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Generating functions for lattice paths
with several forbidden patterns

Andrei Asinowski∗ and Cyril Banderier† and Valerie Roitner‡

Abstract. This work studies directed lattice paths on Z2, constrained to avoid a set of
given patterns. We give the corresponding generating functions, for walks, meanders (walks
additionally constrained to be above the x-axis), and excursions (meanders constrained to
end on the x-axis). Our method relies on a vectorial generalization of the classical kernel
method, and on a matricial generalization of the autocorrelation polynomial. We apply our
approach on more than 512 different models, thus unifying/extending many previous works.

Résumé. Nous étudions les chemins dirigés sur Z2, contraints à éviter un ensemble de motifs.
Nous explicitons les séries génératrices des marches, des méandres (les marches contraintes
à rester positives), et des excursions (les méandres contraints à finir à altitude 0). Notre
approche utilise une généralisation vectorielle de la méthode du noyau et une généralisation
matricielle du polynôme d’autocorrélation. Nous appliquons notre méthode sur plus de 512
modèles différents, unifiant/généralisant ainsi de nombreuses études précédentes.

סריג. במסלולי אסורות תבניות Mחוקרי ואנחנו קומבינטוריקה Mאוהבי אנחנו תקציר.

Keywords: Lattice path, pushdown automaton, forbidden pattern, vectorial kernel method

1 Definitions and notations
Let S, the set of steps, be some finite subset of Z that contains at least one negative and at
least one positive number. A lattice path with steps from S is a finite word w = (s1, s2, . . . , sn)
in which all letters belong to S, visualized as a directed polygonal line in the plane, which starts
at the origin and is formed by successive appending of vectors (1, s1), (1, s2), . . . , (1, sn). The
n letters that form the path w = (s1, s2, . . . , sn) are referred to as its steps. The length of w,
denoted by |w|, is the number of steps in w. The final altitude of w, denoted by h(w), is the sum
of all steps in w, that is s1 + s2 + . . .+ sn. Visually, (|w|,h(w)) is the point where w terminates.
A pattern is a fixed word with letters form S. In this article and the companion article [2], we
consider lattice paths in which we forbid or mark occurrences of several patterns seen as factors
in the word representation of the paths (the case of one pattern was studied in [1]).
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Under this setting, it is usual to consider two restrictions: that the whole path is (weakly) above
the x-axis, and that it has final altitude 0 (equivalently, terminating at the x-axis). Consequently,
one considers four classes of lattice paths:

1. A walk is any path as described above.
2. A bridge is a path that terminates at the x-axis.
3. A meander is a path that stays (weakly) above the x-axis.
4. An excursion is a path that stays (weakly) above the x-axis and terminates at the x-axis.

ending anywhere ending at 0

on Z

walks

W (t,u) = ∆(t,u)
K(t,u)

bridges

B(t) = −
e∑

i=1

u′i
ui

∆(t,ui)

Kt(t,ui)

on N

meanders

M(t,u) = ∆(t,u)
ueK(t,u)

e∏
i=1

(u− ui(t))

excursions

E(t) =
(−1)e+1

t

e∏
i=1

ui(t)

Table 1: For the four types of paths and for any set of steps encoded by S(u), we give the
corresponding generating function of such lattice paths avoiding a set of patterns p1, . . . , pm.
The formulas involve the e small roots ui (i.e. ui(t) ∼ 0 for t ∼ 0) of the kernel K(t,u) :=
(1− tS(u))∆ + ∆′, where ∆ and ∆′ are determinants related to the mutual correlation matrix
of the patterns. (See Theorems 1, 2, and 3)

For each of these classes (when no pattern is forbidden), Banderier and Flajolet [5] gave general
expressions for the corresponding generating functions and the asymptotics of their coefficients.
This study was generalized by Asinowski et al. [1] to the case where the paths are constrained to
avoid one single pattern. In this article, we further generalize this last work to the case where
the paths are constrained to avoid several patterns. While it was expected that the generating
functions would be algebraic, it is a pleasant surprise that they have a nice closed-form, involving
some combinatorial determinants, and directly generalizing/unifying all our previous results (and
the easier cases of the rational world: patterns in regular expressions, etc.).

Throughout our article, in the generating functions, the variable t corresponds to the length
of a path, and the variable u to its final altitude. S(u) is the step polynomial associated to the
set of steps S, defined by S(u) = ∑

s∈S u
s. We also assume that none of the forbidden patterns

pi is a substring of another pattern pj . (There is no loss of generality in this assumption, since
otherwise we can restrict the set of patterns to the set of its minimal elements.)
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2 Generating function for walks with forbidden patterns
Theorem 1. The generating function of walks with steps encoded by S(u) and avoiding the
patterns p1, . . . , pm is given by

W (t,u) = ∆(t,u)
(1− tS(u))∆(t,u) +∑m

k=1 t
|pi|ualt(pi)∆i(t,u)

, (2.1)

where ∆ is the determinant of the mutual correlation matrix C defined in (2.4), and ∆i is
defined in (2.5).
Proof. Let W be the set of walks avoiding the patterns p1, . . . , pm, and let W (u, t) be the
generating function of W. Further, let W (i)(t,u) be the generating function of all walks that
have one occurrence of pi at the end, but no occurrence of pi before, as well as no occurrence of
any of the other patterns pj . If we append one step from S to a walk from W , we either obtain
another walk in W , or a walk with one single occurrence of a (uniquely determined) pattern pi at
the end, thus counted by W (i). In terms of generating functions, this means

1 +WtS(u) = W +
m∑
j=1

W (j). (2.2)

Now we take a walk w ∈ W and append a pattern pi to it. Let q be the maximal (possibly
empty) suffix of w.pi such that w.pi = w′.pj .q, where w′ ∈ W and pj is one of the forbidden
patterns (possibly pj = pi). Then q is the complement (in pi) of an overlap of pj and pi, as shown:

w ∈ W pi

pj

w′.pj ∈ Wj q ∈ Cij
For each pair pi, pj , let Cij be the set1 of such words q. Associated to these sets Cij , we define
the mutual correlation polynomials

Cij(t,u) :=
∑
q∈Cij

t|q|ualt(q).

Note that Cii(t,u) is the classical autocorrelation polynomial of pi, as introduced in the case of
one single pattern by Schützenberger [17] for prefix codes and by Guibas and Odlyzko [13] in the
context of text searching and string overlaps. Equipped with these notations, we have

Wt|p1|ualt(p1) =
m∑
j=1

W (j)C1j(t,u)

...

Wt|pm|ualt(pm) =
m∑
j=1

W (j)Cmj(t,u).

(2.3)

1For example, for the patterns p1 = aabb and p2 = bba, we have C12 = {abb} and C21 = {a, ba}.
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A key role is thus played by what we call the (combinatorial) mutual correlation matrix C,

C :=


C11 . . . C1m
... ... ...

Cm1 . . . Cmm

 . (2.4)

By Equation (2.2) we have W =
1−
∑

W (i)

1−tS where the sum ∑
W (i) is determined from (2.3)

by Cramer’s rule2: it is equal to W
∆

(∑m
k=1 t

|pi|ualt(pi)∆i
)
, where ∆(t,u) := det(C) and

∆i(t,u) := det(C with all the polynomials {Cij}j=1,...,m replaced by 1). (2.5)

Putting everything together, we obtain the formula given in the theorem.

Remark. These walks with forbidden patterns can also be encoded by a Markov chain or,
equivalently, by a finite automaton. To obtain the generating function with those approaches
would typically require the inversion of a `× ` matrix with symbolic coefficients, which is costly in
time and in memory (` :=

∑m
i=1 |pi| is the sum of the lengths of the m forbidden patterns). It is

nice that the formula based on the mutual correlation sets is algorithmically much more efficient,
and directly gives the generating function, avoiding those larger costs. Note that this formula can
also be established via Goulden and Jackson’s cluster method, e.g. used in [1, 16].

In addition to the mutual correlation matrix, an object which plays a fundamental role for any
lattice path enumeration is the denominator of W , which we call the kernel of the model. It is

K(t,u) := denom(W (t,u)) = (1− tS(u))∆(t,u) +
m∑
k=1

t|pi|ualt(pi)∆i(t,u). (2.6)

It has e distinct simple roots u1, . . . ,ue satisfying ui(z) ∼ 0 for z ∼ 0, which we call the small
roots of the kernel. Similarly to classical directed lattice paths, we shall see that the generating
functions of our pattern constrained lattice paths are algebraic and expressible in terms of these
small roots. Here is what it gives for bridges:
Theorem 2. The generating function for bridges avoiding the patterns p1, . . . , pm is

B(t) = −
e∑
i=1

u′i
ui

∆(t,ui)
Kt(t,ui)

(2.7)

Proof. The generating function for bridges is obtained from W (t,u) via a residue computation

B(t) = [u0]W (t,u) = 1
2πi

∫
|u|=ε

W (t,u)
u

du =
e∑
i

Resu=ui(t)
W (t,u)

u
.

The residues inside the small circle |u| = ε are exactly the e small roots ui(t) of K(t,u). This
leads to the theorem.

2We use the fact: If Cx = d and C>y = ~1 (where ~1 is the all-1’s column vector), then x>~1 = d>y, and we
apply Cramer’s rule on the latter system.
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3 Generating function of meanders with forbidden patterns
Theorem 3. The generating function for meanders avoiding the patterns p1, . . . , pm is

M(t,u) = G(t,u)
ueK(t,u)

e∏
i=1

(u− ui(t)), (3.1)

where u1(t), . . . ,ue(t) are all the small roots of the kernel K(t,u) (defined in Formula (2.6)),
and G(t,u) is some formal power series in t and polynomial in u (defined in (3.3)).

Proof (sketch). Lattice paths with forbidden patterns can be encoded by an automaton: its states
X1,X2, . . . are labelled by prefixes of the patterns such that a walk w is in a state labelled σ if
and only if σ is the longest label which is a suffix of w. (See the illustration in Section 3.1). We
denote the transition matrix of this automaton by A. Moreover we denote by Mi the generating
function for meanders that terminate in state Xi, and let ~M = (M1,M2, . . .). Then we have

~M = (1, 0, . . .) + t ~MA− {u<0}(t ~MA), (3.2)

where {u<0}(t ~MA) is the generating function for paths obtained from a meander by adding a
step that makes them cross the x-axis. Such a matricial functional equation can be solved by
the vectorial kernel method developed in [1]. First, Equation (3.2) is conveniently rewritten as
~M(I − tA) = ~F, and multiplying by ~v := adj(I − tA)~1, one gets ~M det(I − tA) = ~F · ~v. Here,
it is legitimate to substitute u by any small root ui of det(I − tA) = K(t,u), the kernel from
the previous section3. The ui’s are therefore also roots of the polynomial Φ(t,u) := ue~F · ~v; this
yields the following factorisation

Φ(t,u) = G(t,u)
e∏
i=1

(u− ui), (3.3)

and leads to Formula (3.1) forM(t,u). The factor G(t,u) has some case dependent combinatorial
interpretations, on which we comment later.

If Φ(t,u) is a monic polynomial of degree e, then we have the complete factorisation
Φ(t,u) =

∏e
i=1(u− ui) and thus G(t,u) = 1: this yields an explicit formula for M(t,u) in

terms of K(t,u) and its small roots. It is shown in [1, Section 5] that this happens for some
natural cases of a single forbidden pattern.

When one has several patterns, it is generically not the case that G(t,u) = 1. In the next
sections, we show how, in many cases, one can determine a non-trivial “extra factor” G(t,u). We
also show how to obtain the formula for E(t) without computing first M(t,u).

3Notice that the equation for walks similar to (3.2) reads ~W = (1, 0, . . .) + t ~WA. We can solve it and
compare W (t,u) = ~W~1 = (1, 0, . . .)adj(I − tA)~1/det(I − tA) with (2.1). In both expressions, the denominator
is a polynomial with constant term 1. Hence det(I − tA) = K(t,u) and (1, 0, . . . )adj(I − tA)~1 = ∆(t,u).
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3.1 Dyck paths avoiding UDU and DUD
We illustrate the procedure outlined above by the example of Dyck paths avoiding UDU and DUD.
These walks are encoded by the following automaton:

Xε

XU XUD

XDXDU

U

U

U

D

D

D

D

U

Corresponding adjacency matrix
(the states are ordered Xε,XU,XUD,XD,XDU):

A =



0 u 0 u−1 0
0 u u−1 0 0
0 0 0 u−1 0
0 0 0 u−1 u

0 u 0 0 0

 .

The kernel K(t,u) = −u−1(tu2− (1 + t2− t4)u+ t) can be calculated directly as det(I − tA),
but also by Theorem 2.2 with the mutual correlation matrix

(
1+t2 tu
t/u 1+t2

)
. K(t,u) has a unique

small root, u1(t) =
(

1 + t2 − t4 −
√
(1 + t+ t2)(1 + t− t2)(1− t+ t2)(1− t− t2)

)
/(2t).

The functional equation (3.2) has the form

(M1,M2,M3,M4,M5)(I − tA) = (1, 0, 0, 0, 0)−
(
{u<0}t(M1,M2,M3,M4,M5)A

)
.

It is easy to see that
(
{u<0}t(M1,M2,M3,M4,M5)A

)
= t

u(0, 0, 0,E(t), 0) because a path w.a
(where w is a meander and a a step) goes below the x-axis if and only if w is an excursion and a
is a D-step, and upon making this step the path enters the 4th state XD. Therefore, the needed
components of ~v = adj(I − tA)~1 are ~v1 = 1 + t2 + t4 and ~v4 = 1 + t3u. Thus, the equation
Φ(t,u) = 0 has the form

(1 + t2 + t4)u− tE(t)(1 + t3u) = 0. (3.4)

Solving it for E(t) and keeping in mind that u = u1(t) is a root of Φ(t,u), we obtain

E(t) =
u1(t)(1 + t2 + t4)

t(1 + t3u1(t))
=

1 + t2 + t4 −
√
(1 + t+ t2)(1 + t− t2)(1− t+ t2)(1− t− t2)

2t2 .

Finally, G(t,u) is simply the leading coefficient of Φ(t,u) (as polynomial in u), and we can now
find it from (3.4). Putting everything together we obtain by Theorem 3 the bivariate generating
function for meanders, which in its turn gives the univariate generating function

M(t) = −

1− t3
2t −

(1 + t)
√
(1 + t+ t2)(1 + t− t2)(1− t+ t2)(1− t− t2)

2t(1− t− t2)

.

The enumerating sequence for meanders is the sequence A329703 from the On-Line Encyclo-
pedia of Integer Sequences, and the one for excursions (counted by semilength) is A004148, which
also counts some other constrained paths (like peakless Motzkin paths – see below), but also
some classes of RNA structures, ordered trees, permutations, etc.; see [7, 11, 14].

https://oeis.org/A329703
https://oeis.org/A004148
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4 A multi-multivariate generating function for Motzkin paths
with any set of forbidden patterns of length two

There is a vast amount of literature on Dyck or Motzkin lattice paths in which some combinations
of patterns (like valleys or peaks) are considered. These works often rely on some ad-hoc context-
free grammar decompositions; see e.g. [10,12,15]. Here, we show how our approach can extend
and unify such results by directly finding a generating function with many variables. For example,
for Motzkin paths avoiding any combination of forbidden patterns of length 2, one introduces
9 markers – auxiliary variables vp that encode occurrences of all possible patterns p of length 2
(marker vUD for the pattern UD, etc.). This leads to the following theorem.
Theorem 4. The generating function E(t) of Motzkin excursions, where vp counts the number
of occurences of the pattern p, is

(vDD − 1)− t((vDD − 1)vHH − (vDH − 1)vHD − vDD + vDH) +
(
1 + t(vDH − vHH)

)
u~v1
t~v4

∣∣∣
u=u1(t)

vDD + t(vDHvHD − vDDvHH)
,

(4.1)
where u1(t) is the unique small solution of det(I − tA) = 0 for the matrix A defined below, and
~v1 and ~v4 are the 1st and the 4th components of ~v := adj(I − tA)~1.

Remark. It is striking that all the vp involving the step U are hidden in ~v1,~v4, and u1.

Proof. Such paths are encoded by the following automaton and the corresponding adjacency matrix:

Xε

XH

XD

XU

H

vDUU

D

vDDD

vUDD
vHDD

vHHH

vUHH

vDHH

vUUU
vHUU

U

A =



0 u 1 u−1

0 vUUu vUH vUDu
−1

0 vHUu vHH vHDu
−1

0 vDUu vDH vDDu
−1



From this matrix we compute K(t,u) = det(I − tA). Generically, uK(t,u) is a polynomial of
degree 2 in u, and has one small root, u1(t). Since a path can cross the x axis only by reading D
– hence, entering the 4th state, – only the fourth component of t ~M(t)A has terms with negative
powers of u. Therefore, one has

Φ(t,u) := ~v1(t,u)− ~v4(t,u)N(t,u) = 0, (4.2)

where ~v1(t,u) and ~v4(t,u) are the first and the fourth components of adj(I − tA)~1, and N(t)

is the generating function for the terms with negative powers of u in the fourth component of
t ~M(t)A.
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In order to use (4.2) for computing E(t), we find an equation which relates N(t,u) to E(t).
Let EH(t) and ED(t) be the generating functions for excursions whose last step is H resp. D. Then
we have N(t,u) = t

u

(
1+ vHDEH(t) + vDDED(t)

)
. Further we have E(t) = 1+EH(t) +ED(t)

and EH(t) = t
(
1 + vHHEH(t) + vDHED(t)

)
. This allows us to express N in terms of E. Finally,

since u1 is a root of Φ, the substitution of u = u1(t) into (4.2) gives the formula for E(t).
In (4.1), setting vp = 1 allows the pattern p, while setting vp = 0 forbids it. We ran an

exhaustive analysis of all the 29 = 512 cases; this leads to the following 75 distinct sequences.
Allowed set
of patterns

OEIS4

entry GF Growth
rate

Allowed set
of patterns

OEIS
entry GF Growth

rate
Allowed set
of patterns

OEIS
entry GF Growth

rate
000000000 A019590 pol 0 010011100 A020711† rat ≈ 1.466 101010101 A329696 alg 2
010001000 A329670 pol 0 010011110 A000930 rat ≈ 1.466 011110101 A329695† alg 2
010001010 A329677 pol 0 011110001 A020711† rat ≈ 1.466 101010111 A110199 alg 2
001000000 A130716 pol 0 001110010 A068921 rat ≈ 1.466 011110011 A216604† alg 2
001000010 A329678 pol 0 010101101 A329687 alg ≈ 1.587 101110011 A329698 alg 2
011001010 A329679 pol 0 011100011 A329688 alg ≈ 1.587 010111011 A023432† alg ≈ 2.148
010001100 A329680 rat 1 010101011 A329689 alg ≈ 1.618 011111010 A023432† alg ≈ 2.148
110001001 A135528 rat 1 110011011 A324969 rat ≈ 1.618 101001111 A329699 alg ≈ 2.206
010001110 A011655† rat 1 011101010 A320690 alg ≈ 1.618 101100111 A329700 alg ≈ 2.206
001000100 A266591 rat 1 011011100 A001611† rat ≈ 1.618 110011111 A217282† alg ≈ 2.241
011100001 A329682 rat 1 011011110 A000045† rat ≈ 1.618 101111011 A217282 alg ≈ 2.241
000010000 A000012 rat 1 110001101 A329691 alg ≈ 1.755 110101111 A329676 alg ≈ 2.247
001100010 A100063 rat 1 011100101 A329692 alg ≈ 1.755 011101111 A329666 alg ≈ 2.247
010011000 A329683 rat 1 101100011 A329693 alg ≈ 1.755 010111111 A023431 alg ≈ 2.315
110011001 A065033 rat 1 010101111 A248100 alg ≈ 1.835 011111011 A023431† alg ≈ 2.315
010011010 A000027† rat 1 011101011 A329694 alg ≈ 1.835 101011111 A329701 alg ≈ 2.325
001010000 A329684 rat 1 110001111 A025250† alg ≈ 1.947 101110111 A329702 alg ≈ 2.325
001010100 A040001 rat 1 011100111 A166289 alg ≈ 1.947 101101111 A007477 alg ≈ 2.383
001010011 A046698† rat 1 110101011 A329664 alg 2 110111011 A004149† alg ≈ 2.414
001010110 A008619 rat 1 101000101 A126120† alg 2 011111110 A004149† alg ≈ 2.414
011011010 A028310 rat 1 101000111 A208355† alg 2 101111111 A090344 alg ≈ 2.562
110001011 A000931† rat ≈ 1.325 110011101 A329695 alg 2 110111111 A004148 alg ≈ 2.618
011001100 A000931† rat ≈ 1.325 010111101 A216604 alg 2 011111111 A004148† alg ≈ 2.618
001100110 A000931† rat ≈ 1.325 010111010 A023426† alg 2 111101111 A104545 alg ≈ 2.732
010101010 A329686 alg ≈ 1.414 011101110 A329671 alg 2 111111111 A001006 alg 3

Table 2: Motzkin excursions avoiding a set of patterns of length 2. Allowed sets of patterns
are here indicated via a binary word of length 9, whose bits correspond to the allowance (or
not) of UU, UH, UD, HU, HH, HD, DU, DH, DD (in this order). The column GF indicates
whether the generating function is polynomial (pol), rational (rat), or algebraic (alg).

Our exhaustive analysis also shows that the 512 cases lead to 158 distinct sequences for
meanders. We give more details at the address https://lipn.fr/~cb/KernelMethod. Note
the same list for all set of patterns of length 5 would have more entries than the estimated number
of atoms in the universe!

4All the sequences labelled A329xxx are entries that we added to the On-Line Encyclopedia of Integer Sequences
(OEIS), available at https://oeis.org/.The sequences marked by † are in the OEIS, but with a few terms of offset.

https://oeis.org/A019590
https://oeis.org/A020711
https://oeis.org/A329696
https://oeis.org/A329670
https://oeis.org/A000930
https://oeis.org/A329695
https://oeis.org/A329677
https://oeis.org/A020711
https://oeis.org/A110199
https://oeis.org/A130716
https://oeis.org/A068921
https://oeis.org/A216604
https://oeis.org/A329678
https://oeis.org/A329687
https://oeis.org/A329698
https://oeis.org/A329679
https://oeis.org/A329688
https://oeis.org/A023432
https://oeis.org/A329680
https://oeis.org/A329689
https://oeis.org/A023432
https://oeis.org/A135528
https://oeis.org/A324969
https://oeis.org/A329699
https://oeis.org/A011655
https://oeis.org/A320690
https://oeis.org/A329700
https://oeis.org/A266591
https://oeis.org/A001611
https://oeis.org/A217282
https://oeis.org/A329682
https://oeis.org/A000045
https://oeis.org/A217282
https://oeis.org/A000012
https://oeis.org/A329691
https://oeis.org/A329676
https://oeis.org/A100063
https://oeis.org/A329692
https://oeis.org/A329666
https://oeis.org/A329683
https://oeis.org/A329693
https://oeis.org/A023431
https://oeis.org/A065033
https://oeis.org/A248100
https://oeis.org/A023431
https://oeis.org/A000027
https://oeis.org/A329694
https://oeis.org/A329701
https://oeis.org/A329684
https://oeis.org/A025250
https://oeis.org/A329702
https://oeis.org/A040001
https://oeis.org/A166289
https://oeis.org/A007477
https://oeis.org/A046698
https://oeis.org/A329664
https://oeis.org/A004149
https://oeis.org/A008619
https://oeis.org/A126120
https://oeis.org/A004149
https://oeis.org/A028310
https://oeis.org/A208355
https://oeis.org/A090344
https://oeis.org/A000931
https://oeis.org/A329695
https://oeis.org/A004148
https://oeis.org/A000931
https://oeis.org/A216604
https://oeis.org/A004148
https://oeis.org/A000931
https://oeis.org/A023426
https://oeis.org/A104545
https://oeis.org/A329686
https://oeis.org/A329671
https://oeis.org/A001006
https://lipn.fr/~cb/KernelMethod
https://oeis.org/
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Via our approach, it is thus not difficult to get the explicit formulas for E(t) and M(t). These Hanc marginis
exiguitas non
caperet!generating functions with all the markers vp are however quite lengthy. So, we now give these

explicit formulas when the set of patterns is included in {UU, HH, DD} or in {UD, HH, DU}.

Forbidden
patterns Generating functions of meanders and excursions OEIS5 Growth rate 6

UU, HH, DD
M = −(1 + t)

(
(1 + t)(1− 2t)−

√
1− 2t+ t2 − 4t3 + 4t4

)
/
(
2t2(1− 2t)

)
E = (1 + t)

(
1− t2 − 2t3 − (1 + t)

√
1− 2t+ t2 − 4t3 + 4t4

)
/(2t4)

A329665
A329671

2

UU, HH
M = −(1 + t)

(
1− 3t2 − t3 −

√
1− 2t2 − 6t3 − 3t4 + 2t5 + t6

)
/
(
2t2(1− 2t− t2)

)
E =

(
1− t2 − t3 −

√
1− 2t2 − 6t3 − 3t4 + 2t5 + t6

)
/(2t3).

A329667
A329666

AUU,HH :=
ρ(1− t− 2t2 + t3)

UU, DD
M = −

(
(1 + t)(1− 2t− t2)−

√
1− 2t− t2 − t4 + 2t5 + t6

)
/
(
2t2(1− 2t− t2)

)
E =

(
1− t− t2 − t3 −

√
1− 2t− t2 − t4 + 2t5 + t6

)
/(2t4)

A308435
A004149†

1 +
√

2

HH, DD
M = −

(
1− 2t− 3t2 − t3 −

√
1− 2t2 − 6t3 − 3t4 + 2t5 + t6

)
/
(
2t(1 + t)(1− 2t− t2)

)
E =

(
1− t2 − t3 −

√
1− 2t2 − 6t3 − 3t4 + 2t5 + t6

)
/(2t3)

A329669
A329666

1 +
√

2
AUU,HH

UU
M = −(1 + t)

(
1− t− 3t2 −

√
1− 2t− t2 − 2t3 + t4

)
/
(
2t2(1− 2t− 2t2)

)
E =

(
1− t− t2 −

√
1− 2t− t2 − 2t3 + t4

)
/(2t3)

A329672
A004148†

(3 +
√

5)/2

HH
M = −

(
1− 2t− 2t2 −

√
1− 4t2 − 8t3 − 4t4

)
/
(
2t(1− 2t− 2t2)

)
E =

(
1−
√

1− 4t2 − 8t3 − 4t4
)

/
(
2t2(1 + t)

) A329673
A104545

1 +
√

3

DD
M = −

(
1− 3t− t2 −

√
1− 2t− t2 − 2t3 + t4

)
/
(
2t(1− 2t− 2t2)

)
E =

(
1− t− t2 −

√
1− 2t− t2 − 2t3 + t4

)
/(2t3)

A329674
A004148†

1 +
√

3
(3 +

√
5)/2

UD, HH, DU
M = −(1 + t)

(
(1 + t)(1− 2t)−

√
1− 2t+ t2 − 4t3 + 4t4

)
/
(
2t2(1− 2t)

)
E = (1 + t)

(
1− t−

√
1− 2t+ t2 − 4t3 + 4t4

)
/(2t3)

A329665
A329664

2

UD, HH
M = −

(
1− 2t− t2 + t3 −

√
1− 2t2 − 6t3 − 3t4 + 2t5 + t6

)
/
(
2t(1− 2t− t2 + t3)

)
E =

(
1 + t2 + t3 −

√
1− 2t2 − 6t3 − 3t4 + 2t5 + t6

)
/
(
2t2(1 + t)

) A329675
A329676

AUU,HH

UD, DU
M = −

(
(1 + t)(1− 2t− t2)−

√
1− 2t− t2 − t4 + 2t5 + t6

)
/
(
2t2(1− 2t− t2)

)
E =

(
1− t− t2 − t3 −

√
1− 2t− t2 − t4 + 2t5 + t6

)
/(2t4)

A308435
A004149†

1 +
√

2

HH, DU
M = −(1 + t)

(
1− t− 3t2 + t4 − (1− t)

√
1− 2t2 − 6t3 − 3t4 + 2t5 + t6

)
/
(
2t2(1− 2t− t2 + t3)

)
E =

(
1− t2 − t3 −

√
1− 2t2 − 6t3 − 3t4 + 2t5 + t6

)
/(2t3)

A329668
A329666

AUU,HH

UD
M = −

(
1− 3t+ t2 −

√
1− 2t− t2 − 2t3 + t4

)
/
(
2t(1− 3t+ t2)

)
E =

(
1− t+ t2 −

√
1− 2t− t2 − 2t3 + t4

)
/(2t2)

A088518∗

A004148†
(3 +

√
5)/2

DU
M = −

(
(1 + t)(1− 3t+ t2)− (1− t)

√
1− 2t− t2 − 2t3 + t4

)
/
(
2t2(1− 3t+ t2)

)
E =

(
1− t− t2 −

√
1− 2t− t2 − 2t3 + t4

)
/(2t3)

A088518∗

A004148†
(3 +

√
5)/2

none
M = −

(
1− 3t−

√
1− 2t− 3t2

)
/
(
2t(1− 3t)

)
E =

(
1− t−

√
1− 2t− 3t2

)
/(2t2).

A005773†

A001006
3

The asymptotics of these sequences is C√
π
Annα, where the constant C and the growth rate A

are algebraic numbers which depend on the model. The exponent α is universal: as explained
in [1, 4, 5], it is

5See footnote 4 on previous page for the † symbol. Also, the sequences marked by ∗ are bisections of A088518
that enumerates “symmetric secondary structures of RNA molecules with n nucleotides”; see [14].

6The notation ρ(P ) used for some growth rates stands for the largest positive root of the polynomial P .

https://oeis.org/A329665
https://oeis.org/A329671
https://oeis.org/A329667
https://oeis.org/A329666
https://oeis.org/A308435
https://oeis.org/A004149
https://oeis.org/A329669
https://oeis.org/A329666
https://oeis.org/A329672
https://oeis.org/A004148
https://oeis.org/A329673
https://oeis.org/A104545
https://oeis.org/A329674
https://oeis.org/A004148
https://oeis.org/A329665
https://oeis.org/A329664
https://oeis.org/A329675
https://oeis.org/A329676
https://oeis.org/A308435
https://oeis.org/A004149
https://oeis.org/A329668
https://oeis.org/A329666
https://oeis.org/A088518
https://oeis.org/A004148
https://oeis.org/A088518
https://oeis.org/A004148
https://oeis.org/A005773
https://oeis.org/A001006
https://oeis.org/A088518
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• α = −3/2 for meanders with negative drift (above, when {UU, HH} or {UU} are forbidden)
and for excursions,

• α = 0 for meanders with positive drift (above, when {HH, DD} or {DD} are forbidden),
• α = −1/2 for meanders with zero drift.

The drift is the quantity

δ := lim
n→∞

average final altitude of walks on Z of length n
n

.

Unlike in the article [5], it is no more the case that δ = S′(1): there is a more subtile interplay
between the forbidden patterns and the allowed steps S. In the long version of our article, we
comment more on the link between the drift and a weighted variant of the stationary distribution
of the automaton A.

Another interesting feature of the above tables is that they suggest there could be natural
bijections between different classes of pattern-avoiding Motzkin paths. Some of them are easily
seen (for example by mirroring paths), others are less trivial – for example, bijections between
UU-avoiding, DU-avoiding, and (with a shift) UD-avoiding Motzkin excursions.

We end this section by mentioning some models involving some patterns of length 3, some
appear to be in bijection with some of the previous models. For example, the automaton of
Motzkin paths avoiding UD and UHD is

H,D

H

U

U

U

H

Xε

XUXUH

Corresponding adjacency matrix:

A =


1 + u−1 u 0

0 u 1
1 u 0

 .

Our vectorial kernel method then leads to the fact that the meanders are counted by the
“generalized Catalan numbers” A004149, defined by

a(n+ 1) = a(n) +
n−1∑
k=2

a(k)a(n− 1− k), a(0) = 1.

It is noteworthy that it also counts
• Motzkin excursions of length n− 1 avoiding peaks (UD) and valleys (DU),
• Motzkin excursions of length n− 2 avoiding UU and UHU.

We leave to the reader the pleasure to find bijective proofs of these facts!7

7See the PhD thesis of the third author for several possible bijections.

https://oeis.org/A004149
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5 Beyond rational and algebraic cases
In [3], the authors introduced a notion of patterns in lattice paths similar to the one frequently
used for forbidden patterns in permutations: one forbids a sequence of letters which are not
necessarily contiguous.

Such a notion is in fact also accessible with our pushdown automaton approach: to forbid a
noncontiguous pattern UD is equivalent to avoid the regular expression US∗D. This is achieved
by first constructing the automaton for the (contiguous) pattern UD, and then adding a transition
labelled by each step from S to the state XU. This automaton is then easily determinized (to avoid
any ambiguity in the transitions), and our vectorial kernel method then handles the additional
positivity constraints (meanders, excursions, etc.).

Note that it is a priori not possible to generate (or to forbid) via a finite automaton a pattern
which would require the memory of a counter (for example UnHnDn). However, we can enumerate
such paths by first getting the generating function associated to UiHjDk-avoiding paths, and then
by taking the diagonal i = j = k, at the level of the algebraic generating function (this leads to a
D-finite generating function). The same idea allows us to enumerate paths avoiding an infinite
set of noncontiguous patterns like e.g. {UkDkUD}k∈N. We present more examples of this type in
the long version of our article.

6 Conclusion and further works
To summarize, in this article we introduced/presented

• the mutual correlation matrix, an extension of the notion of autocorrelation polynomial,
which has its own interest and which offers several algorithmic advantages,

• closed-forms for all the main generating function of constrained lattice paths (Sections 2
and 3), generalizing the previous works [1, 5],

• new ways to apply the vectorial kernel method, bypassing the obstacle of the determination
of the prefactor G from Equation (3.3),

• new sources for enriched bijections between different types of paths, and the classification
of more than 512 models (Section 4).

This will allow us to tackle further questions, like
• faster uniform random generation of constrained paths of length n (Note that the detailed

analysis of the Boltzmann method done in [9] is not holding here, because paths with
forbidden patterns do not have generically a strongly connected grammar.),

• to mix the analysis of patterns with some additional parameters (like the area below the
path [6]) or under further constraints (like to be below a line of rational slope),

• the asymptotics and the Gaussian limit law for the number of occurences of the patterns
(another instance of Borges’s theorem, see [1, 2, 8]).
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