time. The subscript K thus refers to the (maximum) number of
channels of the broadcast signal. DANSEK compresses the data to be sent by
node k by a factor of max{Mk

K , 1}. Further compression is possible, since the
channels of the broadcast signal zk are highly correlated, but this is not taken
into consideration throughout this paper.

The DANSEK algorithm will iteratively update the elements at the righthand
side of eq. (4.12) to optimally estimate the desired signals xk, ∀k ∈ {1, . . . , J}.
To describe this updating procedure, the following notation is used. The matrix
Gk = [GT

k1 . . . G
T
kJ ]T stacks all transformation matrices of node k. The matrix

Gk,−q defines the matrix Gk in which Gkq is omitted. The K(J − 1)-channel

1Here it is assumed without loss of generality that K ≤ Mk, ∀ k ∈ {1, . . . , J}. If this does
not hold at a certain node k, this node will transmit its unfiltered microphone signals.
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signal z−k is defined as z−k =
[
zT
1 . . . z

T
k−1z

T
k+1 . . . z

T
J

]T . In what follows, a
superscript i refers to the value of the variable at iteration step i. Using this
notation, the DANSEK algorithm consists of the following iteration steps:

1. Initialize
i← 0
k ← 1
∀ q ∈ {1, ..., J}: Wqq ←W0

qq, Gq,−q ← G0
q,−q, Gqq ← IK , where W0

qq

and G0
q,−q are random matrices of appropriate dimension.

2. Node k updates its local parameters Wkk and Gk,−k by solving a local
estimation problem based on its own local microphone signals yk to-
gether with the compressed signals zi

q = Wi H
qq yq that it receives from

the other nodes q 6= k, i.e. it minimizes

J̃ i
k(Wkk,Gk,−k) = E

{
‖xk −

[
WH

kk |GH
k,−k

]
ỹi

k‖2
}

(4.13)

where

ỹi
k =

[
yk

zi
−k

]
. (4.14)

Define x̃i
k similarly as (4.14), but now only containing the desired speech

components in the considered signals. The update performed by node k
is then [

Wi+1
kk

Gi+1
k,−k

]
=
(
R̃i

yy,k

)−1

R̃i
xx,kEk (4.15)

with

Ek =
[

IK

O(Mk−K+K(J−1))×K

]
(4.16)

R̃i
yy,k = E

{
ỹi

kỹ
i H
k

}
(4.17)

R̃i
xx,k = E

{
x̃i

kx̃
i H
k

}
. (4.18)

The parameters of the other nodes do not change, i.e.

∀ q ∈ {1, . . . , J}\{k} : Wi+1
qq = Wi

qq, Gi+1
q,−q = Gi

q,−q . (4.19)

3. Wkk ←Wi+1
kk , Gk,−k ← Gi+1

k,−k

k ← (k mod J) + 1
i← i+ 1

4. Return to step 2

Notice that node k updates its parameters Wkk and Gk,−k, according to a
local multi-channel Wiener filtering problem with respect to its Mk +(J −1)K
input channels. This MWF problem is solved in the same way as the MWF
problem given in (4.3) or (4.9).
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Theorem 4.1 Assume that K = Q. If xk = Aks, ∀ k ∈ {1, . . . , J}, with Ak

a full rank K ×K matrix, then the DANSEK algorithm converges for any k to
the optimal filters (4.10) for any initialization of the parameters.

Proof : See [13]. 2

Notice that DANSEK theoretically provides the same output as the centralized
MWF algorithm if K = Q. The requirement that xk = Aks, ∀ k ∈ {1, . . . , J},
is satisfied because of (4.2). However, notice that the data model (4.2) is only
approximately fullfilled in practice due to a finite-length DFT size. Conse-
quently, the rank of the speech correlation matrix Rxx is not Q, but it has
Q dominant eigenvalues instead. Therefore, the theoretical claims of conver-
gence and optimality of DANSEK , with K = Q, are only approximately true
in practice due to frequency domain processing.

4.4.2 Simultaneous Updating

The DANSEK algorithm as described in Section 4.4.1 performs sequential up-
dating in a round-robin fashion, i.e. nodes update their parameters one at a
time. In [22], it is observed that convergence of DANSE is no longer guaranteed
when nodes update simultaneously, or in an uncoordinated fashion where each
node decides independently in which iteration steps it updates its parameters.
This is however an interesting case, since a simultaneous updating procedure
allows for parallel computation, and uncoordinated updating removes the need
for a network wide protocol that coordinates the updates between nodes.

Let W = [WT
11W

T
22 . . .W

T
JJ ]T and let F (W) be the function that defines the

simultaneous DANSEK update of all parameters in W, i.e. F applies (4.15)
∀ k ∈ {1, . . . J} simultaneously. Experiments in [22] show that the update
Wi+1 = F (Wi) may lead to limit cycle behavior. To avoid these limit cycles,
the following relaxed version of DANSE is suggested in [22]:

Wi+1 = (1− αi)Wi + αiF (Wi) (4.20)

with stepsizes αi satisfying
αi ∈ (0, 1] (4.21)

lim
i→∞

αi = 0 (4.22)

∞∑
i=0

αi =∞ . (4.23)

The suggested conditions on the stepsize αi are however quite conservative
and may result in slow convergence. In most cases, the simultaneous update
procedure converges already when a constant value for αi is chosen ∀i ∈ N that
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is sufficiently small. In all simulations performed for the scenario in Section
4.3, a value of αi = 0.5, ∀ i ∈ N was found to eliminate limit cycles in every
set-up.

4.5 Robust DANSE

4.5.1 Robustness Issues in DANSE

In Section 4.6, simulation results will show that the DANSE algorithm does
not achieve the optimal noise reduction performance as predicted by theorem
4.1. There are two important reasons for this suboptimal performance.

The first reason is the fact that the DANSEK algorithm assumes that the signal
space spanned by the channels of xk is well-conditioned, ∀k ∈ {1, . . . , J}. This
assumption is reflected in theorem 4.1 by the condition that Ak be full rank
for all k. Although this is mostly satisfied in practice, the Ak’s are often ill-
conditioned. For instance, the distance between microphones in a single node
is mostly small, yielding a steering matrix with several columns that are almost
identical, i.e. an ill-conditioned matrix Ak in the formulation of theorem 4.1.

The microphones of nodes that are close to a noise source typically collect low
SNR signals. Despite the low SNR, these signals can boost the performance of
the MWF algorithm, since they can act as noise references to cancel out noise
in the signals recorded by other nodes. However, the DANSE algorithm cannot
fully exploit this since the local estimation problem at such low SNR nodes is
ill-conditioned. If node k has low SNR microphone signals yk, the correlation
matrix Rxx,k = E{xkxH

k } has large estimation errors, since the corresponding
noise correlation matrix Rvv,k and the speech+noise correlation matrix Ryy,k

are very similar, i.e. Rvv,k ≈ Ryy,k. Notice that Rxx,k is a submatrix of R̃xx,k

defined in (4.18), which is used in the DANSEK algorithm. From another
point of view, this also relates to an ill-conditioned steering matrix A, since
the submatrix Ak is close to an all-zero matrix compared to the submatrices
corresponding to nodes with higher SNR signals.

4.5.2 Robust DANSE (R-DANSE)

In this section, a modification to the DANSE algorithm is proposed to achieve
a better noise reduction performance in the case of low SNR nodes or ill-
conditioned steering matrices. The main idea is to replace an ill-conditioned
Ak matrix by a better conditioned matrix by changing the estimation problem
at node k. The new algorithm is referred to as ‘robust DANSE’ or R-DANSE.
In what follows, the notation v(p) is used to denote the p-th entry in a vector
v, and m(p) is used to denote the p-th column in the matrix M.
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For each node k, the channels in xk that cause ill-conditioned steering matrices,
or that correspond to low SNR signals, are discarded and replaced by the
desired speech components in the signal(s) zi

q received from other (high SNR)
nodes q 6= k, i.e.

xi
k(p) = wi

qq(l)
Hxq, q ∈ {1, . . . , J}\{k}, l ∈ {1, . . . ,K} , (4.24)

if xkp causes an ill-conditioned steering matrix or if xkp corresponds to a low
SNR microphone, and

xi
k(p) = xkp (4.25)

otherwise. Notice that the desired signal xi
k may now change at every iteration,

which is reflected by the superscript i denoting the iteration index.

To decide whether to use (4.24) or (4.25), the condition number of the matrix
Ak does not necessarily have to be known. In principle, it is always better to
replace the K−1 auxiliary channels in xk as in formula (4.24), where a different
q should be chosen for every p. Indeed, since microphones of different nodes
are typically far apart from each other, better conditioned steering matrices
are then obtained. Also, since the correlation matrix R̃xx,k is better estimated
when high SNR signals are available, the chosen q’s preferably correspond to
high SNR nodes. Therefore, the decision procedure requires knowledge of the
SNR at the different nodes. For a low SNR node k, one can also replace all
K channels in xk as in (4.24), including the reference microphone. In this
case, there is no estimation of the speech component that is collected by the
microphones of node k itself. However, since the network wide problem is now
better conditioned, the other nodes in the network will benefit from this.

The R-DANSEK algorithm performs the same steps as explained in Section
4.4.1 for the DANSEK algorithm, but now xi

k replaces xk in (4.13)-(4.18). This
means that in R-DANSE, the Ek matrix in (4.16) now may contain ones at row
indices that are higher than Mk. To guarantee convergence of R-DANSE, the
placement of ones in (4.16), or equivalently the choices for q and l in (4.24),
are not completely free, as explained in the next section.

4.5.3 Convergence of R-DANSE

To provide convergence results, the dependencies of each individual estimation
problem are described by means of a directed graph2 G with KJ vertices, where
each vertex corresponds to one of the locally computed filters, i.e. a specific
column of Wkk for k = 1 . . . J . The graph contains an arc from filter a to
b, described by the ordered pair (a, b), if the output of filter b contains the
desired speech component that is estimated by filter a. For example, formula
(4.24) defines the arc (wkk(p),wqq(l)). A vertex v that has no departing arc is

2Readers that are not familiar with the jargon of graph theory might want to consult [23],
although in principle no prior knowledge on graph theory is assumed.
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referred to as a direct estimation filter (DEF), i.e. the signal to be estimated
is the desired speech component in one of the node’s own microphone signals,
as in formula (4.25).

To illustrate this, a possible graph is shown in Fig. 4.5 for DANSE2 applied to
the scenario described in Section 4.3. Since the microphone signals of node 1
have a low SNR, the two desired signals in x1 that are used in the computation
of W11 are replaced by the filtered desired speech component in the received
signals from higher SNR nodes 2 and 4, i.e. w22(1)Hx2 and w44(1)Hx4 re-
spectively. This corresponds to the arcs (w11(1),w22(1)) and (w11(2),w44(1)).
To calculate w22(1), w33(1) and w44(1), the desired speech components x21,
x31 and x41 in the respective reference microphones are used. These filters are
DEF’s, and are shaded in Fig. 4.5. The microphones at node 2 are very close to
each other. Therefore, to avoid an ill-conditioned matrix A2 at node 2, the sig-
nals to be estimated by w22(2) should be provided by another node, and not by
another microphone signal of node 2 itself. Therefore, the arc (w22(2),w44(1))
is added. For similar reasons, the arcs (w33(2),w44(1)) and (w44(2),w22(1))
are also added.

Theorem 4.2 Let all assumptions of theorem 4.1 be satisfied. Let G be the
directed graph describing the dependencies of the estimation problems in the R-
DANSEK algorithm as described above. If G is acyclic, then the R-DANSEK

algorithm converges to the optimal filters to estimate the desired signals defined
by G.

Proof : The proof of theorem 4.1 in [13] on convergence of DANSEK is based
on the assumption that the desired K-channel signals xk, ∀ k ∈ {1, . . . , J}, are
all in the same K-dimensional signal subspace spanned by the K sources in s,
i.e.

xk = Aks . (4.26)

This assumption remains valid in R-DANSEK . Indeed, since xq contains Mq

linear combination of the Q sources in s, the signal xi
k(p) given by (4.24) is

again a linear combination of the source signals. However, the coefficients of
this linear combinations may change at every iteration as the signal xi

k(p) is
an output of the adaptive filter wi

qq(l) in another node q. This then leads to a
modified version of theorem 4.1 for DANSEK in which the matrix Ak in (4.26)
is not fixed, but may change at every iteration, i.e.

xi
k = Ai

ks . (4.27)

Define

W
i

kq = arg min
Wkq

(
min
Gk,−q

E
{
‖xk −

[
WH

kq |GH
k,−q

]
ỹi

q‖2
})

. (4.28)
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Figure 4.5: Possible graph describing dependencies of estimations problems for
DANSE2 applied to the acoustic scenario described in Section 4.3.
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This corresponds to the hypothetical case in which node k would optimise Wi
kq

directly, without the constraint Wi
kq = Wi

qqG
i
kq where node k depends on the

parameter choice of node q.

In [13] it is proven that for DANSEK , under the assumptions of theorem 4.1
the following holds:

∀ q, k ∈ {1, . . . , J} : W
i

kq = W
i

qqAkq (4.29)

with Akq = A−H
q AH

k . This means that the columns of W
i

qq span a K-

dimensional subspace that also contains the columns of W
i

kq, which is the
optimal update with respect to the cost function J i

k of node k, as if there were
no constraints on Wi

kq. Or in other words: an update by node q automatically
optimizes the cost function of any other node k with respect to Wkq, if node k
performs a responding optimization of Gkq, yielding Gopt

kq = Akq. Therefore,
the following expression holds:

∀ k ∈ {1, ..., J}, ∀ i ∈ N :

min
Gk,−k

J̃ i+1
k

(
Wi+1

kk ,Gk,−k

)
≤ min

Gk,−k

J̃ i
k

(
Wi

kk,Gk,−k

)
. (4.30)

Notice that this holds at every iteration for every node. In the case of R-
DANSEK , the Akq matrix of expression (4.29) changes at every iteration. At
first sight, expression (4.30) remains valid, since changes in the matrix Akq are
compensated by the minimization over Gkq in (4.30). However, this is not true
since the desired signals xi

k also change at every iteration, and therefore the
cost functions at different iterations cannot be compared. However, (4.30) can
be partitioned in K sub-expressions:

∀ p ∈ {1, . . . ,K}, ∀ k ∈ {1, ..., J}, ∀ i ∈ N :

min
gk,−k(p)

J̃ i+1
kp

(
wi+1

kk (p),gk,−k(p)
)
≤ min

gk,−k(p)
J̃ i

kp

(
wi

kk(p),gk,−k(p)
)

(4.31)

with
J̃ i

kp(wkk,gk,−k) = E
{
|xk(p)−

[
wH

kk | gH
k,−k

]
ỹi

k|2
}
. (4.32)

For the R-DANSEK case, (4.32) remains the same, except that xk(p) has to be
replaced with xi

k(p). As explained above, due to this modification, expression
(4.31) does not hold anymore. However, it does hold for the cost functions
J i

kp corresponding to a DEF wkk(p), i.e. a filter for which the desired signal is
directly obtained from one of the microphone signals of node k. Indeed, every
DEF wkk(p) has a well-defined cost function J̃ i

kp, since the signal xi
k(p) is fixed

over different iteration steps. Because J̃ i
kp has a lower bound, (4.31) shows that

the sequence {mingp
k,−k

J̃ i
kp}i∈N converges. The convergence of this sequence

implies convergence of the sequence {wi
kk(p)}i∈N, as shown in [13].
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After convergence of all wkk(p) parameters corresponding to a DEF, all vertices
in the graph G that are directly connected to this DEF have a stable desired
signal, and their corresponding cost functions become well-defined. The above
argument shows that these filters then also converge.

Continuing this line of thought, convergence properties of the DEF will diffuse
through the graph. Since the graph is acyclic, all vertices converge. Conver-
gence of all Wkk parameters for k = 1 . . . J automatically yields convergence of
all Gk parameters, and therefore convergence of all Wk filters for k = 1 . . . J .
Optimality of the resulting filters can be proven using the same arguments as
in the optimality proof of theorem 4.1 for DANSEK in [13]. 2

4.6 Performance of DANSE and R-DANSE

In this section, the batch mode performance of DANSE and R-DANSE is com-
pared for the acoustic scenario of Section 4.3. In this batch version of the algo-
rithms, all iterations of DANSE and R-DANSE are on the full signal length of
about 20 seconds. In real-life applications however, iterations will of course be
spread over time, i.e. subsequent iterations are performed on different signal
segments. To isolate the influence of VAD errors, an ideal VAD is used in all
experiments. Correlation matrices are estimated by time averaging over the
complete length of the signal. The sampling frequency is 32 kHz and the DFT
size is equal to L = 512 if not specified otherwise.

4.6.1 Experimental Validation of DANSE and R-DANSE

Three different measures are used to assess the quality of the outputs at the
hearing aids: the signal-to-noise ratio (4.6), the signal-to-distortion ratio (4.7),
and the mean squared error (MSE) between the coefficients of the optimal
multichannel Wiener filter ŵk and the filter obtained by the DANSE algorithm,
i.e.

MSE =
1
L
‖ŵk −wk(1)‖2 (4.33)

with L the DFT size, ŵk defined by (4.4), and wk(1) denoting the first column
of Wk in (4.12), i.e. the filter that estimates the speech component xk1 in the
reference microphone at node k.

Two different scenarios are tested. In scenario 1 the dimension Q of the
desired signal space is Q = 1, i.e. both hearing aid users are listening to
speaker C, whereas speakers A and B and the babble-noise loudspeaker are
considered to be background noise. In Fig. 4.6, the three quality measures are
plotted (for node 4) versus the iteration index for DANSE1 and R-DANSE1,
with either sequential updating or simultaneous updating (without relaxation).
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Figure 4.6: Scenario 1: SNR, SDR and MSE on filtertaps vs. iterations
for DANSE1 and R-DANSE1 at node 4, for both sequential and simultaneous
updates. Speaker C is the only target speaker.
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Figure 4.7: Scenario 2: SNR, SDR and MSE on filtertaps vs. iterations for
DANSE1, R-DANSE1, DANSE2 and R-DANSE2 at node 4. Speakers B and C
are target speakers.

Also an upper bound is plotted, which corresponds to the centralized MWF
solution defined in (4.4). The R-DANSE1 graph consists of only DEF nodes,
except for w11, which has an arc (w11,w44) to avoid performance loss due
to low SNR. Since there is only one desired source, DANSE1 theoretically
should converge to the upper bound performance, but this is not the case. The
R-DANSE1 algorithm performs better than the DANSE1 algorithm, yielding
an SNR increase of 1.5 to 2 dB, which is an increase of about 20% to 25%.
The same holds for the other two hearing aids, i.e. node 2 and 3, which are
not shown here. The simultaneous update typically converges faster but it
converges to a suboptimal limit cycle, since no relaxation is used. Although
this limit cycle is not very clear in these plots, a loss in SNR of roughly 1 dB is
observed in every hearing aid. This can be avoided by using relaxation, which
will be illustrated in Section 4.6.2.

In scenario 2, the case in which Q = 2 is considered, i.e. there are two desired
sources: both hearing aid users are listening to speakers B and C, who talk
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simultaneously, yielding a speech correlation matrix Rxx of approximately rank
2. The R-DANSE2 graph is illustrated in Fig. 4.5. For this 2-speaker case,
both DANSE1 and DANSE2 are evaluated (with sequential node-updating),
where the latter should theoretically converge to the upper bound performance.
The results for node 4 are plotted in Fig. 4.7. While the MSE is lower for
DANSE2 compared to DANSE1, it is observed that DANSE2 does not reach
the optimal noise reduction performance. R-DANSE2 is however able to reach
the upper bound performance at every hearing aid. The SNR improvement of
R-DANSE2 in comparison with DANSE2 is between 2 and 3 dB at every hearing
aid, which is again an increase of about 20% to 25%. Notice that R-DANSE2

even slightly outperforms the centralized algorithm. This may be because R-
DANSE2 performs its matrix inversions on correlation matrices with smaller
dimensions than the all-microphone correlation matrix Ryy in the centralized
algorithm, which is more favorable in a numerical sense.

4.6.2 Simultaneous Updating with Relaxation

Simulations on different acoustic scenarios show that in most cases, DANSEK

with simultaneous updating results in a limit cycle oscillation. The occurrence
of limit cycles appears to depend on the position of the nodes and sound sources,
the reverberation time, as well as on the DFT size, but no clear rule was found
to predict the occurrence of a limit cycle.

To illustrate the effect of relaxation, the simulation results of R-DANSE1 in
the scenario of Section 4.3 are given in Fig. 4.8(a), where now the DFT size
is L = 1024, which results in clearly visible limit cycle oscillations when no
relaxation is used. This causes an overall loss in SNR of 2 or 3 dB at every
hearing aid.

Fig. 4.8(b) shows the same experiment where relaxation is used as in formula
(4.20) with αi = 0.5, ∀ i ∈ N. In this case, the limit cycle does not appear
and the simultaneous updating algorithm indeed converges to the same values
as the sequential updating algorithm. Notice that the simultaneous updating
algorithm converges faster than the sequential updating algorithm.

4.6.3 DFT Size

In Fig. 4.9, the SNR and SDR of the output signal of R-DANSE1 at nodes 3
and 4 is plotted as a function of the DFT size L, which is equivalent to the
length of the time domain filters that are implicitly applied to the signals at
the nodes. 28 iterations were performed with sequential updating for L = 256,
L = 512, L = 1024, and L = 2048. The outputs of the centralized version
and the scenario in which nodes do not share any signals, are also given as a
reference.
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tial and simultaneous updating.
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Figure 4.9: Output SNR and SDR after 28 iterations of R-DANSE1 with se-
quential updating vs. DFT size L at nodes 3 and 4.
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As expected, the performance increases with increasing DFT size. However,
the discrepancy between the centralized algorithm and R-DANSE1 grows for
increasing DFT size. One reason for this observation is that, for large DFT
sizes, R-DANSE often converges slowly once the filters at all nodes are close to
the optimal filters.

The scenario with isolated nodes is less sensitive to the DFT size. This is
because the tested DFT sizes are quite large, yielding long filters. As explained
in the next section, shorter filter lengths are sufficient in the case of isolated
nodes since the microphones are very close to each other, yielding small time
differences of arrival (TDOA).

4.6.4 Communication Delays or Time Differences of Ar-
rival

To exploit the spatial coherence between microphone signals, the noise reduc-
tion filters attempt to align the signal components resulting from the same
source in the different microphone signals. However, alignment of the direct
components of the source signals is only possible when the filter lengths are
at least twice the maximum time difference of arrival (TDOA) between all the
microphones. This means that in general, the noise reduction performance de-
grades with increasing TDOA’s and fixed filter lengths. Large TDOA’s require
longer filters, or appropriate delay compensation. As already mentioned in
Section 4.3, delay compensation is restricted in hearing aids due to lip synchro-
nization constraints.

The TDOA depends on the distance between the microphones, the position of
the sources and the delay introduced by the communication link. Fig. 4.10
shows the performance degradation of R-DANSE at nodes 3 and 4 when the
TDOA increases, in this case modelled by an increasing communication delay
between the nodes. There is no delay compensation, i.e. none of the signals
are delayed before filtering. DFT sizes L = 512 and L = 1024 are evaluated.
The outputs of the centralized MWF procedure are also given as a reference, as
well as the procedure where every node broadcasts its first microphone signal,
which corresponds to the scenario in which all supporting nodes are single-
microphone nodes. The lower bound is defined by the scenario where all nodes
are isolated, i.e. each node only uses its own microphones in the estimation
process.

As expected, when the communication delay increases, the performance de-
grades due to increasing time lags between signals. At node 3, the R-DANSE
algorithm is slightly more sensitive to the communication delay than the cen-
tralized MWF. The behavior at node 2 is very similar, and is omitted here.
Furthermore, for large communication delays, R-DANSE is outperformed by
the single-microphone nodes scenario. At node 4, both the centralized MWF
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Figure 4.10: Output SNR and SDR at nodes 3 and 4 after 12 iterations of
R-DANSE1 with sequential updating vs. delay of the communication link.
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and the single-microphone nodes scenario even benefit from communication
delays. Apparently, the additional delay allows the estimation process to align
the signals more effectively.

The reason why R-DANSE is more sensitive to a communication delay than the
centralized MWF is that the latter involves independent estimation processes,
whereas in R-DANSE, the estimation at any node k depends on the quality
of estimation at every other node q 6= k. Notice however that the influence
of communication delay is of course very dependent on the scenario and its
resulting TDOA’s. The above results only give an indication of this influence.

4.7 Practical Issues and Open Problems

In the batch-mode simulations provided in this paper, some practical aspects
have been disregarded. Therefore, the actual performance of the MWF and
the DANSEK algorithm may be worse than what is shown in the simulations.
In this section, some of these practical aspects are briefly discussed.

The VAD is a crucial ingredient in MWF-based noise reduction applications. A
simple VAD may not behave well in the simulated scenario as described in Fig.
4.2 due to the fact that the noise component also contains competing speech
signals. Especially the VAD’s at nodes that are close to an interfering speech
source (e.g. node 1 in Fig. 4.2) are bound to make many wrong decisions, which
will then severely deteriorate the output of the DANSE algorithm. To solve
this, a speaker selective VAD should be used, e.g. [24]. Also, low SNR nodes
should be able to use VAD information from high SNR nodes. By sharing VAD
information, better VAD decisions can be made [25]. How to organize this, and
how a consensus decision can be found between different nodes, is still an open
research problem.

A related problem is the actual selection of the desired source, versus the
noise sources. A possible strategy is that the speech source with the highest
power at a certain reference node is selected as the desired source. In hearing
aid applications, it is often assumed that the desired source is in front of the
listener. Since the actual positions of the hearing aid microphones are known
(to a certain accuracy), the VAD can be combined with a source localization
algorithm or a fixed beamformer to distinguish between a target speaker and
an interfering speaker. Again, this information should be shared between nodes
so that all nodes can eventually make consistent selections.

A practical aspect that needs special attention is the adaptive estimation of
the correlation matrices in the DANSEK algorithm. In many MWF imple-
mentations, correlation matrices are updated with the instantaneous sample
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correlation matrix and by using a forgetting factor 0 < λ < 1, i.e.

Ryy[t] = λRyy[t− 1] + (1− λ)y[t]yH [t] (4.34)

where y[t] denotes the sample of the multi-channel signal y at time t. The
forgetting factor λ is chosen close to 1 to obtain long-term estimates that
mainly capture the spatial coherence between the microphone signals. In the
DANSEK algorithm, however, the statistics of the input signal ỹk in node k,
defined by (4.14), change whenever a node q 6= k updates its filters, since some
of the channels in ỹk are indeed outputs from a filter in node q. Therefore, when
node q updates its filters, parts of the estimated correlation matrices R̃yy,k and
R̃xx,k, ∀ k ∈ {1, . . . , J}\{q}, may become invalid. Therefore, strategy (4.34)
may not work well, since every new estimate of the correlation matrix then
relies on previous estimates. Instead, either downdating strategies should be
considered, or the correlation matrices have to be completely recomputed.

4.8 Conclusions

The simulation results described in this paper demonstrate that noise reduc-
tion performance in hearing aids may be significantly improved when external
acoustic sensor nodes are added to the estimation process. Moreover, these
simulation results provide a proof-of-concept for applying DANSEK in coop-
erative acoustic sensor networks for distributed noise reduction applications,
such as in hearing aids. A more robust version of DANSEK , referred to as R-
DANSEK , has been introduced and convergence has been proven. Batch-mode
experiments showed that R-DANSEK significantly outperforms DANSEK . The
occurrence of limit cycles and the effectiveness of relaxation in the simultane-
ous updating procedure has been illustrated. Additional tests have been per-
formed to quantify the influence of several parameters, such as the DFT size
and TDOA’s or delays within the communication link.
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Abstract

We present a distributed adaptive node-specific signal estimation (DANSE) al-
gorithm that operates in a wireless sensor network with a tree topology. The
algorithm extends the DANSE algorithm for fully connected sensor networks,
as described in previous work. It is argued why a tree topology is the natural
choice if the network is not fully connected. If the node-specific desired sig-
nals share a common latent signal subspace, it is shown that the distributed
algorithm converges to the same linear MMSE solutions as obtained with the
centralized version of the algorithm. The computational load is then shared
between the different nodes in the network, and nodes exchange only linear
combinations of their sensor signal observations and data received from their
neighbors. Despite the low connectivity of the network and the multi-hop sig-
nal paths, the algorithm is fully scalable in terms of communication bandwidth
and computational power. Two different cases are considered concerning the
communication protocol between the nodes: point-to-point transmission and
local broadcasting. The former assumes that there is a reserved communication
link between node-pairs, whereas with the latter, nodes communicate the same
data to all of their neighbors simultaneously. The convergence properties of
the algorithm are demonstrated by means of numerical examples.

5.1 Introduction

A wireless sensor network (WSN) consists of sensor nodes that cooperate to
perform a certain task, such as the estimation of a parameter or signal, where
data is shared between nearby nodes through a wireless link. A general objec-
tive is to utilize all available data throughout the network, possibly through
a fusion center that gathers all sensor signal observations and performs all
computations. However, in many cases a distributed approach is preferred,
which is scalable with respect to both communication resources and computa-
tional power. In this case, data diffuses through the network and each node
contributes to the processing (e.g. [1–4]).

In this paper, we consider distributed signal estimation, rather than param-
eter estimation. This means that the number of variables to estimate grows
linearly with the number of temporal observations, i.e. for each sample time
of the sensors, a new sample of the desired signal(s) needs to be estimated.
The estimation then usually relies on linear spatial filtering or beamforming,
as often used in signal enhancement [5–8]. In parameter estimation problems
on the other hand, the number of estimation variables is fixed, i.e. it does not
grow with the number of temporal observations [1–4, 9, 10]. Usually, interme-
diate estimates are then exchanged and iteratively improved over time, often
without exchanging the actual sensor observations. In the case of distributed
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beamforming or signal estimation, (fused or compressed) signal observations
are exchanged between nodes, and then the aim is to iteratively improve the
local fusion rules to better estimate future samples. These type of WSN’s
are usually smaller in size, and operate with a larger bandwidth and energy
consumption compared to traditional large-scale WSN’s [7, 8], especially in ap-
plications with high sampling rates. They are often also assumed to be more
robust, especially in real-time systems, since packet loss can then result in in-
stantaneous signal degradation. Therefore, in this paper, we assume that the
communication links are ideal, i.e. they are not subject to noise or random
failures.

In [11, 12], a distributed adaptive node-specific signal estimation (DANSE)
algorithm is presented, based on linear MMSE estimation. It operates in a
fully connected sensor network where each node has access to multi-channel
sensor signal observations. The term ‘node-specific’ refers to the fact that each
node estimates a different desired signal. Node-specific estimation is relevant in
cases where inherent spatial information in the local observations of the target
sources needs to be preserved during the estimation, e.g. to serve as an input
for a localization algorithm, or in collaborating hearing aids when the aim is
to also preserve the cues for directional hearing [13]. Due to the linearity of
the proposed centralized estimator, the algorithm can be made distributed and
it significantly compresses the signals that are communicated between nodes,
provided that the desired signals of the different nodes share a common low di-
mensional latent signal subspace (which is assumed to be unknown). Although
the nodes broadcast only a few linear combinations of their sensor signal obser-
vations, the DANSE algorithm provides linear minimum mean squared error
(MMSE) estimates as if all data were available at each node. In [14], the
DANSE algorithm is extended to also guarantee convergence when nodes up-
date simultaneously or asynchronously, which generally results in faster track-
ing. In [7], a more robust version of DANSE has been formulated, referred to
as R-DANSE. Simulations in [7, 8] illustrate the potential of the algorithm for
distributed speech enhancement in acoustic sensor networks.

A limitation of the DANSE algorithm in [11] is that the network is assumed
to be fully connected, which is only possible in practice if the nodes have
sufficient transmission power, and if the available communication bandwidth is
large enough. Furthermore, the amount of data that is received and processed
by each node increases with the number of nodes in the network. In this paper,
we modify the DANSE algorithm, such that it can operate in a network with a
tree topology, avoiding the aforementioned issues. We refer to this algorithm as
tree-DANSE or T-DANSE. The choice for a tree topology is justified by the fact
that it contains no cycles, and hence does not introduce any feedback paths.
We will explain that feedback paths harm the convergence and optimality of
the DANSE algorithm. The formulation of T-DANSE was briefly introduced
in [15], without a theoretical analysis. In this paper, we provide more details,
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and include a convergence and optimality proof.

In the T-DANSE algorithm, the signal observations of the different nodes are
fused in a decentralized way, i.e. each node linearly combines its own sensor
signal observations with data obtained from its neighbors before forwarding
them to the next node. Remarkably, despite this distributed fusion process,
each node is able to optimally estimate its own node-specific signal as if all
data of the complete network were available. The local estimation task at each
node is equivalent to the centralized estimation problem, but at a much smaller
scale, i.e. with a drastically reduced amount of signals.

As opposed to fully connected DANSE, the number of signals that need to be
processed by a node in T-DANSE does not depend on the total number of
nodes in the network, but only on the number of neighbors of that node. This
is important since the number of signals that a single node can receive and
process in real-time is usually limited, especially when operating at large sam-
pling rates. An additional advantage of using multi-hop networks, is the fact
that nodes can transmit with lower power, and it enables spatial reuse of the
spectrum. Furthermore, even when nodes only have access to observations of a
single-channel sensor signal, the T-DANSE algorithm yields a benefit in terms
of communication bandwidth efficiency, whereas fully connected DANSE is only
useful if the number of sensor signals per node is larger than the dimension of
the latent signal subspace that contains the desired signals [11].

We will consider two different communication protocols: point-to-point trans-
mission and local broadcasting. The former assumes that there is a reserved
communication link between node-pairs, whereas with the latter, a node com-
municates the same data to multiple neighbors simultaneously. We will show
that both cases can be treated equivalently from a theoretical point of view.
However, the broadcast protocol is obviously more efficient in terms of com-
munication bandwidth.

The outline of this paper is as follows. In Section 5.2, the general problem
statement for distributed node-specific linear MMSE estimation is given. We
briefly review the DANSE algorithm [11] for fully connected networks in Sec-
tion 5.3, which will act as a starting point and which allows us to introduce
some necessary notation1. In Section 5.4, we point out that feedback paths
in the network topology harm the convergence and optimality of the DANSE
algorithm. In Section 5.5, we introduce the T-DANSE algorithm in a network
with a tree topology, and prove convergence and optimality. In Section 5.6, we
explain how T-DANSE can be used in a communication protocol that supports
local broadcasting. Section 5.7 provides some simulation results. Conclusions
are given in Section 5.8.

1Although this paper does not assume prior knowledge on the fully connected DANSE
algorithm, it is recommended to read [11] first, since it addresses a much simpler case, which
allows the reader to get familiar with the notation, the problem statement, and the algorithm.
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Figure 5.1: Description of the scenario. The network (with undefined topology)
contains J sensor nodes, k = 1 . . . J , where node k collects Mk-channel sensor
signal observations and estimates a node-specific desired signal dk, which is a
mixture of the K channels of a common latent signal d.

5.2 Problem Formulation and Notation

In this section, we briefly describe the data model and the problem statement.
More details can be found in [11]. This section can be skipped if the reader is
familiar with the set-up and the notation in [11].

5.2.1 Data Model

Consider a network with sensor nodes {1, . . . , J} = J . At this point, we do
not yet make any assumptions on the topology of this network. In the sequel,
we assume that all mentioned signals are stationary and ergodic2. Sensor node
k collects observations of a complex3 valued random Mk-channel sensor signal

2In practice, the stationarity and ergodicity assumption can be relaxed to short-term sta-
tionarity and ergodicity, in which case the theory should be applied to finite signal segments
that are assumed to be stationary and ergodic.

3Throughout this paper, all signals are assumed to be complex valued to permit frequency
domain descriptions. In this case, multi-tap estimation is also covered, and the data model
(5.1) then corresponds to a frequency domain description of a convolutive mixture.



5.2. Problem Formulation and Notation 179

yk[t], where t ∈ N is the discrete sample time index. For the sake of an easy
exposition, we will omit the time index when referring to a signal, and we will
only write the time index when referring to one specific observation, i.e. yk[t] is
the observation of the signal yk at time t. We define y as the M -channel signal
in which all yk are stacked, where M =

∑J
k=1Mk. This scenario is depicted in

Fig. 5.1. The different channels of the signal yk may correspond to different
sensors at node k (as it is the case in Fig. 5.1), or different delayed versions of
its sensor signals to exploit temporal information.

The objective for each node k is to optimally estimate a node-specificK-channel
desired signal dk that is assumed to be correlated to y. We consider the general
case where dk is not an observed signal, i.e. it is assumed to be unknown, as
it is the case in signal enhancement. We assume that the node-specific desired
signals dk share a common K-dimensional latent signal subspace, defined by
the channels of an unknown K-channel latent signal d, i.e.

dk = Akd, ∀ k ∈ J (5.1)

with Ak a full rank K × K matrix with unknown coefficients4. It is noted
that we assume (without loss of generality) that the number of channels of
the desired signals dk, ∀ k ∈ J , is equal to the dimension of the latent signal
subspace defined by d. In many practical cases, only a subset of the channels
of dk may be of actual interest, in which case the other channels should be
seen as auxiliary channels to capture the entire K-dimensional signal subspace
defined by d (the reason for this will be explained later).

To make this more concrete, we give an example in the context of noise reduc-
tion for speech enhancement that fits the aforementioned data model. Assume
a scenario with K speech sources, stacked in the signal d. The observed signals
at the Mk sensors (i.e. microphones) of node k are then described by the linear
sensor data model

yk = Ukd + nk (5.2)

with Uk an (unknown) Mk × K steering matrix to the Mk microphones of
node k, and nk a noise component containing point-source interferers, diffuse
noise and sensor noise. Note that (5.2) is a frequency domain representation,
transforming the convolutive acoustic mixture of the speech signals in an in-
stantaneous mixture. The goal of each node is to estimate the mixture of the
signals in d observed at one of their microphones5, referred to as the refer-
ence microphone. If K > 1, additional auxiliary reference microphones need to

4It is noted that node-specific estimation also exists in a distributed parameter estimation
context, e.g. in random-field estimation [9, 10]. However, usually it is assumed that the
covariance or other parameters describing the depencies between the hidden node-specific
variables are known. This is not the case in our approach, i.e. we do not know the Ak’s or
the cross-correlation between the dk’s. We only exploit the prior knowledge that the dk’s
share a common laten signal subspace, but we do not know anything about this subspace,
except for its dimension.

5This is the best one can do in a blind approach, i.e. when there is neither knowledge
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be selected to obtain a K-dimensional node-specific desired signal dk. If the
first K microphones are selected in each node, then Ak in (5.1) corresponds to
the first K rows of Uk in (5.2). For more information regarding this acoustic
application, we refer to [7].

We emphasize that expression (5.2) is given here as an example, and we do not
restrict ourselves to this sensor data model in the design of the algorithms in
the sequel.

5.2.2 Centralized Linear MMSE Estimation

We first consider the centralized estimation problem, i.e. we assume that all
nodes have access to observations of all M channels of y. Node k uses a linear
estimator Wk to estimate dk as

dk = WH
k y (5.3)

where Wk is a complex M ×K matrix, and where superscript H denotes the
conjugate transpose operator. This is similar to beamforming frameworks [5],
where multiple signals are linearly combined to generate an output signal with
suppressed interferers and background noise. We consider linear MMSE esti-
mation (similar to multi-channel Wiener filtering [6]) based on a node-specific
estimator Ŵk, i.e.

Ŵk = arg min
Wk

E{‖dk −WH
k y‖2} , (5.4)

where E{.} denotes the expected value operator. Assuming that the correlation
matrix Ryy = E{yyH} has full rank, the solution of (5.4) is

Ŵk = R−1
yy Rydk

(5.5)

with Rydk
= E{ydH

k }. Based on the assumption that the signals are ergodic,
Ryy and Rydk

can be estimated by time averaging. The Ryy is estimated from
the sensor signal observations. Since dk is assumed to be unknown, Rydk

has
to be estimated indirectly. A possible way to estimate Rydk

, is to periodically
transmit training sequences, or by exploiting the on-off behavior of the desired
signal, e.g. in speech enhancement applications [7, 16]. More information on
the estimation of Rydk

can be found in [11]. In the sequel we will assume that
Rydk

, or its distributed variants, can be estimated adaptively during operation
of the algorithm.

In the distributed case, each node k only has access to observations of yk

which is a subset of the channels of the full signal y. Therefore, to find the

about d nor the mixing system. The desired signal is then the observed mixture of target
sources at the local sensors. This technique is often used in noise reduction applications for
speech enhancement [6–8].
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Figure 5.2: The DANSEK scheme with 3 nodes (J = 3). Each node k esti-
mates a signal dk using its own Mk-channel sensor signal observations, and 2
compressed K-channel signal observations broadcast by the other two nodes.

optimal MMSE solution (5.5) in each node, the observations of yk in principle
have to be communicated to all nodes in the network, which requires a large
communication bandwidth, especially if the network is not fully connected,
i.e. if multi-hop transmission is required. As shown in the sequel, due to the
linearity of the centralized estimator (5.5) and the low dimension of the latent
signal subspace, we are still able to obtain the linear MMSE solution (5.5)
at each node, even when the data communicated by the nodes is significantly
compressed. We assume ideal communication links, i.e. they are not subject to
noise or random failures. The issue of link failures in real-time signal estimation
in wireless networks is briefly addressed in [17].
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5.3 The DANSE Algorithm in a Fully Connected
Network

In this section, we briefly review the DANSEK algorithm6 in a fully connected
sensor network, as introduced in [11, 12]. This is important to introduce some
notation, and to grasp the underlying idea on how we can distribute each
estimator over different nodes. In Section 5.5, we will extend this framework
for signal estimation in networks with a tree topology.

We define a partitioning of the matrix Wk as Wk = [WT
k1 . . . WT

kJ ]T where
Wkq ∈ CMk×K is the part of Wk that is applied to the sensor signal observa-
tions of yq. The equivalent of (5.4) is then

Ŵk =


Ŵk1

Ŵk2

...
ŴkJ

 = arg min
{Wk1,...,WkJ}

E{‖dk −
J∑

q=1

WH
kq yq‖2} . (5.6)

In the DANSEK algorithm, yk is linearly compressed to a K-channel signal
zk (the compression rule will be defined later), which is then broadcast to
the remaining J − 1 nodes. We define the (J − 1)K-channel signal z−k =[
zT
1 . . . z

T
k−1z

T
k+1 . . . z

T
J

]T . Node k then collects observations of its own sensor
signals in yk and the signals in z−k obtained from the other nodes in the
network. Similar to (5.4), node k can then compute the linear MMSE estimator
with respect to these input signals, i.e.[

Wkk

Gk,−k

]
= arg min

Wkk,Gk,−k

E

{
‖dk −

[
WH

kk GH
k,−k

] [ yk

z−k

]
‖2
}

(5.7)

where Wkk is the part of the estimator that is applied to node k’s own sensor
signals in yk and where

Gk,−k = [GT
k1 . . . GT

k,k−1 GT
k,k+1 . . . GT

kJ ]T

with Gkq ∈ CK×K denoting the part of the estimator that is applied to zq. The
linear compression rule that generates the broadcast signal zk is then given by

zk = WH
kkyk . (5.8)

A schematic illustration of this scheme is shown in Fig. 5.2, for a network with
J = 3 nodes. It is noted that Wkk both acts as a compressor and as a part of

6The subscript K refers to the number of channels in the broadcast signals of each node.
To obtain the optimal estimators, this number should be equal to the dimension of the latent
signal subspace defined by d, as proven in [11].
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the estimator Wk. Based on Fig. 5.2, it can be seen that the parametrization
of the Wk effectively applied at node k, to generate dk = WH

k y, is then

Wk =

 W11Gk1

...
WJJGkJ

 (5.9)

where we assume that Gkk = IK with IK denoting the K×K identity matrix.
Expression (5.9) defines a solution space for all Wk, k ∈ J , simultaneously,
where node k can only control the parameters Wkk and Gk,−k. The following
theorem explains how this parametrization is still able to provide an optimal
signal estimate in each node. A similar result will be obtained in Section 5.5
for the case of tree topology networks.

Theorem 5.1 If (5.1) holds, then the optimal estimators Ŵk, ∀ k ∈ J , given
in (5.5) are in the solution space defined by parametrization (5.9).

Proof : Since dk = Akd, and because of (5.5), we know that the following
holds:

∀ k, q ∈ J : Ŵk = ŴqAkq (5.10)

with Akq = A−H
q AH

k . The theorem is proven by comparing (5.10) with (5.9),
and by setting Gkq = Akq, ∀ q ∈ J . 2

The DANSEK algorithm iteratively updates the parameters in (5.9), by letting
each node k compute (5.7), ∀ k ∈ J , in a sequential round robin fashion7. It is
noted that each node then essentially performs a similar task as in a centralized
computation, but on a smaller scale, i.e. with less signals. In [11], it is proven
that this procedure converges to the centralized linear MMSE estimators at all
nodes, i.e. limi→∞Wi

k = Ŵk, ∀ k ∈ J . It is noted that we are not directly
interested in the Wk’s, but rather in the estimated samples of the dk’s. The
estimate of a sample dk[t] of the desired signal dk in node k at any point in
the iterative process is computed as

dk[t] = WH
kkyk[t] +

∑
q 6=k

GH
kqzq[t] . (5.11)

Remark I: It is assumed that the cross-correlations E{ykdH
k } and E{z−kdH

k }
can be (re-)estimated during operation of the algorithm. As explained earlier,
this is only possible in certain applications, e.g. when the target source has an
on-off behaviour or when training sequences can be used. We will not elaborate
on this issue here, and we refer to [11] instead for further details.

7Results where nodes update simultaneously are also available [14], but these are not
addressed here.



184 Chapter 5. DANSE in Networks with a Tree Topology

Remark II: The iterative nature of the DANSEK algorithm may suggest
that the same sensor signal observations are compressed and broadcast multi-
ple times, i.e. once after every iteration. However, in practical applications,
iterations are spread over time, which means that successive updates of the esti-
mators use different sensor signal observations. By exploiting the (short-term)
stationarity assumption, updated estimators are only used for new (future)
observations. This means that the iterations are not performed on the same
block of data, but only on the local fusion rules at the nodes. For a detailed
non-batch description of the algorithm, we refer to [11].

5.4 DANSE in Simply Connected Networks with
Cycles

If the network is not fully connected, information must be passed from one side
of the network to the other over multiple edges of the network graph. One can
make the network virtually fully connected by letting nodes act as relays and
so eventually provide every node with all observations of zk, as shown in Fig.
5.3(a). However, this is not scalable in terms of communication bandwidth
and computational power, and the routing of the data streams can become
very complex for large networks. A more desirable approach is to let each
node transmit linear combinations of all its inputs, i.e. its own sensor signal
observations as well as the data provided by other nodes, as shown in Fig.
5.3(b). We will first describe a straightforward fusion rule, and we will point
out that this approach is problematic if the network contains cycles, since this
introduces feedback components. We will then explain how this feedback can
be avoided, which will lead to the tree-DANSE algorithm in Section 5.5.

5.4.1 A Straightforward Fusion Rule

To pass information from node to node without increasing the communication
bandwidth, one can apply the same DANSEK algorithm as in the previous
section, but now let each node k transmit the observations of the K-channel
signal

zk = WH
kkyk +

∑
q∈Nk

GH
kqzq (5.12)

to its neighbors, with Nk denoting the set of nodes that are connected to node
k, node k excluded. The zk signal is then a fused signal containing all the
input signals of node k. Notice that this zk corresponds to the node-specific
estimated signal of node k, i.e. zk = dk. This is illustrated in Fig. 5.4 for a
3-node network with a line topology. From this figure, it can be seen that the
implicit definition of the Wk, that is applied to y to generate dk = WH

k y, is
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Figure 5.3: Two different types of data fusion in a network that is not fully
connected.
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then

Wk =

 O
Wkk

O

+
∑

q∈Nk

WqGkq , (5.13)

with O denoting an all-zero matrix of appropriate dimension. Parametrization
(5.13) defines a solution space for all Wk, k ∈ J , simultaneously. We assume
that the matrices Gkq are all-zero matrices, or do not exist, if there is no
connection between node k and node q /∈ Nk.

In [15], it is pointed out that the parametrization (5.13) has an impact on
the dynamics of the algorithm, but also on the solution space. Unfortunately,
if (5.1) holds, i.e. if the desired signals share a K-dimensional latent signal
subspace8, the algorithm cannot obtain the optimal estimators (5.5), which
was proven in [15] for a 2-node network. In the following theorem, we proof
the general statement.

Theorem 5.2 Consider a network with any topology. If (5.1) holds, then the
optimal estimators Ŵk given by (5.5) are not in the solution space defined by
parametrization (5.13).

Proof : We prove the theorem by contradiction, so we assume that the optimal
centralized solution Ŵk, ∀ k ∈ J , is in the solution space defined by (5.13).
By substituting (5.10) in parametrization (5.13) for k = 1 (w.l.o.g.), we obtain

OM1×K

Ŵ12

...
Ŵ1J

 =
∑

q∈Nk


Ŵ11

Ŵ12

...
Ŵ1J

Aq1G1q (5.14)

where OM1×K denotes an all-zero M1 ×K matrix. From the first M1 rows in
(5.14), we obtain

OM1×K = Ŵ11

∑
q∈Nk

Aq1G1q . (5.15)

From the last M −M1 rows in (5.14), we obtain9

IK =
∑

q∈Nk

Aq1G1q . (5.16)

8Remarkably, if (5.1) does not hold, the solution space defined by parametrization (5.13)
contains the same estimators as when using parametrization (5.9) [15]. However, the optimal
solution (5.5) cannot be achieved in this case since it cannot be parametrized by (5.9).

9We implicitly assume that the submatrix
h
ŴT

12 . . . ŴT
1J

iT
of the optimal centralized

estimator given by (5.5), has full rank. Although this is not fully guaranteed by the imposed
assumptions, this is satisfied in most practical cases since M −M1 � K, and because R−1

yy

and the stacked Mk×K submatrices of Rydk
in (5.5) have full rank (due to spatial diversity

of the sensors).
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Combining (5.15) and (5.16) yields Ŵ11 = OM1×K , meaning that the sensor
signals of node 1 are not used in the centralized solution (5.5). Instead of
choosing k = 1, we can use a similar reasoning for all k ∈ J to eventually find
that Ŵk = OM×K , ∀ k ∈ J , which contradicts (5.5). 2

The fundamental problem with parametrization (5.13) is the feedback in the
signal paths. Indeed, the observations of zq that node k receives from neighbor-
ing nodes q ∈ Nk also contain a component with the sensor signal observations
yk of node k itself. This results in a solution space for the DANSEK algorithm
that does not contain the optimal estimators (5.5), as pointed out by Theorem
5.2.

We will distinguish between two forms of feedback: direct and indirect feedback.
Direct feedback is caused by the feedback path from node k to a neighboring
node q and back to node k, i.e. a cycle of length two. In Section 5.4.2, we
show that this type of feedback can be easily controlled. Indirect feedback
is more difficult to deal with. It occurs when data transmitted by node k
travels through a path in the network, containing more than two different
nodes, and eventually arrives back at node k. In Section 5.4.3, we will explain
that indirect feedback can be avoided by removing direct feedback and by
pruning the network to a tree topology.

5.4.2 Direct Feedback Cancellation

To avoid direct feedback, each node can send different data to each of its
neighbors instead of locally broadcasting (5.12). Let zkq denote the signal of
which observations are transmitted from node k to node q, then direct feedback
is avoided by choosing

∀ k ∈ J ,∀ q ∈ Nk : zkq = WH
kkyk +

∑
l∈Nk\{q}

GH
klzlk (5.17)

= zk −GH
kqzqk . (5.18)

We will refer to this strategy as ‘transmitter feedback cancellation’ (TFC),
since the direct feedback at node q is cancelled by the transmitting node k.
We will refer to the signals defined in (5.17) as TFC-signals. It is noted that
expression (5.17) provides an implicit definition of the TFC-signals, and that
it is difficult to obtain a general closed form expression due to the remaining
indirect feedback.

The TFC strategy matches perfectly with a point-to-point communication pro-
tocol, in which each individual node pair has a reserved communication link. In
this case, direct feedback can be avoided without an increase in communication
bandwidth. However, when the communication protocol supports local broad-
casting, a more efficient strategy is possible, based on expression (5.18), which



188 Chapter 5. DANSE in Networks with a Tree Topology

we will describe in Section 5.6.2. This strategy will be referred to as ‘receiver
feedback cancellation’ (RFC). However, from a theoretical point of view, the
TFC and RFC strategies are equivalent. For the sake of an easy exposition we
use the former in the theoretical analysis.

5.4.3 Removal of Indirect Feedback

As mentioned in Section 5.4.2, direct feedback can be easily removed. Unfortu-
nately, indirect feedback is more difficult to avoid. However, if direct feedback
is removed, the data diffuses through the network in one direction, i.e. data
sent by node k over a specific edge of the network graph cannot return to
node k through the same edge in opposite direction, and so it can only return
through a different edge that is part of a cycle. Hence, if the network has
a tree topology, i.e. the network graph contains no cycles, indirect feedback
is automatically removed if direct feedback is removed. In the sequel, we as-
sume that the network graph has been pruned to a spanning tree of the initial
graph. Optimal spanning trees can be defined and computed in several ways.
An overview of different spanning tree problems can be found in [18].

It is noted that the combination of TFC with a tree topology has some sim-
ilarities with the message passing for belief propagation (BP) in trees (see
e.g [19]). Furthermore, in Section 5.6.1, we will decompose the signal flow in
an inwards fusion and an outwards diffusion flow, which is also similar in BP.
Despite these strong similarities in the data flow, the estimation frameworks of
both algorithms are very different and incomparable, even on a higher level of
abstraction.

5.5 DANSE in a Network with a Tree Topology
(T-DANSE)

In this section, we will extend the DANSEK algorithm, to operate in networks
with a tree topology. We will refer to this as tree-DANSEK or T-DANSEK . In
the sequel, we will often refer to Fig. 5.5, showing an example network with a
tree topology.

5.5.1 T-DANSEK Algorithm

A node k transmits observations of the K-channel TFC-signal zkq, defined by
(5.17), to a node q ∈ Nk. Fig. 5.6 illustrates this for a network graph with a
line topology, which is a subgraph of the network graph in Fig. 5.5.

It is noted that a tree topology defines a unique path between any pair of nodes,
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Figure 5.5: Example of a network graph with tree topology with 9 sensor nodes.
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if an edge can only be used once. Let Pp1→pt
= (p1, p2, . . . , pt−1, pt) denote the

ordered set of nodes defining the unique path from node p1 to node pt, and let
Pp1←ptdenote the inverse path, i.e. Pp1←pt = Ppt→p1 . Define

Gp1←pt = Gpt−1ptGpt−2pt−1 . . .Gp2p3Gp1p2 (5.19)

with pj denoting the j-th node in the path Pp1→pt . We define Gk←k = Gkk =
Ik. The order of the G’s in (5.19) must be the same as the order of the nodes
in the inverse path Pp1←pt .

Example: The matrix G1←8 for the network graph depicted in Fig. 5.5
is G1←8 = G48G34G13. This structure is clearly visible in the network
graph of Fig. 5.6, defined by the path P1←8. Notice that G8←1 = G1→8 =
G31G43G84.

The parametrization of the Wk effectively applied at node k, to generate dk =
WH

k y, is then

Wk =

 W11Gk←1

...
WJJGk←J

 . (5.20)

Parametrization (5.20) defines a solution space for all Wk, k ∈ J , simultane-
ously, that depends on the network topology. Notice that its structure is very
similar to (5.9), as used in fully connected DANSE.

Theorem 5.3 If (5.1) holds, then the optimal estimators Ŵk given in (5.5)
are in the solution space defined by parametrization (5.20).

Proof : The proof is based on expression (5.10), which follows from (5.1) and
(5.5), and which is repeated here for convenience:

∀ k, q ∈ J : Ŵk = ŴqAkq (5.21)

with Akq = A−H
q AH

k . By setting all Gkq matrices equal to Gkq = Akq =
A−H

q AH
k , we automatically have that Gk←l = Akl for any k and l, since

AnlAkn = Akl, for any k,l and n. By using a similar reasoning as in the proof
of Theorem 5.1, we can show that all Ŵk, ∀ k ∈ J , are in the solution space
defined by parametrization (5.20). 2

Let the matrix Gk,−q denote the stacked version of all Gkn matrices for which
n ∈ Nk\{q}. Vector z→k denotes the vector in which all K-channel signals zqk

are stacked, for all q ∈ Nk, i.e. it contains all signals that node k receives from
its neighbors. Let P denote an ordered set of nodes that contains all nodes in
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the network, possibly with repetition of nodes. Let pj denote the j-th element
in this set and let |P | denote the number of elements in P . In general, we will
use Xi to denote X at iteration i, where X can be a signal or a parameter.

The T-DANSEK algorithm then consists of the following steps:

The T-DANSEK Algorithm

1. • Initialize W0
qq and G0

q,−q, ∀ q ∈ J , as random matrices.
• i← 0 .
• k ← p1 .

2. • Node k updates its local parameters Wi
kk and Gi

k,−k by mini-
mizing its MSE criterion, based on observations of its own inputs
sensor signal yk and of the compressed signals zi

qk, that it receives
from nodes q ∈ Nk:[

Wi+1
kk

Gi+1
k,−k

]
=

arg min
Wkk,Gk,−k

E

{
‖dk −

[
WH

kk GH
k,−k

] [ yk

zi
→k

]
‖2
}
.

(5.22)

• The other nodes do not change their variables:

∀ q ∈ J \{k} : Wi+1
qq = Wi

qq, Gi+1
q,−q = Gi

q,−q . (5.23)

3. • i← i+ 1 .
• k ← pt with t = (i mod |P |) + 1 .

4. Return to step 2

The estimate of a sample dk[t] of the desired signal dk at node k at any point
in the iterative process is computed as

dk[t] = Wi H
kk yk[t] +

∑
q∈Nk

Gi H
kq zi

qk[t] . (5.24)

Remark I: We emphasize again that the iterative nature of the algorithm does
not mean that the same sensor signal observations are retransmitted after every
iteration. In practical applications, iterations are spread over time, i.e. if Wi

kk

is updated to Wi+1
kk at time t0, this is only used to compress new observations

yk[t] and estimate the samples dk[t] for which t > t0, while previous obser-
vations for t ≤ t0 are neither recompressed, retransmitted nor re-estimated.
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Effectively, each sensor signal observation is compressed and transmitted only
once. This is motivated by the stationarity assumption of the involved signals.

Remark II: In the T-DANSEK algorithm, each node solves an estimation
problem that is equivalent to the centralized problem (5.4), but on a much
smaller scale, i.e. with less signals. This means that the computations are
distributed over the nodes in the network.

Remark III: It is noted that, even when nodes only have access to observations
of a single-channel sensor signal, i.e. Mk = 1, ∀ k ∈ J , the T-DANSEK

algorithm yields a benefit in terms of communication bandwidth efficiency,
compared to the relay case depicted in Fig. 5.3(a). In the fully connected
case, DANSEK only yields an improvement in bandwidth efficiency if Mk > K
[11]. Furthermore, the T-DANSEK algorithm is fully scalable, i.e. the amount
of data transmitted between each node pair does not depend on the number
of nodes J , and the computational effort at each node only depends on the
number of neighboring nodes (but not on J). This is important since the
number of signals that a single node can receive and process in real-time is
usually limited, especially when operating at large sampling rates. Based on
the complexity analysis in [11], we find that the computations at node k (in a
recursive implementation) have a complexity of

O
(
(Mk +K|Nk|)2

)
. (5.25)

This is to be compared with the complexity O
(
(Mk +K(J − 1))2

)
of fully

connected DANSE, which depends on the total number of nodes J .

5.5.2 Convergence and Optimality

The following theorem provides a sufficient condition on the updating order P
for T-DANSEK to guarantee convergence to the optimal estimators.

Theorem 5.4 Consider a network with a tree topology. Let P denote an or-
dered set of nodes that defines a path through the network that starts in k and
ends in any q ∈ Nk, such that ∀ p ∈ J : p ∈ P . If (5.1) holds, then the
T-DANSEK algorithm as described in Section 5.5.1 converges for any initial-
ization of its parameters to the linear MMSE solution (5.5) for all k.

Proof : The proof of this theorem is elaborate, and can be found in Appendix
5.A. Some additional concepts and lemmas are used in the proof, which can
be found in Appendix 5.A and 5.B. 2

Theorem 5.4 states that the updating order of the nodes must correspond to
a path through the network. This means that if node k updates in iteration i,
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then the node that updates in iteration i+1 must be inNk. For example, for the
network in Fig. 5.5, a possible choice for P is P = (1, 3, 2, 3, 4, 9, 4, 8, 4, 6, 5, 6, 7
, 6, 4, 3).

Remark I: Extensive simulations show that the condition in Theorem 5.4 on
the updating order P is sufficient, but not necessary. In fact, the algorithm
is always observed to converge, regardless of the updating order of the nodes
(see also Section 5.7). This is stated here as an observation since a proof is not
yet available. However, choosing an updating order satisfying the condition
in Theorem 5.4 usually results in a faster convergence for most of the nodes.
This can be explained by the fact that this condition generally implies that
nodes with many neighbors are updated more often. Since these nodes act as
bottlenecks in the data diffusion, it is important that these are indeed updated
frequently, whereas updates of nodes at the boundary of the network have less
impact on the data flow in the rest of the network.

Remark II: The proof of convergence in Appendix 5.A shows that the al-
gorithm is at least as fast as a centralized alternating optimization (AO) al-
gorithm or block-coordinate descent method (a.k.a. nonlinear Gauss-Seidel
iteration [20]), where alternating blocks of variables are optimized while the
other variables are fixed. The T-DANSEK algorithm is usually even faster,
since none of the variables are actually fixed, but rather constrained to a sub-
space. Since an AO method converges Q-linearly for strictly convex objective
functions [21], we can conclude that T-DANSEK converges at least Q-linearly.
The convergence proof in Appendix 5.A also shows that the MSE monotoni-
cally decreases at node k (when evaluated after each update of node k). When
the network grows, convergence takes longer due to the sequential nature of
the method, i.e. it takes more iterations to have a full round of updates. When
nodes would update simultaneously, the convergence time usually scales much
better with the network size, but convergence cannot be guaranteed anymore.
Relaxation methods, similar to the ones applied in [14] may again yield con-
vergence in this case, but this is beyond the scope of this paper.

Remark III: For the sake of an easy exposition, we have ignored clock- and
transmission delays in the signal paths. However, if proper compensating delays
are added at the right places in the signal path, the theoretical analysis above
is not affected by this practical aspect. Section 5.6 also describes a data-driven
computation of the sample estimates, which has the advantage that nodes do
not need any information on the transmission delays.

Remark IV: In the special case where all the nodes estimate the same signal,
i.e. dk = d, ∀ k ∈ J , the convergence properties remain the same as in the
scenario with node-specific estimation problems, i.e. the fact that different
signals are estimated at each node does not affect the convergence speed of the
algorithm. This straightforwardly follows from the proof of Theorem 5.4.
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5.6 T-DANSE with Local Broadcasting

In this section, we describe how T-DANSE can operate in a WSN that allows
local broadcasting to neighboring nodes, instead of using reserved communica-
tion links between node pairs. By describing the system as a data-driven feed-
forward data flow, we will be able to transform the TFC procedure into another
feedback cancellation procedure that exploits the higher communication band-
width efficiency of a local broadcast communication protocol. However, these
practical aspects have no effect on the iterations of the T-DANSE algorithm,
and therefore the theoretical analysis of the previous section remains valid.

For reasons that will become clear, we will first group the different nodes of
the network in subsets, which we will refer to as ‘shells’ of the network. Let
hk denote the maximum number of hops between node k and any other node
in the network, and let hmin = mink∈J hk and hmax = maxk∈J hk. We define
N = hmax− hmin. Let SN denote the subset of nodes that form the outer shell
of the network, i.e. SN = {k : hk = hmin +N}. Similarly, we define the shells

Sn = {k : hk = hmin + n} , n = 0 . . . N . (5.26)

The inner shell S0 contains maximally 2 nodes, which we refer to as the root
nodes. It is noted that the nodes in the outer shell SN are leaf nodes, i.e. nodes
with a single neighbor, but SN does not necessarily contain all the leaf nodes
of the network.

Example: The shells of the network depicted in Fig. 5.5 are S2 =
{1, 2, 5, 7} (white), S1 = {3, 6, 8, 9} (light grey) and S0 = {4} (dark grey).

In the sequel, we assume that each node knows the shell index to which it
belongs, together with the shell indices of its neighboring nodes. This requires
some upper layer protocol or coordination.

5.6.1 Data-Driven Computation of TFC-Signals

The T-DANSE algorithm uses the TFC-signals zkq as defined in (5.17), which
is an implicit definition. This signal definition is illustrated in Fig. 5.7 for node
3 of the graph depicted in Fig. 5.5. Because the network is assumed to have a
tree topology, (5.17) can be easily solved for the zkq’s by backwards substition,
where the leaf nodes act as starting points. Indeed, if k is a leaf node, then
zkq = WH

kkyk, which does not contain contributions from any other node.
This backwards substition defines causality constraints, and can be described
by means of a data-driven signal flow graph, where elementary building blocks
(as the one depicted in Fig. 5.7) are interconnected. Each internal operator is
triggered when it has received a sample or a data packet on each of its input
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Figure 5.7: Illustration of the internal data flow in node 3 of the network
depicted in Fig. 5.5.

lines, generating a new packet of data on its output line. This description can
also be used in a practical implementation, and has the advantage that nodes
do not need any information on the transmission delays (which is particularly
interesting in communication networks with variable transmission delays).

Furthermore, the chain of computations in this data-driven procedure will show
that the signal flow naturally decomposes in an inwards flow followed by an
outwards flow. To this end, an important observation is that any non-root node
k has only one neighbor q that is in a deeper shell, i.e. ∀ n ∈ {1, . . . , N},∀ k ∈
Sn : |Nk ∩ Sn−1| = 1. The data flow is then decomposed as follows:

1. Fusion flow (SN → S0): The fusion flow is initiated by the leaf nodes,
who fire immediately after the collection of a new sensor observation. A
non-leaf node fires when it has received data from all of its neighbors in
the outer shell. At this event, the node fuses and forwards this data to
the single neighbor in the deeper shell that has not fired yet. In this way,
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the data travels inwards from SN to S0, where it is fused on the way
with other local sensor data, and eventually arrives at the root node(s).
If there are 2 root nodes, they have to exchange observations of the TFC
signals, such that each of them has access to (fused) data that contains
all sensor observations.

2. Diffusion flow (S0 → SN ): After arrival of the fusion flow in S0, the
root nodes initiate the diffusion flow by firing to all their neighbors in
the outer shell, providing each with its node-specific TFC-signal. The
neighbors at their turn do the same until the data is spread out over the
entire network.

Remark I: In practice, the fusion flow and diffusion flow can run simultane-
ously, be it with a relative time lag. In other words, a leaf node k can fire
each time it collects a new sensor observation yk[t], even though the previous
estimation sample dk[t − 1] cannot be computed yet due to the fact that the
required data is still on its way through the network.

Remark II: It is noted that in the fusion flow, each node transmits only one
TFC-signal, whereas in the diffusion flow, a node k has to transmit Nk−1 TFC-
signals (and a single root node k will transmit Nk TFC-signals). This will be
exploited in the next subsection to reduce the communication bandwidth.

5.6.2 Receiver Feedback Cancellation

In Section 5.4.2, it is explained how direct feedback can be avoided by trans-
mitter feedback cancellation. Although this is an efficient strategy in point-to-
point communication protocols, TFC is very inefficient if the communication
protocol allows local broadcasting. A better strategy would then be to let
a node broadcast the same signal to all of its neighbors, and let the receiving
nodes themselves remove their node-specific feedback component. We will refer
to this strategy as ‘receiver feedback cancellation’ (RFC). The natural choice
for the broadcast signal would be to use the zk as defined in (5.12). A node
q that receives the signal zk from node k can then remove its own feedback
component10, using

zkq = zk −GH
kqzq . (5.27)

However, (5.12) and (5.27) are implicit definitions, and it is not possible to
compute the broadcast signals (5.12), ∀ k ∈ J , due to causality issues. Indeed,
the computation of the sample zk[t] based on (5.12) requires the samples zq[t],
∀ q ∈ Nk, but zq[t] cannot be computed by node q without the sample zk[t],
which results in a deadlock.

10Here it is assumed that Gkq is known at node q, which requires some minor additional
information exchange between nodes, assuming that the sampling rate of the sensors is signif-
icantly larger than the update frequency of the estimation parameter at the different nodes.
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To resolve this deadlock, we have to combine TFC with RFC, since the former
is computable. To this end, we redefine the signals zk, ∀k ∈ J , with an explicit
definition based on the TFC-signals:

∀ k ∈ J \L : zk = WH
kkyk +

∑
l∈Nk

GH
klzlk

∀ k ∈ L : zk = WH
kkyk

(5.28)

where L denotes the set of leaf nodes. We denote the zk signals (on the lefthand
side) as RFC-signals. By comparing (5.28) with (5.17), we find that

∀ k ∈ J \L,∀ q ∈ Nk : zkq = zk −GH
kqzqk

∀ k ∈ L,∀ q ∈ Nk : zkq = zk .
(5.29)

If a receiving node q ∈ Nk would have access to the signals zk and zqk, and
the parameters Gkq, then node q itself can compute the TFC-signal zkq by
using expression (5.29). Therefore, some of the TFC-signals will have to be
broadcast together with the RFC-signals. The natural question is then how to
organize this. The answer straightforwardly follows from the decomposition of
the signal flow in a fusion and a diffusion flow, as explained in the previous
subsection.

In the fusion flow, each node provides only one neighbor with signal observa-
tions, i.e. its single neighbor in the deeper shell. In this case, RFC cannot
provide any benefit, and therefore TFC-signals are transmitted. In the dif-
fusion flow on the other hand, node k will provide Nk − 1 nodes with signal
observations. In this case, however, a root node k can compute observations of
the RFC-signal zk according to (5.28), since it has access to observations of all
the signals on the righthand side (which are provided by the fusion flow). Node
k then broadcasts observations of zk, and its neighbors in the outer shell can
extract observations of their node-specific TFC-signal from the observations of
zk, by using (5.29). A receiving node q, can then compute the observations of
zq, similarly to (5.28), and broadcast this to its Nq − 1 neighbors in the next
shell. This is illustrated in Fig. 5.8 for a subgraph of the graph in Fig. 5.5.

When this RFC strategy is used, each node (except leaf nodes and single root
nodes) transmits observations of 2 signals; a TFC-signal in the fusion flow and
an RFC-signal in the diffusion flow. Hence, the amount of data that a node
transmits is independent of the number of neighbors of that node.

5.7 Simulations

In this section, we provide batch mode simulation results for the T-DANSE3

algorithm in networks with a tree topology. The first experiment is performed
based on the network depicted in Fig.5.5. The network contains 9 nodes (J =
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Figure 5.8: Illustration of the fusion flow (dashed line) and the diffusion flow
(dotted line) between nodes 1, 2 and 3 for broadcast communication in the
network depicted in Fig. 5.5.

9), each having 10 sensors (M = 90). The dimension of the latent signal
subspace defined by d is K = 3. All three signals in d are uniformly distributed
random processes on the interval [−0.5, 0.5] from which N = 10000 samples are
generated. All sensor measurements correspond to a random linear combination
of the three generated signals to which zero-mean white noise is added with
half the power of the signals in d. The Wkk variables are initialized randomly,
whereas the Gkq variables are initialized as all-zero matrices. All MMSE cost
functions are replaced by their related least-squares (LS) cost functions, i.e.
(for node k)

Jk(Wk) =
N∑

t=0

‖dk[t]−WH
k y[t]‖2 . (5.30)

The results are given in Fig. 5.9(a), showing the LS cost of node 1 (above)
and the summed LS cost of all the nodes (below) versus the iteration index
i. Notice that one iteration corresponds to the time needed for a node to
estimate the statistics of its inputs and to calculate the new parameter setting.
Three different cases are simulated. In the first case, the network is assumed
to be fully connected, and the DANSE3 algorithm of [11] is applied where the
updating order is round-robin. In the second and third case, the network has
the tree topology shown in Fig. 5.5 and the T-DANSE3 algorithm is applied. In
case 2, the updating order is P1 = (1, 3, 2, 3, 4, 9, 4, 8, 4, 6, 5, 6, 7, 6, 4, 3), which
satisfies the condition of Theorem 5.4, whereas in case 3 the updating order is
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Figure 5.9: The LS cost of node 1 and summed LS cost versus the number of
iterations (a) in the network depicted in Fig. 5.5 and (b) in a 9-node network
with line topology.
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P2 = (1, 2, . . . , 9), i.e. round-robin, and so the condition of Theorem 5.4 is not
satisfied.

Remarkably, the updating order P1 yields a faster convergence than P2 at
node 1, despite the fact that the update rate of node 1 is higher in the latter.
As mentioned already in Section 5.5.2, this holds for most of the nodes. If
we only retain the iteration indices in (1, 17, 33, . . . , ), i.e. the iteration steps
in which node 1 updates its parameters, then the cost function J1 decreases
monotonically for updating order P1, as indicated by (5.42) in the proof of
Theorem 5.4. This does not hold in the round-robin case.

In the second experiment, T-DANSE3 is applied in a 9-node network with a line
topology, i.e. each node has exactly two neighbors, except for the 2 leaf nodes.
The results are shown in Fig. 5.9(b). Here, we compare the updating order
P2 (round robin) with P3 = (1, 2, . . . , 9, 8, 7, . . . , 2), where the latter satisfies
the conditions of Theorem 5.4. The difference in convergence speed between
updating order P2 and P3 is even more significant in this case, where the latter
converges much faster than the round-robin updating order P2.

In both plots, it is observed that the LS cost function J1 may increase signif-
icantly, even after it nearly reached the optimal level. This is due to the fact
that the other nodes did not yet achieve optimal estimation performance, yield-
ing significant changes in their estimation parameters. Since the estimators of
all the nodes are intertwined due to (5.20), these changes have a significant ef-
fect on the local cost function J1 at node 1, resulting in an increase. However,
after a couple of iterations, an equilibrium state is reached where each node
has optimal performance. The reason why the cost J1 remains almost constant
in the initial iterations, is due to the fact that node 1 chooses small entries
for G13 in the first iteration, and therefore node 1 is basically cut off from the
network until its next update.

5.8 Conclusions

In this paper, we have extended the DANSEK algorithm, introduced in [11,
12] for a fully connected sensor network, to the T-DANSEK algorithm which
operates in a network with a tree topology. It is argued that feedback is to
be avoided, when a straightforward modification of DANSEK is applied in
a network that is not fully connected, since it harms the convergence and
optimality properties of the algorithm. Direct feedback can be avoided easily,
whereas indirect feedback is more difficult to remove in a network topology
that has cycles. A tree topology is then a natural choice, since it has no cycles,
for which the T-DANSEK algorithm can subsequently be derived. A condition
is given on the updating order of the nodes to guarantee convergence to the
optimal estimators. Simulations have shown that the condition on the updating
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order of the nodes is sufficient but not necessary, although convergence is faster
if the condition is satisfied.

Two different communication protocols have been considered, i.e. point-to-
point transmission between node pairs and local broadcasts. For both protocols
it is possible to remove direct feedback, and so from a theoretical point of
view, there is no true difference. However, the local broadcast communication
protocol is more efficient and scalable in terms of connectivity, i.e. the amount
of data that is transmitted is independent of the number of neighbors at each
node.

Appendix

5.A Proof of Theorem 5.4
(Convergence of T-DANSEK)

Before proving Theorem 5.4, we first introduce some new concepts and lemmas.
We will consider a partitioning P, which is an ordered set of non-overlapping
subsets of a set of nodes J . The first subset of a partitioning P is referred to
as the free subset, whereas the other subsets are referred to as the constrained
subsets.

Example: For a 5-node network a possible partitioning is

P = ({2}; {1, 4}, {3, 5}) .

The set {2} is the free subset, and {1, 4} and {3, 5} are constrained sub-
sets.

For a certain subset of nodes S, let Wk|S denote the stacked version of all the
Wkq’s (see Section 5.3) for which q ∈ S. Assume that the estimator Wk is
initialized with a certain matrix W0

k. We consider an updating scheme that
updates the values in Wk by a sequence of n alternating optimizations11 (AO),
defined by a sequence of partitionings

(
Pi
)
i=0...n−1

. In each step i of the AO
sequence, MMSE optimization (5.6) is performed, but with constraints added
to the variables in the constrained subsets of Pi. In the i-th optimization step,
the columns of Wk|C are constrained to the subspace defined by the columns

11The AO used in this paper is different from the AO algorithms (a.k.a. non-linear Gauss-
Seidel algorithms) described in [20, 21], in which the optimization is done over a subset
of the variables, while other variables are fixed to their current value. In this paper, the
optimization in an AO step is performed over all variables, but constraints are added to
certain variables in an alternating fashion.
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of the current values of Wi
k|C , where C is a constrained subset of Pi. For

Pi =
(
F i;Ci

1, . . . , C
i
ti

)
, the corresponding AO update step is then

{Wi+1
k1 , ...,Wi+1

kJ ,C1, . . . ,Cti} =

arg min
{Wk1,...,WkJ ,C1,...,Cti

}
E{‖dk −

J∑
l=1

WH
kl yl‖2} (5.31)

s.t.


Wk|Ci

1
= Wi

k|Ci
1
C1

...
Wk|Ci

ti
= Wi

k|Ci
ti

Cti

where C1, . . ., Cti are K ×K matrices.

Example: The optimization in the AO-step defined by

Pi = ({2}; {1, 4}, {3, 5})

is

{Wi+1
k1 , ...,Wi+1

k5 ,C1,C2} = arg min
{Wk1,...,Wk5}

E{‖dk −
5∑

l=1

WH
kl yl‖2}

s.t.
[

Wk1

Wk4

]
=
[

Wi
k1

Wi
k4

]
C1,

[
Wk3

Wk5

]
=
[

Wi
k3

Wi
k5

]
C2 .

At first, we will consider the hypothetical case where all sensor signal obser-
vations are available to all nodes, and a node k can compute any AO-step
on its full unparametrized Wk. Later, we will consider the AO procedure
that is related to the actual network, by linking the sequence of partitionings(
Pi
)
i=0...n−1

to the network topology. To analyse this AO process, we will
first analyse the convergence properties in a 2-node network where the AO
steps of both nodes are linked, based on the sensors to which each node has
access. Based on this results, we will prove the convergence of the T-DANSEK

algorithm by making a hierarchical decomposition of the entire network into
simpler 2-node networks.

In the sequel, we will refer to the MSE cost function of node k, as given in
(5.31), with Jk(Wk) = Jk

([
WT

k1 . . .W
T
kJ

]T). Notice that for any AO-step
performed on Jk(Wk):

Jk(Wi+1
k ) ≤ Jk(Wi

k) , (5.32)

and because the optimization problem (5.31) is strictly convex12:
12Strict convexity is satisfied if the sensor measurements yk are not perfectly correlated,

which is always satisfied in practice due to sensor noise.
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Figure 5.10: The hypothetical 2-node network for the edge (3, 4) in the network
depicted in Fig. 5.5.

Wi+1
k 6= Wi

k ⇔ Jk(Wi+1
k ) < Jk(Wi

k) . (5.33)

Lemma 5.5 Consider an arbitrary AO sequence defined by a sequence of par-
titionings

(
Pi
)
i=0...n−1

with Pi = {F i;Ci
1, . . . , C

i
ti
}. This AO sequence is si-

multaneously applied to the cost function Jk(Wk) of node k to update Wi
k and

to the cost function Jq(Wq) of node q to update Wi
q. Assume that the two ini-

tial centralized estimators W0
k and W0

q are related through W0
q|C0

j
= W0

k|C0
j
Gj,

∀j ∈ {1, . . . , t0}, where Gj is a non-singular K×K matrix. If (5.1) is satisfied,
then the following holds for any i ∈ {1, . . . , n}:

Wi
k = Wi

qAkq , (5.34)

with Akq = A−H
q AH

k .

Proof : See Appendix 5.B. 2

Lemma 5.5 shows that all the (centralized) AO-steps at the different nodes
(minimizing different cost functions) result in Wk’s that have the same K-
dimensional column subspace, if they are initialized properly.

In a network with a tree topology, there always exists a unique graph cut that
cuts the edge (k, q) between two neighboring nodes k and q, and no other edges.
This cut partitions the graph in two complementary sets of nodes: Ckq denotes
the one that contains node k, and Cqk denotes the one that contains node q.

Consider a hypothetical 2-node network with nodes k and q, where node k has
access to the sensor signal observations yCkq

and node q has access to the sensor
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signal observations yCqk
, where yCkq

and yCqk
denote the stacked version of all

yj for which j ∈ Ckq and j ∈ Cqk, respectively. We now parametrize a subset
of Wk and Wq as follows:

Wk|Cqk
= Wq|Cqk

Gkq (5.35)

Wq|Ckq
= Wk|Ckq

Gqk . (5.36)

It is assumed that node k has access to the variables Wk|Ckq
and Gkq, and

that node q has access to the variables Wq|Cqk
and Gqk, as it is the case in the

DANSEK algorithm with parametrization (5.9).

Example: Consider the network in Fig. 5.5. Let k = 3 and q = 4,
then C34 = {1, 2, 3} and C43 = {4, 5, 6, 7, 8, 9}, and the 2-node network
corresponding to (5.35)-(5.36) is shown in Fig. 5.10.

The parametrization of the hypothetical 2-node network as described above
corresponds to partitionings P that satisfy a specific form. Indeed, node k can
never freely manipulate the variables in Wk|Cqk

, and therefore any AO-step
performed by node k must have partitionings of the form

Pk←q = {(F ;C1, . . . , Ct) : ∃ n ∈ {1, . . . , t} : Cqk ⊆ Cn} . (5.37)

Expression (5.37) implies that, during any optimization step at node k, the
search space of the variables in Wk|Cqk

is constrained to the current column
space of Wi

k|Cqk
, which is due to (5.35) and the fact that node k can only change

Wk|Cqk
through Gkq. Similarly, an AO-step performed by node q must have

partitionings of the form Pq←k, which is also given by (5.37) (by switching k
and q). It is noted that, even though it is assumed that node k can directly ma-
nipulate all entries in Wk|Ckq

, we do not assume that Pk←q = (Ckq;Cqk). The
set Ckq can be divided in a free subset together with one or more constrained
subsets. The latter can even be merged with Cqk.

Example: Consider the network in Fig. 5.5. Let k = 4 and q = 3,
then a possible partitioning P4←3 is P4←3 = ({5, 6, 7}; {1, 2, 3, 4}, {8, 9}).
Notice that C34 = {1, 2, 3} is a subset of one of the constrained subsets of
P4←3, as defined by (5.37).

We will consider AO sequences that are computed by the two nodes in this
hypothetical network as follows. If the partitioning is of the form Pk←q, then
the AO step (5.31) is performed by node k where the optimization is with
respect to cost function Jk(Wk). This node k has direct access to the vector
Wk|Ckq

, although it may also be constrained by other constrained sets in Pk←q.
The variables in Wk|Cqk

are parametrized as in (5.35) and manipulated through
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the Gkq matrix. Similarly, if the partitioning is of the form Pq←k node q will
optimize its parameters Wq|Cqk

and Gqk with respect to cost function Jq(Wq).
It is noted that that, due to (5.35)-(5.36), an update of Wk|Ckq

also changes
Wq|Ckq

and an update of Wq|Cqk
changes Wk|Cqk

.

Lemma 5.6 Consider a network with tree topology, and consider the hypothet-
ical 2-node network defined by the edge (k, q) as explained above, with the cor-
responding linked parametrization of Wk and Wq as defined by (5.35)-(5.36).
Consider an AO sequence of n steps defined by a sequence of partitionings(

P0
k←q,

(
Pi

q←k

)
i=1...(n−2)

,Pn−1
k←q

)
where the first and last AO step are performed by node k and the others by
node q. Assume that in the first and last AO step, the set Cqk is a constrained
subset as such, without additional nodes. If (5.1) is satisfied, then the resulting
Wn

k will be the same as if node k had access to all sensor signal observations
and performed all optimizations in the AO sequence by itself with respect to its
own cost function Jk.

Proof : This lemma is a straightforward consequence of Lemma 5.5, which
shows that any Wi

q that results from an AO sequence with respect to Jq(Wq),
is the same as Wi

k that results from the same AO sequence with respect to
Jk(Wk), except for a transformation by the matrix Akq. The latter can be
compensated by the G’s in parametrization (5.35)-(5.36). Since node k per-
forms the last AO step, and since Cqk is a constrained subset, Gn

kq indeed
compensates for this transformation with respect to Wn−1

q|Cqk
. Since Cqk is a

constrained subset in the initial AO step, the assumption in Lemma 5.5 on the
initialization of the parameters is automatically satisfied by the parametrization
(5.35)-(5.36). 2

We now define a one-to-one correspondence between a node k and a partitioning
P as follows:

k ↔ P = ({k};CNk
) (5.38)

with CNk
denoting the set containing all the sets Cjk for which j ∈ Nk.

Example: in the case of the network depicted in Fig. 5.5, we have that
4↔ ({4}; {1, 2, 3}, {5, 6, 7}, {8}, {9}).

The correspondence (5.38) defines another correspondence between a path P
over n− 1 edges through the network, and an n-step AO procedure defined by
the sequence of partitionings

P ↔
(
Pi
)
i=0...n−1

. (5.39)
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In the sequel, we assume that Wk, ∀ k ∈ J , is parametrized according to
(5.20), and that the AO step with partitioning of the form (5.38) is applied to
the cost function Jk(Wk). Notice that an update of node k by the T-DANSEK

algorithm is equivalent to such an AO step. Indeed, the update of Wkk and
Gk−k is defined by a constrained optimization over the variables in Wk, where
Wkk are unconstrained variables (free subset) and where the matrix Gk−k

is used to manipulate the constrained variables in the constrained subsets of
(5.38). The T-DANSEK algorithm thus performs the AO sequence based on
the sequence of partitioning defined by (5.39), in which the actual cost function
and optimization variables change along with the corresponding node that is
actually updating. It is noted that, even though an AO step at node k is defined
on the variable Wk, the resulting update of Wkk and Gk−k has an indirect
influence on the other variables Wq with q 6= k, since they are linked through
parametrization (5.20).

Lemma 5.7 Consider a network with a tree topology and a path Pk→k through
this network with length n− 1, that never passes through node k, except at the
start and at the end. Consider the T-DANSEK updating sequence equivalent
to the n-step AO sequence defined by the partitionings

(
Pi
)
i=0...n−1

↔ Pk→k.
If (5.1) is satisfied, then the resulting Wn

k , parameterized by (5.20), will be the
same as if node k had access to all sensor signal observations and performed all
optimizations in the AO sequence by itself with respect to its own cost function
Jk.

Proof : This lemma can be proven by recursively applying Lemma 5.6 on the
different edges that are visited in the path Pk→k. Let q be the second node that
is visited in the path Pk→k, then Pk→k = (k, Pq→q, k). Notice that the new
path Pq→q again starts and ends with the same edge. This is a consequence of
the fact that the network has a tree topology. Since the path Pk→k eventually
returns to node k through the edge (k,q), Lemma 5.6 can be applied at this edge,
in which k ↔ P0

k←q = Pn−1
k←q and Pq→q ↔

(
Pi

q←k

)
i=1...(n−2)

. Indeed, P0
k←q

and Pn−1
k←q both contain Cqk as a constrained subset, and the partitionings in(

Pi
q←k

)
i=1...(n−2)

all contain Ckq in one of their constrained subset. This can

then be viewed as a hypothetical 2-node network in which node q performs the
AO sequence defined by

(
Pi

q←k

)
i=2...(n−1)

, assuming that node q has access to

all sensor signal observations in {yn : n ∈ Cqk}. Lemma 5.6 then states that
the resulting Wn

k is the same as if node k performed the whole AO sequence
defined by

(
Pi
)
i=0...n−1

by itself.

Obviously, node q does not have direct access to all sensor signal observations
in {yn : n ∈ Cqk} and cannot perform the AO sequence

(
Pi

q←k

)
i=1...(n−2)

.

However, since the new path Pq→q also starts and ends with the same edge, we
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can again apply Lemma 5.6 on the edge between node q and the node that is
visited third in the path Pk→k. This line of thought can be continued further
until the problem has been recursively decomposed into a hierarchy of 2-node
networks. Applying Lemma 5.6 backwards on all these recursive problems
proves the theorem. 2

Lemma 5.8 Under the same assumptions of Lemma 5.7, the following holds:

Jk(Wn
k ) = Jk(W1

k)⇒
(
Wn

k|Ckq
= W1

k|Ckq
, Gn

kq = Akq, Gn
qk = Aqk

)
(5.40)

where q is the neighboring node of k that is visited first and last but one in the
path Pk→k.

Proof : Assume hypothetically that node k performs all the updates of the AO
sequence defined by the path Pk→k, on its own cost function Jk(Wk). Since
Jk(Wn

k ) = Jk(W1
k), and because of (5.32), we find that Jk(Wi

k) = Jk(W1
k),

∀ i ∈ {1, . . . , n}. The latter, combined with (5.33), yields

Wi
k = W1

k, ∀ i ∈ {1, . . . , n} . (5.41)

Keep in mind that (5.41) only holds if node k itself would perform all the AO
steps, which is not the case. However, since Pk→k starts and ends in node k,
the first and last AO step are performed by node k itself, and Lemma 5.7 then
explains that W1

k and Wn
k are equal to the result we would obtain if node k

performed all updates by itself. Therefore, (5.41) does indeed hold for i = n,
which proves the first part of the righthand side of (5.40).

If node q would perform all the updates of the AO sequence defined by the
path Pk→k, on its own cost function Jq(Wq), then (5.41) and Lemma 5.5
would imply that Wi

q = W1
kAqk, ∀ i ∈ {1, . . . , n}. Since node q is the second

to last node that is updated, the latter does indeed hold for i = n− 1 (implied
by Lemma 5.7). Therefore, Gn−1

qk = Aqk, and since Gqk is not updated in the
last step of the AO sequence, Gn

qk = Gn−1
qk = Aqk. The fact that Gn

kq = Akq

can be proven with a similar argument. 2

We can now prove the main theorem:

Proof : [Proof of Theorem 5.4] Consider the node k = p1, i.e. the first node
that is updated by the T-DANSEK algorithm. Consider the infinite path P =
(P, P, . . .), i.e. the periodic extension of path P , that defines the updating
order of the T-DANSEK algorithm. Path P can be split into a sequence of
subpaths

(
P j

k→k

)
j∈N

that all satisfy the conditions in Lemma 5.7. This lemma

shows that, every time node k is updated, the result is as if node k performed
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all optimizations in the AO sequence with respect to its own cost function Jk,
even though the AO updates are performed by different nodes with respect to
different cost functions. With (5.32), we therefore find that:

Jk(Wsj+1
k

k ) ≤ Jk(Wsj
k

k ) (5.42)

where the subsequence
(
sj

k

)
j∈N
⊂ (i)i∈N corresponds to the iteration indices

at which node k updates the entries in Wi
kk and Gi

k−k. By using a similar
reasoning, it can be shown that expression (5.42) holds for any node k. This

shows that all sequences
(
Jk(Wsj

k

k )
)

j∈N
, ∀ k ∈ J , are decreasing sequences,

and since they have a lower bound, they converge. It can be shown that

convergence of the sequence
(
Jk(Wsj

k

k )
)

j∈N
, ∀ k ∈ J , implies convergence of

the sequences
(
Wi

kk

)
i∈N and

(
Gi

k,−k

)
i∈N

, ∀ k ∈ J , by applying Lemma 5.8 to

each subpath of the form
(
P j

k→k

)
j∈N

, ∀ k ∈ J . This proves convergence of the

T-DANSEK algorithm.

Notice that, from Lemma 5.8, it follows that

∀ k ∈ J , ∀ q ∈ Nk : G∞kq = Akq (5.43)

and therefore, G∞k←l = Akl for any k and l, since AnlAkn = Akl, for any k,l
and n. Parametrization (5.20) then shows that

∀ k, q ∈ J : W∞
k = W∞

q Akq (5.44)

which satisfies the mutual property of the MMSE solutions given by (5.10).
With this, we can show that W∞

k = Ŵk, ∀k ∈ J , by using the same arguments
as in the optimality proof for the DANSEK algorithm in a fully connected
network, as given in [11]. It is therefore omitted here. 2

5.B Proof of Lemma 5.5

Proof : We will prove the following induction hypothesis:

∀ j ∈ {1, . . . , ti}, ∃Gj ∈
(
CK×K

)−1 : Wi
k|Ci

j
= Wi

q|Ci
j
Gj

⇓
Wi+1

k = Wi+1
q Akq

(5.45)

with
(
CK×K

)−1 denoting the set of non-singular complex valued K ×K ma-
trices. The lefthand side of (5.45) states that any Wi

k|Ci
j

has the same column
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space as Wi
q|Ci

j
. This implies that the search space for Wk and Wq is the same

in the i-th optimization step.

For notational convenience, we omit the superscript i in Ci
j and the subscript i

in ti. By substituting the constraints of (5.31) in the cost function, we obtain
the unconstrained optimization problem:

min
Vk

E{‖dk −VH
k ỹi

k‖2} (5.46)

with

VH
k =

[
WH

k|F CH
1,k . . . CH

t,k

]
, ỹi

k =


yF

Wi H
k|C1

yC1

...
Wi H

k|Ct
yCt

 (5.47)

where yF and yCj denote the stacked vector of all yl for which l ∈ F and
l ∈ Cj , respectively. The solution of (5.46) is:

Vk =
(
Ri

ỹkỹk

)−1
Ri

ỹkdk
(5.48)

with Ri
ỹkỹk

= E{ỹi
kỹ

i H
k } and Ri

ỹkdk
= E{ỹi

kd
H
k }. Consider the optimization

problem (5.46) for another node q, i.e. min
Vq

E{‖dq −VH
q ỹi

q‖2}. The solution of

this optimization problem is

Vq =
(
Ri

ỹq ỹq

)−1

Ri
ỹqdq

. (5.49)

If the lefthand side of (5.45) is satisfied, then we can write

ỹi
k = DH ỹi

q (5.50)

with D a block diagonal matrix defined by D =blockdiag{I,G1, . . . ,Gt}, where
I denotes an identity matrix of appropriate dimensions. From (5.1) and (5.50)
we find the following relations between correlation matrices:

Ri
ỹkỹk

= DHRi
ỹq ỹq

D , Ri
ỹkdk

= DHRi
ỹqdq

Akq (5.51)

with Akq = A−H
q AH

k . Comparison of (5.48) and (5.49), together with (5.51),
yields

Vk = D−1VqAkq . (5.52)

By comparing the lefthand side and the righthand side of (5.52), we find that

Wi+1
k|F = Wi+1

q|F Akq (5.53)

and

∀ j ∈ {1, . . . , t} : Wi+1
k|Cj

= Wi
k|Cj

Cj,k
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= Wi
k|Cj

G−1
j Cj,qAkq

= Wi
q|Cj

Cj,qAkq

= Wi+1
q|Cj

Akq (5.54)

which proves the induction hypothesis (5.45). Notice that

Wi+1
k = Wi+1

q Akq ⇒ ∀ j ∈ {1, . . . , ti+1} : Wi+1

k|Ci+1
j

= Wi+1

q|Ci+1
j

Akq , (5.55)

i.e. if the righthand side of (5.45) holds for i = s, then the lefthand side of
(5.45) holds for i = s+ 1. With (5.45) and (5.55), and since the lefthand side
of (5.45) is satisfied for i = 0, the lemma is proven by induction. 2
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Abstract

In this paper, we consider the recently developed linearly constrained dis-
tributed adaptive node-specific signal estimation (LC-DANSE) algorithm, that
generates an LCMV beamformer with node-specific constraints at each node of
a wireless sensor network. The algorithm significantly reduces the number of
signals that are exchanged between nodes, but obtains the node-specific LCMV
beamformers as if each node has access to all the signals in the network. The
LC-DANSE algorithm generalizes the DANSE algorithm for unconstrained lin-
ear MMSE signal estimation, by incorporating node-specific linear constraints
in the estimation problems. We formally prove convergence and optimality
of the LC-DANSE algorithm. We also consider the case where nodes update
simultaneously instead of sequentially, and we demonstrate by means of sim-
ulations that applying relaxation is often required to obtain a converging al-
gorithm in this case. We also provide simulation results that demonstrate the
effectiveness of the algorithm in a realistic speech enhancement scenario.

6.1 Introduction

Many traditional spatial filtering or beamforming approaches assume a fixed
sensor array with a limited number of wired sensors, where all sensor sig-
nal observations are gathered in a central processor. Therefore, the size of
the array is often relatively small, resulting in only a local sampling of the
spatial field, relatively large distances between the target source(s) and the
array, and hence sensor signals with low signal-to-noise ratio (SNR) and low
direct-to-reverberant ratio1 (DRR). Recently, there has been a growing inter-
est in distributed beamforming or signal estimation in wireless sensor networks
(WSNs), where multiple sensor nodes are spatially distributed over an envi-
ronment [1–6]. Each node consists of a small sensor array, a signal processing
unit and a wireless communication link to communicate with other nodes. The
advantage is that more sensors can be used to physically cover a wider area,
and therefore there is a higher probability that a node is close to the target
source, hence providing higher SNR signals.

One possibility is again to gather all the sensor signal observations in a dedi-
cated device (the ‘fusion center’), where an optimal beamformer can be com-
puted. This approach is often referred to as centralized fusion or centralized
estimation. Gathering all signal observations in a fusion center may however
require a large communication bandwidth, a large transmission power at the
individual nodes, and a significant computational power at the fusion center.
Furthermore, in many sensor network applications, availability of a fusion cen-
ter cannot be assumed. An alternative is a distributed approach where each

1A high DRR is important in, e.g., speech enhancement.
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node has its own processing unit to exchange (possibly compressed) signal ob-
servations with other nodes. The nodes then cooperate in a distributed fashion
to estimate a desired signal. This approach is preferred, especially so when it
is scalable in terms of its communication bandwidth requirement and compu-
tational complexity.

In many beamforming applications, the estimation problem is defined by means
of a local observation of the target source(s) in a local reference sensor (see,
e.g., speech enhancement applications [7]). In a sensor network, this makes the
estimation problem node-specific, since each node must choose its own local
reference sensor. Furthermore, in some particular cases it may be required
that the locally observed spatial information is still available in the estimate,
e.g., if the estimation is followed by a localization task.

Distributed node-specific signal enhancement was first considered in a 2-node
network, in the context of binaural hearing aids where it is important to
preserve the spatial cues of the target source signals at both ears [8]. This
technique relies on the speech-distortion-weighted multi-channel Wiener filter
(SDW-MWF), and was referred to as distributed MWF (DB-MWF). In [9], dis-
tributed minimum variance distortionless response (DB-MVDR) beamforming
was introduced for a similar binaural setting, which is essentially a limit case of
the DB-MWF2. Both techniques assume a single target source to obtain con-
vergence and optimality. In [1], a distributed adaptive node-specific signal es-
timation (DANSE) algorithm was introduced for fully connected WSNs, which
generalizes DB-MWF to any number of nodes and multiple target sources.
This has been extended to simply connected networks in [3], more robust ver-
sions of the algorithm [4], and versions with simultaneous and asynchronous
node-updating [11].

In this paper, we consider distributed node-specific signal estimation, based
on linearly constrained minimum variance (LCMV) beamforming. LCMV-
beamforming is a well-known sensor array processing technique for noise re-
duction [12] where the goal is to minimize the output power of a multi-channel
filter, under a set of linear constraints, e.g., to preserve target source signals and
(fully or partially) cancel interferers. We refer to this distributed algorithm as
linearly constrained distributed adaptive node-specific signal estimation (LC-
DANSE), since it extends the DANSE algorithm, allowing to add node-specific
linear constraints in the estimation problems of the different nodes. It can
also be viewed as a generalization of the DB-MVDR algorithm from [9] to
incorporate multiple sources (target sources and interferers), multiple node-
specific constraints, and any number of nodes. However, it is noted that the
LC-DANSE algorithm requires a completely different strategy to prove conver-
gence compared to DB-MVDR, since the proof in [9] fully relies on a rank-1

2MVDR beamforming is equivalent to the SDW-MWF when the trade-off parameter µ →
0. When using a rank-1 model (in the case of a single target source), setting µ = 0 in
SDW-MWF gives exactly the same formula as MVDR beamforming [10].
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data model and is not (straightforwardly) extended to more general models.
We prove convergence of the LC-DANSE algorithm, and we show that the op-
timal linearly-constrained estimators are obtained as if each node has access to
all the sensor signals in the network.

We consider an LCMV approach that operates without explicit knowledge of
the array geometry or positions of the sources. However, this means that our
approach is limited to scenarios that also lend themselves to subspace estima-
tion of target sources and interferers. This is for example possible in speech
enhancement, where both subspaces can be tracked based on non-stationarity
and on-off behavior of the target source(s) [4, 9, 13, 14]. We also allow that the
nodes solve node-specific LCMV problems, i.e. with different linear constraints.
For example, a target source for one node may be an interfering source for an-
other node. For the sake of an easy exposition, we only consider the case of fully
connected networks. However, since the LC-DANSE algorithm has similar dy-
namics and parametrizations as the DANSE algorithm, it can also be applied in
tree topology networks (see [3]). It is noted that the LC-DANSE algorithm has
already been briefly introduced in [15]. In the present paper, we provide further
details, i.e., we formally prove convergence and optimality of the LC-DANSE
algorithm, we demonstrate by means of simulations that applying relaxation
is often required to obtain a converging algorithm in the case where nodes up-
date simultaneously, and we provide simulation results that demonstrate the
effectiveness of the algorithm in a realistic speech enhancement scenario.

The outline of this paper is as follows. In Section 6.2, the estimation problem
for each node in the network is described, and the centralized LCMV solution
is explained. In Section 6.3, we explain how this centralized solution can be
obtained in an iterative distributed fashion, by means of the LC-DANSE algo-
rithm. We provide a convergence and optimality proof for the LC-DANSE al-
gorithm in Section 6.4. In Section 6.5, we explain how relaxation can be applied
to the LC-DANSE algorithm to obtain convergence in the case of simultaneous
instead of sequential node-updating. Section 6.6 describes an application of the
LC-DANSE algorithm, i.e., speech enhancement in a wireless acoustic sensor
network, and provides simulation results for a realistic scenario. Conclusions
are drawn in Section 6.7.

6.2 Centralized LCMV Beamforming

We consider a network with J sensor nodes where the set of nodes is denoted
by J = {1, ..., J}. Node k collects observations from a complex-valued3 Mk-
channel sensor signal yk[t], where t is the time index which will be omitted in

3We assume that all signals are complex valued to incorporate frequency domain descriptions,
e.g. in the short-time Fourier transform (STFT) domain.
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the sequel. All yk’s are stacked in an M -channel signal y with M =
∑

k∈J Mk.
We assume that there are K relevant sources, i.e., target sources and interferers
(we consider a source as relevant, if there is at least one node that uses this
source in the linear constraints of its estimation problem, as explained later).
We assume that y is generated by the linear model

y = Hs + n (6.1)

where s is a stacked signal vector containing the K relevant source signals, H
is an M × K steering matrix from the K relevant sources to the M sensors,
and n is a noise component. Sources that are not used in the linear constraints
of any node (see below) are incorporated in n.

In this section, we consider centralized LCMV beamforming, so we assume that
each node k effectively has access to all channels of y. Let Id

k denote the set
of indices that correspond to the Nk target source signals from s that node k
aims to preserve in its node-specific estimation. The other Pk = K−Nk source
signals from s are assumed to be interferer signals, and their indices define the
set In

k . Similarly to [13], the goal for node k is to estimate the mixture of the
Nk target source signals from s as they are observed by one of node k’s sensors,
referred to as the reference sensor (assume w.l.o.g. that this is the first sensor,
i.e. yk1).

It should be noted that we do not necessarily intend to unmix the sources in
Id

k , since this would require to estimate the individual steering vector of each
target source separately, which is often difficult or impossible. For example,
in the case of speech enhancement, a voice activity detector (VAD) is required
to estimate the speech subspace [1, 4, 13]. In a multiple speaker scenario, to
estimate the steering vectors of each speaker separately, the VAD must be able
to distinguish between different speakers (e.g. as in [14]). However, common
VAD’s are triggered by any (nearby) speakers, and therefore indeed only the
joint subspace can be identified.

Let Qd
k denote an M ×Nk matrix with its columns defining a unitary basis for

the target source subspace spanned by the columns of H with indices in Id
k .

Similarly, let Qn
k denote an M × Pk matrix containing a unitary basis for the

interferer subspace corresponding to In
k . Although it is usually impossible to

estimate the individual columns of H, the matrices Qd
k and Qn

k can often be
estimated from the sensor signals y (see e.g. [13]). In the sequel, we assume
that these matrices are indeed available.

Node k will apply a linearM -dimensional estimator wk to theM -channel signal
y to compute the signal dk = wH

k y where H denotes the conjugate transpose
operator. To this end, it will choose the wk that minimizes the variance of dk,
while preserving the target source signals in Id

k . If required, other constraints
can be added, e.g. to (fully or partially) block the interferers in In

k . More
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specifically, node k then solves the following centralized LCMV problem:

min
wk

E{|wH
k y|2} (6.2)

s.t.
QH

k wk = fk (6.3)

with

Qk =
[

Qd
k Qi

k

]
(6.4)

fk =
[
αqd

k(1)
εqn

k (1)

]
(6.5)

where E{.} denotes the expected value operator, where qd
k(1) and qn

k (1) denote
the first column of Qd H

k and Qn H
k respectively (corresponding to the reference

sensor of node k), and where α and ε are user-defined gains4. The solution of
this problem is given by [12]:

ŵk = R−1
yy Qk

(
QH

k R−1
yy Qk

)−1
fk (6.6)

with Ryy = E{yyH}. It can be shown [13] that the source signal components
in the output d̂k = ŵH

k y appear with the same mixing coefficients as in the
reference sensor (except for the scaling by α or ε), i.e., we obtain

d̂k = α
∑
l∈Id

h1lsl + ε
∑
l∈In

h1lsl + ŵH
k n (6.7)

with hij denoting the entry in the i-th row and j-th column of H. It is ob-
served that this procedure indeed yields a distortionless response, which is
not the case in SDW-MWF based beamforming techniques [8]. However, the
constraints that enforce this distortionless response remove some degrees of
freedom, yielding less noise reduction in the residual ŵH

k n.

6.3 Linearly Constrained DANSE (LC-DANSE)

In this section, we revisit the linearly constrained DANSE (LC-DANSE) algo-
rithm, as introduced in [15]. In the next section, we will prove its convergence
and optimality. For the sake of an easy exposition, we describe the algorithm for
a fully connected network, but all results can be extended to simply connected
tree topology networks, similar to [3]. Also for the sake of an easy exposition,

4Usually ε = 0 to fully cancel the interferers. However in some cases it may be important
to retain some undistorted residual noise, e.g. for hearing aid users to be able to reconstruct
the acoustic environment. Note that α and ε can be chosen differently at different nodes k,
but we did not add a subscript k, for the sake of an easier notation.
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we describe a batch mode version of the algorithm, i.e. all iterations are per-
formed on the full signal. However, in practice, iterations can be spread out
over different signal observations, such that the same signal observations never
need to be re-estimated nor retransmitted (we will discuss this later).

The compression of the sensor signal observations, and therefore the required
bandwidth for LC-DANSE, directly depends on the number of relevant sources.
In the case where there are K relevant sources, the nodes of LC-DANSE will
exchange K-channel signal observations, yielding a compression with a factor
of Mk/K at node k. We therefore assume5 that Mk > K.

First, we define K − 1 auxiliary estimation problems at node k, which are
basically the same as (6.2)-(6.3) but with different choices for fk. This means
that node k computes K different beamformer outputs dk = WH

k y, defined by
an M ×K linear estimator Wk that solves

min
Wk

E{‖WH
k y‖2} (6.8)

s.t.
QH

k Wk = Fk (6.9)

where Fk is chosen as a full rank K ×K matrix. The reason for adding these
auxiliary estimation problems, is to obtain an estimator Wk that captures the
full K-dimensional signal subspace defined by s. The solution of (6.8)-(6.9) is

Ŵk = R−1
yy Qk

(
QH

k R−1
yy Qk

)−1
Fk . (6.10)

The first column of Fk corresponds to the constraints of node k, as in (6.5).
The last K − 1 columns of Fk are filled with random entries, as these define
auxiliary problems. Therefore, the matrix Fk has the form

Fk =
[
αqd

k(1) v1,1 . . . v1,K−1

εqn
k (1) v2,1 . . . v2,K−1

]
(6.11)

where vi,j is a random number. However, the last K − 1 columns of Fk may
also be filled with constraints that define other estimation problems for node
k that use the same subspace partitioning of the two subspaces Qd

k and Qn
k :

Fk =
[
αqd

k(1) α1qd
k(m1) . . . αK−1qd

k(mK−1)
εqn

k (1) ε1qn
k (n1) . . . εK−1qn

k (nK−1)

]
(6.12)

where mj , nj ∈ {1, . . . ,Mk} and where αj ,εj ∈ C are chosen such that Fk is
full rank (note that these can be chosen differently for different nodes k, even

5In the fully connected case, LC-DANSE only has a compression benefit if Mk > K, i.e.,
in this case the number of exchanged signals can be reduced without harming the optimality
results. In the case of a simply connected topology (see [3]), there is still a compression
benefit compared to the scenario where all signals are relayed, even if Mk < K.
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though we did not add a subscript k). Either (6.11) or (6.12) can be used in
the sequel.

In the LC-DANSE algorithm, yk is linearly compressed to a K-channel signal
zk (the compression rule will be defined later, namely in formula (6.18)), of
which observations are then broadcast to the remaining J − 1 nodes [15]. We
define the (K(J − 1))-channel signal z−k =

[
zT
1 . . . z

T
k−1z

T
k+1 . . . z

T
J

]T . Node k
then collects observations of its own sensor signals in yk together with obser-
vations of the signals in z−k obtained from the other nodes in the network.
Similarly to the centralized LCMV approach, node k can then compute the
(Mk +K(J − 1))-channel LCMV beamformer Uk with respect to these input
signals, i.e. the solution of

min
Uk

E{‖UH
k ỹk‖2} (6.13)

s.t.
Q̃H

k Uk = F̃k (6.14)

where

ỹk =
[

yk

z−k

]
(6.15)

and with Q̃k denoting the equivalent to Qk, but now with respect to the mod-
ified steering vectors corresponding to node k’s input signals, i.e., ỹk. These
will be linearly compressed versions of the steering vectors in H, due to the
linear compression rules that generate the zk’s. Again, we assume that the
subspaces spanned by the steering vectors, i.e. Q̃k, can be estimated from the
input signals. F̃k is constructed similarly to (6.11) or (6.12), but now based on
the columns of Q̃H

k instead of QH
k (the random entries in (6.11) do not change).

The problem (6.13)-(6.14) is equivalent to the centralized LCMV problem de-
scribed in Section 6.2 (but with fewer signals), and its solution can be computed
in exactly the same way.

We now define the partitioning

Uk =
[
WT

kk|GT
k,−k

]T
(6.16)

=
[
WT

kk|GT
k1| . . . |GT

k,k−1|GT
k,k+1| . . . |GT

kJ

]T
(6.17)

where Wkk contains the first Mk rows of Uk (which are applied to node k’s
own sensor signals yk) and where Gkq is the part of Uk that is applied to
the K-channel signal zq obtained from node q. We can now also define the
compression rule to generate the broadcast signal zk as

zk = WH
kkyk . (6.18)

A schematic illustration of this is shown in Fig. 6.1, for a network with J = 3
nodes. It should be noted that Wkk both acts as a compressor and as a part of
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Figure 6.1: The LC-DANSE scheme with 3 nodes (J = 3). Each node k
computes an LCMV beamformer using its own Mk-channel sensor signal ob-
servations, and 2 K-channel signals broadcast by the other two nodes.

the estimator Wk. Based on Fig. 6.1, it can be seen that the parametrization
of Wk effectively applied at node k, to generate dk = UH

k ỹk = WH
k y, is then

Wk =

 W11Gk1

...
WJJGkJ

 (6.19)

where we assume that Gkk = IK with IK denoting the K×K identity matrix.
This is exactly the same parametrization as used in the DANSE algorithm [1].
If we define the partitioning Wk =

[
WT

k1 . . . WT
kJ

]T , where Wkq is the part
of Wk that is applied to the sensor signals of node q, i.e. yq, then (6.19) is
equivalent to

Wkq = WqqGkq, ∀ k, q ∈ J . (6.20)

Expression (6.19) or (6.20) defines a solution space for all Wk, k ∈ J , simulta-
neously, where node k can only control the parameters Wkk and Gk,−k. This
solution space captures all optimal LCMV solutions (for every node), as was
proven in [15].

The LC-DANSE algorithm iteratively updates the parameters in (6.19), by
letting each node k compute (6.13)-(6.14), ∀k ∈ J , in a sequential round robin
fashion:
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The LC-DANSE Algorithm

1. Initialize i← 0, k ← 1, and initialize all U0
q =

[
W0 T

qq |G0 T
q,−q

]T ,
∀ q ∈ J , with random entries.

2. Set zi
q = Wi H

qq yq, ∀ q ∈ J .
3. Update Q̃i

k by computing a unitary basis for the desired and
interferer subspace with respect to the inputs at node k (i.e.
the channels of ỹi

k).
4. Update F̃i

k according to either

F̃i
k =

[
αq̃d

k(1) v1,1 . . . v1,K−1

εq̃n
k (1) v2,1 . . . v2,K−1

]
(6.21)

or

F̃i
k =

[
αq̃d

k(1) α1q̃d
k(m1) . . . αK−1q̃d

k(mK−1)
εq̃n

k (1) ε1q̃n
k (n1) . . . εK−1q̃n

k (nK−1)

]
(6.22)

where q̃d
k(j) and q̃n

k (j) denote the j-th column of Q̃d H
k and

Q̃n H
k respectively.

5. Update Ui
k to Ui+1

k =
[
Wi+1 T

kk |Gi+1 T
k,−k

]T
according to the so-

lution of (6.13)-(6.14), while the other nodes do not perform
any updates, i.e. Ui+1

q = Ui
q =

[
Wi T

qq |Gi T
q,−q

]T , ∀ q ∈ J \{k}.
6. i← i+ 1 and k ← (k mod J) + 1.
7. Return to step 2.

It is noted that we are generally not interested in Wk, but rather in the first
channel of its output signal dk. The sample dk[t] in node k at any point in the
iterative process is computed as

di
k[t] = wi H

kk yk[t] +
∑
q 6=k

gi H
kq zi

q[t] (6.23)

where wi
kk and gi

kq denote the first column of Wi
kk and Gi

kq.

Remark I: The iterative nature of the LC-DANSE algorithm may suggest
that the same sensor signal observations are compressed and broadcast mul-
tiple times, i.e. once after every iteration. However, we emphasize that the
algorithm is in fact a distributed beamforming approach, usually only exploit-
ing spatial information, and iterations can therefore be spread out over time
(over different observations). This means that only the local fusion rules are
iteratively updated. In other words, if Wi

kk is updated to Wi+1
kk at time t0,

this updated version is only used to produce the observations zk[t] and dk[t]
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for t > t0, while previous observations for t ≤ t0, are neither recompressed nor
retransmitted. Effectively, each sensor signal observation is compressed and
transmitted only once. The non-batch description of LC-DANSE is similar to
the non-batch description of DANSE in [1], and is omitted here.

Remark II: Using (6.11) instead of (6.12) often yields a better conditioned
system, i.e. the cross-correlation matrix E{zi

kz
i H
k } is better conditioned, which

may yield better results in practical scenarios [4]. As explained in Section
6.4, the output signal (6.23) of each node will still be equal to the optimal
LCMV beamformer output (6.7) after convergence of the algorithm, but the
last K− 1 columns of the Wk’s will not be equal to the corresponding LCMV-
beamformers of the centralized optimization problem in this case. This is
however not a problem, since these are auxiliary estimators. If (6.12) is used,
the lastK−1 columns of the Wk’s will be equal to the corresponding centralized
LCMV-beamformers defined by the solution of (6.8)-(6.9).

Remark III: In the beginning of this section, we assumed that Mk > K,
∀k ∈ J . However, if there would be a node k where Mk ≤ K, it can broadcast
its raw sensor signals to the other nodes, i.e., zk = yk. Another node q will
incorporate these in its local node-specific estimation problem, by means of a
non-square Mk×K matrix Gqk. This will not affect convergence or optimality
of the LC-DANSE algorithm, but there is no compression at node k.

Remark IV: It is noted that the local constraints in each node of the LC-
DANSE algorithm change over different iterations. However, we will prove
that, despite these changing constraints, the algorithm still converges to the
output of the centralized LCMV beamformer as if the full constraints in (6.3)
are applied at each node k.

6.4 Convergence and Optimality of LC-DANSE

The following theorems guarantee convergence and optimality of LC-DANSE:

Theorem 6.1 If Fk is full rank, ∀k ∈ J , and if F̃k is updated based on (6.22),
then all parameters of the LC-DANSE algorithm converge. Furthermore, if
i→∞, the output signal di

k defined in (6.23) is equal to the output signal of the
centralized algorithm defined in (6.7), ∀ k ∈ J , and the estimator limi→∞Wi

k

parametrized by (6.19) is equal to Ŵk, ∀ k ∈ J .

Theorem 6.2 If Fk is full rank, ∀k ∈ J , and if F̃k is updated based on (6.21),
then all parameters of the LC-DANSE algorithm converge. Furthermore, if
i → ∞, the output signal di

k defined in (6.23) is equal to the output signal of
the centralized algorithm defined in (6.7), ∀ k ∈ J , and the first column of the
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estimator limi→∞Wi
k parametrized by (6.19) is equal to the first column of

Ŵk, ∀ k ∈ J .

We will only elaborate on the proof of Theorem 6.1. As explained in Subsection
6.4.2, the proof of Theorem 6.1 can be easily modified to also prove Theorem
6.2, i.e., the case where the Fk’s satisfy the more general structure (6.11).

6.4.1 Proof of Theorem 6.1

We consider the estimation problem (6.8)-(6.9) of node k. Instead of solving
the problem directly by means of expression (6.10), we solve it iteratively with
the following (centralized) Gauss-Seidel type procedure6, where it is assumed
that node k has access to all the channels of y:

1. Initialize i← 0, q ← 1 and initialize W0
k with random entries.

2. Obtain Wi+1
k as the solution of the following constrained optimization

problem:
Wi+1

k = arg min
Wk

E{‖WH
k y‖2} (6.24)

s.t.
QH

k Wk = Fk (6.25)

∀ j ∈ J \{q}, ∃Cj ∈ CK×K : Wkj = Wi
kjCj . (6.26)

3. i← i+ 1 and q ← (q mod J) + 1.
4. Return to step 2.

In each step of the algorithm, an LCMV beamformer Wk is computed un-
der additional linear constraints, i.e. certain blocks of Wk are constrained to a
K-dimensional subspace defined by the columns of the current block. This pro-
cedure will always converge to the optimal LCMV-beamformer (6.10), which
follows from the strict convexity of the optimization problem in each itera-
tion and the monotonic decrease of the cost function, i.e., E{‖Wi+1 H

k y‖2} ≤
E{‖Wi H

k y‖2}. We will explain how the LC-DANSE algorithm mimics this
iterative procedure, despite the fact that the latter is a centralized algorithm.
Convergence and optimality of the Gauss-Seidel procedure will then imply con-
vergence and optimality of the LC-DANSE algorithm.

We first transform the centralized Gauss-Seidel procedure to a form that is more
closely related to the LC-DANSE algorithm. By parametrizing the optimiza-
tion problem (6.24)-(6.26), the constraints in (6.26) can be eliminated. The
problem (6.24)-(6.26) is then equivalent to computing the (M1 +(J−1)K)×K
matrix Uk that solves

min
Uk

E{‖UH
k Wi

k,qy‖2} (6.27)

6Strictly speaking, this procedure is not a Gauss-Seidel procedure, since none of the
variables are actually fixed. Instead, some of them are constrained to a certain subspace.
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s.t.

Q
i H

k Uk = Fk (6.28)

where

Q
i

k =Wi
k,qQk (6.29)

Wi
k,q = blockdiag

{
Wi H

k1 , . . . ,W
i H
k,q−1, IMq ,W

i H
k,q+1, . . . ,W

i H
kJ

}
(6.30)

with IMq
denoting an Mq ×Mq identity matrix and with blockdiag{.} denot-

ing the operator that creates a block diagonal matrix with the entries in its
argument as the diagonal blocks. The solution Wi+1

k of (6.24)-(6.26) is then
given by Wi+1

k =Wi H
k,q Uk. It is noted that this solution does not change when

we transform the constraint space to a unitary basis, i.e. when we replace the
constraint (6.28) by

Q̃i H
k Uk = F̃i

k (6.31)

where
Q̃i H

k = Ti
kQ

i H

k , F̃i
k = Ti

kFk (6.32)

and where Ti
k is a K × K matrix that makes the rows of Q̃i H

k unitary (i.e.,
Q̃i H

k Q̃i
k = IK). Therefore, the above Gauss-Seidel iteration can be replaced

by the following equivalent procedure:

1. Initialize i← 0, q ← 1 and initialize W0
k with random entries.

2. • Compute Q
i

k according to (6.29).
• Transform Q

i

k to obtain Q̃i
k, such that Q̃i H

k Q̃i
k = IK , and compute

a corresponding F̃i
k, as in (6.32).

• Compute Uk as the solution of (6.27) s.t. (6.31).
• Update Wi+1

k =Wi H
k,q Uk.

3. i← i+ 1 and q ← (q mod J) + 1.
4. Return to step 2.

We refer to this procedure as centralized Gauss-Seidelk or CGSk, where the
subscript k indicates that it solves the estimation problem of node k. A careful
look at a single iteration of this CGSk procedure shows that it is basically what
an updating node q solves in the LC-DANSE algorithm at an iteration where
q = k. However, in other iterations where q 6= k, this is not the case, since
CGSk then requires that node k has access to observations of the full signal
vector y, and not only to its own sensor signals in yk. Let us now assume that
this CGSk procedure is performed for all k ∈ J in parallel but independently
from each other. We then have the following lemma:

Lemma 6.3 Assume that all the CGSk procedures are performed in parallel
(for all k ∈ J ) and that Fk has full rank, ∀ k ∈ J , then the following holds:
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If for any k, q ∈ J , there exists a full rank K ×K matrix Ai
kq such that

Wi
k = Wi

qA
i
kq (6.33)

then there exists a full rank K ×K matrix Ai+1
kq such that

Wi+1
k = Wi+1

q Ai+1
kq (6.34)

Proof : See Appendix 6.A. 2

This is a key result to prove convergence of LC-DANSE. If the CGSk procedures
(for all k ∈ J ) are initialized with the same matrix W0

k = W0, ∀ k ∈ J , then
Lemma 6.3 basically says that their intermediate solutions (observed at each
iteration) will always be equal up to a K×K transformation, even though they
solve optimization problems with different constraints.

At this point, let us return to the LC-DANSE algorithm, where each node k,
∀ k ∈ J , initializes its W0

kk with random entries. For now, we assume that all
G0

kq, ∀ k, q ∈ J , are initialized with an identity matrix IK (we will return to
the general case later). Based on the parametrization (6.19), this means that
W̃0

k = W0, ∀ k ∈ J , where

W0 =
[
W0 T

11 | . . . |W0 T
JJ

]T
(6.35)

(we added a tilde to refer to the LC-DANSE estimators (W̃k), whereas the
Wk’s without a tilde refer to the CGSk estimators). We also define

Gk =
[
GT

k1| . . . |GT
kJ

]T
. (6.36)

Notice that the Gk,−k as defined in (6.17) then corresponds to Gk with Gkk

omitted. It is noted that the parameter Gkk is a variable that is not explicitly
used in the LC-DANSE algorithm, since it is always assumed to be an identity
matrix. We will now run the LC-DANSE algorithm in parallel with all the
CGSk procedures (one for each node), and we will compare the updates of LC-
DANSE (iteration per iteration) with those of the centralized algorithms. We
assume that the CGSk procedures are all initialized with the same matrix W0,
and therefore (6.33) will be satisfied in every iteration, for any pair k, q ∈ J .
We then have the following corollary from Lemma 6.3, which couples the LC-
DANSE solutions to the CGSk solutions in a particular way:

Corollary 6.4 Assume that we are in iteration i of the LC-DANSE algorithm
in which node k updates its parameters, and assume that the CGSk estimator
has the same column space as the LC-DANSE estimator at node k, i.e., Wi

k =
W̃i

kC
i
k with Ci

k a full rank K ×K matrix. Furthermore, assume that, for any
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q ∈ J , the CGSq estimator satisfies (6.33). Then there exists a full rank K×K
matrix Bi+1

qk such that, if node q would update its Gi
q parameters according to7

Gi+1
q = Gi+1

k Bi+1
qk (6.37)

then
Wi+1

q = W̃i+1
q . (6.38)

Proof : Since node k updates at iteration i in LC-DANSE, and since Wi
k =

W̃i
kC

i
k, it holds that

Wi+1
k = W̃i+1

k (6.39)

since both optimization procedures have the same constraint set. Furthermore,
if (6.37) holds, we know that

W̃i+1
q = W̃i+1

k Bi+1
qk . (6.40)

Because (6.33) holds, we also know from Lemma 6.3 that

Wi+1
q = Wi+1

k Ai+1
qk . (6.41)

By substituting (6.39) in (6.40), and by choosing Bi+1
qk = Ai+1

qk , we obtain

W̃i+1
q = Wi+1

k Ai+1
qk . (6.42)

Comparing (6.41) and (6.42) yields (6.38). 2

Notice that the conditions of Corollary 6.4 are satisfied in the initial phase (it-
eration 1), since all algorithms are initialized with the same matrix W0. Now
assume that LC-DANSE would be (hypothetically) modified such that each
node q performs the extra update (6.37) (assuming that Bi+1

qk is known) at ev-
ery update (where k changes according to the updating node in the LC-DANSE
algorithm). We will refer to this modified LC-DANSE algorithm as hypothet-
ical LC-DANSE (H-LC-DANSE). Corollary 6.4 then basically says that the
CGS estimators {Wi

k}k∈J are always equal to the H-LC-DANSE estimators
{W̃i

k}k∈J . Since the CGS procedures converge to the optimal estimators, the
H-LC-DANSE estimators will therefore also converge to the optimal estimators.

To prove convergence of the actual LC-DANSE algorithm, observe that the
values of the Gk’s have no impact at all on the updates of the Wkk’s or the
Uk’s in general8. Indeed, if node q updates its Ui

q at iteration i, this is not
influenced by the choices of Gi

k at other nodes k 6= q, since the zk signals

7Note that Gi+1
qq does not necessarily have to be equal to the identity matrix here.

8And therefore, initializing LC-DANSE with G0
kq = IK , ∀ k, q ∈ J , does not affect the

generality of the proof, i.e. they may as well be initialized with random entries.
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only depend on the Wkk’s. Therefore, the set {Wi
kk}k∈J at any iteration

i will always be the same for the H-LC-DANSE and the actual LC-DANSE
algorithm (when initialized with the same set {W0

kk}k∈J ). Since the former
converges to the optimal estimators, the set {Wi

kk}k∈J of LC-DANSE must
also converge to the same (optimal) values when i → ∞. Convergence and
optimality of the parameters {Wi

kk}k∈J straightforwardly implies convergence
and optimality of the parameters {Gi

k,−k}k∈J of LC-DANSE. This proves full
convergence and optimality of the LC-DANSE algorithm.

Remark : It is noted that, at every iteration where a particular node k up-
dates, its estimator W̃i+1

k will be equal to the CGSk estimator Wi+1
k (this

also holds for LC-DANSE, not only for H-LC-DANSE, as long as the CGS
procedures are initialized with the same W0 as the LC-DANSE algorithm.).
This reveals that the LC-DANSE algorithm is as fast as the centralized Gauss-
Seidel algorithm described in the proof. This also implies that the cost function
Jk (Wk) = E{‖WH

k y‖2} decreases monotonically at each node k, when evalu-
ated after each update at node k. This is similar to the monotonic decrease of
the unconstrained DANSE algorithm of [1].

6.4.2 Proof of Theorem 6.2

The proof of Theorem 6.1 basically also proves Theorem 6.2. Even though
(6.32) is not fully satisfied anymore, since the last K − 1 columns in F̃i

k never
change over the iterations, the resulting zi

k’s still span the same K-dimensional
signal subspaces as in the case where F̃i

k changes according to (6.32). Since the
Gqk’s can compensate for this, the other nodes are still able to obtain the same
estimator as if F̃i

k changes according to (6.32). However, since the last K − 1
columns of F̃i

k do not change along with the input signals over the different
iterations, only the first column of the resulting estimator will be equal to Ŵk.

6.5 LC-DANSE with Simultaneous Node-Updating

The LC-DANSE algorithm, as described in Section 6.3 assumes that the nodes
update in a sequential round-robin fashion. However, due to this sequential
updating scheme, only one node at a time can estimate the statistics of its
input signals and perform an update of its parameters. Since every such pa-
rameter update at node k changes the statistics of the node’s broadcast signal
zk, it takes some time before the next node has collected sufficient data to
compute a reliable estimate of the modified signal statistics and then update
its parameters. As a result, even though the LC-DANSE algorithm converges
in a small number of iterations, it may converge slowly in time, especially so
when the number of nodes is large.
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If alternatively, nodes would perform their updates simultaneously, the algo-
rithm can adapt more swiftly, and all nodes can then estimate the signal statis-
tics in parallel. Similar to the results in [11] for unconstrained DANSE, con-
vergence can no longer be guaranteed for this case, as will be demonstrated
by means of simulations in Section 6.6. In [11], it is suggested to relax the
parameter updates of the unconstrained DANSE algorithm, to again obtain a
converging algorithm. A similar procedure can be applied to LC-DANSE to
let the algorithm converge under simultaneous node-updating.

The relaxed LC-DANSE algorithm with simultaneous node-updating is then
defined as follows.

Relaxed LC-DANSE Algorithm with Simultaneous
Node-Updating

1. Initialize i← 0, k ← 1, and initialize all U0
q =

[
W0 T

qq |G0 T
q,−q

]T ,
∀ q ∈ J , with random entries.

2. Set zi
q = Wi H

qq yq, ∀ q ∈ J .
3. For all k ∈ J simultaneously:

• Update Q̃i
k by computing a unitary basis for the desired

and interferer subspace with respect to the inputs at node
k (i.e. the channels of ỹi

k).
• Update F̃i

k according to either (6.21) or (6.22).
• Compute the solution of (6.13)-(6.14) and store it in Uk =[

W
T

kk|G
T

k,−k

]T
.

• Choose a relaxation stepsize αi ∈ (0, 1].
• Perform the relaxed update

Wi+1
kk = (1− αi)Wi

kk + αiWkk (6.43)

Gi+1
k,−k = Gk,−k (6.44)

4. i← i+ 1 and k ← (k mod J) + 1.
5. Return to step 2.

Usually, a fixed relaxation stepsize is chosen, e.g. αi = 0.5, ∀i ∈ N. Simulations
demonstrate that the algorithm converges if α is chosen sufficiently small. This
is stated here as an observation, based on extensive simulation results, since a
formal proof is not available. However, the intuitive explanation why relaxation
helps to let the algorithm converge is the same as in [11]. Relaxation can also
be applied to obtain convergence in the case of LC-DANSE with asynchronous
node-updating (see [11]), i.e., the case where nodes can decide for themselves
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when and how often they update their parameters.

6.6 Application: Noise reduction in an Acous-
tic Sensor Network

In [15], the convergence and optimality of LC-DANSE has been briefly ad-
dressed by means of a numerical simulation on a toy scenario, where the data
model (6.1) was perfectly satisfied. In this paper, we provide simulations of the
LC-DANSE algorithm in a more realistic scenario, i.e. for speech enhancement
in a wireless acoustic sensor network. Since we consider convolutive mixtures,
the problem will be solved in the short-time Fourier transform (STFT) domain,
where the data model (6.1) is only approximately satisfied.

6.6.1 The Acoustic Scenario

A multi-source acoustic scenario is simulated using the image method [16]. Fig.
6.2 shows a schematic illustration of the scenario. The room is rectangular (5m
× 5m × 3m) with a reflection coefficient of 0.4 for the floor, the ceiling and for
every wall. According to Sabine’s formula this corresponds to a reverberation
time of T60 = 0.3 s. There are two speakers (A and B), who produce speech
sentences from the HINT (‘Hearing in Noise Test’) database [17]. There are two
localized noise sources that produce (mutually uncorrelated) babble noise with
the same power as the speech sources. In addition to the localized noise sources,
all microphone signals have an uncorrelated noise component which consist of
white noise with power that is 20% of the power of the (superimposed) speech
signals in the first microphone of node 1. The acoustic sensor network is fully
connected and consists of J = 4 nodes, each having Mk = 4 omnidirectional
microphones with a spacing of 3 cm. All nodes and all sound sources are in
the same horizontal plane, 2 m above ground level. The sampling frequency is
16 kHz in all experiments.

6.6.2 Problem Statement

The goal for each node is to obtain an undistorted estimate of one speech source
as it impinges on one of the node’s microphones, with full suppression of the
other (interfering) speech source, while reducing as much background noise as
possible. Since there are 2 relevant sources (speakers A and B), we choose
K = 2. To obtain the aforementioned goal at node k, it chooses a matrix Fk as
in (6.12) with α = 1, ε = 0, α1 = 0 and ε1 = 1. If Id

k contains speaker A, and In
k

contains speaker B, then the first column of Wk will estimate speaker A while
suppressing speaker B (and the second column will estimate speaker B while
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1.5 m

Figure 6.2: The acoustic scenario used in the simulations. There are two speech
sources, two babble noise sources, and 4 nodes with 4 microphones each.
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suppressing speaker A), so each node will estimate an undistorted (unmixed)
version of both speakers.

Since the microphone signals consist of convolutive mixtures of multiple signals,
we transform the problem to the frequency domain to satisfy the instantaneous
mixture model (6.1). To this aim, we use an STFT with a DFT size equal to
L = 512 if not specified otherwise. The LC-DANSE algorithm is then applied
to each frequency bin separately. This decouples the problem into L smaller
problems that approximately9 satisfy the data model (6.1). Notice that L
is representative for the length of the time domain filters that are implicitly
applied to the microphone signals.

It is noted that speech signals are not stationary, whereas the convergence of
the LC-DANSE algorithm is based on stationarity. However, by taking long-
term time averages, we mostly incorporate spatial characteristics, which are
indeed invariant in time.

It should be noted that we do not intend to provide a fully practical speech en-
hancement implementation here. The goal of this experiment is to validate the
convergence and optimality of the LC-DANSE algorithm in a realistic scenario
with convolutive mixtures. Therefore, to isolate the effects of estimation errors,
all experiments are performed in batch mode where the correlation matrices
are computed by time averaging over the full signal, and both matrices Qd

k and
Qn

k (and their local LC-DANSE versions) are computed as the eigenvector cor-
responding to the dominant eigenvalue of the clean speech covariance matrices
of both speakers. The latter isolates errors introduced by any practical estima-
tion approach (such as, e.g., [13] or techniques based on [14]). The covariance
matrices (for each frequency bin) are computed in the STFT domain, by means
of time averaging.

6.6.3 Performance Measures

We use three performance measures to assess the quality of the LC-DANSE
based noise reduction algorithm, namely the broadband signal-to-noise ratio
(SNR), the signal-to-distortion ratio (SDR), and the mean squared error (MSE)
between the coefficients of the optimal (centralized) LCMV filters ŵk and the
filters (6.19) obtained by the LC-DANSE algorithm (after transformation to
the time-domain). In particular, the SNR and SDR at node k in iteration i are
defined as

SNRi = 10 log10

E
{
di

k[t]2
}

E
{
ni

k[t]2
} (6.45)

9The STFT transform always introduces some leakage between frequency bins, and there-
fore the data model (6.1) is only approximately satisfied. The larger the choice for L, the
better (6.1) holds.
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Figure 6.3: The SNR, SDR and MSE at the filter output of node 1 versus the
iteration index of the LC-DANSE algorithm, applied to the scenario of Fig.
6.2. The DFT size is L = 512.

SDRi = 10 log10

E
{
xk1[t]2

}
E
{(
xk1[t]− di

k[t]
)2} (6.46)

with ni
k[t] and di

k[t] denoting the time domain noise component and desired
speech component respectively at the beamformer output at node k in iteration
i, and xk1[t] denoting the desired time domain clean speech component as
observed by the reference microphone of node k. The noise component ni

k[t]
also contains the residual interfering speech component. The MSE at node k
is defined as

MSEi = ‖ŵk −wi
k‖2 (6.47)

with ŵk defined by (6.6), and wi
k denoting the first column of Wk in (6.19) at

iteration i. The filters in (6.47) are transformed to the time-domain.

6.6.4 Results

Fig. 6.3 shows the convergence of the LC-DANSE algorithm at node 1, where
a DFT size of L = 512 is used. If nodes update sequentially, the algorithm gets
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Figure 6.4: The SNR, SDR and MSE at the filter output of node 1 versus the
iteration index of the LC-DANSE algorithm, applied to the scenario of Fig.
6.2. The DFT size is L = 1024.

close to the optimal performance of the centralized LCMV beamformer for the
beamforming problem at node 1. However, since the data model (6.1) is only
approximately satisfied due to the finite DFT size, the optimal performance is
not reached. If nodes update simultaneously, the algorithm does not converge,
but gets stuck in a limit cycle instead10, yielding a loss of approximately 5 dB
in SNR and 2 dB in SDR. This is similar to the behavior of the simultaneous
DANSE (S-DANSE) algorithm in [11] and [4]. By applying relaxation (with
αi = 0.5, ∀ i ∈ N), the algorithm with simultaneous node-updating converges
to the same solution as with sequential node-updating.

Fig. 6.4 shows the results when a DFT size of L = 1024 is used. It is observed
that the SNR curve better approaches the SNR curve of the centralized algo-
rithm, compared to the case where the DFT size was L = 512. This is not
surprising: the larger the DFT size, the better the data model (6.1) is satis-
fied, and hence the closer LC-DANSE approaches the centralized solution. It
is noted that simultaneous node-updating reduces the SNR with more than 6

10The limit cycle is not clearly visible in Fig. 6.3. However, it is slightly visible in the SDR
curve during the last 5 iterations.
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dB, and the SDR with more than 4 dB in this experiment. Again, relaxation
yields a converging algorithm, yielding the optimal LCMV beamformers.

6.7 Conclusions

In this paper, we have revisited the linearly constrained distributed adaptive
node-specific signal estimation algorithm, referred to as LC-DANSE. The algo-
rithm changes the local constraints of the nodes in every iteration and signifi-
cantly compresses the sensor signal observations that are shared between nodes.
Nevertheless it obtains the optimal node-specific LCMV beamformers, corre-
sponding to the original constraints, as if all sensor signals are available to each
node. The LC-DANSE algorithm is closely related to the DANSE algorithm for
unconstrained linear MMSE signal estimation, and we have pointed out that
previously developed extensions for DANSE also hold for LC-DANSE. Con-
vergence and optimality of the algorithm has been formally proven. We have
experimentally verified that convergence can be obtained when nodes update
simultaneously, if relaxation is applied, similar to the unconstrained DANSE
algorithm. We have provided simulation results that demonstrate the effective-
ness of the algorithm for speech enhancement (and separation) in a wireless
acoustic sensor network.

Appendix

6.A Proof of Lemma 6.3:

To simplify notation, we will often omit the superscript i in the sequel, unless
we explicitly want to denote a specific iteration number. Similar to (6.10), the
solution of (6.27), s.t. (6.31) is given by

Uk = R−1
k,qQ̃k

(
Q̃H

k R−1
k,qQ̃k

)−1

F̃k (6.48)

= R−1
k,qQk

(
Q

H

k R−1
k,qQk

)−1

Fk . (6.49)

with
Rk,q =Wk,qRyyWH

k,q . (6.50)

Since the columns of every Qk in (6.25), ∀k ∈ J , span the same K-dimensional
subspace as the columns of H, the following holds for any k,m ∈ J :

∃Bkm ∈
(
CK×K

)−1
: Qk = QmBkm (6.51)
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where
(
CK×K

)−1 denotes the set of all non-singular K×K matrices. We define

Akm,q = blockdiag
{
AH

km, . . . ,A
H
km, IMq

,AH
km, . . . ,A

H
km

}
(6.52)

where IMq is the q-th argument of the blockdiag{.} operator, and since we
assume that (6.33) holds,

Wk,q = Akm,qWm,q . (6.53)

Combining (6.50) with (6.53), we obtain

Rk,q = Akm,qRm,qAH
km,q . (6.54)

Combining (6.51), (6.53) and (6.29), we obtain

Qk = Akm,qQmBkm . (6.55)

By inserting (6.54) and (6.55) in (6.49), and using the fact that all Fk, ∀k ∈ J ,
are full rank, some straightforward algebraic manipulation shows that

Uk = A−H
km,qUmLkm (6.56)

with
Lkm = F−1

m B−H
km Fk . (6.57)

Since Wi+1
k =Wi H

k,q Uk, it follows from (6.53) and (6.56) that

Wi+1
k = Wi+1

m Lkm . (6.58)

By setting Ai+1
km = Lkm, we obtain (6.34).
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Abstract

Total least squares (TLS) is a popular solution technique for overdetermined
systems of linear equations, where both the right hand side and the input
data matrix are assumed to be noisy. We consider a TLS problem in an ad
hoc wireless sensor network, where each node collects observations that yield
a node-specific subset of linear equations. The goal is to compute the TLS
solution of the full set of equations in a distributed fashion, without gathering
all these equations in a fusion center. To facilitate the use of the dual based
subgradient algorithm (DBSA), we transform the TLS problem to an equivalent
convex semidefinite program (SDP), based on semidefinite relaxation (SDR).
This allows us to derive a distributed TLS (D-TLS) algorithm, that satisfies
the conditions for convergence of the DBSA, and obtains the same solution as
the original (unrelaxed) TLS problem. Even though we make a detour through
SDR and SDP theory, the resulting D-TLS algorithm relies on solving local
TLS-like problems at each node, rather than computationally expensive SDP
optimization techniques. The algorithm is flexible and fully distributed, i.e.
it does not make any assumptions on the network topology and nodes only
share data with their neighbors through local broadcasts. Due to the flexibility
and the uniformity of the network, there is no single point of failure, which
makes the algorithm robust to sensor failures. Monte-Carlo simulation results
are provided to demonstrate the effectiveness of the method.

7.1 Introduction

An ad hoc wireless sensor network (WSN) [1] consists of spatially distributed
sensor nodes that share data with each other through wireless links to perform
a certain task, e.g. the estimation of a signal or parameter. Generally, the goal
is to implement an estimator that is equal (or close) to an optimal estimator
that has access to all observations acquired by all the nodes in the network.
The latter corresponds to a centralized approach, where all observations are
gathered in a fusion center to calculate an optimal estimate. A WSN, on the
other hand, requires distributed algorithms that allow for in-network processing
and only rely on local collaboration between neighboring nodes. It is likely that
future data acquisition, control and physical monitoring, will heavily rely on
this type of networks.

Distributed estimation in a linear least squares (LLS) framework has been
widely studied in the sensor network literature (see e.g. [2–10]). The LLS
framework is applied for linear regression problems, and provides a solution for
an overdetermined system of linear equations, i.e. Uw = d with U an M × P
data matrix and d an M -dimensional data vector with M ≥ P . The aim is
then to find a vector w that minimizes the squared error between the left-hand
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and the right-hand side, i.e.

wLLS = arg min
w
‖Uw − d‖22 (7.1)

where ‖.‖2 denotes the Euclidean norm (L2-norm). In a WSN, nodes can either
have access to subsets of the columns of U [2–4], e.g. for distributed signal en-
hancement and beamforming [11], or to subsets of the rows of U (and d) [5–10],
e.g. for distributed system identification. Despite this common cost function,
both problems are tackled in very different ways. In the former case, each
node estimates a node-specific subvector of the global estimator w, whereas
in the latter case, each node estimates the full estimator w, which allows for
consensus-based approaches. Here, we focus on the latter case, i.e. where each
node has access to a node-specific subset of the equations. Distributed LLS es-
timation amounts to computing the network-wide LLS solution in a distributed
way, where the nodes have to reach a consensus on a common network-wide
parameter vector w. A motivation for this type of distributed estimation prob-
lems, different types of algorithms, and possible applications, can be found
in [5–10] and references therein.

In a stochastic framework, the solution (7.1) yields the best linear unbiased
estimate (BLUE), if d is corrupted by additive zero-mean white noise [12].
However, in many practical situations, the input data matrix U is also noisy.
For example, in adaptive filtering, this corresponds to the case where there
is additive noise at both the input and output of the filter that is estimated.
In [13], it is shown that the resulting LLS estimate (7.1) is biased in this case. A
natural generalization of LLS estimation is total least squares (TLS) estimation,
where both U and d are indeed assumed to be noisy (cf. [14] for an extensive
overview). For the particular case of recursive TLS in adaptive filtering theory,
we refer to [13], where it is shown that TLS yields an unbiased estimate if the
additive noise at both the input and output of the filter is zero-mean and white.

In this paper, we propose an algorithm to compute the network-wide TLS
solution in a distributed way, where the nodes of a WSN have to reach a con-
sensus on a common network-wide parameter vector w. As opposed to the
LLS problem, the TLS problem is non-convex, which makes the derivation of a
distributed algorithm non-trivial. To facilitate the use of the dual based subgra-
dient algorithm (DBSA) [15], we transform the TLS problem to an equivalent
convex semidefinite program (SDP), based on a technique called semidefinite
relaxation (SDR) [16]. This allows us to derive a consensus-based distributed
TLS (D-TLS) algorithm, that satisfies the conditions for convergence of the
DBSA. Even though we make a detour through SDR and SDP theory, the
resulting D-TLS algorithm does not rely on computationally expensive SDP
optimization techniques. Instead, we obtain an iterative algorithm that solves
local TLS-like problems at each node, which enables the use of robust TLS
solvers. Furthermore, even though we solve a relaxed optimization problem,
the D-TLS algorithm still obtains the solution of the original TLS problem,
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which is available at each node (after convergence).

The D-TLS algorithm is flexible and fully distributed, i.e. nodes only share
data with their neighbors through local broadcasts (single-hop communication)
and the algorithm does not assume a specific network topology or a so-called
Hamiltonian cycle (as often assumed in incremental strategies, e.g. [5]), which
makes it robust to sensor and link failures. Due to the flexibility and the
uniformity of the network (i.e. all nodes perform identical tasks), there is no
single point of failure and the network is self-healing.

The outline of the paper is as follows. In section 7.2, we briefly review the TLS
problem statement and we explain how the TLS solution can be computed.
Furthermore, we describe the TLS problem in a distributed context for WSNs.
In section 7.3, we review the dual based subgradient algorithm, which forms
the backbone of the D-TLS algorithm. In section 7.4, we derive the D-TLS
algorithm, based on a semi-definite relaxation of the original TLS problem,
and we address its convergence properties. In section 7.5, we provide simulation
results. Conclusions are drawn in section 7.6.

7.2 Problem Statement

7.2.1 The Total Least Squares Problem (TLS)

We consider an overdetermined system of linear equations in P unknowns
(stacked in a vector w), given by

Uw = d (7.2)

with U an M×P noisy data matrix and d an M -dimensional noisy data vector,
with M ≥ P . Since this is an overdetermined system of equations, its solution
set is usually empty. The goal is then to find the TLS solution, i.e. to solve
the constrained optimization problem

min
w,4U,4d

‖4U‖2F + ‖4d‖22 (7.3)

s.t. (U +4U)w = (d +4d) (7.4)

where ‖.‖F denotes the Frobenius norm. In section 7.5.1, we will demonstrate
that the TLS estimate can be significantly better than the LLS estimate in
cases where the input data matrix U is noisy. In [13], it is shown that the TLS
estimate provides an unbiased estimate when both U and d are contaminated
with white noise (whereas the LLS solution is biased in this case). In order to
compute the solution of (7.3)-(7.4), we define the matrix

U+ = [U d] (7.5)
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and the matrix
R = UT

+U+ . (7.6)

Let x denote the eigenvector of R corresponding to the smallest eigenvalue,
where x is scaled such that

x =
[

w∗

−1

]
. (7.7)

In [17], it is shown that there exists a unique solution for the TLS problem
(7.3)-(7.4) if the (P + 1)-th singular value of U+ is strictly smaller than the
P -th singular value (where the singular values are sorted in decreasing order).
In this case, the first P entries of x, denoted by w∗, are the solution of the
TLS problem (7.3)-(7.4) [14, 17]. The eigenvector x can be computed in a
robust and efficient way (e.g. by means of an eigenvalue or singular value
decomposition [17]).

7.2.2 Total Least Squares in Ad Hoc Wireless Sensor Net-
works

Consider an ad hoc WSN with the set of nodes J = {1, . . . , J} and with
a random (connected) topology, where neighboring nodes can exchange data
through a wireless link. We denote the set of neighbor nodes of node k as Nk,
i.e. all the nodes that can share data with node k, node k excluded. Node k
collects observations of a data matrix Uk and a data vector dk. The goal is
then to solve a network-wide TLS problem, i.e. to compute a vector w from

min
w,4U1,...,4UJ ,4d1,...,4dJ

∑
k∈J

(‖4Uk‖F + ‖4dk‖2) (7.8)

s.t. (Uk +4Uk)w = (dk +4dk) , k = 1, . . . , J . (7.9)

We will refer to this problem as the distributed total least squares (D-TLS)
problem, since it corresponds to the TLS problem (7.3)-(7.4), where each node
has access to a subset of the rows of U and a subvector of d. The goal is
to compute w in a distributed fashion, without gathering all data in a fusion
center.

We will develop a consensus-based algorithm, based on dual decomposition of
the optimization problem (7.8)-(7.9), which we will refer to as the distributed
TLS algorithm (D-TLS). The dual based subgradient algorithm (DBSA) [15],
which forms the backbone of the D-TLS algorithm, is described in its general
form in section 7.3. Even though many of the required conditions for DBSA
are violated in the case of D-TLS, we will explain in section 7.4 how DBSA can
still be applied, without affecting its convergence results.

Remark I: In dynamic scenarios, an adaptive algorithm is required to track
changes in the environment. In this case, extra observations become available
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over time at each node, and old observations may become invalid. This can
be easily included in the problem statement described above and in the D-
TLS algorithm described in section 7.4, by applying recursive updating and
downdating schemes. However, for the sake of an easy exposition, we assume
in the sequel that the matrices Uk do not change over time.

Remark II: The different nodes usually observe data at a different signal-to-
noise ratio (SNR), depending on their position (e.g. the distance to a localized
source). Therefore, it is often desirable to give a different weight to each term
in (7.8), or even to each specific row of Uk, depending on the local SNR. This
is often referred to as generalized total least squares (GTLS) [14]. However,
since the algorithmic treatment of GTLS and TLS are the same, and for the
sake of an easy exposition, we do not consider GTLS in this paper.

7.3 Dual Based Subgradient Algorithm (DBSA)

In this section, we briefly review DBSA, as applied in [18] on the following
optimization problem1 for a connected network with a set of nodes J :

min
x

∑
k∈J

fk(x) (7.10)

s.t. x ∈ X (7.11)

where X is a convex set with non-empty interior, x is an N - dimensional vector,
and where fk, ∀ k ∈ J , are convex functions. In this problem, it is assumed
that fk can only be evaluated at node k. The goal is then to solve (7.10)-(7.11)
in a distributed fashion, where each node eventually obtains an optimal vector
x̂ from the solution set of (7.10)-(7.11).

One possible way to solve the above problem is to apply dual composition. The
main idea is to introduce local copies of x in each node, and to optimize and
update these variables until a consensus is reached amongst all neighbor nodes
as follows:

min
x1,...,xJ

∑
k∈J

fk(xk) (7.12)

s.t. xk ∈ X , ∀ k ∈ J (7.13)

xk = xq, ∀ k ∈ J , ∀ q ∈ Nk, q < k (7.14)

1The problem described in [18] incorporates private variables, i.e. variables that are not
common between the nodes, and assumes that the consensus variable is 1-dimensional. For
later purpose, we extend the problem here for N -dimensional consensus variables. For the
sake of an easy exposition, we omit the private variables.
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which has the same solution as (7.10)-(7.11), if the network is connected. The
constraints (7.14) are denoted as consensus constraints. The condition q < k
removes redundancy in the constraints, such that there is a single consensus
constraint for each individual link2. We denote the set of network links L =
{1, . . . , L}, where each link contains a pair of nodes in J . We introduce the
NL×NJ linking matrix

C =

 C11 . . . C1J

...
...

CL1 . . . CLJ

 (7.15)

where the N ×N submatrix Clk is defined as

Clk =

 IN , if l = {k, q} and k < q
−IN , if l = {k, q} and q < k
ON , otherwise

(7.16)

with IN denoting the N × N identity matrix and ON denoting an all-zero
N ×N matrix. With this, we can rewrite problem (7.12)-(7.14) as

min
x1,...,xJ

∑
k∈J

fk(xk) (7.17)

s.t. xk ∈ X , ∀ k ∈ J (7.18)

Cx = 0 (7.19)

where x = [xT
1 . . . xT

J ]T . This problem is not separable due to the consen-
sus constraints (7.19). However, by applying dual decomposition [15, 19], the
problem can be solved iteratively in a fully distributed fashion. Consider the
dual function

d(λ) = min
x
L(λ,x) (7.20)

s.t. xk ∈ X , ∀ k ∈ J (7.21)

where L(λ,x) denotes the so called Lagrangian defined by

L(λ,x) =
∑
k∈J

fk(xk) + λT Cx (7.22)

and where the variables in the (NL)-dimensional vector λ are so called La-
grange multipliers. We denote λl as the subvector of λ that is applied to the
rows of C corresponding to submatrices Clk, ∀ k ∈ J , i.e. the Lagrange mul-
tipliers corresponding to the consensus constraints at link l. If strong duality

2Note that there is still a lot of redundancy left, since many links can be removed without
harming the overall consensus between the nodes.
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holds [19], then the optimal value of (7.12)-(7.14) is the same as the optimal
value of the dual problem

max
λ

d(λ) . (7.23)

Here, the unconstrained optimization problem (7.23) is referred to as the ‘mas-
ter problem’, and the optimization problem in (7.20)-(7.21) is referred to as the
‘slave problem’. An important observation is the fact that the slave problem is
fully separable:

d(λ) =
∑
k∈J

dk(λ) (7.24)

with
dk(λ) = min

xk

fk(xk) +
∑
l∈Lk

λT
l Clkxk (7.25)

s.t. xk ∈ X (7.26)

where Lk denotes the set of links that contain node k. Since the dual func-
tion d(λ) is not differentiable in general, the master problem is solved by a
subgradient method. A subgradient of d(λ) in the point λ is given by

g(λ) = Cx∗(λ) (7.27)

where x∗(λ) denotes an x that is in the solution set of the slave problem (7.20)-
(7.21) for the given λ [15]. It is noted that, if d(λ) is differentiable in λ, the
subgradient g(λ) is equal to the actual gradient ∇d(λ).

We can now solve (7.12)-(7.14) with the following algorithm, which is known
as the dual based subgradient algorithm (DBSA):

1. Let i = 1 and λ0 = 0N , where 0N denotes an all-zero N -dimensional
vector.

2. Each node k ∈ J solves (7.25)-(7.26) to get xi
k.

3. Each node k ∈ J transmits xi
k to the nodes in Nk.

4. Each node k ∈ J updates the subvectors λi
l, ∀ l ∈ Lk, according to

λi+1
l = λi

l + µ
(
Clkxi

k + Clqxi
q

)
(7.28)

where q is the node that is connected to node k by link l, and with
stepsize µ > 0.

5. i← i+ 1.
6. return to step 2.

In [15], it is shown that, if the stepsize µ is sufficiently small, the distance of
the xi

k’s to the optimal solution set is reduced in each iteration if the following
conditions are satisfied:

1. The functions fk are convex, ∀ k ∈ J .
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2. The set X is convex with non-empty interior.
3. Strong duality holds for (7.17)-(7.19).
4. All subgradients of d(λ) are bounded for all values of λ, i.e. ∃ B ∈

R,∀ λ : ‖g(λ)‖2 ≤ B.

More specifically, the following theorems hold under the above assumptions [15]:

Theorem 7.1 If λi is not optimal, then for every dual optimal solution λ∗,
we have

‖λi+1 − λ∗‖ < ‖λi − λ∗‖ (7.29)
for all stepsizes µ such that

0 < µ <
2
(
d(λ∗)− d(λi)

)
‖g(λi)‖22

. (7.30)

Theorem 7.2 For a fixed stepsize µ, there is at least asymptotic convergence
to a neighborhood of d(λ∗), i.e.

lim sup
i→∞

d(λi) ≥ d(λ∗)− µB2

2
(7.31)

where B is defined in condition 4.

In other words, there is at least asymptotic convergence to a neighborhood of
the optimal solution, where the size of this neighborhood shrinks with µ.

7.4 Distributed Total Least Squares (D-TLS)

In this section, we demonstrate how the DBSA algorithm can be applied to the
D-TLS problem (7.8)-(7.9), even though the latter is a non-convex optimization
problem. As explained in section 7.2.1, the solution of the TLS problem (7.3)-
(7.4) can be found by means of an eigenvalue or a singular value decomposition,
i.e. the computation of the eigenvector of R corresponding to the smallest
eigenvalue. We use x to denote this eigenvector, and we use N to denote the
dimension of this vector, i.e. N = P + 1. The solution of the TLS problem
is then given by the first P entries of x when scaled such that the last (the
(P + 1)-th) entry is −1.

The eigenvector x corresponding to the smallest eigenvector of R is the solution
of the following quadratically constrained quadratic program3 (QCQP)

min
x

xT Rx (7.32)

3The stationary points of the Lagrangian of (7.32)-(7.33) are the eigenvectors of R. There-
fore, the eigenvector corresponding to the smallest eigenvalue is the global minimum of (7.32)-
(7.33).
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s.t. ‖x‖22 = 1 . (7.33)

In the case of D-TLS, this becomes

min
x

∑
k∈J

xT Rkx (7.34)

s.t. ‖x‖22 = 1 (7.35)

where Rk = UT
k+Uk+, with Uk+ = [Uk dk].

7.4.1 Transformation into a Convex Problem

It is noted that (7.34)-(7.35) has the same form as (7.10)-(7.11) to which the
DBSA was applied in section 7.3. However, we cannot straightforwardly ap-
ply the DBSA to (7.34)-(7.35) due to the norm constraint, which defines a
non-convex constraint set with empty interior. This violates condition 2 for
application of the DBSA, which states that the set X must be convex with
non-empty interior. Furthermore, condition 3 assumes strong duality after ad-
dition of the consensus constraints, which is not guaranteed for (7.34)-(7.35),
again due to the non-convex norm constraint. However, since (7.34)-(7.35) is a
QCQP, we can apply semidefinite relaxation (SDR) to transform the original
problem into a convex optimization problem, which has the solution of the orig-
inal QCQP in its solution set (see [16] for an overview article). Since the new
problem is convex, DBSA can be readily applied, and its convergence results
will then also hold for the derived algorithm. Remarkably, it will turn out that
the SDR yields an algorithm that solves local TLS problems at each node4 (see
section 7.4.2), which enables the use of robust TLS solvers. Furthermore, even
though we solve a relaxed problem, we eventually obtain the solution of the
original D-TLS problem (7.34)-(7.35).

SDR is based on the observation that xT Rkx = tr(xT Rkx) = tr(RkxxT ),
where tr(Q) denotes the trace of the matrix Q. By applying the substitution
X = xxT , we transform (7.34)-(7.35) into the equivalent problem

min
X

∑
k∈J

tr (RkX) (7.36)

s.t. tr (X) = 1 (7.37)

X � 0 (7.38)

rank(X) = 1 (7.39)

4If DBSA would be directly applied to the original QCQP (7.34)-(7.35), this would result
in a different distributed algorithm that is not guaranteed to converge, and it cannot rely
on robust TLS solvers, since each local cost function will then have linear terms due to the
consensus constraints.
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where X � 0 is used to denote that X is symmetric and positive (semi)definite.
It is noted that the rank constraint (7.39) is the only non-convex constraint.
The SDR approach relaxes (7.36)-(7.39) to a convex optimization problem by
removing this rank constraint, i.e.

min
X

∑
k∈J

tr (RkX) (7.40)

s.t. tr (X) = 1 (7.41)

X � 0 . (7.42)

This type of problem is known as a semidefinite program (SDP), which is
studied extensively in literature [19, 20]. Obviously, the SDP resulting from
the SDR usually yields a new problem which is not equivalent to the original
QCQP. However, there is a known upper bound on the rank of the matrix X∗

with lowest rank that is in the solution set of any feasible SDP with an N ×N
matrix variable and m linear constraints [16]:

rank(X∗) ≤
√

8m+ 1− 1
2

. (7.43)

Furthermore, this matrix X∗ can easily be found [21]. It is noted that if m = 1,
as it is the case for (7.40)-(7.42), the rank of X∗ reduces to 1. This is a very
important observation, since it implies that the optimal solution of (7.36)-
(7.39), and consequently of the D-TLS problem (7.34)-(7.35), can be found by
solving the relaxed (convex) problem (7.40)-(7.42).

We can now apply the DBSA to the problem (7.40)-(7.42). Condition 1 for
convergence of the DBSA is straightforwardly satisfied. Condition 4 is also
satisfied due to the boundedness of the constraint set. To satisfy condition 2,
the constraint set needs to be convex with a non-empty interior, but the latter
is not satisfied in (7.40)-(7.42). However, if we would replace the constraint
(7.41) with 1 + ε ≥ tr (X) ≥ 1 where ε > 0, the solution set of (7.40)-(7.42)
remains the same (due to the minimization), but the constraint set has now a
non-empty interior (and it remains bounded and convex). Therefore, condition
2 is also satisfied5. Condition 3 is satisfied due to the following theorem6

from [22]:

Theorem 7.3 If the solution set of an SDP is non-empty and bounded, then
strong duality holds.

5The resulting DTLS algorithm as described in subsection 7.4.2 will be exactly the same,
whether we use the constraint (7.41), or the constraint 1 + ε ≥ tr (X) ≥ 1, even though only
the latter satisfies condition 2. Therefore, we keep the constraint (7.40) in the sequel without
affecting the convergence results of DBSA.

6It is noted that strong duality still holds if (7.41) is replaced with 1 + ε ≥ tr (X) ≥ 1,
due to convexity of the problem, and the fact that Slater’s condition holds.
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This theorem holds for the SDP (7.40)-(7.42) (also after including the consen-
sus constraints), because there is at least one solution (corresponding to the
solution of (7.34)-(7.35)) and boundedness is guaranteed due to the fact that
the constraint set is bounded.

7.4.2 The Distributed Total Least Squares Algorithm

In the previous section, we have explained how the D-TLS problem can be
transformed into an SDP which has the same solution, and satisfies the condi-
tions for convergence of the DBSA. In this section, we derive the formulas that
describe the D-TLS algorithm at each node, based on the algorithm description
of the DBSA in section 7.3.

The SDP (7.40)-(7.42) yields the following node-specific DBSA slave problems
(to be compared to the general formulation (7.25)-(7.26)):

dk (Λ) = min
Xk

tr (RkXk) +
∑
l∈Lk

clktr
(
ΛT

l Xk

)
(7.44)

s.t. tr (Xk) = 1 (7.45)

Xk � 0 (7.46)

where clk is defined as the scalar version of (7.16), i.e. clk = 1
N tr (Clk). The

Λl’s are N ×N matrices that contain the Lagrange multipliers corresponding
to the consensus constraints Xk = Xq,∀ k ∈ J ,∀ q ∈ Nk.

The slave problem (7.44)-(7.46) is solved by each node k ∈ J (step 2 in the
DBSA algorithm), followed by an exchange of these solutions between neigh-
boring nodes. After receiving its neighbors’ solutions, the Lagrange multipliers
at node k are updated as follows (step 4 in the DBSA algorithm):

∀ l ∈ Lk : Λi+1
l = Λi

l + µ
(
clkXi

k + clqXi
q

)
(7.47)

where q is the node that is connected to node k by link l. It is noted that the
nodes communicate N × N matrices Xi

k, which is not very efficient. Eventu-
ally, we are interested in the N -dimensional vector x that solves the original
QCQP (7.34)-(7.35) corresponding to the distributed TLS problem (7.8)-(7.9).
However, based on SDR theory, the problem (7.44)-(7.46) must have a rank-1
solution since it is the SDR of the QCQP7

dk (Λ) = min
xk

xT
k

(
Rk +

∑
l∈Lk

clkΛi
l

)
xk (7.48)

7Note that, since the Xi
k’s are solutions of an SDP, they are symmetric. Therefore the

matrices Λi
l are also symmetric due to (7.47), assuming that they are initialized with a

symmetric matrix.
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s.t. ‖xk‖22 = 1 (7.49)

where we used the substitution Xk = xkxT
k . We can then solve this QCQP

instead of (7.44)-(7.46), to obtain the rank-1 solution. Conveniently, the La-
grange multipliers now appear in the quadratic term of the cost function,
rather than in a separate linear term as it is the case in (7.25). Therefore,
the above constrained optimization problem again corresponds to comput-
ing the eigenvector corresponding to the smallest eigenvalue8 of a matrix, i.e.(
Rk +

∑
l∈Lk

clkΛi
l

)
. This also implies that

dk (Λ) = λmin

(
Rk +

∑
l∈Lk

clkΛi
l

)
(7.50)

where λmin (Q) denotes the smallest eigenvalue of Q. The nodes now only
share N -dimensional vectors with their neighbors. This yields the following
algorithm, which we refer to as the distributed total least squares (D-TLS)
algorithm:

The D-TLS Algorithm

1. Let i = 1 and Λ0
l = ON×N , ∀ l ∈ L.

2. Each node k ∈ J computes the eigenvector xi corresponding to the
smallest eigenvalue of R

i

k defined by

R
i

k = Rk +
∑
l∈Lk

clkΛi
l (7.51)

where xi
k is scaled such that ‖xi

k‖2 = 1.
3. Each node k ∈ J transmits xi

k to the nodes in Nk.
4. Each node k ∈ J updates the Lagrange multipliers Λi

l, ∀ l ∈ Lk

according to

Λi+1
l = Λi

l + µ
(
clkxi

kx
i T
k + clqxi

qx
i T
q

)
(7.52)

where q is the node that is connected to node k by link l, and with
stepsize µ > 0.

5. i← i+ 1.
6. return to step 2.

In each iteration of the D-TLS algorithm, each node computes the eigenvector
corresponding to the smallest eigenvalue of a local symmetric matrix. Hence,

8It is noted that this eigenvalue can be negative.
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although we took a detour through SDR and SDP theory, the resulting D-
TLS algorithm eventually can still rely on robust TLS computations, i.e. an
eigenvalue decomposition, and there is no need for computationally expensive
iterative interior-point algorithms, as mostly used to solve SDP’s. Furthermore,
if N � |Nk|, the xi+1

k can be efficiently computed from the previous solution
xi

k by exploiting the rank-1 updates of the Λi
l’s [23, 24]. Similar procedures

can be used to update (or downdate) the Rk matrices when new observations
are included or when old observations are removed (e.g. in adaptive scenarios).

Remark I: The multiplier update (7.52) requires that each node has a unique
index to determine the clk’s, which requires some extra coordination. Further-
more, each node stores a separate N × N multiplier matrix for each different
neighbor. We can eliminate this need by using the substitution

Θi
k =

∑
l∈Lk

clkΛi
l (7.53)

which corresponds to a node-specific variable for node k. Since c2lk = 1 and
clkclq = −1 for link l that connects nodes k and q, we readily find from (7.52)
and (7.53) that

Θi+1
k = Θi

k + µ

|Nk|xi
kx

i T
k −

∑
q∈Nk

xi
qx

i T
q

 (7.54)

where we use |S| to denote the cardinality of the set S. It is noted that each
node now only has to store a single multiplier matrix (instead of multiple Λl’s,
i.e. one for each link). This yields a simplified version of the D-TLS algorithm
where the multiplier update (7.52) is replaced with (7.54) where Θ0

k = ON×N ,
∀ k ∈ J , and where R

i

k is redefined as R
i

k = Rk + Θi
k.

Remark II: It is noted that D-TLS is an adaptive algorithm where each node
performs a similar task. This uniformity and adaptivity guarantees that there
is no single point of failure. This means that the algorithm is self-healing in
case of permanent link or sensor failures, assuming that the network graph
remains connected. If link l between nodes k and q is permanently removed,
both nodes need to remove Λl from (7.51), and the network will still converge
to the solution of (7.34)-(7.35). If node k fails permanently, its neighbors must
remove the Λl from (7.51), ∀ l ∈ L : k ∈ l. The network will then adapt to find
the new solution, i.e. the solution of (7.34)-(7.35) with the k-th term removed
from (7.34). It is noted that the simplified version of the D-TLS algorithm
(see Remark I) does not have this self-healing property, since the Λl’s are
not stored separately9. However, both versions of the algorithm can handle
temporary link failures, as long as none of the links or nodes are permanently
removed. We will demonstrate in section 7.5.7 that the algorithm still performs

9Note that the sum of all Θk’s must be zero at all time.
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well in random graphs, where the links between nodes fail in each iteration with
a certain probability p < 1.

Remark III: We have transformed the original QCQP (7.34)-(7.35) to another
problem (7.44)-(7.46) that has the original solution in its solution set and for
which strong duality holds. However, this does not necessarily imply that
strong duality also holds for (7.34)-(7.35). Nevertheless, strong duality of the
relaxed problem (7.44)-(7.46) is sufficient for convergence of the derived D-
TLS algorithm to the optimal solution of (7.44)-(7.46). This is because the
D-TLS algorithm is essentially DBSA applied10 to (7.44)-(7.46), and not to
(7.34)-(7.35). However, since we select the rank-1 solution out of the solution
set of (7.44)-(7.46), we eventually obtain the solution of the original D-TLS
problem (7.34)-(7.35) or (7.8)-(7.9). It is noted that, when DBSA is applied
to the original QCQP (7.34)-(7.35), this would result in a different algorithm,
which will probably not converge due to a non-zero duality gap. Furthermore,
this algorithm cannot rely on TLS solvers, since linear terms will appear in the
local cost functions due to the linear consensus constraints.

7.4.3 Convergence

The convergence of the D-TLS algorithm follows straightforwardly from the
convergence of the DBSA. For a fixed stepsize µ, we know from Theorem 7.2
that there is at least asymptotic convergence to a neighborhood of the optimal
solution, where the size of this neighborhood shrinks with µ. Furthermore,
from Theorem 7.1, we know that each new iteration of D-TLS gets closer to
the optimal solution if µ satisfies (7.30). In particular, for the case of D-TLS,
we find that (to be compared with (7.30)):

d(λ∗) = λmin

(∑
k∈J

Rk

)
(7.55)

d(λi) =
∑
k∈J

λmin

(
R

i

k

)
(7.56)

‖g(λi)‖22 =
∑
k∈J

∑
q∈Nk,q<k

‖Xi
k −Xi

q‖2F (7.57)

where Xi
k = xi

kx
i T
k . Here, (7.55) follows from strong duality, and (7.56) follows

from (7.50) and (7.51). Expression (7.57) follows from (7.27) and the fact that
D-TLS implicitly solves an SDP with substitution Xi

k = xi
kx

i T
k . Using the fact

that Xi
k = xi

kx
i T
k and ‖xi

k‖2 = 1, ∀ k ∈ J , we obtain

‖Xi
k −Xi

q‖2F = tr
(
(Xi

k −Xi
q)

2
)

10Even though D-TLS eventually solves a QP at each node, the solution of this QP is also
a solution of (7.44)-(7.46) (i.e. the rank-1 solution), hence we implicitly solve (7.44)-(7.46).
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= tr
(
Xi 2

k

)
+ tr

(
Xi 2

q

)
− 2tr

(
Xi

kX
i
q

)
= ‖xi

k‖42 + ‖xi
q‖42 − 2(xi T

k xi
q)

2

= 2− 2(xi T
k xi

q)
2 . (7.58)

Based on Theorem 7.1, this results in the following bound for the stepsize:

0 < µi <
λmin

(∑
k∈J Rk

)
−
∑

k∈J λmin

(
R

i

k

)
|L| −

∑
k∈J

∑
q∈Nk,q<k(xi T

k xi
q)2

. (7.59)

Here, the numerator is equal to the difference between the current value of the
dual function and its optimal value, which reduces to zero if and only if all
xk are equal to the solution of (7.34)-(7.35). The denominator (7.57) is the
squared consensus error summed over all the links of the network. It is noted
that the denominator heavily depends on the number of links |L|, i.e. strongly
connected networks require a smaller µ. However, this does not necessarily
result in slower convergence, since information diffuses much faster over the
network if it is strongly connected (simulations in Section 7.5.3 confirm this).
The numerator, on the other hand, mainly depends on the number of nodes,
i.e. λmin

(∑
k∈J Rk

)
increases when |J | increases (this follows from the fact

that all Rk’s are positive definite).

7.4.4 Choice of Stepsize µ

A small stepsize µ yields a more accurate estimate of the TLS solution, but
generally yields slow convergence. Therefore, it is desirable to adapt µ in each
iteration so that it is close to the upper bound (7.59). This is often not possible
in practice since the nodes usually do not have access to most of the variables in
(7.59). However, the second term of both the numerator and the denominator
are summations over variables that are locally available in different nodes of
the network (in fact, the computation of |L| can also be viewed as the sum of
locally available variables, i.e. |L| = 1

2

∑
k∈J |Nk|). Therefore, these summa-

tions can be iteratively computed by so called ‘consensus averaging’ algorithms
(see e.g. [25]). These procedures compute the average (or sum) of local ob-
servations in an iterative fashion, and this average is then eventually known
to each node. If N is large, this will not significantly increase the required
communication bandwidth that is used by D-TLS. Alternative fast gossip type
algorithms for computing the sum of local quantities can be found in [26]. The
value λmin

(∑
k∈J Rk

)
cannot be computed, and therefore an estimate should

be known a priori (or at least a tight lower bound should be known).

It is noted that the computation of (7.59) becomes less robust when the al-
gorithm closely approximates the optimal solution, since both the numerator
and the denominator then become very small. In this case, there will be large
fluctuations in the stepsizes of subsequent iterations, and extremely large val-
ues may be obtained when the denominator approaches zero. Therefore, it
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is better to use (7.59) in combination with an a priori fixed upper bound, to
avoid instability. An alternative approach is to only use an upper bound for
the denominator instead of the full expression, i.e.

0 < µi <
λmin

(∑
k∈J Rk

)
−
∑

k∈J λmin

(
R

i

k

)
|L|

(7.60)

or the less conservative bound

0 < µi <
λmin

(∑
k∈J Rk

)
−
∑

k∈J λmin

(
R

i

k

)
ε+ |L| −

∑
k∈J

∑
q∈Nk,q<k(xi T

k xi
q)2

(7.61)

with ε > 0.

If there is no knowledge available on any of the variables in (7.59), convergence
to the optimal solution can be guaranteed when a variable stepsize is used that
satisfies [15]:

∞∑
i=1

µi =∞ (7.62)

∞∑
i=1

(µi)2 <∞ . (7.63)

A possible (but conservative) choice is µi = 1
i . However, in tracking applica-

tions, (7.62)-(7.63) cannot be used, and then a fixed stepsize is a better alterna-
tive. The latter requires some parameter tuning, and it introduces a trade-off
between the speed of convergence (or adaptation speed) and the accuracy of
the final solution, as given by Theorem 7.2.

7.5 Simulations

In this section, we provide numerical simulation results that demonstrate the
convergence properties of the D-TLS algorithm. To illustrate the general be-
havior, we show results that are averaged over multiple Monte-Carlo (MC)
runs. In each MC run, the following process is used to generate the network
and the sensor observations (unless stated otherwise):

1. Construct a P -dimensional vector w where the entries are drawn from
a zero-mean normal distribution with unit variance.

2. Create a random11 connected network with J nodes, with 3 neighbors
per node (on average).

11Unless stated otherwise, we start from a random tree to guarantee that the network is
connected. Links are then randomly added until the average number of links per node equals
3.
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3. For each node k ∈ J :
• Construct a 2P × P input data matrix Uk where the entries are

drawn from a zero-mean normal distribution with unit variance.
The matrix Uk is then scaled by a random factor drawn from a
uniform distribution on the unit interval (this models the different
observation SNR at each node).

• Compute dk = Ukw.
• Add zero-mean white Gaussian noise to the entries in Uk and dk,

with a standard deviation of 0.5.

In each experiment, we choose J = 20, N = P +1 = 10, and we run the D-TLS
algorithm for 400 iterations (unless stated otherwise). It is noted that both
algorithms (i.e. D-TLS and its simplified version, as described in Remark I in
section 7.4.2) are exactly equivalent in each of the experiments in the sequel,
except for the experiment in subsection 7.5.7.

To assess the convergence and optimality of the algorithm, we use the error
between the centralized TLS solution and the local estimate, averaged over the
J nodes in the network:

1
|J |

∑
k∈J

‖xk − xTLS‖2 (7.64)

where xTLS is the solution of (7.34)-(7.35).

7.5.1 TLS versus LLS

To motivate the use of D-TLS, we first compare different techniques to estimate
w. The results are given in Fig. 7.1, showing the exact entries of the 9-
dimensional vector w, together with the following estimates:

• The centralized TLS solution.
• The D-TLS solution at node 1 (with fixed stepsize µ = 1).
• The local TLS solution at node 1, without sharing any data with neigh-

boring nodes.
• The centralized LLS solution.

Fig. 7.1 demonstrates that the TLS procedure indeed provides a significantly
better estimate than the LLS procedure, since the latter ignores the fact that
the input data matrix is noisy. Furthermore, it is demonstrated that the solu-
tion of the D-TLS algorithm is very close the centralized TLS solution. A last
observation is that nodes indeed benefit from sharing their data amongst each
other, since only using the data of node 1 yields a very poor TLS estimate.

7.5.2 Influence of Stepsize µ
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Figure 7.1: Comparison of different techniques for the estimation of w.

For the convergence properties of the D-TLS algorithm, we compare the fol-
lowing strategies to choose the stepsize µ:

• Strategy 1: a fixed stepsize µ = 1.
• Strategy 2: an adaptive stepsize, based on upper bound (7.59), but

clipped to always stay smaller than 5.
• Strategy 3: a more conservative adaptive stepsize, based on upper bound

(7.60).

For each strategy, 1000 MC runs are performed, and the mean values (over all
MC runs) of the error curves are shown in Fig. 7.2. The gray-colored areas
cover one standard deviation of the error curves over all MC runs (on both sides
of the mean curve). It is observed that the stepsize based on (7.60) (strategy 3)
has a fast initial convergence, but becomes extremely slow when it gets close to
the optimal solution. This can be explained by the fact that the denominator
is fixed in (7.60), and becomes very large compared to the numerator when
reaching the optimal solution, yielding an extremely conservative stepsize µ.
The fixed stepsize and the adaptive stepsize based on (7.59) (strategies 1 and
2), have a similar convergence speed.

In the next experiment, we use different values for the fixed stepsize. The
results are shown in Fig. 7.3 (the standard deviation of the MC runs is given
for µ = 1 and µ = 2.5). Fig. 7.3 shows that µ = 1 was actually a lucky
guess. Indeed, the convergence of the D-TLS algorithm heavily depends on the
stepsize. The stepsizes that are smaller than 1 all yield slower convergence. For
the stepsizes larger than 1 (µ = 2.5 and µ = 5), convergence becomes a vague
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Figure 7.2: Convergence properties of D-TLS for different strategies in choosing
µ, averaged over 1000 Monte-Carlo runs.

concept, due to the large excess error, i.e. the xi
k’s vary significantly over the

different iterations (this causes the large standard deviation in the experiments
with µ = 2.5). The adaptive stepsize based on (7.59) seems to provide a good
convergence speed when prior tuning of the stepsize is not possible, as it is
almost identical to the µ = 1 experiment (compare with Fig. 7.2).

7.5.3 Influence of Connectivity of the Network Graph

In this experiment, we investigate the influence of the connectivity of the net-
work, where the number of nodes is fixed to J = 20. Two extremes are
of interest: a network with a ring topology (i.e. each node has 2 neigh-
bors) and a fully connected network (i.e. each node has J − 1 neighbors).
We also investigate networks in between those extremes, by adding links be-
tween random node pairs. In particular, we simulated (random) networks with
|L| ∈ {20, 25, . . . , 40, 50, . . . , 100, 190}.

200 MC runs are performed for each type of network (the links are chosen dif-
ferently in each run). The stepsize is fixed, but depends on the number of links,
i.e. µ = 10

|L| , inspired by expression (7.60), as the denominator increases linearly
with the number of links. The results are shown in Fig. 7.4. Not surprisingly,
it is observed that increasing the number of links increases the convergence
speed, even though a smaller µ is used. However, this effect becomes less sig-
nificant for large |L|. In the case of a ring topology, the convergence speed can
be greatly improved by only adding a few extra links.
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Figure 7.3: Convergence properties of D-TLS for different values of the fixed
stepsize µ, averaged over 1000 Monte-Carlo runs.
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Figure 7.4: Convergence properties of D-TLS for different degrees of connec-
tivity, averaged over 200 Monte-Carlo runs.
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Figure 7.5: Convergence properties of D-TLS for different dimensions N , aver-
aged over 100 Monte-Carlo runs.

7.5.4 Influence of Dimension N

In this experiment, we increase the dimension N of the vector x. When N
is large, the ratio between the smallest and second smallest eigenvalue of the
matrix Rk might be close to one, especially at nodes with very low SNR. This
makes the eigenvalue problem in step 2 of the D-TLS algorithm ill-conditioned,
which may affect the stability or the convergence time of the D-TLS algo-
rithm12. Therefore, the input data matrix U is not scaled with a random
variable in this experiment, to avoid nodes with very low SNR.

In particular, we simulated 100 MC runs for each value ofN ∈ {10, 20, . . . , 100}.
The stepsize is fixed, but depends on the dimension N , i.e. µ = N

10 , inspired
by expression (7.60), as the numerator increases linearly with N . The results13

are shown in Fig. 7.5. It is observed that the value of N significantly influences
the convergence speed of the algorithm.

7.5.5 Influence of Size of the Network

In this experiment, we increase the number of nodes J , but the average links
per node remains fixed to 3. We simulated 100 MC runs for a network with

12In practice, low SNR nodes should therefore be removed from the network when using
D-TLS for high-dimensional regression problems.

13The reason why the variance over the different MC runs is smaller than in previous
experiments, is the fact that the SNR is equal in every node and in every MC run.
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Figure 7.6: Convergence properties of D-TLS for different sizes of the network,
averaged over 100 Monte-Carlo runs.

J ∈ {20, 100, 700} nodes, and with the stepsize fixed to µ = 1. The result is
shown in Fig. 7.6. It is observed that the size of the network has almost no
influence on the convergence speed.

7.5.6 Random Graphs

In this experiment, each link can fail in each iteration, with a certain probability
p. This models packet loss in the communication between nodes. Basically, this
means that Nk in (7.54) changes with the iteration index i. We simulated 200
MC runs for each value of p ∈ {0, 0.1, 0.2, . . . , 0.9}. The results are shown in
Fig. 7.7 for a fixed stepsize µ = 1. It is observed that the algorithm still
performs pretty well under significant packet loss. However, high packet loss
significantly decreases convergence speed, especially when close to the optimal
solution.

7.5.7 Self-Healing Property

In this experiment, we demonstrate the self-healing property of the D-TLS
algorithm, i.e. it’s capability to adapt to permanent changes in the network
topology. Notice that this is different from the previous experiment with ran-
dom graphs, where each link is active in an infinite number of iterations. Here,
we demonstrate that the algorithm can recover the optimal TLS solution when
nodes are permanently removed from the network. It is noted that the simpli-
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Figure 7.7: Convergence properties of D-TLS for random network graphs with
different link failure probabilities, averaged over 200 Monte-Carlo runs.

fied algorithm, as described in Remark I at the end of section 7.4.2, does not
have this self-healing property.

In the experiment, 2 random nodes are permanently removed14 after 800 itera-
tions, and another 2 after 1600 iterations. When these nodes are removed, the
topology of the network changes significantly since many links disappear, and
also the centralized TLS solution changes since two terms in the cost function
(7.34) are removed. The Λl’s corresponding to the disappearing links l are re-
moved from the expressions (7.51) and (7.52). The result is shown in Fig. 7.8
for a fixed stepsize µ = 1, and a single run. After every 800 iterations, the error
increases significantly, but the algorithm swiftly recovers from the changes in
the network.

7.6 Conclusions

In this paper, we have considered the total least squares (TLS) problem in
an ad hoc wireless sensor network, where each node collects observations that
yield a node-specific subset of linear equations. We have derived a distributed
TLS (D-TLS) algorithm that computes the centralized TLS solution of the full
set of equations in a distributed fashion, without gathering the data in a fusion
center. To facilitate the use of the dual based subgradient algorithm (DBSA),

14Nodes can only be removed if the network graph remains connected after the removal.
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Figure 7.8: Self-healing property of the D-TLS algorithms after removal of
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we have transformed the TLS problem to an equivalent convex semidefinite
program (SDP) that satisfies the convergence conditions of DBSA, and yields
the same solution as in the original problem. Even though we have made a
detour through SDR and SDP theory, the resulting D-TLS algorithm relies on
solving local TLS-like problems at each node, rather than on computationally
expensive SDP optimization techniques. The algorithm is flexible and fully
distributed, i.e. it does not make any assumptions on the network topology and
nodes only share data with their direct neighbors through local broadcasts. Due
to the flexibility and the uniformity of the network, there is no single point of
failure, which makes the algorithm robust to sensor failures. We have provided
Monte-Carlo simulation that demonstrate the effectiveness of the algorithm.
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Abstract

We study the problem of distributed least-squares estimation over ad hoc adap-
tive networks, where the nodes have a common objective to estimate and track
a parameter vector. We consider the case where there is stationary additive
colored noise on both the regressors and the output response, which results in
a bias on the local least-squares estimates. Assuming that the noise covariance
can be estimated (or is known a priori), we first propose a bias-compensated
recursive least-squares algorithm. However, this bias compensation increases
the variance of the local estimates, and errors in the noise covariance estimates
may still result in a residual bias. We demonstrate that the variance and the
residual bias can then be significantly reduced by applying diffusion adaptation,
i.e. by letting nodes combine their local estimates with those of their neighbors.
We derive a necessary and sufficient condition for mean-square stability of the
algorithm, under some mild assumptions. Furthermore, we derive closed-form
expressions for its steady-state mean and mean-square performance. Simula-
tion results are provided, which agree well with the theoretical results. We also
consider some special cases where the mean-square stability improvement of
diffusion BC-RLS over BC-RLS can be mathematically verified.

8.1 Introduction

We study the problem of distributed least-squares estimation over ad hoc adap-
tive networks, where the nodes collaborate to pursue a common objective,
namely, to estimate and track a common deterministic parameter vector. We
consider the case where there is stationary additive colored noise on both the
regressors and the output response, which results in a bias on the local least-
squares estimates. This is for example a common problem in the analysis of
auto-regressive (AR) processes such as speech. If this bias is significant and
undesired, traditional adaptive methods, such as least mean squares (LMS) or
recursive least squares (RLS), are not effective.

For the white noise case, many methods have been developed that yield unbi-
ased estimates, some of which require prior knowledge of the noise variance. A
popular method is total least squares (TLS) estimation. Several adaptive TLS
algorithms have been proposed, e.g., recursive TLS [1], total least-mean squares
(TLMS) [2], and a distributed TLS method for ad hoc networks [3]. Under the
additional assumption that the noise-free regressors are also white, the modified
least-mean squares (MLMS) [4] and modified recursive least squares (MRLS) [5]
algorithm have been proposed. Another important class of algorithms are based
on the bias compensation principle [6], where the idea is to subtract an estimate
of the asymptotic bias from the least squares estimates [7–9].
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In this paper, we consider the case where the regressor noise may be colored
and correlated with the noise on the output response. We also rely on the
bias compensation principle, and we assume that we have a good estimate of
the noise covariance1. A bias-compensated recursive least-squares (BC-RLS)
algorithm is then proposed, based on an exponentially weighted least-squares
estimation problem. The latter allows to track the parameter vector when it
changes over time, by putting less weight on older samples in the estimation.

It is a common observation in estimation theory that any attempt to reduce a
bias usually results in an increased variance of the estimate. This is also the
case with the proposed BC-RLS algorithm. However, recent developments in
adaptive filtering have demonstrated that it is possible to significantly reduce
the variance by letting multiple nodes cooperate [10–16]. In this paper, we rely
on the idea of diffusion adaptation [10–13, 16], where nodes combine their local
estimates with the estimates of the nodes in their neighborhoods. It is known
that diffusion adaptation usually results in a smaller mean square deviation2

(MSD) at each node, without increasing the bias. Diffusion adaptation has been
successfully applied to the LMS algorithm [10–12], and to the RLS algorithm
[13]. In this paper, we apply diffusion to the BC-RLS algorithm, which we refer
to as diffusion BC-RLS (diffBC-RLS). Simulations demonstrate that diffusion
indeed reduces the MSD of the algorithm, and furthermore, that it reduces the
residual bias resulting from possible errors in the noise covariance estimates.

The main contribution of this paper is the derivation of the diffusion BC-
RLS algorithm, as well as the study of the steady-state performance, both for
the diffusion BC-RLS and for the undiffused BC-RLS algorithms. Under some
assumptions that are common in the adaptive filtering literature, we will derive
a necessary and sufficient condition for the mean-square stability of (diff)BC-
RLS. For some special cases, it can be mathematically verified that diffusion
improves the mean-square stability of algorithm. This has also been observed
in [11] for the case of diffusion LMS, i.e., cooperation has a stabilizing effect.
We also derive a closed-form expression for the residual bias and the MSD
in (diff)BC-RLS. The final results of this theoretical analysis have been listed
in [17], but without derivations. In this paper, we provide full derivations and
we add more details and discussion.

The outline of the paper is as follows. In Section 8.2, we formally define the
estimation problem, and we introduce the BC-RLS algorithm. We then define
the diffusion BC-RLS algorithm in Section 8.3. We analyze the diffBC-RLS
algorithm (the undiffused BC-RLS algorithm is a special case) in terms of its
mean and mean-square performance in Section 8.4. In Section 8.5, we con-

1For example, in speech analysis, this can be estimated during silent periods in between
words and sentences.

2In the sequel, we will focus on the mean square deviation of the estimate instead of
its variance, since the former is usually used to assess the mean-square performance of an
adaptive filtering algorithm.
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sider some special cases where some extra theoretical results can be obtained.
Simulation results are presented in Section 8.6, and conclusions are drawn in
Section 8.7.

Notation

In this paper, we use boldface letters for random quantities and normal font
for non-random (deterministic) quantities or samples of random quantities. We
use capital letters for matrices and small letters for vectors. The superscript H
denotes complex-conjugate transposition. The index i is used to denote time
instants, and the index k is used to denote different nodes in a network with
N nodes, defining the set of nodes J . We use E{x} to denote the expected
value of a random quantity x.

8.2 Least Squares Estimation with Bias Com-
pensation

8.2.1 Problem Statement

Consider an ad hoc sensor network with N nodes (the set of nodes is denoted by
J ). The objective for each node is to estimate a common deterministic M × 1
parameter vector wo. At every time instant i, node k collects a measurement
dk(i) (referred to as the ‘output response’) that is assumed to be related to the
unknown vector wo by

dk(i) = uk,iw
o + vk(i) (8.1)

where the regressor uk,i is a sample of an 1 ×M stochastic row vector3 uk,i,
and vk(i) is a sample of a zero-mean stationary noise process vk with variance
σ2

vk
. In [11–15], it was assumed that node k also has access to the regressors

{uk,i}. Here, we assume that node k observes noisy regressors {uk,i}, given by

uk,i = uk,i + nk,i (8.2)

with the 1×M vector nk,i denoting a sample of a zero-mean stationary noise
process nk with covariance matrix Rnk

= E{nH
k nk}. We assume that nk is

uncorrelated with the regressors uk,i, and that nk and vk are correlated4 ,
yielding a non-zero covariance vector rnkvk

= E{nH
k vk}.

3We adopt the notation of [18], i.e., the regressors are defined as row vectors, rather than
column vectors.

4For example, this may be the case for the estimation of the prediction coefficients of an
auto-regressive (AR) process where the data is corrupted by additive colored noise, e.g., in
the analysis of speech signals.



278 Chapter 8. Diffusion Bias-Compensated RLS

The local least squares (LS) estimate of wo at node k at time instant i, based
on the noisy regressors, is the solution of the optimization problem

ŵk,i = arg min
w

i∑
j=1

(dk(j)− uk,jw)2 + δ‖w‖22 (8.3)

where δ is a small positive number that serves as a regularization parameter.
The solution of (8.3) is given by

ŵk,i = R̂−1
uk,ir̂ukdk,i (8.4)

where

R̂uk,i =
1

i+ 1

 i∑
j=1

uH
k,juk,j + δIM

 (8.5)

r̂ukdk,i =
1

i+ 1

i∑
j=1

uH
k,jdk(j) (8.6)

and where IM denotes the M ×M identity matrix. The normalization with
1/(i+ 1) does not have an influence on ŵk,i, but its purpose will become clear
in Section 8.2.2. Since we use noisy regressors, the LS estimate has a bias. In
the case of stationary and ergodic data, it can be verified that

wLS
k = wo +R−1

uk
rnkvk

−R−1
uk
Rnk

wo . (8.7)

where wLS
k = limi→∞ ŵk,i = R−1

uk
rukdk

with Ruk
= E{uH

k,iuk,i} and rukdk
=

E{uH
k,idk(i)}, for all i ∈ N, where uk,i and dk(i) are defined as the stochastic

processes that generate the samples uk,i and dk(i) defined in (8.2) and (8.1),
respectively. It is noted that wLS

k is in fact a minimum mean-square error
estimate (MMSE), but we keep the superscript LS to emphasize that it is a
limit case of the LS estimate (8.4). Let wb

k = wLS
k − wo, then the bias wb

k of
the MMSE estimate wLS

k is equal to

wb
k = R−1

uk
(rnkvk

−Rnk
wo) (8.8)

8.2.2 Bias-Compensated Least Squares (BC-LS)

Several BC-LS algorithms have been proposed for the white noise case (Rnk
=

σ2
nk
IM ), which are asymptotically unbiased when the number of observations

goes to infinity [7–9]. All these BC-LS algorithms are based on the bias com-
pensation principle [6], i.e., if the asymptotic bias wb

k can be estimated, it
can be subtracted from the LS estimate ŵk,i to obtain the unbiased estimate
(generalized here to incorporate colored noise and mutually correlated noise):

ψk,i
∆= ŵk,i + R̂−1

uk,i

(
R̂nk

wo − r̂nkvk

)
(8.9)
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where r̂nkvk
and R̂nk

are estimates of rnkvk
and Rnk

, respectively. It is assumed
that good estimates r̂nkvk

and R̂nk
are available. In the case of white noise,

these estimates can be computed blindly during operation of the algorithm
[7–9].

Since wo is unknown in (8.9), it has to be replaced with an estimate. The
common approach is then to use ψk,i−1 as an estimate for wo in (8.9). We then
obtain the recursive algorithm

ψk,i = ŵk,i + R̂−1
uk,i

(
R̂nk

ψk,i−1 − r̂nkvk

)
. (8.10)

8.2.3 Bias-Compensated Recursive Least Squares (BC-
RLS)

The BCLS algorithm can be modified so that it fits into an adaptive filtering
context, where also exponential weighting can be incorporated (for tracking
purposes). The exponentially-weighted LS estimate (at node k) solves the
optimization problem

ŵk,i = arg min
w

i∑
j=1

λi−j (dk(j)− uk,jw)2 + λiδ‖w‖22 (8.11)

where 0 � λ ≤ 1 is a forgetting factor, putting more weight on more recent
observations. The solution of this problem is again given by (8.4), but the
estimates R̂uk,i and r̂ukdk,i are now redefined as

R̂uk,i =
i∑

j=1

λi−juH
k,juk,j + δIM (8.12)

r̂ukdk,i =
i∑

j=1

λi−juH
k,jdk(j) . (8.13)

It is noted that the effective window length is equal to 1
1−λ =

∑∞
j=0 λ

j , and
since there is no normalization for the window length, R̂uk,i and r̂ukdk,i can be
considered to be estimates of 1

1−λRuk
and 1

1−λrukdk
, respectively [18]. From

now on, ŵk,i refers to the solution of the exponentially weighted LS problem
(8.11) and not to the solution of the unweighted LS problem (8.3), and the
same holds for R̂uk,i and r̂ukdk,i,now defined by (8.12)-(8.13). In Section 8.4,
we will show that, under certain assumptions, (8.11) is an unbiased estimate
of the local MMSE solution at node k, i.e., wLS

k .

The solution of (8.11) is recursively computed by means of the recursive least
squares (RLS) algorithm [18]:

Pk,i = λ−1

(
Pk,i−1 −

λ−1Pk,i−1u
H
k,iuk,iPk,i−1

1 + λ−1uk,iPk,i−1uH
k,i

)
(8.14)
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ŵk,i = ŵk,i−1 + Pk,iu
H
k,i (dk(i)− uk,iŵk,i−1) (8.15)

with ŵk,0 = 0 and Pk,0 = δ−1IM . At every time instant i, the matrix Pk,i is
equal to R̂−1

uk,i as defined in (8.12).

Using this construction, (8.10) is transformed into the recursion

ψk,i = ŵk,i +
1

1− λ
Pk,i

(
R̂nk

ψk,i−1 − r̂nkvk

)
. (8.16)

The factor 1
1−λ scales R̂nk

and r̂nkvk
to match with the effective window length

in (8.12)-(8.13). We will refer to the above algorithm as bias-compensated
RLS (BC-RLS). It is noted that (8.16) reduces to the BC-LS recursion (8.10)
if λ = 1 and if the scaling factor 1

1−λ in (8.16) is omitted. We do not provide a
convergence analysis of BC-RLS here, since it is a special case of the diffusion
BC-RLS algorithm described in the sequel, in particular when cooperation is
turned off.

8.3 Diffusion BC-RLS

In a sensor network, each node k has its own node-specific BC-RLS estimate
of wo, denoted by ψk,i. It is often observed in estimation theory that bias
removal introduces a larger variance and vice versa (see, e.g., [19]). This also
often holds in the case of BC-RLS, since the bias compensation usually increases
the variance or MSD of the estimates in each node due to the addition of the
extra term . It is to be expected that the spatial average of all the ψk,i’s
provides a better estimate for wo, with a smaller MSD. This average could in
principle be computed in a distributed fashion by iterative consensus averaging
algorithms [20]. The main idea of these algorithms is to collect the estimates
{ψl,i} from the neighbors of node k at time i and to iterate over them repeatedly
by computing a weighted average, i.e.,

1. Initialize j ← 0 and ψ0
l,i = ψl,i.

2. Compute a weighted average

ψj+1
k,i =

∑
l∈Nk

aklψ
j
l,i (8.17)

3. j ← j + 1
4. Return to step 2.
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Here, Nk denotes the set of neighboring nodes of node k (node k included),
and akl is the entry in row k and column l of an N ×N combiner matrix5 A,
where A satisfies

A1 = 1 (8.18)

with 1 = [1 . . . 1]H and where akl = 0 if l /∈ Nk. The matrix A can be any right-
stochastic matrix, but with some constraints due to the network topology. After
convergence, the result of (8.17) becomes the actual estimate ψk,i for node k at
time i. Thus, observe that at every time instant i, multiple consensus iterations
need to be applied to the data {ψl,i} to approximate their mean and obtain an
improved ψk,i.

Applying consensus averaging in the case of BC-RLS would therefore require
a 2-step approach involving two time-scales: one over i and another over j, in
between successive i’s. First, the nodes estimate a local ψk,i based on (8.16),
after which an average consensus algorithm is started to iteratively compute

ψk,i =
1
N

N∑
l=1

ψl,i (8.19)

at each node k ∈ J . This two-step approach is impractical in real-time sys-
tems with large sampling rates since the consensus averaging requires multiple
iterations over j for every single iteration i, resulting in a large amount of com-
munication bandwidth and processing power. By applying diffusion strategies
instead (see, e.g., [11, 12]), the iterations of the consensus averaging are merged
with those of the BC-RLS algorithm, i.e., the consensus averaging is cut off af-
ter a single iteration over j. As a result, only one iteration index remains, and
the computational complexity and communication bandwidth are significantly
reduced while the network is endowed with improved learning and tracking
abilities. The following table summarizes the diffusion BC-RLS (diffBC-RLS)
algorithm that would result from a diffusion strategy. Observe how the left-
hand side of (8.23) is a new variable wk,i, which then enters into the update
(8.22). In contrast, in a consensus implementation (apart from the second
time-scale), the variables that appear on both sides of (8.17) are the same ψ
variables. In (8.22)-(8.23), a filtering operation is embedded into (8.22) to map
wk,i−1 to ψk,i at each node and all ψl,i are then combined into wk,i in (8.23).

5This combiner matrix has to satisfy some constraints to let the consensus averaging
algorithm converge [20]. However, since the diffusion BC-RLS algorithm, as derived in the
sequel, does not require these constraints, we omit them here.
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Diffusion BC-RLS algorithm

Start with wk,0 = 0, ŵk,0 = 0 and Pk,0 = δ−1IM for each node k ∈ J .
For every time instant i > 0, repeat

1. RLS update: for every node k ∈ J , repeat

Pk,i = λ−1

(
Pk,i−1 −

λ−1Pk,i−1u
H
k,iuk,iPk,i−1

1 + λ−1uk,iPk,i−1uH
k,i

)
(8.20)

ŵk,i = ŵk,i−1 + Pk,iu
H
k,i (dk(i)− uk,iŵk,i−1) . (8.21)

2. Bias correction update: for every node k ∈ J , repeat

ψk,i = ŵk,i +
1

1− λ
Pk,i

(
R̂nk

wk,i−1 − r̂nkvk

)
. (8.22)

3. Spatial update: for every node k ∈ J , repeat

wk,i =
∑
l∈Nk

aklψl,i (8.23)

Remark : It is noted that the RLS update (8.20)-(8.21) in node k is spatially
isolated, i.e., it does not involve cooperation between the nodes. One may be
tempted to also apply diffusion to the RLS estimates, based on the diffusion
RLS algorithm in [13]. However, applying diffusion on (8.20)-(8.21) will change
the local bias in each node, i.e., the local bias at node k will not satisfy (8.8)
anymore. Since the bias compensation (8.22) is based on (8.8), and only relies
on local statistics, it will not match with the actual bias. Therefore, diffusion
of the RLS estimates in combination with the bias compensation (8.22) is only
possible when an invariant spatial profile can be assumed, such that the bias
(8.8) is the same in each node. Furthermore, the MSD of the RLS estimates
ŵk,i is often negligible compared to the MSD of the BC-RLS estimates in
(8.16). Therefore, even when an invariant spatial profile can be assumed, there
is usually only a marginal performance gain which does not outweigh the cost
of doubling the communication load.

8.4 Analysis

In this section, we analyze the steady-state performance of the diffBC-RLS
algorithm described in Section 8.3. First, we provide a closed-form expression
for the bias if there are estimation errors in R̂nk

and r̂nkvk
(under some standard
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ergodicity assumptions). Secondly, if R̂nk
= Rnk

and r̂nkvk
= rnkvk

, we show
that the diffBC-RLS algorithm is asymptotically unbiased and we provide a
closed-form expression for the mean-square deviation (MSD), i.e.

MSDk = E{‖w̃k,i‖2} (8.24)

where
w̃k,i = wo − wk,i . (8.25)

It is noted that all results of the analysis of diffBC-RLS also apply to the
undiffused BC-RLS algorithm (8.16), by choosing the combiner matrix A equal
to the identity matrix.

8.4.1 Data Model

The performance analysis of adaptive filters is rather challenging [18, 21, 22],
and it is common to adopt some simplifying assumptions to gain insight in the
properties of these algorithms. For the analysis of the diffBC-RLS algorithm,
we will introduce some assumptions that are similar to what is traditionally
used in the adaptive filtering literature. Simulations show that the theoretical
results that are obtained under these assumptions match well with the true
performance of the algorithm, for forgetting factors λ that are close to unity
and for stationary data.

Assumption 1 : The regressors uk,i and the additive noise components nk,i

are both zero-mean and temporally independent. Furthermore, the covariance
matrix Ruk,i

= E{uH
k,iuk,i} is time-invariant, i.e., Ruk,i

= Ruk
, ∀ i ∈ N. We

will therefore often omit the index i in the sequel, when referring to random
processes.

It is noted that this assumption also implies that the same conditions hold for
the noisy regressors uk,i, i.e. Ruk,i

= Ruk
, ∀ i ∈ N. Furthermore, since the

stochastic processes uk and nk are assumed to be uncorrelated, we find that

Ruk
= Ruk

+Rnk
. (8.26)

Assumption 2 : All data is spatially uncorrelated, i.e., for k 6= l : E{uH
k ul} =

0, E{uH
k ul} = 0, E{n∗knl} = 0, E{v∗kvl} = 0, E{v∗knl} = 0 and E{uH

k dl} = 0.

Since we only perform a steady-state analysis of the algorithm, we will consider
the steady-state behavior of the matrix Pk,i. As i → ∞, we find from (8.12),
and the fact that P−1

k,i = R̂uk,i, that

lim
i→∞

E{P−1
k,i } =

1
1− λ

Ruk
, P−1

k . (8.27)
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The following two assumptions are made to make the analysis of diffBC-RLS
tractable, and both of them are common in the analysis of RLS-type algorithms
(see for example [18]).

Assumption 3 : ∃ i0 such that for all i > i0, Pk,i and P−1
k,i can be replaced

with their expected values, i.e. ∃ i0, such that for all i > i0 :

Pk,i ≈ E{Pk,i} (8.28)

P−1
k,i ≈ E{P

−1
k,i } . (8.29)

Assumption 4 : ∃ i0 such that for all i > i0 :

E{Pk,i} ≈ E{P−1
k,i }

−1 = Pk = (1− λ)R−1
uk

. (8.30)

The last assumption is a coarse approximation, since the expected values
E{P−1

k,i } and E{Pk,i} do not necessarily share the same inverse relation as
their arguments. However, for λ close to unity and a not too large condition
number for Ruk

, this is a good approximation [13, 18]. However, even in cases
where this approximation is not very good, the formulas that are derived in
the analysis are still useful to analyze the influence of different parameters, i.e.,
they usually reflect the correct trends when parameters are varied.

Remark I : Assumption 3 removes some temporal variations in the algo-
rithm, which usually results in an underestimate of the MSD. Assumption
4 increases this effect even more. This can be intuitively explained as follows.
Assume that we can approximate the stochastic matrix Pk,i with the model
Pk,i = Qk,iΛk,iQ

H
k,i, where Λk,i is a stochastic diagonal matrix, and Qk,i a de-

terministic unitary matrix. In this case E{Pk,i} = Qk,iE{Λk,i}QH
k,i. By using

Jensen’s inequality, we know that for any positive diagonal matrix Σ

E{Σ−1} ≥ E{Σ}−1 (8.31)

(this is an elementwise inequality). By substituting Σ = Λ−1
k,i , we find that

E{Λk,i} ≥ E{Λ−1
k,i}
−1 . (8.32)

As a consequence, the norm of E{Pk,i} will be larger than the norm of E{P−1
k,i }−1.

Hence, when using approximation (8.30), we replace E{Pk,i} with a matrix that
has a smaller norm. This usually results in an underestimate of the MSD.

Remark II : For notational convenience, we will replace the approximate
equality signs ‘≈’ in (8.28)-(8.30) with strict equality signs ‘=’ in the sequel.

8.4.2 Mean Performance
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In this subsection, we analyze the steady-state mean performance of the diffBC-
RLS algorithm, i.e., we derive a closed-form expression for E{w̃k,i} when i goes
to infinity. In this analysis, we incorporate possible estimation errors on the
noise covariances, i.e.,

R̂nk
= Rnk

+ ∆Rnk
(8.33)

r̂nkvk
= rnkvk

+ ∆rnkvk
. (8.34)

We will first derive an expression for the asymptotic bias of the RLS estimate
ŵk,i. Similar to (8.25), we define w̌k,i = wo− ŵk,i. With (8.21), we readily find
that

w̌k,i = w̌k,i−1 − Pk,iu
H
k,i (dk(i)− uk,iŵk,i−1) . (8.35)

Substituting (8.1) and (8.2) into (8.35), we obtain

w̌k,i = w̌k,i−1−Pk,iu
H
k,iuk,iw

o−Pk,in
H
k,iuk,iw

o−Pk,iu
H
k,ivk(i)+Pk,iu

H
k,iuk,iŵk,i−1 .

(8.36)
Taking the expectation of both sides, and using (8.26), (8.28)-(8.30), we find
that for sufficiently large i

E{w̌k,i} = E{w̌k,i−1}−Pk(Ruk
−Rnk

)wo−Pkrnkvk
+(1−λ)E{ŵk,i−1} . (8.37)

Again using (8.30), we obtain

E{w̌k,i} = λE{w̌k,i−1}+ Pk(Rnk
wo − rnkvk

) . (8.38)

Expanding the recursion in (8.38), we find that

E{w̌k,i} = λi−i0E{w̌k,i0}+
i−1∑
j=i0

λj−i0Pk(Rnk
wo − rnkvk

) (8.39)

where i0 is chosen such that Assumptions 3 and 4 remain valid. Letting i go
to infinity, we obtain

lim
i→∞

E{w̌k,i} =
1

1− λ
Pk(Rnk

wo − rnkvk
) . (8.40)

Not surprisingly, we find that the asymptotic bias of the exponentially weighted
RLS algorithm is equal to the asymptotic bias (8.8) of the unweighted least-
squares estimate.

Let us now introduce some notation that is required to describe the diffusion
process of diffBC-RLS, based on stacked variables from all nodes. Let

wi = col{w1,i, . . . , wN,i} (MN × 1)
ŵi = col{ŵ1,i, . . . , ŵN,i} (MN × 1)
rnv = col{rn1v1 , . . . , rnN vN

} (MN × 1)
wo = 1⊗ wo (MN × 1)
A = A⊗ IM (MN ×MN)
Pi = blockdiag{P1,i, . . . , PN,i} (MN ×MN)
Rn = blockdiag{Rn1 , . . . , RnN

} (MN ×MN)
Ru = blockdiag{Ru1 , . . . , RuN

} (MN ×MN)
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where col{.} denotes a stacked column vector, ⊗ denotes a Kronecker product
and blockdiag{.} denotes a block-diagonal matrix. All the derived quantities
(such as w̃i, R̂n, etc.) have a similar notation for the stacked case, but are
omitted for conciseness. Using this notation, and by combining (8.22) and
(8.23), the recursion of the diffusion RLS algorithm can now be written as

wi = A
(

ŵi +
1

1− λ
Pi(R̂nwi−1 − r̂nv)

)
. (8.41)

Subtracting (8.41) from wo, and using the fact that wo = Awo, yields

w̃i = A
(

w̌i −
1

1− λ
Pi(R̂nwi−1 − r̂nv)

)
. (8.42)

Taking the expectation of both sides, and using (8.33), (8.34) and (8.40), we
obtain (for i→∞):

E{w̃i} =
1

1− λ
APRnE{w̃i−1} −

1
1− λ

AP (∆RnE{wi−1} −∆rnv)

=
1

1− λ
APRnE{w̃i−1}

− 1
1− λ

AP (∆RnE{wi−1} −∆rnv + ∆Rnwo −∆Rnwo)

=
1

1− λ
APR̂nE{w̃i−1} −

1
1− λ

AP (∆Rnwo −∆rnv) . (8.43)

Notice that, in the last step, we incorporate the term with ∆Rn into the first
term, such that Rn is transformed into R̂n. Expanding the recursion (8.43),
and using P = (1− λ)R−1

u (Assumption 4), we find that

E{w̃i} =
(
AR−1

u R̂n

)i−i0
E{w̃i0}

−

 i−1∑
j=i0

(
AR−1

u R̂n

)j−i0

AR−1
u (∆Rnwo −∆rnv) (8.44)

where i0 is chosen such that Assumptions 3 and 4 remain valid. From this
equation, it is observed that stability in the mean6 of the diffBC-RLS algorithm
is obtained if and only if

ρ
(
AR−1

u R̂n

)
< 1 (8.45)

where ρ(X) denotes the spectral radius of the matrix X, i.e., the magnitude of
the eigenvalue of X with largest absolute value. Indeed, if this spectral radius is
strictly smaller than 1, the first term vanishes when i→∞ and the summation

6In Subsection 8.4.3, we will show that condition (8.45) for stability in the mean also
implies mean-square stability of the diffBC-RLS algorithm.
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in the second term converges. The latter follows from the Taylor expansion of
a matrix (IM −X)−1 for any M ×M matrix X satisfying ρ(X) < 1, which is
given by

(IM −X)−1 =
∞∑

j=0

Xj . (8.46)

Therefore, if (8.45) holds, it follows that the asymptotic bias of the diffBC-RLS
estimates is equal to

E{w̃i} =
(
IMN −AR−1

u R̂n

)−1

AR−1
u (∆rnv −∆Rnwo). (8.47)

A first important observation is that the estimate is asymptotically unbiased
if ∆Rn = 0 and ∆rnv = 0, i.e., if there is perfect knowledge of the noise
covariance. The smaller the error in R̂n and r̂nv, the smaller the resulting bias.

Note that setting A = IMN yields the bias of the undiffused BC-RLS esti-
mates (8.16). It is not possible to make general statements whether diffusion
(A 6= IMN ) will decrease the bias of the estimates, since this depends on the
space-time data statistics (represented by R−1

u R̂n) and the network topology
(represented by A). This also holds for the stability condition (8.45). However,
since A has a unity spectral radius, it often has a ‘non-expanding’ effect, and
therefore improves the stability (i.e. the spectral radius in (8.45) decreases).
For some particular cases, it can be mathematically verified that the stabil-
ity indeed increases, and we refer to section 8.5 for some examples. If the
stability increases, this often yields a smaller bias. To see this, observe that
ρ
(
AR−1

u R̂n

)
≤ ρ

(
R−1

u R̂n

)
implies that

ρ

((
IMN −AR−1

u R̂n

)−1
)
≤ ρ

((
IMN −R−1

u R̂n

)−1
)
. (8.48)

This implies that a mapping based on the lefthand side of (8.48) is ‘more
contractive’ or ‘less expanding’ than the mapping on the righthand side (cor-
responding to the undiffused case). Therefore, the bias given in (8.47) with
A 6= IMN is often (but not necessarily) smaller than with A = IMN . Note
that, if diffusion is applied, there is an additional effect, namely an averaging
operator A applied to the error vector R−1

u (∆rnv −∆Rnwo). If the combiner
matrix A is symmetric, this is a non-expanding mapping, i.e. ‖Ax‖ ≤ ‖x‖ for
all x.

Remark: It is noted that one has to be careful when using the stability condi-
tion (8.45), as it is derived based on Assumption 4. For small values of λ, this
assumption is not satisfied, and the algorithm may become unstable, even if
(8.45) holds. Decreasing λ is observed to make the algorithm less stable, since
the true matrix Pk,i has a larger norm than R−1

uk,i due to Jensens inequality
(see Remark I in subsection 8.4.1).
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8.4.3 Mean-Square Performance

In this subsection, we analyze the steady-state mean-square performance7 of
the diffBC-RLS algorithm, i.e., we derive a closed-form expression for MSDk =
E{‖w̃k,i‖2} when i goes to infinity. To make the analysis tractable, we assume
that ∆Rn = 0 and ∆rnv = 0.

Let
wLS = col{wLS

1 , . . . , wLS
N } (MN × 1) (8.49)

where wLS
k is the MMSE estimate in node k, defined in (8.7). From (8.7), we

find that
wo = Awo = A

(
wLS −R−1

u rnv +R−1
u Rnwo

)
. (8.50)

Subtracting wi from both sides in (8.50), and substituting the diffBC-RLS
recursion (8.22)-(8.23), we obtain (with Pi = P = (1 − λ)R−1

u (Assumption
4)):

w̃i = Ami +AR−1
u Rnw̃i−1 (8.51)

where
mi , wLS − ŵi . (8.52)

By expanding the recursion (8.51), we find that

w̃i =
i∑

j=i0

(
AR−1

u Rn

)i−j Amj +
(
AR−1

u Rn

)i−i0 w̃i0 (8.53)

where i0 is chosen such that Assumptions 3 and 4 remain valid. If the stability
condition (8.45) is satisfied, the second term in (8.53) vanishes when i → ∞,
so we will omit it in the sequel. For the sake of an easy exposition, we will
set i0 = 0, which does not affect the righthand side of (8.53) for i → ∞,
and if (8.45) holds. Using the notation ‖x‖2Σ = xHΣx, we find the following
expression for the MSD of node k (in steady-state):

MSDk = E{‖w̃i‖2Ek
} =

∞∑
m=0

∞∑
n=0

E{mH
i−mBmn

k mi−n} (8.54)

where
Bmn

k = AH
(
RnR−1

u AH
)m Ek (AR−1

u Rn

)nA (8.55)

and where Ek = Ek ⊗ IM with Ek denoting an N ×N matrix with zero-valued
entries, except for a one on the k-th diagonal entry. The matrix Ek serves as a
selector matrix to select the part of w̃i corresponding to the k-th node.

7In the mean-square analysis of adaptive filters, one is usually also interested in the so-
called excess mean-square error (EMSE) defined by E{‖uk,iw̃k,i−1‖2}. However, since the
goal of BC-RLS is to obtain an unbiased estimate for wo, and not to minimize the EMSE,
we do not consider the latter.
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Expression (8.54) can be rewritten with a trace operator Tr(.):

E{‖w̃i‖2Ek
} =

∞∑
m=0

∞∑
n=0

Tr
(
Bmn

k E{mi−mmH
i−n}

)
. (8.56)

In Appendix 8.A, the following expression is derived:

E{mi−mmH
i−n} = λ|m−n|E{mimH

i } . (8.57)

With this result, we can rewrite (8.56) as

E{‖w̃i‖2Ek
} = Tr

(
MkE{mimH

i }
)
. (8.58)

where

Mk =
∞∑

m=0

∞∑
n=0

λ|m−n|Bmn
k . (8.59)

In Appendix 8.B the following approximation for E{mimH
i } is derived, based

on a result from [23]:

E{mimH
i } ≈

1− λ
2
VR−1

u (8.60)

where
V = diag{σ2

1 , . . . , σ
2
N} ⊗ IM (8.61)

and with
σ2

k = wo Hbk − rH
nkvk

wo + σ2
vk
− bHk R−1

uk
bk (8.62)

where
bk = Rnk

wo − rnkvk
. (8.63)

It is possible to derive a closed form expression forMk defined in (8.59), based
on the eigenvalue decomposition AR−1

u Rn = QΣQ−1 where Σ is a diagonal
matrix with the eigenvalues as its diagonal elements, and where Q contains the
corresponding normalized eigenvectors in its columns. We also define the MN -
dimensional vector η containing the diagonal elements of ΣH (the conjugated
eigenvalues) in the same order as they appear on the diagonal. In Appendix
8.C, the following closed form expression is derived:

Mk = AH
(
Mk,2 +MH

k,2 −Mk,1

)
A (8.64)

with

Mk,1 = Q−H

(
QHEkQ

11H − ηηH

)
Q−1 (8.65)

Mk,2 = Q−H
(
IMN − λΣH

)−1
(

QHEkQ
11H − ηηH

)
Q−1 (8.66)
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where the double-lined fraction denotes an elementwise division of the matrices
in the numerator and denominator (i.e. a Hadamard quotient).

We thus find a closed-form expression for the MSD at node k:

MSDk = 1−λ
2 Tr

(
MkVR−1

u

)
. (8.67)

It is noted that only the matrixMk depends on the combiner matrix A, since
it is incorporated in the eigenvalue decomposition of AR−1

u Rn. Note that
AR−1

u Rn is the same matrix that appears in the stability condition (8.45).
Note also that, if the stability condition (8.45) holds, the denominators in (8.65)
and (8.66) cannot become zero and

(
IMN − λΣH

)
cannot become singular, i.e.,

the algorithm is stable in the mean-square sense.

Again, it is impossible to make general statements about the impact of diffusion
on the MSD at a certain node. However, from the Hadamard quotient in (8.65)-
(8.66), one can expect that the norm ofMk will be smaller if the norm of η is
small. In many cases, setting the matrix A 6= IMN will decrease the norm of η
(although this is not true in general), and then diffusion indeed has a beneficial
influence on the MSD. This means that, if diffusion increases the stability (i.e.,
the spectral radius of AR−1

u Rn decreases), it often also improves the mean-
square performance. In section 8.5, we will consider some special cases where
it can indeed be mathematically verified that diffusion decreases the infinity
norm of η.

8.5 Special Cases

In this section, we consider some special cases where the diffBC-RLS algo-
rithm is guaranteed to be stable, or where it can be mathematically verified
that diffusion improves stability of the BC-RLS algorithm, i.e., (compare with
(8.45))

ρ
(
AR−1

u R̂n

)
≤ ρ

(
R−1

u R̂n

)
. (8.68)

As mentioned earlier, if (8.68) holds, diffusion often (but not necessarily) also
decreases the bias and the MSD of the estimates. It is noted that diffusion in
general provides better results (with respect to stability, bias and MSD) due to
the non-expanding effect of the combiner matrix A. The beneficial influence of
diffusion is therefore not limited to the special cases given below. These merely
serve as “motivating” examples where the beneficial influence of diffusion can
be theoretically verified.

Remark: Unless stated otherwise, we assume that the combiner matrix A is
symmetric, which is required in most cases to make some conclusions. The
Metropolis rule (see, e.g., [20]) offers a procedure to select the weights, based
on the network topology, that yields a symmetric combiner matrix A.
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8.5.1 Invariant Spatial Profile

If the regressor and noise covariance matrices are the same in each node, i.e.,
Rnk

= Rn, Ruk
= Ru, and if each node uses the same estimate R̂nk

= R̂n, for
k ∈ {1, . . . , N}, we find that

AR−1
u R̂n = A⊗R−1

u R̂n . (8.69)

Since the set of eigenvalues of X⊗Y is equal to the set of all pairwise products
between the eigenvalues of X and the eigenvalues of Y , we find that

ρ
(
AR−1

u R̂n

)
= ρ

(
R−1

u R̂n

)
(8.70)

i.e., the algorithm is stable if and only if the undiffused BC-RLS at a single
node is stable. In this case, diffusion has no effect on stability8. However, since
the eigenvalues of A are inside the unit circle, many eigenvalues of AR−1

u Rn =
A⊗R−1

u Rn will be strictly smaller than the corresponding eigenvalues of R−1
u Rn

(and none of the eigenvalues can increase). This means that the norm of η in
(8.65) will be smaller than in the undiffused case (A = IN ), which mostly results
in a smaller MSD. The same holds for the asymptotic bias given in (8.47), since
smaller eigenvalues of AR−1

u R̂n yield a more contractive or a less expanding

mapping
(
IMN −AR−1

u R̂n

)−1

. It is noted that the combiner matrix A does
not need to be symmetric to obtain the above results.

8.5.2 2-norm Constraint (‖R−1
u R̂n‖2 < 1)

If ‖R−1
uk
R̂nk
‖2 < 1, for k ∈ {1, . . . , N}, where ‖.‖2 denotes the matrix 2-norm,

the block-diagonal structure of R−1
u R̂n implies that

‖R−1
u R̂n‖2 < 1 . (8.71)

Although the condition (8.71) does not imply (8.68), it is an interesting case
since stability of the diffBC-RLS algorithm is guaranteed when (8.71) holds.
Indeed, we have that

ρ
(
AR−1

u R̂n

)
≤ ‖AR−1

u R̂n‖2 ≤ ‖A‖2‖R−1
u R̂n‖2 = ‖R−1

u R̂n‖2 < 1 . (8.72)

The first inequality follows from the fact that the spectral radius is the infimum
of all induced norms of a matrix (including the two-norm), and the second
inequality follows from the fact that the two-norm is sub-multiplicative. Since
the two-norm and the spectral radius are the same for symmetric matrices (we
assume a symmetric A), we have that ‖A‖2 = ρ(A) = 1.

8This is not surprising, since the invariant spatial profile assumption implies that either
all nodes are stable, or none of them are. In the latter case, diffusion adaptation cannot help.
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It is noted that ‖R−1
u R̂n‖2 < 1 is satisfied if either the noise nk,i or the regres-

sors uk,i are white at each node, and if R̂n = Rn (see subsections 8.5.3 and
8.5.4).

8.5.3 White Noise on Regressors

Assume that we have prior knowledge that Rnk
= σ2

nk
IM and R̂nk

= σ̂2
nk
IM ,

for k ∈ {1, . . . , N}. Let UkΛkU
H

k denote the eigenvalue decomposition of the
clean regressor covariance matrix Ruk

, then we obtain

R−1
uk
R̂nk

= Ukdiag

{
σ̂2

nk

λk,1 + σ2
nk

, . . . ,
σ̂2

nk

λk,M + σ2
nk

}
U

H

k (8.73)

where λk,1 ≥ λk,2 ≥ . . . ≥ λk,M are the diagonal elements of Λk.

Note that R−1
u R̂n is symmetric in this case, and therefore

ρ
(
AR−1

u R̂n

)
≤ ‖AR−1

u R̂n‖2

≤ ‖A‖2‖R−1
u R̂n‖2

= ρ (A) ρ
(
R−1

u R̂n

)
= ρ

(
R−1

u R̂n

)
(8.74)

i.e., (8.68) holds. Furthermore, ‖R−1
uk
R̂nk
‖2 =

σ̂2
nk

λk,1+σ2
nk

. If σ̂2
nk
< λk,1 +σ2

nk
for

each k, i.e., if the noise variances are not significantly overestimated, we know
from Subsection 8.5.2 that the diffBC-RLS algorithm is stable.

8.5.4 White Regressors

Assume that we have prior knowledge that Ruk
= σ2

uk
IM , for k ∈ {1, . . . , N}.

Furthermore, assume that R̂n = Rn, i.e., a good estimate of the noise covari-
ance is available. We thus have that

R−1
uk
R̂nk

=
(
σ2

uk
IM +Rnk

)−1
Rnk

. (8.75)

Since (αI +X)−1
X = X (αI +X)−1 for everyX and α, it follows thatR−1

uk
R̂nk

is a symmetric matrix. Therefore, with a similar reasoning as in subsection
8.5.3, we again obtain (8.68). From (8.75), it is also obvious that ‖R−1

uk
R̂nk
‖2 <

1, and therefore we know from Subsection 8.5.2 that the diffBC-RLS algorithm
is stable.
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8.6 Simulation Results

In this section, we provide simulation results to compare the performance of
the BC-RLS and diffBC-RLS algorithm, and we compare the simulation results
with the theoretical results of Section 8.4.

The measurements dk(i) were generated according to (8.1), and the clean re-
gressors uk,i were chosen Gaussian i.i.d. with a covariance matrix Ruk

=
Q1diag{5, 4, 3, 2, 1}QH

1 , where Q1 is a random unitary matrix. The stacked vec-
tors of the regressor noises and the measurement noises nk,i = [nk,i vk(i)] were
also chosen Gaussian i.i.d. with a random covariance matrix E{nH

k,ink,i} =
skQ2diag{2, 1.8, 1.6, 1.4, 1.2, 1}QH

2 , where Q2 is again a random unitary matrix,
and sk is a random scalar drawn from a uniform distribution in the interval
[0.1, 1]. Note that, due to the scaling with sk, this is not an invariant spatial
profile, since there is a different SNR in each node. The network had N = 20
nodes, and the topology was chosen randomly with a connectivity of 5 links
per node on average. The size of the unknown vector wo was M = 5, and the
combiner matrix A was constructed using Metropolis weights. All results are
averaged over 200 experiments.

8.6.1 Bias

In this subsection, we add some errors to the noise estimates R̂nk
= Rnk

+∆Rnk

and r̂nkvk
= rnkvk

+∆rnkvk
to investigate the effect on the bias of the BC-RLS

and diffBC-RLS estimates. The errors were modelled as

∆Rnk
=
√
p|Rnk

| �Rk (8.76)

∆rnkvk
=
√
p|rnkvk

| � rk (8.77)

where � denotes a Hadamard product (elementwise multiplication), the opera-
tor |.| denotes an elementwise absolute value operator, and p is a positive scalar
variable that is used to increase the error. The entries of the M ×M matrix
Rk and the M -dimensional vector were independently drawn from a normal
distribution (i.e. with zero mean and unity variance).

Fig. 8.1 shows ‖E{w̃i}‖, i.e. the norm of the stacked bias, as a function of p,
both for BC-RLS (without cooperation) and diffBC-RLS in steady state (with
λ = 0.999). We see that the theoretical results (8.47) match very well with the
simulated results. Furthermore, we observe that diffusion indeed significantly
decreases the asymptotic bias of the BC-RLS estimates. Fig. 8.2 shows the
entries of the stacked bias vector E{w̃i} for p = 0.2, again demonstrating that
the theoretical results are very accurate.
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Figure 8.1: The norm of the stacked asymptotic bias as a function of p, using
λ = 0.999.
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Figure 8.2: The entries of E{w̃i} in steady state for p = 0.2, using λ = 0.999.
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Figure 8.3: The steady-state MSD values in each node, for different values of
λ.

8.6.2 MSD

In Fig. 8.3, we show the MSD in the different nodes, for several values of λ.
We see that the theoretical results (8.67) match very well with the simulated
results, especially when λ is close to unity. However, when λ is too small
(e.g. λ = 0.9), the algorithm becomes unstable in some iterations. The reason
for this is the fact that the approximation (8.30) in Assumption 4 becomes
invalid. As mentioned at the end of subsection 8.4.2, the algorithm may become
unstable at some iterations due to Jensen’s inequality, even though the stability
condition (8.45) is satisfied. This is demonstrated9 in Fig. 8.4. Since the
theoretical analysis does not incorporate this effect, there is no match between
the theoretical results and the simulation results for this case.

In Fig. 8.5, the MSD is plotted as a function of the number of observations10

both for BC-RLS (without cooperation) and diffBC-RLS. It is observed that
the MSD is significantly smaller when the nodes diffuse their estimations.

9There is no steady-state in this case. The plotted MSD is the time average of the last
3000 iterations of the algorithm.

10Since the norm of Pk,i can be very large in the beginning due to a small regularization
parameter δ, the recursion usually starts to diverge until i becomes large enough. Therefore,
to obtain an intelligible figure, we initialized the matrices Pk,0 with (1 − λ)R−1

uk
, i.e., the

convergence of the RLS part is removed.
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8.7 Conclusions

We have addressed the problem of distributed least-squares estimation over
adaptive networks when there is stationary additive colored noise on both the
regressors and the output response, which results in a bias on the least-squares
estimates. Assuming that the noise covariance can be estimated (or is known a-
priori), we have proposed a bias-compensated recursive least-squares (BC-RLS)
algorithm. This bias compensation significantly increases the variance of the
local estimates, and errors in the noise covariance estimates may still result in
a significant residual bias. By applying diffusion, i.e., letting neighboring nodes
combine their local estimates, the variance (or MSD) and the residual bias can
be significantly reduced. The latter is referred to as diffusion BC-RLS (diffBC-
RLS). We have derived a necessary and sufficient condition for mean-square
stability of the algorithm, under some mild assumptions. Furthermore, we
have derived closed-form expressions for the residual bias and the MSD, which
match well with the simulation results if the forgetting factor is close to unity.
We have also considered some special cases where the stability improvement of
diffBC-RLS over BC-RLS can be mathematically verified.

A possible application of the diffBC-RLS algorithm is the AR analysis of a
speech signal in a wireless sensor networks, with microphone nodes that are
spatially distributed over an environment. RLS has been demonstrated to be
able to track speech AR parameters [24] in environments with limited noise. For
noisy recordings, bias compensation is crucial for AR analysis of speech signals.
However, this bias compensation usually severely increases the variance of the
estimated speech AR coefficients (often resulting in unstable behavior), due
to the ill-conditioned nature of the speech covariance matrix in certain speech
phonemes. Since all the microphones observe the same speech signal (possibly
at a different SNR), the stability of the algorithm and the variance of the
estimates can be greatly improved by applying diffusion adaptation.
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Appendix

8.A Derivation of Expression (8.57)

We first consider the case where m ≤ n. Because of the steady-state as-
sumption, only the difference t = n − m is important, i.e. E{mi−mmH

i−n} =
E{mimH

i−t}. Because of the spatial independence assumption and the fact that
E{mi} = 0 (this follows from (8.40)), E{mimH

i−t} will be a block-diagonal ma-
trix (note that there is no diffusion on the local RLS estimates). Therefore,
we can focus on a single block corresponding to node k, i.e. the submatrix
E{mk,im

H
k,i−t} where mk,i , wLS

k − ŵk,i.

From the RLS update (8.21), we find that

E{mk,im
H
k,i−t} = E{mk,i−1m

H
k,i−t}+ Pk,iRuk

E{ŵk,i−1m
H
k,i−t}

= E{mk,i−1m
H
k,i−t}+ (1− λ)E{ŵk,i−1m

H
k,i−t}

= E{mk,i−1m
H
k,i−t}+ (λ− 1)E{−ŵk,i−1m

H
k,i−t}

+ (λ− 1)E{wLS
k mH

k,i−t}

= E{mk,i−1m
H
k,i−t}+ (λ− 1)E{mk,i−1m

H
k,i−t}

= λE{mk,i−1m
H
k,i−t} (8.78)

where we used Assumption 4 in the second step, and the fact that E{mk,i} = 0
(for i→∞) in the first and third step. By expanding the recursion (8.78), and
because of the steady-state assumption, we find that

E{mk,im
H
k,i−t} = λtE{mk,im

H
k,i} (8.79)

The case where m ≥ n or t ≤ 0 immediately follows from (8.79) by using a
substitution j = i− t:

E{mk,im
H
k,i−t} = E{mk,j+tm

H
k,j}

= E{mk,jm
H
k,j+t}H

= λ−tE{mk,jm
H
k,j}

= λ−tE{mk,im
H
k,i} . (8.80)

Both cases can be handled simultaneously by using an absolute value in the
exponent of λ, which straightforwardly results in (8.57).
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8.B Derivation of Expression (8.60)-(8.63)

Because of the spatial independence assumption, and the fact that E{mi} = 0
(this follows from (8.40)), E{mimH

i } will be a block-diagonal matrix (note that
there is no diffusion on the local RLS estimates). Therefore, we can focus on
a single block corresponding to node k, i.e. the submatrix E{mk,im

H
k,i} where

mk,i , wLS
k − ŵk,i.

For an RLS algorithm that observes regressors ui and corresponding d(i) =
uiφ

o + e(i) where e(i) is zero-mean noise with variance σ2
e , the following ap-

proximation holds for i→∞ [23]:

E{(φo − wi) (φo − wi)
H} ≈ 1− λ

2
σ2

eE{uH
i ui} . (8.81)

It is noted that the variable ŵk,i in the diffBC-RLS algorithm is an unbiased es-
timate of wLS

k . Therefore, we can view ŵk,i as the outcome of an RLS algorithm
that observes regressor uk,i = uk,i + nk,i and a corresponding

dk(i) = uk,iw
LS
k + ek(i) . (8.82)

Since the observations dk(i) are actually equal to

dk(i) = uk,iw
o + vk(i) (8.83)

we have to rewrite it to the form (8.82). With (8.7), and setting (8.82) equal
to (8.83), some straightforward algebra yields

ek(i) = vk(i)− nk,iw
o + uk,iR

−1
uk

(Rnk
wo − rnk,vk

) . (8.84)

Using the approximation (8.81), we find that

E{mk,im
H
k,i} ≈

1− λ
2

σ2
ek
Ruk

(8.85)

where σ2
ek

= E{|ek(i)|2}. We will now derive an expression for σ2
ek

. For the
sake of an easy exposition, we omit the subscript k and the time index i in the
sequel. We introduce the notation b , Rnw

o − rnv. Observe that

E{(v − nwo)uH} = rnv −Rnw
o = −b . (8.86)

With this, we find that

E{|e|2} = E{|v − nwo|2}+ E{uR−1
u bbHR−1

u uH} − 2bHR−1
u b . (8.87)

The first term is equal to

E{|v − nwo|2} = wo ∗Rnk
wo − rH

nkvk
wo − wo ∗rnkvk

+ σ2
v . (8.88)

Using the trace operator, we find that the second term is equal to

E{uR−1
u bbHR−1

u uH} = Tr
(
R−1

u bbHR−1
u E{uHu}

)
= bHR−1

u b . (8.89)

Inserting (8.87)-(8.89) in (8.85), and repeating this for each node, we find
expression (8.60)-(8.63).
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8.C Derivation of Expression (8.65)-(8.66)

We introduce the notation
D , AR−1

u Rn (8.90)

where the eigenvalue decomposition of D is given by D = QΣQ−1. The matrix
Mk defined in (8.59) can then be rewritten as

Mk = AH

( ∞∑
m=0

∞∑
n=0

λ|m−n|DH mEkDn

)
A . (8.91)

First, observe that
∞∑

m=0

∞∑
n=0

λ|m−n|DH mEkDn =
∞∑

m=0

DH mEkDm

+
∞∑

n=1

λn
∞∑

m=n

DH mEkDm−n

+
∞∑

n=1

λn
∞∑

m=n

DH m−nEkDm . (8.92)

We will first focus on the second term of (8.92), which we denote as T2. Note
that the last term is the conjugate transpose of T2. Using the eigenvalue de-
composition of D, we find that

T2 = Q−H

( ∞∑
n=1

λn
∞∑

m=n

ΣH mQHEkQΣm−n

)
Q−1

= Q−H

( ∞∑
n=1

λnΣH n
∞∑

m=n

ΣH m−nQHEkQΣm−n

)
Q−1

= Q−H

( ∞∑
n=1

λnΣH n
((
QHEkQ

)
� E

))
Q−1 (8.93)

where � denotes a Hadamard product (elementwise multiplication), and with
E a matrix where the entry on the i-th row and the j-th column is given by

Eij =
∞∑

m=n

ηm−n
i ηH m−n

j (8.94)

where ηi is the i-th diagonal element of ΣH (the conjugate of the i-th eigen-
value). If the stability condition (8.45) holds, then |ηiη

H
j | < 1, ∀i, j ∈ {1, . . . ,M}.

Based on a Taylor expansion similar to (8.46), but for the complex scalar case,
we find that

Eij =
1

1− ηiηH
j

. (8.95)
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Using this, (8.93) can be rewritten as

T2 = Q−H

( ∞∑
n=1

λnΣH n

)
QHEkQ

11H − ηηH
Q−1 (8.96)

where the MN -dimensional vector η = col{η1, . . . , ηMN} contains the diagonal
elements of ΣH (the conjugated eigenvalues) in the same order as they appear
on the diagonal.

Based on the expansion (8.46), we can rewrite (8.96) as

T2 = Q−H
((
IMN − λΣH

)−1 − IMN

) QHEkQ
11H − ηηH

Q−1 . (8.97)

A closed-form expression for the first term of (8.92) can be derived in a similar
way, which results in

T1 = Q−H QHEkQ
11H − ηηH

Q−1 . (8.98)

Since T1 +T2 +TH
2 =Mk,2 +MH

k,2−Mk,1, we eventually find (8.65)-(8.66).
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Abstract

In this paper, we consider a noise-free blind source separation problem with
independent non-negative source signals, also known as non-negative indepen-
dent component analysis (NICA). We assume that the source signals are well-
grounded, which means that they have a non-vanishing pdf in a positive neigh-
borhood of zero. We propose a novel algorithm, referred to as multiplicative
NICA (M-NICA), which uses multiplicative updates together with a subspace
projection based correction step to reconstruct the original source signals from
the observed linear mixtures, and which is based only on second order statis-
tics. A multiplicative update has the facilitating property that it preserves
non-negativity, and does not depend on a user-defined learning rate, as op-
posed to gradient based updates such as in the non-negative PCA (NPCA)
algorithm. We provide batch mode simulations of M-NICA and compare its
performance to NPCA, for different types of signals. It is observed that M-
NICA generally yields a better unmixing accuracy, but converges slower than
NPCA. Especially when the amount of data samples is small, M-NICA sign-
ficantly outperforms NPCA. Furthermore, a sliding window implementation
of both algorithms is described and simulated, where M-NICA is observed to
provide the best results.

9.1 Introduction

Assume that we observe a set of instantaneous linear mixtures of mutually inde-
pendent source signals. The goal of independent component analysis (ICA) is
then to reconstruct the original source signals from the observed mixtures. This
problem is widely studied in literature (see [1, 2] for a survey), usually under the
general assumption that the source signals are nongaussian and that the mix-
ing matrix is full rank. However, if some prior knowledge on the source signals
is available, this knowledge may be exploited to design more efficient unmix-
ing algorithms. In this paper, we consider an ICA problem with non-negative
sources, i.e. we collect observations of a J-channel signal y that satisfies

y = As (9.1)

where s = [s1 . . . sN ]T is a vector of N mutually independent source signals
with sn ≥ 0, ∀ n ∈ {1 . . . N}, and where A is an unknown J × N mixing
matrix with J ≥ N . In [3], this problem is referred to as the non-negative
independent component analysis (NICA) problem. Non-negativity arises in
many practical problems, e.g. source activity detection [4], unmixing spectral
data [5], hyperspectral imaging [6, 7], chemistry [8], environmetrics [9], music
transcription [10], etc.
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A closely related problem is ‘non-negative matrix factorization’ (NMF) [11,
12], in which a non-negative matrix is factorized in two smaller non-negative
matrices. This corresponds to the case where the mixing matrix A is also
assumed to be non-negative. However, NMF does not take independence of
the sources into account, and therefore NMF algorithms often yield suboptimal
results when applied to the NICA problem.

By making additional assumptions on the source signals, several algorithms
are proposed to solve the NICA problem [3, 13, 14]. In this paper, we add
the assumption that the sources are well-grounded, as also done in [3]. This
means that all sources have a non-zero pdf in any positive neighborhood of
zero, i.e. ∀ δ > 0: Pr(sn < δ) > 0, for all source signals sn, n = 1 . . . N . Well-
groundedness of the sources is a weaker assumption than the locally-dominant
assumption1in [13, 14], and it is often satisfied in practice, e.g. when the
sources have an on-off behavior or when the source signals are sparse. The
locally-dominant assumption is more easily violated, especially for short time
windows. We will consider two different algorithms to solve the NICA problem
with well-grounded sources: the non-negative PCA algorithm (NPCA), which
is introduced in [3], and the multiplicative NICA algorithm (M-NICA), which
is a novel approach to tackle the NICA problem.

The NPCA algorithm [3] first decorrelates the data by applying a whitening
procedure without taking the non-negativity into account. In a second step, the
algorithm computes a rotation matrix that restores the non-negativity of the
data. This is done by means of a gradient-descent algorithm with additional
correction steps to preserve orthogonality. The learning rate of the NPCA
algorithm is a critical parameter to obtain satisfying results. If the learning
rate is chosen too small, the algorithm can have extremely slow convergence.
On the other hand, if the learning rate is too high, it is possible that the NPCA
algorithm does not converge at all.

The M-NICA algorithm, on the other hand, decorrelates the data while at the
same time maintaining non-negativity, by means of a multiplicative update
step. Multiplicative updating is a popular technique to solve non-negative
optimization problems, e.g. [12, 15]. Since a multiplicative update results in
data that is not in the original signal subspace, it requires a correction step
based on a subspace projection to restore the original signal subspace. The M-
NICA algorithm has the facilitating property that it does not depend on a user-
defined learning rate, as opposed to the NPCA algorithm. This is particularly
relevant in applications for which a step-size search is impossible or undesirable.

NPCA and M-NICA have similar computational complexity. We will compare
the performance of both algorithms by means of simulations with different types

1The locally-dominant assumption states that for each source sj in a set of N source
signals {s1, . . . , sN}, there is a sample time tj in the data set such that sj [tj ] 6= 0 and
si[tj ] = 0 for all i 6= j.
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of signals. As will be demonstrated, the convergence speed and the unmixing
accuracy of both algorithms heavily depends on the type of signals involved.
By averaging over multiple experiments, it is observed that M-NICA generally
provides a better unmixing accuracy, but at a slower convergence rate than
NPCA. The difference between the unmixing accuracy of M-NICA and NPCA
becomes more significant in cases where the amount of available data samples
is small, where the former is observed to provide the best results. Also in an
adaptive sliding window implementation, M-NICA clearly outperforms NPCA
in terms of unmixing accuracy, at a slightly slower adaptation speed.

The outline of the paper is as follows. In Section 9.2, the NPCA algorithm is
briefly reviewed. The batch mode M-NICA algorithm is described in Section
9.3. In Section 9.4, a sliding window implementation of the M-NICA algorithm
is described. Batch mode simulations of M-NICA and NPCA are provided in
Section 9.5. The performance of the sliding window implementations of M-
NICA and NPCA are analyzed in Section 9.6. Conclusions are given in Section
9.7.

9.2 Non-Negative PCA (NPCA)

In [16], the following theorem is proven:

Theorem 9.1 Let s be an N -dimensional vector of non-negative and well-
grounded mutually independent source signals with unit variance, and let z =
Us be an orthonormal rotation of s where UT U = UUT = IN , with IN denot-
ing the N ×N identity matrix. Then z is a permutation of s if and only if the
signals in z are non-negative with probability 1.

This theorem states that any orthogonal mixture of well-grounded mutually
independent non-negative sources, that preserves the non-negativity, must be
a permutation of the sources. It is noted that, although the well-groundedness
of the source signals is not explicitly exploited in the algorithms described in the
sequel, it is a crucial assumption. The intuition behind this is that, if the source
signals are well-grounded, there is only one possible rotation to completely fit
the rectangular (decorrelated) data cloud in the positive orthant [16].

In [3], Theorem 9.1 is used to derive the non-negative PCA algorithm (NPCA),
which is able to solve NICA problems with well-grounded sources. The algo-
rithm uses only second order statistics, which makes it very efficient compared
to ICA algorithms that use higher order statistics. The outline of the NPCA
algorithm is as follows (here described in batch mode):

1. Let Cy = E{(y − y)(y − y)T }, where E{.} denotes the expectation
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operator and where y = E{y}. Compute the eigenvalue decomposition
of the covariance matrix Cy, i.e. Cy = EDET with D a diagonal matrix
containing the eigenvalues of Cy on its diagonal, and with E containing
the corresponding eigenvectors in its columns. Since Cy is a rank N

matrix, we can write Cy = E D E
T
, with D an N ×N diagonal matrix,

containing the N non-zero eigenvalues of Cy on its diagonal, and with
E the J ×N matrix containing the corresponding eigenvectors.

2. Whiten the signal y with a whitening matrix2

V = D
− 1

2 E
T

(9.2)

yielding the whitened compressed signal v = Vy.
3. Assume w.l.o.g. that the sources sn, n = 1 . . . N , have unit variance3,

such that Cs = E{(s − s)(s − s)T } = IN . Then the matrix Z = VA is
orthogonal, since ZZT = VAAT VT = VACsAT VT = VCyVT = IN .
According to Theorem 9.1, it is then sufficient to find an orthogonal
matrix W such that z = Wv = WZs is non-negative with probability
1. This matrix W can be computed by means of the following learning
rule:

Wtemp = Wi − ηMiWi (9.3)

Wi+1 =
(
WtempWtemp T

)− 1
2 Wtemp (9.4)

with
Mi = E{f(zi)zi T − zif(zi T )} (9.5)

where zi = Wiv, f(zn) = min(0, zn) and with η denoting a positive
learning rate.

Since (9.3) does not enforce orthogonality of W, the correction step (9.4) is
added to guarantee orthogonality of W. Let y[k] denote the observation of y at
time k, and let M denote the number of observations of y. Then the expected
value in (9.5) can be computed by simple averaging over the M transformed
observations zi[k], k = 1 . . .M . Assuming that M � N , then (9.5) is the com-
putationally most expensive step of the NPCA algorithm, yielding an overall
complexity of O(N2M).

It is observed that the learning rate η is a crucial parameter for the algorithm
to converge, i.e. its value should be small enough to guarantee convergence.
However, a too small η results in a very slow convergence. In [17], an adaptive

2In [3], a symmetric whitening matrix was chosen, i.e. V = ED−
1
2 ET . This is however

only possible when y is an N -dimensional vector, i.e. when the mixing matrix A is square.
If J > N , the whitening matrix (9.2) performs a dimension reduction, in addition to a
decorrelation.

3If this is not the case, the source signals can be scaled accordingly, yielding a reciprocal
scaling of the columns of the mixing matrix A



9.3. Multiplicative NICA (M-NICA) 313

strategy is proposed to update η. Although convergence can be enforced in
this way, the strategy is observed to yield rather conservative learning rates.
It remains unclear how an optimal value for η can be chosen automatically to
provide a fast convergence.

9.3 Multiplicative NICA (M-NICA)

In this section, we present a new algorithm to solve the NICA problem with
well-grounded sources. It is based on the following corollary, which follows
straightforwardly from Theorem 9.1:

Corollary 9.2 Let s be an N -dimensional vector of non-negative and well-
grounded mutually independent source signals, and let y = As with A a full
column rank J ×N mixing matrix. Let z = Ky where K is a N × J unmixing
matrix. Then z is a permutation of s if and only if the signals in z are mutually
uncorrelated and non-negative with probability 1.

Proof : We only prove the ‘⇐’ direction, since the ‘⇒’ direction is trivially
proved. We thus assume that z is non-negative and that its signals are mutually
uncorrelated, i.e.

E{(z− z)(z− z)T } = IN . (9.6)

Since z = Ky and y = As, expression (9.6) can be rewritten as

KAE{(s− s)(s− s)T }AT KT = IN . (9.7)

Assume w.l.o.g. that the source signals in s have unit variance. Since these
source signals are mutually independent, they are uncorrelated, and therefore
(9.7) becomes

UUT = IN (9.8)

where U = KA. Expression (9.8) shows that U is a N ×N orthogonal matrix.
Since z is non-negative and z = Us, Theorem 9.1 shows that z is a permutation
of s.

2

To solve the NICA problem (9.1), it is thus sufficient to find an N×J unmixing
matrix K that results in N non-negative uncorrelated signals. Notice that the
first step of the NPCA algorithm decorrelates the data by applying a straight-
forward whitening procedure without taking the non-negativity into account.
In the second step, the algorithm computes a rotation matrix that restores the
non-negativity of the data, while preserving the decorrelation. In the M-NICA
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algorithm described infra, we will decorrelate the data while preserving the non-
negativity. This has several advantages. Since we use a multiplicative update,
the algorithm does not require any user-defined learning rate. Furthermore,
since we explicitly minimize the correlation under non-negativity constraints,
the algorithm is more robust than NPCA when using small sample sets (as
will be demonstrated in Section 9.5.4). For the sake of an easy exposition, we
will first describe the M-NICA algorithm in batch mode. A sliding window
algorithm will be described in Section 9.4.

9.3.1 Multiplicative Decorrelation with Subspace Projec-
tion

Assume we collect a J ×M data matrix Y that contains M observations y[k],
k = 1 . . .M , in its columns. We will try to find an unmixing matrix K such
that the rows of the N ×M matrix S = KY are uncorrelated and only contain
non-negative values. Notice that S does not necessarily contain the samples
s[k], k = 1 . . .M , in its columns, since it depends on the choice of K (even when
K yields perfect unmixing, there remains a scaling and permutation ambiguity
compared to the signals in s).

Define CS = (S − S)(S − S)T , where S denotes the N ×M matrix for which
each column contains the sample mean of the rows of S, i.e. S = 1

M S 1M1T
M ,

where 1M denotes an M -dimensional column vector in which each entry is 1.
For notational convenience, we introduce the matrix P = IM − 1

M 1M1T
M , to

write CS = (S− S)(S− S)T = SPPT ST = SPST . Let

F (S) =
∑
n,m

[
SPST

]2
nm

[SPST ]nn [SPST ]mm

(9.9)

i.e. the function F (S) evaluates the sum of the squared (cross-)correlation
coefficients of the rows of S.

According to Corollary 9.2, to obtain the original source signals in the rows of
S, it is sufficient to construct S = KY such that S ≥ 0 and CS is a diagonal
matrix. This is translated into the following optimization problem:

min
S
F (S) (9.10)

s.t.

{
S ≥ 0
∃K ∈ RN×J : S = KY .

(9.11)

The first constraint in (9.11) enforces non-negativity and the second constraint
links the matrix S to the observations in Y, such that both have the same
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row space. The minimization of the cost function4 F (S) yields decorrelation
of the rows of S. The function F (S) has multiple global minima, which are all
equal to N , corresponding to the case where all cross-correlation coefficients
are zero. Since the cost function F (S) is non-convex, it has multiple stationary
points. However, as shown by the following theorem, every local minimizer S∗

corresponds to perfectly uncorrelated source signals in the rows of S∗.

Theorem 9.3 Let S∗ denote a local minimizer of F (S) (without taking the
constraints (9.11) into account). Then the rows of S∗ are uncorrelated, i.e.
C∗S = (S∗ − S

∗
)(S∗ − S

∗
)T is a diagonal matrix.

Proof : In the sequel, we ignore the points S for which F (S) does not exist,
i.e. the case where S has one or more zero-variance rows. The gradient of the
cost function (9.9) is

∇F (S) = 4
(
Λ−1

1 SPST Λ−1
1 −Λ−1

1 Λ2

)
SP (9.12)

with

Λ1 = D
{
SPST

}
(9.13)

Λ2 = D
{(

Λ−1
1 SPST

)2}
(9.14)

and with D{X} denoting the operator that sets all off-diagonal elements of
X to zero. Let S∗ denote a local minimizer of F , and therefore it satisfies
∇F (S∗) = 0, which is equivalent to

Λ∗−1
1 S∗PS∗ T Λ∗−1

1 S∗P = Λ∗−1
1 Λ∗2S

∗P (9.15)

where Λ∗1 and Λ∗2 are defined by (9.13)-(9.14) with S replaced by S∗.

Note that S∗P = (S∗ − S
∗
) has full row rank. This can be shown by contra-

diction as follows. Assume that S∗P does not have full row rank. Then either
S∗ has a zero variance row, which can be excluded since then F (S∗) does not
exist, or S∗ has at least one row which is a linear combination of the other
rows. Let the i-th row [S]i,: denote such a row which is a linear combination of
the other rows. Let eT be an M × 1 row vector with random numbers, which
are uncorrelated with any row in S. Then adding the vector αeT to the row
[S]i,:, with α denoting any positive number, will result in a decrease of the cost
function F . This shows that there exists a descent direction in S∗. However,
since S∗ is a local minimizer of F , no such direction can exist in the point S∗.

4Notice that we do not use the cost function
P

n,m

ˆ
SPST − IN

˜2
nm

. Although this cost

function would yield simpler updating formulas, cost function (9.9) is observed to yield a
better performance due to its implicit normalization. This normalization makes the resulting
updating formulas independent of the variance of the elements in S.
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Since S∗P = (S∗−S
∗
) has full row rank, S∗PPT S∗ T = S∗PS∗ T has full rank

and non-zero elements on its diagonal. Using this, and since both Λ∗1 and Λ∗2
are diagonal matrices, (9.15) is equivalent to

S∗PS∗ T = Λ∗1Λ
∗
2 . (9.16)

Since S∗PS∗ T = (S∗ − S
∗
)(S∗ − S

∗
)T = C∗S , and since the righthand side of

(9.16) is a diagonal matrix, the theorem is proven. 2

Theorem 9.3 implies that any local minimizer S∗ of F satisfies F (S∗) = N and
hence is a global minimizer. It is thus sufficient to find a local minimum of
(9.9) that satisfies the constraints (9.11), to solve the NICA problem.

The first constraint of (9.11) is a non-negativity constraint on the matrix S.
A popular way to minimize a cost function F (S) under non-negativity con-
straints, is to use multiplicative update rules (cfr. e.g. [12, 15]). Multiplicative
optimization algorithms are usually easy to implement compared to general
contrained optimization (CO) techniques, and they do not require any step
size search. The multiplicative update rules can be derived if the gradient of
the cost function F (S) can be split into a positive part and a negative part, i.e.

∇F (S) = ∇+F (S)−∇−F (S) (9.17)

with [∇−F (S)]nm ≥ 0 and [∇+F (S)]nm ≥ 0, n = 1 . . . N , m = 1 . . .M , then
the following multiplicative update rule can be used [15]:

[S]nm ← [S]nm

[∇−F (S)]nm

[∇+F (S)]nm

. (9.18)

Notice that, if S is initialized with non-negative numbers, all of its elements
remain non-negative under the update (9.18), and the non-negativity constraint
of (9.11) is automatically satisfied. There exist two kinds of fixed points for
(9.18). The first satisfies ∇+F (S) = ∇−F (S), yielding ∇F (S) = 0, i.e. a
stationary point of the cost function F (S). The other is [S]nm = 0, n = 1 . . . N ,
m = 1 . . .M . Notice that the updating procedure (9.18) cannot converge to a
stationary point of F if certain elements of S that are non-zero in any stationary
point, are set to zero. Indeed, any element that has a value of zero remains
zero in all future iterations. We will refer to this as ‘false zeros’.

It is generally difficult to prove convergence of multiplicative update formulas of
the form (9.18). However, for many cost functions F , update (9.18) is found to
converge to a local minimizer of F . This can be explained intuitively as follows.
The variable [S]nm decreases when [∇+F (S)]nm > [∇−F (S)]nm, i.e. when
[∇F (S)]nm > 0. This means that the value changes in the opposite direction
of the gradient. Therefore (9.18) is similar to a gradient descent update, where
the step-size is different for each variable and in each step. More specifically,
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(9.18) is equivalent to a natural gradient descent update, as pointed out in [15].
A natural gradient learning algorithm has the convenient property that it has
isotropic convergence around any local optimum, independent of the model
parametrization or the signals being processed [18].

By applying this technique to the gradient of F (S), as given in (9.12)-(9.14),
the following updating formula for the matrix S is found5:

[S]nm ← [S]nm

[
SST Λ−1

1 S + SST Λ−1
1 S + Λ2S

]
nm[

SST Λ−1
1 S + SST Λ−1

1 S + Λ2S
]
nm

. (9.19)

Notice that this update does not take the second constraint of (9.11) into
account. Therefore, an additional correction step is required after each update
(9.19). To enforce the second constraint of (9.11), the rows of S are projected
onto the signal subspace S , which is equal to the row space of Y:

S←PS{S} (9.20)

where PS{X} denotes the projection operator that projects the rows of the
matrix X onto the signal subspace S .

Notice that the projection PS{S} can result in negative values in S. To preserve
non-negativity, S should actually be projected onto S+ = S∩P where P denotes
the positive orthant, i.e.

S←PS+{S} . (9.21)

This projection can be iteratively computed with Dykstra’s algorithm [19].
However, to reduce the complexity of the M-NICA algorithm, we use a heuristic
procedure instead, as described in the next section.

Remark : It is noted that general CO techniques can also be used to solve
the problem minK F (KY) s.t. KY ≥ 0, which is equivalent to (9.10)-(9.11).
Experiments6 indicate that only the interior point (IP) method [20] gives good
results that are comparable to the unmixing performance of M-NICA and
NPCA. However, for the experiments in Section 9.5, the computation time
of the IP method is roughly the double7 of the computation time of M-NICA
and NPCA. Furthermore, the M-NICA algorithm (see Section 9.3.2) is much
simpler to implement compared to an IP method, where in each iteration the
Hessian matrix must be evaluated (i.e. second order numerical differentiation)
or approximated, and a corresponding IP-KKT system must be solved with a

5We replaced SPST with (S − S)ST , instead of the equivalent substitution SPST =
SPPT ST = (S− S)(S− S)T .

6We also tried an active set method and a Levenberg-Marquardt based algorithm [20].
Both methods give good results in some cases, but their separation performance varies sig-
nificantly over multiple Monte-Carlo experiments. Especially in scenarios with many sources
(N > 2) and/or overdetermined observations (J > N), both methods generally yield very
poor results.

7Based on Matlab’s fmincon command.
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subsequent step-size search. Each IP-KKT system is of large dimension due to
the large amount of inequality constraints that enforce non-negativity of each
unmixed sample.

9.3.2 The Multiplicative NICA Algorithm (M-NICA)

The following fixed-point algorithm is used to solve (9.9)-(9.11), and is referred
to as multiplicative non-negative ICA (M-NICA):

1. Initialization:
(a) ∀ n = 1 . . . N,∀m = 1 . . .M : [S]nm ← |[Y]nm|
(b) Replace Y by its best rank N approximation by means of the

singular value decomposition (SVD), i.e.

{U,Σ,V} ← SVD (Y) (9.22)

Y ← U Σ V
T

(9.23)

where Σ is the N × N diagonal matrix containing the N largest
singular values8 of Y on its diagonal, and where the corresponding
left and right singular vectors are stored in the columns of U and
V respectively.

2. Decorrelation step:
∀ n = 1 . . . N,∀m = 1 . . .M :[

Stemp
]
nm
← [S]nm

[
SST Λ−1

1 S + SST Λ−1
1 S + Λ2S

]
nm[

SST Λ−1
1 S + SST Λ−1

1 S + Λ2S
]
nm

(9.24)

with

S =
1
M

S 1M1T
M (9.25)

CS = (S− S)(S− S)T (9.26)

Λ1 = D {CS} (9.27)

Λ2 = D
{(

Λ−1
1 CS

)2}
. (9.28)

3. Signal subspace projection step:

∀ n = 1 . . . N,∀m = 1 . . .M :

[S]nm ← max
([

Stemp V V
T
]

nm
, 0
)
. (9.29)

4. Return to step 2.

8Notice that, if noise were present, this step will remove some noise from the observations.
In the noise-free case, Y has exactly N non-zero singular values.
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In step 3, the algorithm computes a projection onto S , followed by a projection
onto P, instead of computing the exact projection PS+{S} as given in (9.21).
This significantly reduces the computational load, and it is observed to work
fine in our simulations, since the negative values that appear after the projection
onto S are observed to be very sparse. After several iterations of the algorithm,
the number of negative values after the projection onto S becomes negligible.
Notice that S is initialized with absolute values of the elements of Y. The
absolute value guarantees that the initial S ∈ P, which is required when using
multiplicative updates. Furthermore, by initialising S with (positive) elements
of Y, the initial matrix S will be ‘close’ to the subspace S . Notice that, if the
mixing matrix A is non-negative, then Y is non-negative, and hence the initial
matrix S starts in the solution space S+, defined by the constraints (9.11).

The M-NICA algorithm is a fixed-point type algorithm, which has the facilitat-
ing property that it does not depend on any user-defined stepsize parameter,
as opposed to the NPCA algorithm described in Section 9.2. The algorithm
searches for a good approximation of the solution of (9.9)-(9.11), i.e. a common
fixed point of (9.24) and (9.29). Notice that many of the false zeros of (9.24)
are eliminated since they are reset to a non-zero value due to (9.29) and there-
fore, they can again be updated by the multiplicative decorrelation process.
In extensive simulations with different types of signals, the M-NICA algorithm
was always observed to converge. This is stated here as an observation, since
a formal proof is not available. Once the algorithm has converged, the mixing
matrix9 Â and the unmixing matrix K can be computed as

Â = YST
(
SST

)−1
(9.30)

K = SV Σ
−1

U
T
. (9.31)

Notice that there always remains a permutation and scaling ambiguity between
the columns of Â and the rows of S.

Assuming that M � N , then the overall complexity of the M-NICA algorithm
is O(N2M), which is the same as the NPCA algorithm.

9.4 Sliding-Window M-NICA

In this section, we describe an adaptive version of the M-NICA algorithm, which
corresponds to a sliding window implementation of the batch mode version of
M-NICA. The window slides over the observed signal y, sample by sample.
After each window shift, a new sample is added to the window, and an old
sample is removed. A sample that enters the window is first unmixed with
an unmixing matrix computed from the previous samples. After each window

9We add a hat to denote that Â is an estimate of the actual mixing matrix A.
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shift, a single iteration10 of the batch mode M-NICA algorithm is performed
on the samples that are currently in the window.

Let K denote the number of samples in the sliding window. We use Matlab
notation to denote rows and columns, i.e. [M]i,: and [M]:,j respectively denote
the i-th row and the j-th column of the matrix M. The adaptive implementa-
tion of M-NICA is then given as follows. For notational convenience, we omit
all universal quantifiers. Index n is always assumed to attain all values from 1
to N and index k is assumed to attain all values from 1 to K.

1. Initialization:
(a) [WY ]:,k ← y[k]
(b) [WS ]nk ← |[WY ]nk|
(c) K←WSW†

Y , where W†
Y denotes the pseudo-inverse of WY .

(d) i← K − 1
2. Window updates:

(a) c← (i mod K) + 1
(b) i← i+ 1
(c) [WY ]:,c ← y[i]
(d) Replace WY by its best rank N approximation by means of the

singular value decomposition (SVD), i.e.

{U,Σ,V} ← SVD (WY ) (9.32)

WY ← U Σ V
T

(9.33)

where Σ is the N × N diagonal matrix containing the N largest
singular values of WY on its diagonal, and where the correspond-
ing left and right singular vectors are stored in the columns of U
and V respectively.

(e) [WS ]nk ← max ([KWY ]nk , 0)
3. Decorrelation step: compute (9.24) where S and Stemp are replaced by

WS and Wtemp
S , respectively.

4. Computation of unmixing matrix :

K←Wtemp
S V Σ

−1
U

T

[K]n,: ←
[K]n,:

‖ [K]n,: ‖

5. Estimation of sample s[i]:

ŝ[i] = Ky[i]

10To achieve faster convergence, multiple iterations can be performed after each window
shift.
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6. Return to step 2.

Notice that step 2(e) corresponds to the signal subspace projection step in the
batch mode algorithm. Step (9.32) can be implemented efficiently by means of
sliding window subspace tracking methods, e.g. [21, 22]. Also notice that the
rows of the unmixing matrix K are normalized in each iteration to remove the
scaling ambiguity in the NICA problem. Notice that K is normalized rather
than WS , since a normalization of WS would result in an unmixing matrix that
varies over time when the signals in s are non-stationary, which is undesirable
in view of the sample by sample unmixing in step 5 of the algorithm.

The window length K introduces a trade-off: it should be large enough such
that the window contains enough samples to compute a reliable estimate of the
correlation coefficients, and to make sure that the independence assumption is
not violated. On the other hand, it should be small enough to achieve sufficient
tracking performance.

9.5 Batch Mode Simulations

In this section, we provide batch mode simulation results for M-NICA and
NPCA with different types of signals. We use two different measures to assess
the performance of these algorithms: the signal-to-error ratio (SER) and the
mean squared error (MSE), i.e.

SER =
1
N

N∑
n=1

10 log10

E{s2n}
E{(sn − ŝn)2}

(9.34)

and

MSE =
1
N

N∑
n=1

E{(sn − ŝn)2} (9.35)

where ŝn denotes the reconstruction of the n-th source signal, after an optimal
(least squares) rescaling to resolve the scaling ambiguity between sn and ŝn.
Notice that NPCA does not explicitly enforce the unmixed signals to be non-
negative, whereas M-NICA enforces this in (9.29). To obtain a fair comparison
between both algorithms, we half-wave rectify the signals obtained by NPCA,
i.e. negative values are set to zero.

9.5.1 Uniformly Distributed Random Signals on the Unit
Interval

In this experiment, we used a uniformly distributed random process on the
unit interval to generate M = 1000 samples of the N = 3 source signals. The
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Figure 9.1: SER and MSE for random signals that are uniformly distributed
on the unit interval.
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Figure 9.2: SER and MSE for random signals that are uniformly distributed
on the unit interval, averaged over 1000 experiments.
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mixing matrix A is a 10× 3 (J=10) matrix with random numbers drawn from
a zero-mean normal distribution.

In Fig. 9.1(a) and 9.1(b) the SER and the MSE of both algorithms are plotted
versus the number of iterations. It is observed that the convergence rate of
NPCA depends on the choice of η. If η is set to a proper value, NPCA converges
faster than M-NICA. However, if the value for η is too large, i.e. η = 4 in this
case, NPCA does not converge and results in a suboptimal unmixing (in Fig.
9.1(a) and 9.1(b), this results in a black band due to the oscillation of the
SER and MSE over the different iterations). Despite the slower convergence,
M-NICA has a higher unmixing accuracy.

It should be noted that the convergence speed and the accuracy of the algo-
rithms varies over different experiments. To draw more general conclusions,
we performed 1000 Monte-Carlo simulations and averaged out the results. The
learning rate for NPCA is set to η = 2, which is observed to provide the best
results (both in terms of convergence and accuracy). The average SER and
MSE versus the number of iterations are shown in Fig. 9.2(a) and 9.2(b). It
is observed that NPCA generally converges much faster than M-NICA, but
M-NICA slightly outperforms NPCA in terms of unmixing accuracy.

9.5.2 Sparse Signals on the Unit Interval

In this experiment, we model sparse random processes, i.e. ∃ α > 0, ∀ δ >
0 : Pr(0 ≤ sn < δ) > α. This model can be used when the sources have an
on-off behaviour, or when analyzing signal spectra that are known to be sparse,
e.g. [4, 8]. Notice that the well-grounded assumption is very well satisfied for
this type of signals.

For the simulations, we use a signal that is similar to what we used in the
previous section, but we modify it to model on-off behavior of the sources,
i.e. the signal contains clusters of zero valued samples corresponding to the
source being ‘off’ during a certain time segment11. To model this, the following
random process is repeated for each of the N = 3 sources signals, until M =
1000 samples are generated

1. Let p define a binary random variable that can attain the values 0 or
1 with equal probability. Let q define an integer random variable that
can attain values from 1 to 10 with equal probability.

2. Draw a sample P from p. If P = 0, go to step 3, and if P = 1, go to
step 4.

3. Draw a sample Q from q. The next Q samples of the signal s are zero.
Then go back to step 2.

11For example, this is similar to the power of a speech signal analyzed in time, where
pauses in between words and sentences create bursts of zeros [4].
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4. Draw a sample Q from q. The next Q samples of the signal s are drawn
from a uniformly distributed random process on the unit interval. Then
go back to step 2.

Notice that the total time during which the source is switched off is approxi-
mately equal to the time during which the source is active. The mixing matrix
is constructed as in the experiment described in Section 9.5.1.

Fig. 9.3(a) and 9.3(b) plot the SER and MSE versus the number of iterations
for both algorithms. It is observed that NPCA converges faster than M-NICA.
However, M-NICA again yields a better unmixing accuracy. As opposed to the
previous experiment, the learning rate of NPCA should now be set to a smaller
value to obtain convergence.

To draw more general conclusions, we again performed 1000 Monte-Carlo sim-
ulations and averaged out the results. The learning rate of NPCA is set to
η = 0.5. Larger values are observed to often cause NPCA not to converge.
The average SER and MSE are shown in Fig. 9.4(a) and 9.4(b). Both algo-
rithms converge much faster compared to the previous experiment (compare
with Fig. 9.2(a) and 9.2(b)), which is due to the sparsity of the signal. It is
again observed that NPCA converges fastest, but that M-NICA outperforms
NPCA in terms of unmixing accuracy. The difference in unmixing accuracy
between both algorithms appears to be more significant for sparse signals, i.e.
more than 5 dB in SER (compare to Fig. 9.2).
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Figure 9.3: SER and MSE for random sparse signals on the unit interval.
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Figure 9.4: SER and MSE for random sparse signals on the unit interval,
averaged over 1000 experiments.
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mixtures

original images

reconstruction M−NICA

Figure 9.5: Three mixtures (first row) of the three original images (second row),
and the corresponding unmixed images with the M-NICA algorithm (third
row).

9.5.3 Images

In this experiment, we generate 3 non-negative mixtures of 3 color images.
Notice that the pixel values of images are non-negative, and therefore this
defines a NICA problem. The original images and the unmixed images by M-
NICA are shown in Fig. 9.5. Fig. 9.6 shows the SER versus the iteration index
for M-NICA and NPCA. It is observed that M-NICA yields a significantly more
accurate unmixing.
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9.5.4 Effect of Sample Size

In the following Monte-Carlo experiment, we want to analyze the performance
of M-NICA and NPCA for different amounts of available data samples M .
Fig. 9.7(a) and Fig. 9.7(b) show the resulting SER for data generated as in
Section 9.5.1 (uniformly distributed signals) and Section 9.5.2 (sparse signals)
respectively. The results are averaged over 200 experiments. We performed
3000 iterations of M-NICA and NPCA with the uniformly distributed data, and
600 iterations with the sparse data since the latter yields faster convergence.

In Fig. 9.7(a), i.e. the case of uniformly distributed signals, it is observed that
M-NICA outperforms NPCA if the amount of available samples is small. A
possible reason for this is the fact that the samples of the original source signals
are slightly correlated due to using finite sample sets. Since the decorrelation
process of M-NICA is based on an explicit minization process that satisfies
a non-negativity constraint, this correlation between the original samples will
partly remain in the unmixed data. On the other hand, NPCA starts by
perfectly decorrelating the data samples with a whitening matrix while ignoring
this non-negativity constraint. This removes all correlation that was present
in the original samples of the unmixed source signals, yielding an unavoidable
distortion. If the amount of data samples is sufficiently large12, NPCA has a
similar (or better) unmixing accuracy compared to M-NICA. In Fig. 9.7(b),
it is again observed that M-NICA outperforms NPCA, and that this effect is
more significant when using small sample sizes. For M = 100, the relative
difference in SER is approximately 20%, whereas this is approximately 8%
when M = 30000.

9.5.5 Conclusions

The above experiments demonstrate that the behavior of NPCA heavily de-
pends on the choice of the learning rate η. The proper choice of η depends
on the signals that are involved, and should be tuned by the user to ensure
convergence and to obtain a good separation performance. The major advan-
tage of the M-NICA algorithm is that it does not depend on any user-defined
parameter. Furthermore, although the M-NICA algorithm is usually slower
than the NPCA algorithm, it generally yields a better separation performance
than NPCA, especially when the amount of available data samples is small.
In the case of sparse signals, M-NICA has good convergence properties and a
significantly better unmixing accuracy than NPCA.

12For very large data sets (i.e. M > 10000), the results are not shown here since M-NICA
needs more than 3000 iteration to converge in this case. This is not the case for sparse signals,
as observed in Fig. 9.7(b), since M-NICA converges much faster on this type of data.
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Figure 9.7: SER, averaged over 200 experiments, as a function of sample size.
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9.6 Sliding Window Simulations

In this section, we provide simulation results of a sliding window implementa-
tion of M-NICA and NPCA with different types of signals. We use the same
measures as in Section 9.5 to assess the performance of the algorithms, i.e. the
SER and the MSE. However, since we consider a sliding window implementa-
tion, both measures are computed over a window of length K and vary over
time.

The sliding window implementation of M-NICA is described in Section 9.4. We
add K − 1 zeros at the beginning of each signal, to be able to estimate each
sample of s[i] starting from i = 0. This means that the windows WY and WS

are initialized with K − 1 all-zero columns.

The sliding window implementation of NPCA corresponds to its batch mode
version described in Section 9.2, where now one iteration is performed for each
position of the sliding window. This means that each time a new sample is
added, the whitening matrix is updated according to (9.2), and the rotation
matrix W is updated according to (9.3)-(9.5), where the expectation operator
is replaced by an averaging over the samples in the window.

9.6.1 Uniformly Distributed Random Signals on the Unit
Interval

The signal and mixing matrix generation for this experiment is the same as in
Section 9.5.1. However, to show the adaptation capabilities of the algorithms,
we change the mixing matrix A after 1000 samples to another mixing matrix. A
window length of K = 200 seems to provide a good balance between adaptation
speed and unmixing accuracy.

Fig. 9.8, shows the variation in SER, MSE and the cross-correlation between
the estimated source signals, over time. The cross correlation is computed
as the sum of the absolute values of the cross-correlation coefficients between
the estimated sources signals. This is only shown for M-NICA since the cross-
correlation is always zero in the case of NPCA, due to the whitening procedure.
The drop in the SER, and the increase in the MSE and the cross-correlation at
sample time 1000 is due to the sudden change of the mixing matrix A. Again,
it is observed that NPCA breaks down if the learning rate η is set too large.
M-NICA provides the best unmixing accuracy.

To draw more general conclusions, we performed 1000 Monte-Carlo simulations
of this experiment and averaged out the results. We set the learning rate of
NPCA to η = 2, which is observed to provide best results. The average SER
and MSE over time is shown in Fig. 9.9. It is observed that, in general, M-NICA
performs significantly better than NPCA in terms of unmixing accuracy, which
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Figure 9.8: The SER (above), MSE (middle) and the absolute value of the
sum of the cross-correlation coefficients between the sources (below). All three
measures are computed over the samples in the sliding window buffer.
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Figure 9.9: The averaged SER (above), MSE (middle) and the absolute value
of the sum of the cross-correlation coefficients between the sources (below). All
three measures are computed over the samples in the sliding window buffer,
and averaged over 1000 experiments.
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Figure 9.10: The SER (above), MSE (middle) and the absolute value of the
sum of the cross-correlation coefficients between the sources (below). All three
measures are computed over the samples in the sliding window buffer.

may be explained by the fact that the window contains only a small amount
of data samples. The difference in convergence speed between both algorithms
is less distinct compared to the batch mode experiments (compare with Fig.
9.2).

9.6.2 Sparse Signals on the Unit Interval

In this experiment, we analyze the performance of sliding window M-NICA and
NPCA for sparse signals, generated in the same way as in Section 9.5.2. Again,
we change the mixing matrix A after 1000 samples, and the window length is
again set to K = 200.

Fig. 9.8 shows the variation in SER, MSE and the cross-correlation between
the estimated source signals, over time. Again it is observed that M-NICA
yields a better reconstruction of the source signal, compared to NPCA.

The averaged results of 1000 Monte-Carlo simulations is shown in Fig. 9.11.
The learning rate for NPCA is set to η = 0.5. Again it is observed that, in gen-
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Figure 9.11: The averaged SER (above), MSE (middle) and the absolute value
of the sum of the cross-correlation coefficients between the sources (below). All
three measures are computed over the samples in the sliding window buffer,
and averaged over 1000 experiments.
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eral, M-NICA performs significantly better than NPCA in terms of unmixing
accuracy.

In [4], both sliding window algorithms are applied to track the power of multiple
simultaneous speech signals. The results are consistent with the experiments
in this paper, i.e. M-NICA significantly outperforms NPCA at the cost of a
slightly slower adaptation speed.

9.7 Conclusions

In this paper, we have proposed a new algorithm, referred to as M-NICA,
to solve non-negative ICA problems with well-grounded sources. The M-NICA
algorithm is based on multiplicative update rules which preserve non-negativity,
together with a subspace projection based correction step. It has the facilitating
property that it does not depend on a user-defined learning rate, as opposed to
gradient based techniques such as the NPCA algorithm, where a proper choice
for the learning rate is crucial to provide satisfying results.

The performance of M-NICA has been demonstrated by means of simulation
results with different types of signals. Batch mode simulations indicated that
M-NICA has a better unmixing accuracy than NPCA, but with slower conver-
gence. In the case of sparse signals, M-NICA has good convergence properties,
and significantly outperforms NPCA in terms of unmixing accuracy. It is also
observed that M-NICA is best suited when the amount of available data sam-
ples is small. A sliding window implementation of both algorithms has also
been described and validated, again showing that M-NICA significantly out-
performs NPCA.
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Abstract

In this paper, we propose an energy-based technique to track the power of mul-
tiple simultaneous speakers using an ad hoc microphone array with unknown
microphone positions. By considering the short-term power of the microphone
signals, the problem can be converted into a non-negative blind source sep-
aration (NBSS) problem. By exploiting the prior knowledge that the source
signals are non-negative and well-grounded, very efficient algorithms can be
used to solve this NBSS problem, based only on second order statistics. We
provide simulation results that demonstrate the effectiveness of the presented
algorithm.

10.1 Introduction

Many speech processing algorithms make use of a voice activity detector (VAD),
i.e. an algorithm that decides whether a speech source is active or not. How-
ever, most VAD’s assume that there is a single speech source, and are therefore
unreliable in scenario’s with multiple speakers. Furthermore, it is sometimes
desirable that the VAD is able to distinguish between different speakers, e.g.
in noise reduction algorithms where the noise signal is a speaker that interferes
with the target speaker.

Since different speakers have different positions, the design of a multi-speaker
VAD can rely on spatial information collected by multiple microphones. In [1],
a far-field multi-speaker VAD is proposed for a microphone array with known
microphone positions. The algorithm uses independent component analysis
(ICA), K-means clustering, and beam-pattern analysis, which makes it very
complex. In this paper, we use an energy-based approach that does not exploit
any prior knowledge on the geometry of the array. It is suited for applications
that make use of an ad hoc microphone array with widely spaced microphones
(e.g. [2, 3]). This is for instance the case in video conferencing applications
where each participant brings a device with built-in microphones, such as a
laptop or PDA. Since most of these devices have WiFi technology, they can be
linked to form an ad hoc network [2, 4]. The presented algorithm also does not
assume any accurate synchronization between the microphone sampling clocks,
which is very convenient, e.g. in the mentioned scenario with different devices.
The VAD algorithm provides an estimate of the instantaneous power of each
speech signal at each microphone.

By using short-term power measurements at the different microphones, the
multi-speaker VAD problem can be converted into a blind source separation
problem with non-negative sources, which can be solved efficiently with sec-
ond order statistics only. We provide simulation results to demonstrate the
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effectiveness of the presented algorithm.

10.2 Problem Statement and Data Model

Consider a scenario with N speakers and an ad hoc microphone array with
J microphones. It is assumed that the microphones are spatially distributed
such that the captured power from any speech source varies over the different
microphones. We assume that the number of speakers N is known. If not,
a prior step is needed to estimate N from the microphone signals, e.g. with
PCA.

The N speakers produce the speech signals s̃n[t], n = 1 . . . N , where t de-
notes the sample time index. Let L denote the block length over which the
instantaneous power of a signal is measured. We define the signal sn[k] as

sn[k] =
1
L

L−1∑
l=0

s̃n[kL+ l]2 (10.1)

i.e. sn[k] contains the instantaneous power of the signal s̃n at sample time kL
(k is a frame index). The sn[k] signals are stacked in an N -dimensional vector
s[k]. In the sequel, we will use the symbol s without the index [k] to refer to
the underlying random process that generates the samples s[k]. Similarly to
(10.1), we define the instantaneous power in the j-th microphone signal as

yj [k] =
1
L

L−1∑
l=0

ỹj [kL+ l]2 (10.2)

where ỹj [t] denotes the j-th microphone signal. The yj [k] signals are stacked
in a J-dimensional vector y[k].

If we assume that the signals s̃n, n = 1 . . . N , are mutually independent, and
if we neglect reverberation effects over the block edges, we can model y[k]
according to

y[k] ≈ As[k] , ∀ k ∈ N (10.3)

where A is a J × N mixing matrix, for which the element [A]jn denotes the
power attenuation between speaker n and microphone j. It is assumed that
the mixing matrix A has full column rank. Notice that L yields a trade-off
between time resolution and model mismatch. The larger the value of L, the
better the approximation (10.3) holds, but the worse the time resolution be-
comes. Furthermore, if there is significant reverberation, this will also affect the
approximation (10.3) (especially when L is small). However, we will demon-
strate in Section 10.4 that our VAD algorithm is still able to provide satisfying
results under limited reverberation.



10.3. Solving the Non-Negative BSS Problem 345

Our goal is to find both A and s[k], which would allow us to compute the
instantaneous power of each speaker at each microphone, and then to run a
VAD for each speaker separately. Notice that this is a blind source separation
(BSS) problem in which the source signals are non-negative. In [5], this is
referred to as a non-negative independent component analysis (NICA) problem.
Expression (10.3) can also be described in the frequency domain to allow for a
multi-speaker VAD in separate frequency bins. However, as with all frequency
domain BSS problems, a post-processing stage must then be added to resolve
the permutation ambiguity between the different frequency bins. We will not
take this into consideration in this paper.

Notice that we did not incorporate any noise in the data model. However, a
localized noise source with non-stationary noise power, can readily be included
in s as an additional source signal. On the other hand, diffuse noise with
stationary power results in a constant noise floor, which can be easily estimated
and subtracted from y[k]. If required, noise estimation techniques, such as
[6–8], can be used to track the power of a non-stationary diffuse noise. In the
sequel, we assume that either noise power is subtracted from the signal y[k],
or that localized noise sources are included in s, so that (10.3) is satisfied.
In Section 10.4, simulation results will demonstrate that the proposed VAD
algorithm can still provide satisfying results when some residual noise power
remains in y[k]. The residual noise then results in a non-zero noise floor on the
unmixed signals.

10.3 Solving the Non-Negative BSS Problem

10.3.1 Well-Grounded Sources

The prior knowledge on the non-negativity of the source signals in s can be
exploited to design algorithms that are simpler compared to traditional ICA
algorithms. In this paper, we exploit an additional assumption, i.e. the sources
are assumed to be well-grounded [9]. This means that all sources have a non-
zero pdf in any positive neighborhood of zero, i.e. ∀ δ > 0: Pr(sn < δ) > 0, for
all source signals sn, n = 1 . . . N . Because speech signals typically have an on-
off behavior, the signals sn, n = 1 . . . N , can be assumed to be well-grounded.

In [5], the non-negative principal component analysis (NPCA) algorithm is
introduced, which solves NICA problems with well-grounded source signals.
NPCA is a gradient-based learning algorithm, and its performance heavily
depends on the chosen learning rate, as we will demonstrate in Section 10.4.

To avoid a step size search, we will use a multiplicative NICA (M-NICA) algo-
rithm instead, which also exploits the well-grounded properties of the source
signals [10]. M-NICA is a fixed-point type algorithm that has the facilitating
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property that it does not depend on a user-defined learning rate. In the next
section, we will briefly describe M-NICA. Even though the simulation results
of our speaker dependent VAD are performed in a real-time context, we will
describe the algorithm in batch-mode, for the sake of an easy exposition. For a
detailed description of an adaptive sliding window implementation of M-NICA,
we refer to [10].

10.3.2 The M-NICA Algorithm

Assuming that the source signals s are non-negative and well-grounded, it can
be shown that it is sufficient to find an N × J unmixing matrix K such that
the entries in the unmixed signal ŝ = Ky are mutually uncorrelated and non-
negative [9, 10]. Therefore, M-NICA is entirely based on second order statistics.

Assume we collect a J ×M data matrix Y that contains M samples y[k], k =
0 . . .M − 1, in its columns. The goal is to find an N ×M matrix S = KY such
that the rows of S are uncorrelated and only contain non-negative numbers.
The following fixed-point type algorithm is used to generate such a matrix [10]:

1. Initialization:
(a) ∀ n = 1 . . . N,∀m = 1 . . .M : [S]nm ← [Y]nm

(b) Replace Y by its best rank N approximation by means of the
singular value decomposition (SVD), i.e.

{U,Σ,V} ← SVD (Y) (10.4)

Y ← U Σ V
T

(10.5)

where Σ is the N × N diagonal matrix containing the N largest
singular values1 of Y on its diagonal, and where the corresponding
left and right singular vectors are stored in the columns of U and
V respectively.

2. Decorrelation step:

∀ n = 1 . . . N,∀m = 1 . . .M :

[S∗]nm ← [S]nm

[
SST Λ−1

1 S + SST Λ−1
1 S + Λ2S

]
nm[

SST Λ−1
1 S + SST Λ−1

1 S + Λ2S
]
nm

(10.6)

with

S =
1
M

S 1M1T
M (10.7)

Cs = (S− S)(S− S)T (10.8)

1Notice that, if noise were present, this step will remove some noise from the observations.
In the noise-free case, Y has exactly N non-zero singular values.
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Λ1 = D {Cs} (10.9)

Λ2 = D
{(

Λ−1
1 Cs

)2}
(10.10)

where 1M denotes an M -dimensional column vector in which each entry
is 1, and where D{X} denotes the operator that sets all off-diagonal
elements of X to zero.

3. Signal subspace projection step:

∀ n = 1 . . . N,∀m = 1 . . .M :

[S]nm ← max
([

S∗ V V
T
]

nm
, 0
)
. (10.11)

4. Return to step 2.

In the decorrelation step (10.6), the elements of the matrix S are updated to
decrease the mutual correlation between the rows of S. Since S is initialized
with non-negative elements, the decorrelation step (10.6) will preserve the non-
negativity due to its multiplicative nature. However, the rows of the resulting
matrix S are no longer in the signal subspace defined by the rows of Y. There-
fore, the matrix S is projected to the row space of Y in (10.11). For a more
detailed derivation of the updating formulas, we refer to [10].

When a fixed point of (10.6)-(10.11) is found, the elements in each row of S
correspond to samples of the unmixed signal ŝ[k]. The mixing matrix Â that
corresponds to ŝ, can then be computed as

Â = YST
(
SST

)−1
. (10.12)

Notice that there always remains a permutation and scaling ambiguity between
the columns of Â and the signals in ŝ. However, in the multi-speaker VAD
application, we are interested in the speech energy of each target speaker in
each microphone signal. Let vjn[k] denote the speech energy of speaker n in
microphone j at time instant k. Each value vjn[k], j = 1 . . . J , n = 1 . . . N ,
k = 1 . . .M can then be estimated as

v̂jn[k] =
[
Â
]

jn
ŝn[k] . (10.13)

10.4 Simulations

In this section, we provide simulation results for the multi-speaker VAD algo-
rithm based on M-NICA. To compare, we also provide simulation results for
the case where (10.3) is solved with NPCA, with different learning rates η (for
a description of this algorithm, we refer to [5]). We simulate a cubical room
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Figure 10.1: The acoustic scenario, containing N = 3 speakers (3) and J = 6
microphones (�).

(5m × 5m × 5m) with N = 3 randomly placed speakers (3), all of them talk-
ing simultaneously, and J = 6 randomly placed microphones (�), as shown
in Fig. 10.1. The microphone signals are generated by means of the image
method [11]. Unless stated otherwise, we compute the instantaneous power
of the source signals and the microphone signals over time intervals of 30ms,
which corresponds to L = 480 in (10.1)-(10.2), when the sampling frequency is
fs = 16kHz. This is the typical time duration for which a speech segment is
assumed to be stationary. However, better performance can be obtained when
a larger value is chosen for L, at the cost of a lower time resolution.

To produce a real-time output, a sliding window version of NPCA and M-
NICA is implemented (see [10]). This means that the different iterations of the
batch-mode versions of both algorithms are applied on a finite time window
that shifts over the signals2. Samples that enter the window are first unmixed
with an unmixing matrix that is computed from the previous samples in the
window. The choice of the window length K introduces a trade-off: if K is
chosen too small, then the independency assumption may be violated within
one window length. On the other hand, a large value for K will affect the
convergence time and the tracking capabilities of the VAD algorithm. In this
experiment, the length of the sliding window is chosen to be K = 200, which
is observed to provide satisfying results.

We use the mean of the signal-to-error ratios (SER) to assess the performance

2In our simulations, we perform one iteration for each sample shift of the window. How-
ever, to achieve faster convergence, multiple iterations can be performed in between each
sample shift of the window. This is possible, since the window moves very slowly, i.e. every
30 ms.
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Figure 10.2: Reconstruction of the source energy in source 1 (above), and the
corresponding SER (below).

of the multi-speaker VAD algorithm, i.e.

SER =
1
JN

∑
j,n

10 log10

∑
k v̂jn[k]2∑

k(v̂jn[k]− [A]jn sn[k])2
(10.14)

where v̂jn[k] is defined by (10.13). Since we consider a sliding window imple-
mentation, the SER is computed over the K samples in the sliding window,
and thus updated for each window shift.

Fig. 10.2 shows the original source energy of source 1. Furthermore, it shows
the variation of the mean SER in the output of the VAD algorithm based
on M-NICA and on NPCA for different values of η. It is observed that the
performance of NPCA heavily depends on the choice of η. If η is chosen too
small (e.g. η = 0.5), or too large (e.g. η = 2), the performance degrades
significantly. The best overall performance is obtained for η = 1.5. M-NICA
is observed to converge slightly slower than NPCA, but after convergence, it
outperforms NPCA for any choice of η.

As mentioned in Section 10.2, reverberation affects the performance of the VAD
algorithm, since approximation (10.3) then becomes less accurate. Fig. 10.3(a)
plots the mean SER as a function of the reflection coefficient of the walls in
the room (the SER is averaged over the last 10 seconds of the signal). For
significant reverberance, the algorithm still manages to unmix the signals at a
SER of approximately 8 dB, which is sufficient to make reliable VAD decisions.
When L is doubled, i.e. L = 960, it is observed that the SER increases (at a
cost of a lower time resolution).
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Figure 10.3: SER as a function of (a) reflection coefficient of the walls and (b)
SNR.

As mentioned in Section 10.2, it is assumed that any noise power is removed
from y[k]. If some residual noise remains in y[k], the performance of the VAD
algorithm decreases. We model residual noise by adding a stationary white
noise source to each microphone signal ỹj [t], j = 1 . . . J , resulting in a constant
noise floor in y[k]. Each microphone signal has an equal amount of residual
noise, and no noise power is substracted from y[k]. Fig. 10.3(b) shows the SER
as a function of the signal-to-noise ratio (SNR) at the microphone with highest
SNR. It is observed that the VAD algorithm still produces an output with
satisfactory SER, as long as the SNR due to residual noise is sufficiently low.
It should be noted that the decrease in SER is mainly due to a constant noise
floor in the unmixed signals. The speech segments that have a higher power
than this noise floor can still be detected, and are observed to be properly
separated.

10.5 Conclusions

In this paper, we have presented a technique to track the power of multiple
simultaneous speakers with an ad hoc microphone array with unknown micro-
phone positions. Since the technique is energy-based, an accurate synchroniza-
tion between the different microphone signals is not required. By using short-
term power measurements at the different microphones, the multi-speaker VAD
problem can be converted into a non-negative blind source separation (NBSS)
problem, which can be solved efficiently based on second order statistics only.
The effectiveness of the multi-speaker VAD has been demonstrated with adap-
tive sliding window simulations. The M-NICA algorithm presented here is
observed to provide better overall results compared to NPCA [5], and has the
additional advantage that it does not depend on a user-defined learning rate.
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Abstract

We consider two aspects of linear MMSE signal estimation in wireless sensor
networks, i.e. sensor subset selection and link failure response. Both aspects
are of great importance in low-delay signal estimation with high sampling fre-
quency, where the estimator must be quickly updated in case of a link failure,
and where sensor subset selection allows for a significant energy saving. Both
problems are related since they require knowledge of the new optimal estimator
when sensors are removed or added. We derive formulas to efficiently compute
the optimal fall-back estimator in case of a link failure. Furthermore, we derive
formulas to efficiently monitor the utility of each sensor signal that is currently
used in the estimation, and the utility of extra sensor signals that are not yet
used. Simulation results demonstrate that a significant amount of energy can
be saved at the cost of a slight decrease in estimation performance.

11.1 Introduction

A wireless sensor network (WSN) consists of a large number of sensor nodes
that are (usually randomly) deployed in an environment, and where each node
has a wireless link to exchange data with neighbouring nodes [1]. The sensor
nodes cooperate to perform a certain task such as signal estimation, detection,
localization, etc. For this task, the data of the different sensors can be central-
ized in a so-called fusion center, or it can be partially or fully distributed over
the different nodes in the network.

In this paper, we consider the case where a WSN is used for adaptive linear
minimum mean squared error (MMSE) signal estimation, where the goal is to
recover an unknown signal from noisy sensor observations. By using a WSN, a
large area can be covered, yielding a significant amount of spatial information.
This additional spatial information may result in an improved estimation per-
formance compared to beamforming systems with small local arrays. However,
WSN’s often suffer from link failures, e.g. due to power shortage or inter-
ference in the wireless communication. For real-time signal estimation, the
network must be able to swiftly adapt to these link failures to maintain suf-
ficient estimation quality. In this paper, we provide an efficient procedure to
compute the optimal fall-back estimators in case of a link failure, by exploiting
the knowledge of the inverse sensor signal correlation matrix as used before the
link failure. Due to the low complexity of the procedure, sensor nodes are able
to react very quickly to link failures, even for high data rate applications such
as in acoustic WSN’s for speech enhancement [2, 3].

As the sensors in a WSN are usually battery-powered, energy efficiency is
of great importance. To prolong the life-time of the network, it is therefore
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important to only use those sensors that yield a significant contribution to
the signal estimation process, while putting other sensors to sleep. This is
the well known sensor subset selection problem. The sensor subset selection
problem is also important in bandwidth constrained WSN’s where each node
can only transmit a subset of its available sensor signals. This is for instance the
case in wireless binaural hearing aids with multiple microphones, where each
hearing aid can only transmit a single microphone signal through the wireless
link [3–5]. Notice that a quick link failure response is also an important aspect
in this application.

Solving the sensor subset selection problem is generally computationally expen-
sive due to its combinatorial nature. If the sensor signal statistics are known
in advance, e.g. after an initial training phase, the sensor selection can be
solved off line with unlimited power. However, in adaptive untrained WSN’s
the problem has to be solved during operation of the estimation algorithm. In
this case, due to the limited power of a WSN, the sensor subset selection must
be performed in an efficient way, generally yielding a suboptimal solution. We
provide efficient closed-form formulas to compute the contribution of each sen-
sor signal to the mean squared error (MSE) cost, i.e. the utility of each sensor
signal, which can then be used in an adaptive greedy fashion to sequentially
add or remove sensors in the estimation procedure. Simulation results demon-
strate that a significant amount of energy can be saved in this way, at the cost
of a slight decrease in estimation performance.

The paper is organized as follows. In Section 11.2, we briefly review the linear
MMSE (LMSSE) signal estimation procedure, and address some of the aspects
in adaptive LMMSE estimation. In Section 11.3, we derive a formula to ef-
ficiently compute the optimal fall-back estimator in case of a link failure. In
Section 11.4, we describe an efficient procedure to monitor the utility of the
sensor signals used in the current estimator, and to compute the potential util-
ity of sensor signals not currently used. Simulation results are given in Section
11.5. Conclusions are drawn in Section 11.6.

11.2 Review of Linear MMSE Signal Estima-
tion

In this section, we briefly review linear MMSE signal estimation, which is often
used in signal enhancement [2–9]. We consider an ideal WSN with M sensors.
Without loss of generality, we assume that all sensor signals are centralized in
a fusion center. However, the results in this paper can be equally applied to
the distributed case where each sensor node solves a local LMMSE problem, as
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in [2–4, 8–11]. Sensor k collects observations of a complex1 valued signal yk[t],
where t ∈ N is the discrete time index. For the sake of an easy exposition, we
will mostly omit the time index in the sequel. We assume that all sensor signals
and the desired signal, are stationary and ergodic. In practice, the stationar-
ity and ergodicity assumption can be relaxed to short-term stationarity and
ergodicity, in which case the theory should be applied to finite signal segments
that are assumed to be stationary and ergodic. We define y as the M -channel
signal gathered at the fusion center in which all signals yk, ∀ k ∈ {1, . . . ,M},
are stacked.

The goal is to estimate a complex valued desired signal d from the sensor signal
observations y. We consider the general case where d is not an observed signal,
i.e. it is assumed to be unknown, as it is the case in signal enhancement (e.g. in
speech enhancement, d is the speech component in a noisy reference microphone
signal). We consider LMMSE signal estimation, i.e. a linear estimator d =
ŵHy that minimizes the MSE cost function

J(w) = E{|d−wHy|2} (11.1)

i.e.
ŵ = arg min

w
J(w) (11.2)

where E{.} denotes the expected value operator and where the superscript H
denotes the conjugate transpose operator2. It is noted that the above estima-
tion procedure does not use multi-tap estimation, i.e. it does not explicitly
exploit temporal correlation. However, this can be easily included by expand-
ing y with delayed copies of itself. Expression (11.1) can also be viewed as a
frequency domain description, such that it defines an estimator for a specific
frequency bin. When (11.2) is solved for each individual frequency bin, this is
equivalent to multi-tap estimation. In its multi-tap form, the solution of (11.2)
is often referred to as a multi-channel Wiener filter (MWF) [6, 7].

Assuming that the correlation matrix Ryy = E{yyH} has full rank3, the unique
solution of (11.2) is [12]:

ŵ = R−1
yy ryd (11.3)

with ryd = E{yd∗}, where d∗ denotes the complex conjugate of d. The MMSE
corresponding to this optimal estimator is

J(ŵ) = Pd − rH
ydR

−1
yy ryd (11.4)

1Throughout this paper, all signals are assumed to be complex valued to permit frequency-
domain descriptions, e.g. when using a short-time Fourier transform (STFT).

2In the sequel, we use the superscript T to denote the normal transpose, i.e. without
conjugation.

3This assumption is mostly satisfied in practice because of a noise component at every
sensor that is independent of other sensor signals, e.g. thermal noise. If not, pseudo-inverses
should be used.



358 Chapter 11. Link Failure Response and Sensor Subset Selection

= Pd − rH
ydŵ (11.5)

with Pd = |d|2. Based on the assumption that the signals are ergodic, Ryy can
be adaptively estimated from the sensor signal observations by time averaging.
Since d is assumed to be unknown, the estimation of the correlation vector
ryd has to be done indirectly, based on application-specific strategies, e.g. by
exploiting the on-off behavior of the target signal (as often done in speech
enhancement [2, 3, 6]), by periodic broadcasts of known training sequences, or
by incorporating prior knowledge on the signal statistics in case of partially
static scenarios [10]. In the sequel, we assume that both Ryy and ryd are
known, or that both can be estimated adaptively.

Notice that the inverse of Ryy is required for the computation of (11.3), rather
than the matrix Ryy itself. When M is large, computing this matrix inverse
is however computationally expensive, i.e. O(M3), and should be avoided in
adaptive applications with high data rates. Let Ryy[t] denote the estimate
of Ryy at time t. Instead of updating Ryy[t] for each new sample y[t], and
recomputing the full matrix inversion R−1

yy [t] = (Ryy[t])−1, the previous matrix
R−1

yy [t− 1] is directly updated. For example, Ryy is often estimated by means
of a forgetting factor 0 < λ < 1, i.e.

Ryy[t] = λRyy[t− 1] + (1− λ)y[t]y[t]H . (11.6)

In this case, R−1
yy [t] can be recursively updated by means of the matrix inversion

lemma, a.k.a. the Woodbury identity [12], yielding

R−1
yy [t] =

1
λ
R−1

yy [t− 1]−
R−1

yy [t− 1]y[t]y[t]HR−1
yy [t− 1]

λ2

1−λ + λy[t]HR−1
yy [t− 1]y[t]

(11.7)

which has a computational complexity of O(M2). It is noted that, when (11.7)
is used to update R−1

yy [t], the correlation matrix Ryy[t] itself does not need to
be kept in memory.

11.3 Link Failure Response

Now assume a link failure with sensor k during operation of the estimation
process. This means that the fusion center now only has access to the (M −1)-
channel signal y−k, which is defined as the vector y with yk removed. In this
case, the optimal LMMSE solution is

ŵ−k = R−1
yy−kryd−k (11.8)

where Ryy−k = E{y−kyH
−k} and ryd−k = E{y−kd

∗}. Hence, when the wireless
link of sensor k breaks down, estimator ŵ (11.3) becomes suboptimal, and
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should be replaced by (11.8). However, computing (11.8) requires knowledge
of R−1

yy−k, which is not directly available. If Ryy were kept in memory, it is
possible to invert its submatrix Ryy−k to obtain R−1

yy−k. However, this has a
large computational cost when M is large, i.e. O

(
M3
)
.

In the sequel, we derive an efficient formula to compute ŵ−k without knowledge
of Ryy, and without explicitly computing matrix inversions. As explained in
Section 11.2, we only assume that the previous estimate of R−1

yy is known. For
the sake of an easy exposition, but without loss of generality, we assume that
k = M , i.e. the last element of y is removed. We consider a block partitioning
of the inverse correlation matrix

R−1
yy =

[
AM bM

bH
M QM

]
(11.9)

where AM is an (M − 1) × (M − 1) matrix, bM is an (M − 1)-dimensional
vector, and QM is a real-valued scalar. We define a similar partitioning of the
corresponding (and also assumed known) optimal LMMSE estimator ŵ (11.3)
before the link failure with sensor M :

ŵ =
[

cM

WM

]
(11.10)

where cM denotes the subvector containing the first (M − 1) elements of ŵ,
and where WM defines the scaling that is applied to the sensor signal M in the
estimation process. Similar to (11.9), we define the following block partitioning
of the correlation matrix

Ryy =
[

Ryy−M rM

rH
M PM

]
(11.11)

where rM is an (M − 1)-dimensional vector, and where PM is a real-valued
scalar, corresponding to the power of the signal yM . By using the matrix
inversion lemma, one can verify that the inverse of this block matrix is:

R−1
yy =

[
R−1

yy−M + αMvMvH
M −αMvM

−αMvH
M αM

]
(11.12)

with

vM = R−1
yy−MrM (11.13)

αM =
1

PM − rH
MvM

. (11.14)

By comparing (11.9) and (11.12), we find that

R−1
yy−M = AM − 1

QM
bMbH

M (11.15)
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and therefore the optimal fall-back estimator is

ŵ−M =
(
AM −

1
QM

bMbH
M

)
ryd−M . (11.16)

By plugging (11.9) and (11.10) into (11.3) we obtain

cM = AMryd−M +RyM dbM (11.17)

WM = bH
Mryd−M +QMRyM d (11.18)

where RyM d denotes the last element of the correlation vector ryd. When com-
paring (11.16) with (11.17)-(11.18), we find with some straightforward algebraic
manipulation that the optimal fall-back estimator can be readily computed as

ŵ−M = cM − WM

QM
bM . (11.19)

Since all variables in (11.19) are directly available, this allows a very efficient
computation, i.e. O(M).

Remark: The above formulas can also be used in the case where an additional
sensor signal becomes available. That is, formulas (11.12)-(11.14) can be used
to efficiently compute the new inverse correlation matrix R−1

yy when sensor M
is added in the estimation process. We will return to this in Section 11.4.2.

11.4 Sensor Subset Selection

Assume that we have an optimal M -channel LMMSE estimator ŵ. The goal
is now to efficiently monitor the utility of each sensor signal, i.e. we wish
to identify how much the MSE cost (11.1) increases when a specific sensor is
removed from the signal estimation procedure (sensor deletion), or how much
the MSE cost decreases if a specific additional sensor would be included in
the estimator (sensor addition). We will refer to this MSE cost decrease or
increase as the ‘utility’ of the sensor signal. To allow monitoring this utility,
we want to be able to compute it in an efficient way, i.e. without explicit matrix
inversions and without actually computing the optimal estimator for all possible
scenarios. In the case of sensor deletion, we will show that the utility of each
sensor can be monitored at a computational cost which is negligible compared
to the estimator update based on (11.7). In the case of sensor addition, the
cost of monitoring the potential utility of N extra sensors is more significant,
i.e. N times the cost of (11.7).

11.4.1 Sensor Deletion
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For sensor deletion, the goal is to monitor the contribution of each sensor to
the current MSE cost. The utility of sensor k is defined as

Uk = J(ŵ−k)− J(ŵ) . (11.20)

The goal is to efficiently compute Uk, ∀ k ∈ {1, . . . ,M}. From (11.5), and with
the notations4 introduced in Section 11.3, we find that

UM = rH
ydŵ − rH

yd−M ŵ−M . (11.21)

By using (11.19), and by using the partitioning of ŵ as defined in (11.10), we
can rewrite (11.21) as

UM = R∗yM dWM +
WM

QM
rH

yd−MbM . (11.22)

From (11.18), we find that

rH
yd−MbM = W ∗M −QMR∗yM d . (11.23)

By substituting (11.23) in (11.22), we find that

UM =
1
QM
|WM |2 . (11.24)

To monitor the utility of all the sensors simultaneously, i.e. the vector u =
[U1 . . . UM ]T , it is thus sufficient to monitor the squared components of the
current estimator ŵ, normalized with the diagonal elements of the inverted
correlation matrix R−1

yy , i.e.

u = Λ−1|ŵ|2 (11.25)

with
Λ = D{R−1

yy } (11.26)

where the operator D{X} sets all off-diagonal elements of X to zero, and where
the element-wise operator |x|2 replaces all elements in the vector x with their
squared absolute value. Expression (11.25) is computationally efficient, i.e.
O(M). Therefore, the complexity of monitoring the utility of each sensor is
negligible compared to the estimator update based on (11.7). When the utility
of a certain sensor drops below a certain threshold, this sensor can be put to
sleep, and the new optimal LMMSE estimator can then be readily computed
as in expression (11.19). The reduced inverse correlation matrix can be readily
computed with (11.15), which is then required for future estimator updates
with (11.7).

4Again, we assume that k = M , without loss of generality.
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11.4.2 Sensor Addition

Assume that we have an optimal MMSE estimator ŵ that linearly combines M
sensor signals, and that a set of N additional sensor signals is available. Which
one of these sensor signals would bring the greatest benefit to the estimator?

To use the results from Section 11.3, we assume that the current estimator is
the (M − 1)-channel estimator ŵ−M . The utility of adding sensor M to the
estimation process, i.e. the decrease in MSE cost, is again given by (11.20).
However, expression (11.25) cannot be used in this case, sinceWM is not known.
Indeed, this time only R−1

yy−M is kept in memory, instead of R−1
yy . This makes

the problem of sensor addition substantially different from sensor deletion.

By using (11.4), we can rewrite (11.20) as

UM = rH
ydR

−1
yy ryd − rH

yd−MR−1
yy−Mryd−M . (11.27)

By using expression (11.12), we find that

rH
ydR

−1
yy ryd = rH

yd−M

(
R−1

yy−M + αMvMvH
M

)
ryd−M

−2αMR{rH
yd−MvM}+ αM |RyM d|2

(11.28)

where R{X} denotes the real part of X. By substituting (11.28) in (11.27),
we find that the utility of sensor M can be computed as

UM = αM |rH
yd−MvM −RyM d|2 . (11.29)

The computational complexity is O(M2), which is the same order of magnitude
as the computation of the estimator update based on (11.7). Notice that,
as opposed to the sensor deletion case, we now do need the cross correlation
between the currently used sensor signals, and the added sensor signal yM (used
in the computation of vM , as given in (11.13)). This cannot be circumvented
because the current optimal estimator only uses R−1

yy−M , which indeed does
not incorporate any statistics of yM .

Let us now consider the general case where N extra sensor signals become avail-
able. Define yc as the stacked vector of the M sensor signals that are currently
used in the estimation process, and define ye as the stacked N -channel signal
that contains the N extra sensor signals that can be added to the estimation
process. We redefine Ryy as

Ryy =
[

Rycyc Rycye

RH
ycye

Ryeye

]
(11.30)

where Rycyc = E{ycyH
c }, Rycye = E{ycyH

e }, and Ryeye = E{yeyH
e }. We

assume that R−1
ycyc

is kept in memory, since this was used in the computation
of the current optimal estimator. We also assume that Rycye is available,
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i.e. the cross correlation between the currently used sensor signals and the
extra sensor signals, which can be estimated through time averaging. Finally,
we assume that the power of each additional sensor signal is known, i.e. the
diagonal elements of Ryeye

.

Similar to (11.29), we can compute the vector u = [U1 . . . UN ]T , which gives
the utility of each additional sensor signal:

u = Σ−1|VT r∗ycd − ryed|2 (11.31)

where

V = R−1
ycyc

Rycye (11.32)

Σ = D{Ryeye} − D{RH
ycye

V} (11.33)

and where rycd = E{ycd
∗} and ryed = E{yed

∗}. The computational com-
plexity of (11.32) is the dominant part, which makes the total computational
complexity O(M2N).

Let Uk = maxi∈{1,...,N} Ui, which means that sensor k will be selected as pro-
viding the most useful additional sensor signal. To incorporate sensor signal
yk in the estimation procedure, the inverse correlation matrix R−1

ycyc
should

be replaced with R−1
ycyc+k = E{

[
yT

c yk

]T [
yH

c y
∗
k

]
}−1, which can be computed

similarly to (11.12), i.e.

R−1
ycyc+k =

[
R−1

ycyc
+ 1

Sk
vkvH

k − 1
Sk

vk

− 1
Sk

vH
k

1
Sk

]
(11.34)

where vk denotes the k-th column of V, and where Sk denotes the k-th diagonal
element of Σ. This has computational complexity O(M2), which is the same
as the complexity of an estimator update according to (11.7). The new optimal
LMMSE estimator can then be computed as

ŵ+k = R−1
ycyc+k

[
rycd

Rykd

]
(11.35)

where Rykd denotes the k-th entry in ryed.

11.4.3 Greedy Sensor Subset Selection

The formulas (11.25) and (11.31) can be readily used in a greedy approach to
efficiently determine a subset of sensor signals that yields a good estimator.
This can be done in two different ways (with generally different end results).
In the case of sensor addition, one starts by selecting the single sensor signal
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Figure 11.1: The simulated scenario, containing M = 60 sensors (◦) with one
reference sensor (�), 6 noise sources (5) and one moving target source (�).

which results in the best single-channel estimator, and then in each cycle the
sensor with highest utility is added to the estimation process (forward mode).
In the case of sensor deletion, one starts by computing the optimal estimator
using all sensor signals, and then in each cycle the sensor with lowest utility is
deleted (backward mode). An adaptive greedy sensor subset selection (AGSSS)
algorithm is described in more detail in the next section.

11.5 Simulations

In this section, we present simulation results of an adaptive LMMSE signal
estimation algorithm with adaptive greedy sensor subset selection. The sce-
nario is depicted in Fig. 11.1. This is a toy scenario, and we do not attempt
to model any practical setting or application. All signals are sampled with a
sampling rate of 8kHz. The target source (�) moves at a speed of 0.5 m/s
over the path indicated by the straight lines, and stops for 5 seconds at each
corner. The target source signal is white and has a Gaussian distribution.
There are six localized white Gaussian noise sources (5) present, each with
25% of the power of the target source5. The WSN contains M = 60 randomly

5This is an arbitrary choice that yields practical SNR’s at the sensors.
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Figure 11.2: SER vs. time (above), and the corresponding total power con-
sumed in the WSN (below).

placed sensors (◦), with one reference sensor (�). The goal is to estimate the
target source signal as it is sensed by this reference sensor (denoted by d). In
addition to the spatially correlated noise, independent white Gaussian sensor
noise, with 5% of the power of the target source, is added to each sensor signal.
The individual signals originating from the target sources and the noise sources
that are collected by a specific sensor are attenuated in power and summed.
The attenuation factor of the signal power is 1

r , where r denotes the distance
between the source and the sensor. We assume that there is no time delay in
the transmission path between the sources and the sensors6. The estimation
performance will be assessed based on the instantaneous signal-to-error ratio,
computed over L = 1000 samples:

SER[t] = 10 log10

( ∑t
k=t−L+1 d[k]

2∑t
k=t−L+1(d[k]− d[k])2

)
. (11.36)

The inverse correlation matrix R−1
yy is updated according to (11.7) with a for-

getting factor λ = 0.9995. The correlation vector ryd is updated with the same
forgetting factor. We use the clean desired signal d in the estimation of ryd,
to isolate estimation errors. Notice that in practice, application-specific tech-
niques are required to estimate this vector if d is not directly available7 (see
e.g. [2, 3]). During the first 3 seconds, the estimation algorithm estimates the

6Since there are no time delays, the spatial information is purely energy based in this case.
Therefore, the fusion center cannot perform any beamforming towards specific locations by
exploiting different delay paths between sources and sensors.

7In some applications, the signal d is directly available at certain moments in time. For
example, in communications applications, known training sequences can be used to estimate
ryd during periodic training intervals.
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required statistics of all sensor signals, and computes the optimal M -channel
LMMSE estimator ŵ (11.3). After 3 seconds, an adaptive greedy sensor subset
selection (AGSSS) algorithm starts running simultaneously with the adaptive
LMMSE estimation process.

In the AGSSS, the utility of each currently used sensor signal is tracked using
(11.25). If a sensor’s utility drops below 1% of the MSE cost of the current
estimator (computed with (11.5)), the sensor is put to sleep, and the inverse
correlation matrix and the estimator are updated according to (11.15) and
(11.19), respectively. Notice that this corresponds to a decrease in SER of
maximum 10 log10(1.01) = 0.043dB for each sensor that is removed. The sen-
sors that are put to sleep transmit their sensor signal only 25% of the time,
reducing their power consumption with 75 %. The reason why sleeping sensors
still transmit data, is to estimate the required statistics to compute their utility,
based on (11.31). Once their utility exceeds 5% of the MSE cost of the current
estimator, they are added again to the estimation process. This corresponds to
an increase in SER of at least −10 log10(0.95) = 0.22dB for each sensor that is
added. The inverse correlation matrix and the estimator are updated according
to (11.34) and (11.35), respectively.

The instantaneous SER of the resulting time-varying estimator is shown in
Fig. 11.2, together with a plot of the total power consumption summed over
all sensors. The active sensors have a power consumption of 1, and sleeping
sensors have a power consumption of 0.25 (these numbers are unitless since they
are not based on actual physical power consumption). The SER and power
consumption of the optimal estimator that uses all M = 60 sensors is also
added as a reference, which we will refer to as the full estimator. We observe
that, due to the sensor subset selection, the SER slightly drops compared to
the full estimator (on average, this is a decrease of 0.56 dB). However, due to
the power saving of the sleeping sensors, the total average power consumption
is only 41 % of the total power consumption of the full estimator. The average
number of active sensors is 13.

11.6 Conclusions

In this paper, we have considered two aspects in linear MMSE signal estimation
in wireless sensor networks, i.e. sensor subset selection and link failure response.
We have first derived an efficient formula to compute the optimal fall-back
estimator when the wireless link of one of the sensors fails. High efficiency is
achieved by exploiting the knowledge of the inverse correlation matrix as used
before the link failure. We have then derived an efficient formula to monitor the
utility of each sensor signal in the current estimation process, which can be used
for sensor deletion. We have also derived a formula to efficiently compute the
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potential utility of sensors that are not yet used in the estimation process, which
can then be used for sensor addition. Both formulas can be used to perform an
adaptive greedy sensor subset selection procedure. Simulation results of this
greedy procedure in an adaptive LMMSE estimation algorithm demonstrate
that a significant amount of energy can be saved, at the cost of a slight decrease
in estimation performance.
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Chapter 12

Conclusions and
Suggestions for Future
Research

12.1 Summary and Conclusions

In this thesis, we have considered several open estimation problems in the
domain of wireless sensor networks (WSNs). In almost all proposed methods,
the goal was to obtain the same estimation performance as in a centralized
algorithm where all the data is assumed to be available in a fusion center.
We have distinguished between two different types of distributed estimation
problems: signal estimation and parameter estimation.

In the context of distributed signal estimation in WSNs, we have proposed a
blind adaptive distributed signal estimation algorithm in which each node esti-
mates a different signal. This algorithm was referred to as ‘distributed adaptive
node-specific signal estimation’ (DANSE). In Chapter 2, the DANSE algo-
rithm for fully connected WSNs has been described for the case where nodes
update their local estimation variables in a sequential round-robin fashion. If
the desired signals of all the nodes share a common low-dimensional signal
subspace, it has been shown that DANSE significantly reduces the exchange of
data between nodes, while still obtaining an optimal estimator in each node,
as if all nodes have access to all the sensor signal observations in the network.
A practical adaptive implementation of DANSE has been described and sim-
ulated, demonstrating the tracking capabilities of the algorithm in a dynamic
scenario. It has been observed that the DANSE algorithm is more robust to
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estimation errors in the correlation matrices, compared to its centralized equiv-
alent. A modified DANSE algorithm has been studied in Chapter 3, where
an improved tracking performance is obtained by letting nodes update simul-
taneously or asynchronously. We have pointed out that the convergence and
optimality of the DANSE algorithm can no longer be guaranteed in this case.
We have then modified the DANSE algorithm with a relaxation operation to
restore convergence and optimality under simultaneous and asynchronous up-
dating. Convergence of the new algorithm is proven if the relaxation parameter
satisfies certain conditions. Simulations have demonstrated that a simplified
version of the new algorithm can also be used, with a lower computational
load, while maintaining convergence. Since all nodes can estimate the required
statistics in parallel, the new algorithm adapts faster than the original DANSE
algorithm, especially so when the number of nodes is large. In Chapter 4, both
versions of the DANSE algorithm (sequential and simultaneous node-updating)
have then been applied in a speech enhancement context. To this end, the al-
gorithm has been extended to a more robust version, to avoid numerically
ill-conditioned quantities that often arise in such practical settings. This new
version has been referred to as R-DANSE, and its convergence has been proven.
Batch-mode experiments have shown that R-DANSE significantly outperforms
DANSE in practical settings. Additional tests have been performed to quan-
tify the influence of several parameters, such as the DFT size and TDOA’s or
delays within the communication link.

In Chapter 5, the DANSE algorithm has been extended to operate in WSNs
with a tree topology, hence relaxing the constraint that the network needs to
be fully connected. It is argued that feedback is to be avoided, when a straight-
forward modification of DANSE is applied for operation in simply connected
networks, since it harms the convergence and optimality properties of the algo-
rithm. Direct feedback can be avoided easily, whereas indirect feedback is more
difficult to remove in a network topology that has cycles. A tree topology is
then a natural choice, since it has no cycles, for which the T-DANSE algorithm
has been derived. A condition is given on the updating order of the nodes to
guarantee convergence to the optimal estimators. Simulations have shown that
the condition on the updating order of the nodes is sufficient but not necessary,
although convergence is faster if the condition is satisfied.

Finally, in Chapter 6, the DANSE algorithm has been extended with node-
specific linear constraints, yielding an optimal node-specific linearly-constrained
minimum variance beamformer in each node. Convergence and optimality of
the algorithm has been formally proven. We have experimentally verified that
convergence can be obtained when nodes update simultaneously, if relaxation
is applied, similar to the unconstrained DANSE algorithm. We have provided
simulation results that demonstrate the effectiveness of the algorithm for speech
enhancement (and separation) in a wireless acoustic sensor network.

In the second part of this thesis, we have tackled distributed linear regression
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problems, based on distributed parameter estimation techniques. In particular,
we have focused on the case where the data or regression matrix is noisy, in
which case a least-squares estimator is biased. To reduce this bias, we have
proposed two novel methods. In Chapter 7, we have derived a distributed
version of the well-known total least squares (TLS) estimation technique for
ad hoc sensor networks, that computes the centralized TLS solution without
gathering the data in a fusion center. This yields an unbiased estimate if the
regressor noise is white. To facilitate the use of the dual based subgradient
algorithm (DBSA), we have transformed the TLS problem to an equivalent
convex semidefinite program (SDP) that satisfies the convergence conditions of
DBSA, and yields the same solution as in the original problem. Even though
we have made a detour through SDR and SDP theory, the resulting D-TLS
algorithm relies on solving local TLS-like problems at each node, rather than
on computationally expensive SDP optimization techniques. The algorithm
is flexible and fully distributed, i.e. it does not make any assumptions on the
network topology and nodes only share data with their direct neighbors through
local broadcasts. Due to the flexibility and the uniformity of the network, there
is no single point of failure, which makes the algorithm robust to sensor failures.
We have provided Monte-Carlo simulations that demonstrate the effectiveness
of the algorithm. In Chapter 8, we have proposed another method, that can
also cope with colored regressor noise, which is based on a bias-compensated
recursive least squares algorithm with diffusion adaptation in an ad hoc WSN.
This algorithm has been analyzed in an adaptive filtering context, and we have
demonstrated that the cooperation between nodes indeed reduces the bias, and
furthermore reduces the variance of the local parameter estimates at each node.

In the last part of this thesis, we have proposed two supporting techniques
that can be used in WSNs for (acoustic) signal estimation. In Chapter 9, we
have proposed a multiplicative non-negative independent component analysis
(M-NICA) algorithm, that performs a blind separation of non-negative well-
grounded source signals. The M-NICA algorithm is based on multiplicative up-
date rules which preserve non-negativity, together with a subspace projection
based correction step. It has the facilitating property that it does not depend
on a user-defined learning rate, as opposed to gradient based techniques such
as the NPCA algorithm, where a proper choice for the learning rate is crucial
to provide satisfying results. This algorithm has then been used in Chapter
10 to derive an energy-based multi-speaker voice activity detection algorithm,
that aims to track the individual speech power of multiple speakers talking
simultaneously. Finally, in Chapter 11 we have considered two aspects in
linear MMSE signal estimation in wireless sensor networks, i.e. sensor subset
selection and link failure response. We have first derived an efficient formula
to compute the optimal fall-back estimator when the wireless link of one of
the sensors fails. High efficiency is achieved by exploiting the knowledge of the
inverse correlation matrix as used before the link failure. We have then derived
an efficient formula to monitor the utility of each sensor signal in the estima-
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tion process. Simulation results of a greedy procedure based on this utility
measure in an adaptive LMMSE estimation algorithm have demonstrated that
a significant amount of energy can be saved, at the cost of a slight decrease in
estimation performance.

12.2 Suggestions for Future Research

In this section, we briefly address some possible future research directions that
build further on the techniques proposed in this thesis.

12.2.1 DANSE with Distributed Acoustic Parameter Es-
timation

When using DANSE in a speech enhancement context, the aim is to estimate
a target speech signal, while reducing background noise. However, in some
applications, denoising is not a goal as such, but is required as a preprocessing
step. For instance, in automatic speech recognition, speech features have to
be estimated from the denoised speech signal. Since these features are usually
heavily influenced by sound reflections (reverberation), a dereverberation algo-
rithm is also required. In adverse scenarios, such as large reverberant rooms
with background noise and long microphone-speaker distances, the estimation
of certain speech features (e.g., the auto-regressive (AR) coefficients) is indeed
very difficult or impossible to achieve with traditional single-microphone set-
ups, i.e., the AR estimates are often heavily deteriorated by residual noise or
reverberation.

However, with a WASN and the DANSE algorithm already in place, also the
dereverberation and the AR estimation stage can benefit from cooperation
between nodes. The use of WASNs for acoustic parameter estimation (such as
AR coefficients, or acoustic room impulse responses (RIR) for dereverberation)
is a novel idea that opens many possibilities. By cooperation between multiple
microphone nodes in a WASN, it is possible to obtain robust and stable AR
estimates in noisy scenarios, independent of the position of the speaker (this
avoids that the speaker needs to wear or carry a microphone). The BC-RLS
algorithm described in Chapter 8 is able to reduce the bias on the AR estimates
that results from the noise due to the large microphone-speaker distance. For
the distributed estimation of RIRs for dereverberation, one can rely on the D-
TLS algorithm derived in Chapter 7, combined with the techniques presented
in [1]. In this case, each node broadcasts its raw microphone signals to its
neighbors, such that in each node, a local blind RIR identification problem
can be solved. However, based on similar techniques as in Chapter 7, the
local RIR estimates can be coupled with those of their neighbors by means of
consensus-constraints and network-wide norm constraints.
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12.2.2 Nodes with Different Interests: a Game-Theoretic
Framework

The DANSE algorithm has the remarkable property that, even though the sig-
nals communicated between the different nodes are significantly compressed,
the optimal estimators are obtained as if all raw sensor signals are made avail-
able to all nodes. This is a surprising theoretical result, especially since each
node actually acts ‘selfishly’, i.e., it does not take the estimation problem of
other nodes into account. The reason why an optimal solution is yet obtained
is due to the fact that there is a common latent desired source signal that im-
plicitly couples the node-specific estimation problems with each other. In other
words: the nodes have the same implicit interest, i.e., each node estimates a
different version of the same source signal.

An interesting question is how DANSE can be modified for scenarios where
there is no common desired source, i.e., in the case where nodes have different
(conflicting) interests. One can indeed imagine scenarios where multiple de-
vices aim to observe or record different sound sources, and so where a desired
source for device A can be an interfering source for device B and vice versa.
Examples include simultaneous hands-free telephony with interfering speakers,
speech communication systems in noisy environments such as airports or facto-
ries, audio surveillance of large rooms with multiple relevant sound sources, or
ambient intelligent environments with multiple users. Since the current proof
of convergence and optimality of DANSE fully depends on a data model with
common desired sources for the different nodes, a radically new approach is
needed.

The word ‘selfish’, has been used to specify the behavior of the nodes in
DANSE, and in fact hints towards so-called ‘non-cooperative game theory’,
which is often used in economics. We have recently demonstrated that DANSE
can indeed be analyzed in this game-theoretic framework, and that it can be
viewed as a so-called ‘strategic form game’ [2]. The case where there are com-
mon desired sources can be treated as a special case, for which common game
theory theorems can be used to provide an alternative proof of convergence
and optimality. Furthermore, we have demonstrated that, in the case where
the nodes have different interests, there always exists a parameter setting such
that DANSE is in equilibrium, i.e., where the fusion rules in the different nodes
have converged. This equilibrium point always corresponds to a so-called ‘Nash
equilibrium’, which is one of the most widely used concepts in game theory [3].

However, the bad news is that Nash-equilibria are generally sub-optimal, which
is due to the uncooperative behavior of the players (or the nodes, in our case).
Almost always, there exist (unknown) distributed solutions that yield better
signal estimates at each of the nodes, but that are not equilibrium solutions
of the DANSE algorithm. To avoid convergence to a Nash-equilibrium, nodes
need to take each others interests into account, instead of only focusing on their
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own node-specific estimation problem. The DANSE algorithm therefore needs
to be redesigned to stimulate cooperative behavior.

One specific branch of game theory, namely ‘coalitional game theory’, may
provide a solution here [4]. It offers an analytic framework as well as math-
ematical tools to design and analyze algorithms that focus on collaboration
between nodes. In this case, nodes can form a coalition with each other, such
that each node in the coalition has an advantage. This yields equilibria that
are better than the Nash-equilibria in non-cooperative games. Coalitional game
theory recently knew some successes in the field of communication networks.
The challenge is to reformulate and generalize coalitional game-theoretic con-
cepts such that they can be used in the context of estimation problems in
WASNs. In this way, new and better algorithms can be designed and analyzed,
and more general scenarios can be addressed.

12.2.3 Joint Design of Application Layer Signal Estima-
tion Algorithms and Network Layer Resource Al-
location

Signal estimation in ad hoc deployed WASNs has challenging requirements, i.e.,
high data rates, hard real-time deadlines, distributed computations, multi-hop
communications, nodes with different interests, etc. It is therefore important to
design both the application layer and the network layer jointly. The challeng-
ing open question is then: for given sensor signal observations, given network
resources (bandwidth, power, and available links), and taking into account the
different interests of the nodes, what is the optimal way to propagate the data
over the network? This is a network routing problem and a resource allocation
problem, where the ‘utility’ for every user is hidden in the application layer.
This is very different from resource allocation problems in traditional multi-
user networks, where every user merely aims to achieve the highest possible
bit-rate, and where there is no relation between the application layers of the
different users [5, 6].

For example, the number of bits that is allocated to each communicated audio
signal is an important design parameter that can be steered by the application
layer, depending on the relevance of the communicated signal. Furthermore, it
is important to determine which signals are useful for which subset of nodes.
For certain nodes, some microphone signals may be more relevant than others
(e.g. when they are close to a desired source), some microphone signals may
only be useful if they can be combined with specific signals in other nodes,
and other signals may not be useful at all. Furthermore, there will be cases
where relevant signals can only be combined properly if the communication or
network delay is sufficiently small, and so these should then be given a higher
priority.
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By far the most challenging complication to this network/communication layer
resource allocation problem, is that the utility function is actually defined in
the application layer, i.e. whether the transmitted (possibly compressed) audio
signals will actually be useful to the receiving nodes from a signal enhancement
perspective.
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