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h 13, 2002).LATTICE PATHS WITH AN INFINITE SET OF JUMPSCYRIL BANDERIER AND DONATELLA MERLINIAbstra
t. Whereas walks on N with a �nite set of jumps were the subje
t of numerous studies,walks with an in�nite number of jumps remain quite rarely studied. Even for relatively well stru
-tured models, the 
lassi
al approa
h with 
ontext-free grammars fails as we deal with rewritingrules over an in�nite alphabet. However, several 
lasses of su
h walks o�er a surprising stru
ture:we make here expli
it the asso
iated bivariate fun
tions, and give several theorems on their nature(rational, algebrai
) via the kernel method or Riordan arrays theory. We give some examples ofre
ent problems in 
ombinatori
s or theoreti
al 
omputer s
ien
e whi
h lead to su
h rules.R�esum�e. Tandis que les propri�et�es �enum�eratives et asymptotiques des mar
hes sur N ave
 un nom-bre �ni de sauts ont fait l'objet de nombreuses �etudes, les mar
hes ave
 un nombre in�ni de sautsdemeurent assez peu �etudi�ees. Même pour des mod�eles relativement stru
tur�es, on ne peut utiliserles appro
hes 
lassiques par grammaires alg�ebriques, puisqu'il s'agit de r�egles de r�e
riture sur unalphabet in�ni. Toutefois, diverses 
lasses de telles mar
hes o�rent une surprenante stru
ture :nous expli
itons i
i la nature (alg�ebrique, rationnelle) de la s�erie g�en�eratri
e bivari�ee asso
i�ee (viala m�ethode du noyau ou la th�eorie des tableaux de Riordan). Nous illustrons l'intêret de tellesmar
hes en 
ombinatoire et informatique th�eorique par quelques exemples.
Introdu
tionA 
onsiderable number of problems from 
omputer s
ien
e deals with a sum of independentidenti
al distributed random variables �n = X1 +X2 + � � � +Xn (where ea
h of the Xi's assumesinteger values). We will 
onsider here the following model of random walks: the walk starts (at time0) from a point �0 of Z and at time n, one makes a jump Xn 2 Z; so the new position is given bythe re
urren
e �n = �n�1 +Xn where, when �n�1 = k, the Xn's are 
onstrained to belong to a�xed set Pk (that is, the possible jumps depend on the position of the walk).These \walks on Z" are homogeneous in time (that is to say, the set of jumps when one is atposition k is independent from the time). When the positions �n's are 
onstrained to be nonnegative,we talk about \walks on N". The probabilisti
 model under 
onsideration here is the uniformdistribution on all paths of length n.When the sets Pk's are equal to a �xed set P (the simplest interesting 
ase being P = f�1;+1g),the 
orresponding walks have been deeply studied both in 
ombinatori
s and in probability theory.We refer to [3℄ for asymptoti
 properties of su
h \walks on N with a �nite set of jumps". Whenthe sets Pk's are unbounded, both enumeration and asymptoti
s be
ome 
umbersome: 
ontrary tothe previous 
ase, the walks are not spa
e-homogeneous (the set of available jumps depends on theposition) and it is not possible to generate them by 
ontext-free grammars. However, if the sets Pk'shave a \
ombinatorial" shape, it is reasonable to hope that the generating fun
tion asso
iated to the
orresponding walk would have some ni
e properties. We show here that this hope is legitimate andwe present several 
lasses of su
h walks, for whi
h we are able to give the nature of their generatingfun
tion.Our results have potential impa
ts on the theory of generating trees (generation of 
ombinatorialobje
ts), the enumeration of general 
lasses of latti
e paths, and on the study of rewriting rules onan in�nite alphabet.A de�nition of the generating fun
tion asso
iated to the walk is given in Se
tion 1. In this �rstse
tion, we also present the generating tree and Riordan array viewpoints. In Se
tion 2, we giveseveral theorems related to the nature of the generating fun
tions asso
iated to some walks and thenwe give some asymptoti
 results. In Se
tion 3, we give some examples of problems in whi
h someof the new 
lasses of walks that we study in this arti
le appeared.1



2 C. BANDERIER AND D. MERLINI01010 2 210 2 32 4Figure 1. The generating tree of the walk on N with jumps P = f+1;�1g startingin 0 (and up to length n = 4). Ea
h bran
h 
orresponds to a path. The bran
h(0; 1; 2; 1; 2) 
orresponds to the path drawn on the latti
e.1. Latti
e paths and generating treesIn 
ombinatori
s, it is 
lassi
al to represent a parti
ular walk as a path in a two dimensional latti
e.Thus the drawing 
orresponds to the walk of length n linking the points �(0;�0); (1;�1); : : : ; (n;�n)�.It is also 
onvenient to represent all the walks of length � n as a tree of height n, where the root(at level 0 by 
onvention) is labeled with the starting point of the walks and where the label of ea
hnode at level n en
odes a possible position of the walk (see Figure 1).We note wn;k the number of walks on N of length n going from the starting point to k (or,equivalently, the number of nodes with label k at level n in the tree) and we want to �nd thebivariate generating fun
tionW (z; u) =Xn�0wn(u)zn =Xk2ZWk(z)uk = Xk2Z;n�0wn;kukzn ;where u en
odes the �nal altitude of the walk (the label in the tree), z the length of the walk (thelevel in the tree), and where wn(u) is a Laurent polynomial (that is, a polynomial with �nitely manymonomials of negative and positive degree). When the walk is 
onstrained to remain nonnegative(or equivalently when negative labels in the tree are not allowed), we 
onsider similarly the bivariategenerating fun
tion F (z; u) =Xn�0 fn(u)zn =Xk2NFk(z)uk = Xk2N;n�0 fn;kukzn :(1)Generating trees and rewriting rules. The 
on
ept of generating trees has been used fromvarious points of view and was introdu
ed in the literature by Chung, Graham, Hoggatt andKleiman [6℄ to examine the redu
ed Baxter permutations. This te
hnique has been su

essivelyapplied to other 
lasses of permutations. A generating tree is a rooted labeled tree with the prop-erty that if v1 and v2 are any two nodes with the same label then, for ea
h label `, v1 and v2 haveexa
tly the same number of 
hildren with label `. To spe
ify a generating tree it therefore suÆ
es tospe
ify: 1) the label of the root; 2) a set of rules explaining how to derive from the label of a parentthe labels of all of its 
hildren. Points 1) and 2) de�ne what we 
all a rewriting rule. For example,Figure 1 illustrates the upper part of the generating tree whi
h 
orresponds to the rewriting rule[(0); f(k) (k � 1)(k + 1)g℄.Riordan arrays We introdu
e now the 
on
ept of matrix asso
iated to a generating tree: this isan in�nite matrix fdn;kgn;k2N where dn;k is the number of nodes at level n with label k+ r; r beingthe label of the root. For example, the matrix asso
iated to the generating tree of the Figure 1 isthe following: n=k 0 1 2 3 40 11 0 12 1 0 13 0 2 0 14 2 0 3 0 1



LATTICE PATHS WITH AN INFINITE SET OF JUMPS 3Many su
h matri
es 
an be studied from a Riordan array viewpoint. In fa
t, the 
on
ept of aRiordan array provides a remarkable 
hara
terization of many lower triangular arrays that arise in
ombinatori
s and algorithm analysis. The theory has been introdu
ed in the literature in 1991 byShapiro, Getu, Woan and Woodson [11℄. Riordan arrays are a powerful tool in the study of many
ounting problems [7℄.A Riordan array is an in�nite lower triangular array fdn;kgn;k2N; de�ned by a pair of formalpower series D = (d(z); h(z)); su
h that the k-th 
olumn is given by d(z)(zh(z))k; i.e.:dn;k = [zn℄d(z)(zh(z))k; n; k � 0:From this de�nition we have dn;k = 0 for k > n: The bivariate generating fun
tion for D is:Xn;k�0 dn;kukzn = d(z)1� uzh(z) :In what follows, we always assume that d(0) 6= 0; if we also have h(0) 6= 0 then the Riordan arrayis said to be proper; in the proper-
ase the diagonal elements dn;n are di�erent from zero for alln 2 N: The most simple example is the Pas
al triangle for whi
h we have�nk� = [zn℄ 11� z � z1� z�k ;where we re
ognize the proper Riordan array with d(z) = h(z) = 1=(1� z): Proper Riordan arraysare 
hara
terized by the existen
e of a sequen
e A = faigi2N with a0 6= 0; 
alled the A-sequen
e;su
h that every element dn+1;k+1 
an be expressed as a linear 
ombination, with 
oeÆ
ients in A,of the elements in the pre
eding row, starting from the pre
eding 
olumn:dn+1;k+1 = a0dn;k + a1dn;k+1 + a2dn;k+2 + � � �It 
an be proved that h(z) = A(zh(z)), A(z) being the generating fun
tion for A: For example,for the Pas
al triangle we have: A(z) = 1 + z and the previous relation redu
es to the well-known re
urren
e relation for binomial 
oeÆ
ients. The A-sequen
e doesn't 
hara
terize 
ompletely(d(z); h(z)) be
ause d(z) is independent of A(z). But it 
an be proved that there exists a uniquesequen
e Z = fz0; z1; z2; : : : g; su
h that every element in 
olumn 0 
an be expressed as a linear
ombination of all the elements of the pre
eding row:dn+1;0 = z0dn;0 + z1dn;1 + z2dn;2 + � � �This property has been re
ently studied in [7℄, where it is proved that d(z) = d(0)=(1� zZ(zh(z)));Z(z) being the generating fun
tion for Z: Thus the triple (d(0); Z(z); A(z)) 
hara
terizes everyproper Riordan array.2. Walks on Z with an infinite set of negative jumps2.1. Latti
e paths and generating trees. Consider a sequen
e (ei(k))i��a (for a given integera > 0) of polynomials assuming nonnegative integers values then the walk with an in�nite set ofjumps under 
onsideration here are of the following kind:[(r); f(k) (0)ek(k)(1)ek�1(k)(2)ek�2(k) : : : (k � 1)e1(k)(k)e0(k) : : : (k + a)e�a(k)g℄ ;(2)where the exponent ei(k) is the multipli
ity of the jumps �i when one is at position k and where ris the starting position of the walk (or equivalently, the root of the asso
iated generating tree).If the sequen
e of polynomials (ei(k))i��a is ultimately ei(k) = 0, then the situation 
overs the
ase of walks with a �nite set of jumps. If the sequen
e is ultimately ei(k) = 1, then this 
overs the
ase of \fa
torial rules" whi
h are of great interests for the generation of 
ombinatorial obje
ts [4℄and for whi
h it was proven in [2℄ that the asso
iated generating fun
tions are algebrai
.We still note fn;k the number of walks on N of length n going from the starting point to k andwe want to �nd the bivariate generating fun
tion F (z; u) =Pn;k�0 fn;kukzn. These random walkson N 
an equivalently be seen as latti
e paths, generating trees and also as Riordan arrays (whena = 1).



4 C. BANDERIER AND D. MERLINIRule EIS approximate des
ription Generating Fun
tion F (z; u)Rational OGF OGF(0); f(k) (0)k(k + 1)g F0, F (z; 1): powers of 2 1� 2z � z21� (u+ 2)z � 2uz2(0); f(k) (0)2k(k + 1)g F (z; 1):A001333 
ontinuedfra
tion 
onvergents to p2F0: A052542 (ECS) 1� 2z + z21� (u+ 2)z + (2u� 1)z2 + uz3(0); f(k) (0)3k(k + 1)g F (z; 1): A026150 (ECS) 1� 2z + z21� (u+ 2)z + (2u� 2)z2 + 2uz3(0); f(k) (0)4k(k + 1)g F (z; 1): A046717 half of 3n 1� 2z + z21� (u+ 2)z + (2u� 3)z2 + 3uz3(0); f(k) (0)k(k + 1)(k + 2)g F (z; 1): A001075 andF0: A005320 Pell's equation 1� 4z + 4z21� (4 + u+ u2)z + (4u2 + u� 1)z2 � : : :(1); f(k) (0)(1)2(k)(k + 2)2(k + 3)5g 6n and A003464 (6n � 1)=5 (4u� 1)z � u(1� 6z)((2u2 + 1)z � 1)(0); f(k) (0)k2(2)3k�1(3)(k)(k + 1)2(k + 3)5g see Theorem 1Algebrai
 OGF OGF(1); f(k) (1) : : : (k + s� 2)(k + s� 1)g F (z; 1): s-ary trees(1); f(k) (1)2 : : : (k)2(k + 1)g F (z; 1): A001003 S
hr�oder'sse
ond problem u2 1� (2u+ 1)z �p1� 6z � z2(1� u)z + (u2 + u)z2(0); f(k) (0)k2(2)3k�1(3)(k)(k + 1)2(k + 3)5g(0); f(k) (0)k(1)k�1 : : : (k � 1)1(k)0(k + 1)g A036765 F (z; 1): rooted treeswith a degree 
onstraint equation of degree 3(0); f(k) (0)k+2(1)k+1 : : : (k � 1)3(k)2(k + 1)g F0: A006013 A046648non
rossing trees on a 
ir
leF (z; 1): A001764 ternary trees equation of degree 3(0); f(k) (0)k+3 : : : (k � 1)4(k)3(k + 1)2(k + 2)g F (z; 1): A066357 planar treeswith root parity 
onstraint equation of degree 4(0); f(k) (0)Ck : : : (k � 1)C1(k)C0(k + 1)g(where Ck is the k-th Catalan number) F0: A006318large S
hr�oder numbers 12 3� (4u+ 1)z �p1� 6z � z21� 3uz + (2u2 + u)z2(0); f(k) (0)Ck : : : (k � 1)C1 (k + 1)g F0: A052705 (ECS) 12 3� (4u+ 2)z �p1� 4z � 4z21� (3u+ 2)z + (2u2 � 2u+ 1)z2(0); f(k) (0)Tk : : : (k � 1)T1 (k)T0(k + 1)g(where Tk is the k-th tri-Catalan number) F0: A054727 non
rossingforests of rooted trees equation of degree 3Table 1. Some rewriting rules with simple 
ombinatorial patterns. The ordinarygenerating fun
tions F (z; 1) and F0(z) are de�ned as in Equation 1.In Table 1, we give a list of rewriting rules with simple 
ombinatorial patterns, the referen
eto famous numbers or 
ombinatorial problems they refer to, the generating fun
tion F (z; 1), andthe numbers identifying the 
orresponding sequen
es in the On-Line En
y
lopedia of Integer Se-quen
es http://www.resear
h.att.
om/�njas/sequen
es/; ECS stands for the En
y
lopedia ofCombinatorial Stru
tures http://algo.inria.fr/en
y
lopedia/.2.2. Rationality and algebrai
ity of 
lasses of rewriting rules.Theorem 1. For any 
onstant B � 0, the rule[(r); f(k) (0)ek(k) : : : (B)ek�B (k) (k)e0 : : : (k + a)e�ag℄(where ek(k); : : : ; ek�B(k) are polynomial in k, ei(k) = 0 for 0 < i < k � B and ei(k) = ei, some�xed 
onstants, for i � 0) has a rational generating fun
tion F (z; u).Proof. First, we illustrate the general 
ase by the following example:[(0); f(k) (0)k2 (2)3k�1(3)(k)(k + 1)2(k + 3)5g℄ ;for whi
h B = 3, the polynomials in k are ek(k) = k2; ek�1 = 0; ek�2 = 3k � 1; ek�3 = 1, and the�xed 
onstants are e0 = 1, e�1 = 2, e�2 = 0, e�3 = 5.



LATTICE PATHS WITH AN INFINITE SET OF JUMPS 5The part (k)  (0)k2 implies a transformation uk  k2u0. The part (k)  (2)3k�1 impliesa transformation uk  (3k � 1)u2. The part (k)  (3) implies a transformation uk  u3. Itis possible to perform all these transformations using the derivation, evaluation in u = 1 andmultipli
ation by a monomial: in the �rst 
ase, the multipli
ity k2 is obtained by �(u�(uk)) andthen evaluating in u = 1; for the se
ond 
ase, the multipli
ity 3k�1 is obtained by taking �u(u3k)=uand then evaluating in u = 1; for the third 
ase simply evaluate in u = 1 and multiply by u3.The part (k)  (k)(k + 1)2(k + 3)5 gives uk  P (u)uk where P (u) = 1 + 2u + 5u3. All thesetransformations are in fa
t linear, so to a
t on uk or a polynomial in u (like fn(u)) is the same.Finally, evaluating �(u�fn(u)) in u = 1 gives f 00n (1) + f 0n(1) and evaluating u2�ufn(u3)=u in u = 1gives u2(3f 0n(1)� fn(1)), so these trivial simpli�
ations gives the following re
urren
e:fn+1(u) = P (u)fn(u) + u0(f 00n (1) + f 0n(1)) + u2(3f 0n(1)� fn(1)) + u3fn(1) :Multiplying by zn+1 and summing for n � 0 leads to the fun
tional equation(1� zP (u))F (z; u) = 1 + z(u3 � 1)F (z; 1) + z(3u2 + 1)F 0(z; 1) + zF 00(z; 1) :Taking the �rst 2 derivatives and instantiating in u = 1 gives a rational system of full rank, hen
eF (z; u) is rational:F (z; u) = u3(22z2 � 112z3 � z) + u2(480z3 � 60z2) + 528z3 � 250z2 + 31z � 1(1� zP (u))(872z3 � 212z2 + 30z � 1) :For the general 
ase, one has the following fun
tional equation(1� zP (u))F (z; u) = ur + z dXi=0 ti(u)�iuF (z; 1)(d is the largest degree of the polymonials ei(k), and the ti's are some Laurent polynomials whi
h
an be made expli
it). Taking the �rst d derivatives and instantiating in u = 1 gives a system (form = 0; : : : ; d):�mu ur +  m�1Xi=0 �z�mu ti(1) + z�mi ��m�iu P (1)� �iuF (z; 1)!+ (z�mu ti(1)� (1� zP (1)))�mu F (z; 1) + z dXi=m+1 �mu ti(1)�iuF (z; 1) = 0 :This gives a matri
ial equation M:�!F = �!v where �!F = (�0uF (z; 1); : : : ; �duF (z; 1))T and �!v =(ur; 0; : : : ; 0)T . The 
oeÆ
ients of the main diagonal ofM are �1+z : : : (as they are the 
oeÆ
ientsof the �mu F (z; 1) summand) and all the other 
oeÆ
ient of M are monomials in z of degree 1. Thus,one has [z0℄ detM = �1 and then detM 6= 0. Consequently, this system is of full rank. Solving itgives rational expressions for the �iuF (z; 1) and for F (z; u).We now give a generalization of a result of [2℄ whi
h was giving the algebrai
ity of \fa
torialrules": we allow here initial multipli
ities whi
h are not spa
e-homogeneous.Theorem 2. For a 
onstant B � 0, the rule[(r); f(k)  (0)ek(k) : : : (B)ek�B(k)(B + 1) : : : (k � b� 1)(k � b)eb : : : (k + a)e�ag℄(where ek(k); : : : ; ek�B(k) are polynomial in k, ei(k) = 1 for b < i < k � B and ei(k) = ei, some�xed 
onstants, for i � b) has an algebrai
 generating fun
tion F (z; u).Proof. We illustrate the general 
ase by the following example:[(0); f(k) (0)k2(2)3k5�2(6)(7) : : : (k � 5)(k � 4)2(k � 2)3(k)(k + 3)2(k + 23)g℄for whi
h B = 5; b = 4; a = 23, the polynomials in k are ek(k) = k2, ek�2(k) = 3k5 � 2, ek�1(k) =ek�3(k) = ek�4(k) = ek�5(k) = 0 and the �xed 
onstants are e4 = 2, e2 = 3, e0 = 1, e�3 = 2,



6 C. BANDERIER AND D. MERLINIe�23 = 1. One sets P (u) = 2u�4 + 3u�2 + 1 + 2u3 + u23, the re
urren
e isfn+1(u) = P (u)fn(u)� fu<0gP (u)fn(u) + 5Xi=0 ti(u)�iufn(1) ;where fu<0g stands for the sum of the monomials in u with a negative degree. Multiplying by zn+1and summing for n � 0 leads to the fun
tional equation(1� zP (u))F (z; u) = 1� z 4�1Xk=0 rk(u)Fk(z) + z 5Xi=0 ti(u)�iuF (z; 1) ;(3)where rk(u) := fu<0gP (u)uk and ti(u) are (Laurent) polynomials whi
h 
an be made expli
it.One 
an use the kernel method (we refer to [3, 5℄ for re
ent appli
ations of this method) to solvethis equation. We 
all 1 � zP (u) the kernel of the equation. Solving 1 � zP (u) = 0 with respe
tto u gives 4 roots u1(z), u2(z), u3(z) and u4(z) whi
h are Puiseux series in z1=4 and whi
h tend tozero in 0. There are also 23 others roots whi
h behave like z�1=23 around 0, so we 
all u1; : : : ; u4 thesmall roots of the kernel. Plugging the 4 small roots of the kernel in Equation 3 and 
onsidering the6 other equations obtained by taking the �rst 5 derivatives of Equation 3 (and then setting u = 1)gives a system of full rank with 10 equations with 10 unknown univariate generating fun
tions, whi
hare thus all algebrai
, and then one has a formula for F (z; u), involving the ui, whi
h implies itsalgebrai
ity. For the general 
ase, simply repla
e 4 by b and 5 by d in Equation 3 and then one 
anargue as in Theorem 1 above, with a new matri
ial equation M:�!F = �!v ; looking at the valuationin z of ea
h entries in M (some of them involves the small roots ui's, but at most a produ
t of bof them) gives detM 6= 0 and thus a system of full rank, so F (z; u) 
an be expressed as a rationalfun
tion in z, u and the small roots ui's. As these roots are algebrai
, F (z; u) is algebrai
.Consider now the 
ase where, for ea
h i, the exponent ei(k) of the rule (2) is a 
onstant (that is,the polynomial in ei(k) does not depend on k, so one simply writes ei). How far 
an we relate thebehavior of the walk[(0); f(k) (0)ek (1)ek�1 : : : (k � 2)e2(k � 1)e1(k)e0 (k + 1)e�1 : : : (k + a)e�ag℄(4)to the generating fun
tion of the exponents E(u) = Pi��a eiui ? We give here a �rst element ofanswer:Theorem 3. Consider the rule[(0); f(k) (0)ek (1)ek�1 : : : (k � 1)e1(k)e0 : : : (k + a)e�ag℄ :(5)If the generating fun
tion of the exponents E(u) is algebrai
 then the bivariate generating fun
tionof the walk F (z; u) is algebrai
. For a = 1, one hasF (z; u) = F0(z)1� u e�1z F0(z) with F0(z) = 1e�1z E<�1>(1z )where E<�1> is the 
ompositional inverse of E(u) and where e�1 is the multipli
ity of the +1 jump.More generally, for a � 1, the generating fun
tion F (z; u) is expressed in terms of the a solutionsu1(z); : : : ; ua(z) of 1� zE(u) = 0 whi
h satisfy ui(z) � 0 for z � 0:F (z; u) = F0(z) aYi=1 11� uui(z) =Xk�0F0(z) Xi1+���+ia=k ui11 : : : uiaa !uk :One has F0(z) = (�1)a+1ze�a aYi=1ui(z) and F (z; 1) = �1ze�a aYi=1 11� 1ui(z) :Proof. For a = 1, the �rst identity re
e
ts the 
ombinatorial de
omposition (one to one 
orrespon-den
e, in fa
t) \a walk from 0 to k + 1" is \a walk from 0 to k" then followed by a jump +1 thenfollowed by \a walk from k+1 to k+1 never going below k+1". The generating fun
tion of theselast walks is 
learly F0(z), thus one has Fk+1(z) = Fk(z)e�1zF0(z) = F0(z)(ze�1F0(z))k+1.



LATTICE PATHS WITH AN INFINITE SET OF JUMPS 7For the walks 
orresponding to the rule (5), the set of jumps is given by E(1=u); if one reversesthe time dire
tion, one gets a new walk where the set of available jumps is given by E(u). De�neeF (z; u) as the 
orresponding generating fun
tion (one starts at altitude 0), one has:efn+1(u) = fu�0gE(u) efn(u); ef0(u) = 1where fu�0g stands for the sum of all monomials in u with a nonnegative degree. Multiplying byzn+1 and summing for n � 0 giveseF (z; u) = ef0(u) + zE(u) eF (z; u)� zfu�1ge�1u eF (z; u) ;that one rewrites as the following fun
tional equation(1� zE(u)) eF (z; u) = 1� z e�1u eF0(z) :Then solving the \kernel" 1 � zE(u) = 0 with respe
t to u gives a series u1(z) = E<�1>(1=z),whi
h is algebrai
 as the 
ompositional inverse of an invertible algebrai
 fun
tion is algebrai
 (simplyplug the inverse in the polynomial equation �(E(u); u) = 0 satis�ed by E(u) to 
he
k this fa
t).If one then evaluates the above fun
tional equation at u = u1(z), one gets 0 = 1 � z e�1u1 eF0(z)and thus eF0(z) = u1e�1z . As one has eF0(z) = F0(z) (a walk from 0 to 0 from left to right is still awalk from 0 to 0 from right to left), one gets the result from the theorem. Note that if one setsef0(u) = 11�u , eF0 enumerates walks from anywhere to 0, so eF0(z) = u1=(ze�1)1�u1 = F (z; 1), whi
h is
oherent with the theorem (
ase a = 1).For a � 1, one sets P (u) :=P�1i=�a eiui; one has(1� zE(u)) eF (z; u) = ef0(u)� zfu<0gP (u) eF (z; u) :This is rewritten as (1� zE(u)) eF (z; u) = ef0(u)� z a�1Xk=0 rk(u) eFk(z) :(6)where rk(u) := fu<0gP (u)uk is a Laurent polynomial with monomials of degree going from �1down to k � a.The kernel equation 1� zE(u) = 0 has a roots u1(z); : : : ; ua(z) whi
h are Puiseux series in z1=aand whi
h tend to 0 when z tends to 0. When ef0(u) = 1, plugging these roots in the fun
tionalequation shows that they 
orrespond to the a roots of the polynomial ua � zuaPa�1k=0 rk(u)Fk(z),whose leading term is za and whose 
onstant term is so �ze�a eF0(z). This gives eF0(z) = �Qai=1 ui�ze�a .When ef0(u) = 11�u this gives a system of a equations for a unknowns (the eFk's). Solving it for eF0gives F (z; 1). Solving the eF0 for ef0(u) = uk gives the Fk(z).For a = 1, the Riordan arrays approa
h that we presented in Se
tion 1 also gives the algebrai
ityof F (z; u). In fa
t, a theorem from [10℄ gives F (z; u) = d(z)1�uzh(z) where h(z) = A(zh(z)) andd(z) = 1=(1� zZ(zh(z))) for the rule [(0); f(k) (0)zk(1)ak (2)ak�1 : : : (k)a1(k + 1)a0g℄. For a > 1,the matrix asso
iated (see Se
tion 1) to the rule (4) is 
alled a horizontally stret
hed Riordanarray. With this 
on
ept, it 
an be shown, like with the kernel method, that the algebrai
ity ofthe 
orresponding generating fun
tion F (z; u) depends on the algebrai
ity of A(z) = Pk�0 akzkand F0(z); : : : ; Fa�1(z) (the generating fun
tions of the �rst a 
olumns of the matrix). While thetheory of Riordan arrays has been intensively studied, the theory of stret
hed Riordan arrays, froma generating fun
tion point of view, is still in progress.Remark: as D-�nite fun
tions are not ne
essarily 
losed under 
ompositional inverse, it is nottrue that if E(u) is D-�nite, then F (z; 1) or F0(z) (and a fortiori F (z; u)) are D-�nite, even in the
ase a = 1.We end with a last appli
ation of the kernel method.



8 C. BANDERIER AND D. MERLINITheorem 4. Consider the rewriting rule (4) when the ei's are ultimately 
onstants (say, equal toa 
onstant C after rang b): [(0); f(k) (0)C : : : (k� b� 1)C(k� b)eb : : : (k)e0 : : : (k+ a)e�ag℄. ThenF (z; u) is algebrai
 and satis�es F (z; u) = Qbi=0 u� ui(z)K(z; u) ;where the ui's and K are de�ned as below.Proof. One has the re
urren
e fn+1(u) = C fn(u)�fn(1)u�1 + P (u)fn(u) this leads to the fun
tionalequation �1� zP (u)� z Cu� 1�F (z; u) = 1� zCu� 1F (z; 1)� z b�1Xk=0fu<0gP (u)ukFk(z)(7)where P (u) =Pbi=1(ei � C) 1ui +Pai=0 e�iui. De�ne the kernelK asK(u; z) = ub(1�u)(1�zP (u)�zCu�1 ). It has b roots u1(z); : : : ; ub(z) whi
h are Puiseux series in z1=b and whi
h tend to 0 in 0 andone root u0(z) whi
h tends to 1 in 0. These are exa
tly the b+1 roots of the right hand part of (7)(on
e multiplied by (1 � u)ub). So F (z; u) = Qbi=0 u�ui(z)K(z;u) , where the ui's are the b+ 1 small rootsof the kernel.2.3. Asymptoti
s. Given a pe
uliar rule for Theorem 1, 2, 3 or 4, it is possible to �nd an asymp-toti
 expansion for the number of walks. It is not really possible to merge all these results in a singleone, as the rules are too un
onstrained. However, for the algebrai
 
ase, a kind of universality holdsfor the behavior of the roots of the kernel. This leads to following theorem, whi
h has to be adapted
ase by 
ase for rules of Theorems 2 and 3 (and is easily applied to rules of Theorem 4).Theorem 5. The number of walks of length n for the \fa
torial" rule[(0); f(k) (0)(1) : : : (k � b� 1)(k � b)eb : : : (k)e0 : : : (k + a)e�ag℄(where ei(k) = 1 for b < i � k and ei(k) = ei, some �xed 
onstants, for i � b) has the followingasymptoti
s A ��np2�n3 , where A and � are algebrai
 
onstants depending on the �nite set of jumps P.Proof. See [1℄ for a proof and appli
ations to the limit laws of �nal altitude and number of fa
tors.The approa
h is similar to the one used for walks with a �nite number of jumps but there aresome 
ompli
ations due to the fa
t that the kernel is now of the kind 1 � z�(u) where �(u) isnot unimodal. One 
an however establish that the real positive root u0 now dominates and has asquare-root behavior. 3. ExamplesWe now give a series of examples from 
ombinatori
s or 
omputer s
ien
e in whi
h rewriting rulesstudied in Se
tion 2 appear.Example 1. Two families of rules leading to an algebrai
 generating fun
tion.For the rule [(0); f(k) (0)ek (1)ek�1 : : : (k � 1)e1(k)e0(k + 1)g℄, where ek for i � 0 is the number oft-ary trees with k nodes, F (z; u) satis�es a algebrai
 equation of degree t. E.g., for t = 3, one has:1� �3+ (4� 3u)z�F (z; u)� �� 3+ (6u� 7)z+(�3u2+8u� 3)z2�F (z; u)2� �1+ (3� 3u)z+(3u2�7u+ 3)z2 + (�u3 + 4u2 � 3u+ 1)z3�F (z; u)3 = 0:For the rule [(0); f(k) (0)
+k(1)
+k�1 : : : (k � 2)
+2(k � 1)
+1(k)
(k +1)g℄, F (z; u) satis�es analgebrai
 equation of degree 3:�(1� 2u)z2+(
� (
+1)+2u2)�F 3+ �(u� 2)z+(�
� 2+4u� 2u2)z2�F 2+ �1+ (2� 2u)z�F = 1.�Example 2. Tennis ball problem. Let s � 2 be an integer and 
onsider the following problemknown as the s-tennis ball problem. At the �rst turn one is given balls numbered one through s:One throws one of them out of the window onto the lawn. At the se
ond turn balls numbered s+1



LATTICE PATHS WITH AN INFINITE SET OF JUMPS 9through 2s are brought in and now one throws out on the lawn any of the 2s� 1 remained. Thenballs 2s+1 through 3s are brought in and one throws out one of the 3s�2 available balls. The game
ontinues for n turns. At this point, one pi
ks up the n balls in the lawn and 
onsider the orderedsequen
e B = (b1; b2; : : : ; bn) with b1 < b2 < � � � < bn: This sequen
e will be 
alled a tennis balls-sequen
e and the �rst question is: how many tennis ball s-sequen
es of length n exist? The se
ondquestion is: what is the sum of all the balls in all the possible s-sequen
es of length n ? Obviously,if we answer to both these questions, we also know the average sum of the balls in an s-sequen
eof length n: The general 
ase s � 1 has been studied in [8℄ from a generating fun
tion viewpoint.In fa
t, the authors 
onsider an in�nite tree with root 0 and with s 
hildren. Ea
h (n + 1)-lengthpath in this tree 
orresponds to an s-sequen
e of length n. This in�nite tree is isomorphi
 to thegenerating tree with spe
i�
ation [(1); f(k) (1) : : : (k + s� 2)(k + s� 1)g℄.By using this result the authors �nd that the number of tennis ball s-sequen
es of length nare 
ounted by Tn+1; where Tn = 11+(s�1)n�snn � (the number of s-ary trees with n-nodes) and the
umulative sum of all the balls thrown onto the lawn in n turn is�n = 12(sn2 + (3s� 1)n+ 2s)Tn+1 � 12 n+1Xk=0�skk ��s(n+ 1� k)n+ 1� k �: �Example 3. A new rewriting rule for (4; 2)-tennis ball problem.The problem of balls on the lawn admits many other variants. For example, one 
ould be suppliedwith s balls at ea
h turn but now throw out t balls at a time with t < s: The general (s; t) 
ase isan open problem while the (4; 2) 
ase has been treated in [8℄, where the authors study the problemby introdu
ing a bilabeled generating tree te
hnique. Anyway, re
ently Merlini and Sprugnoli foundthat the problem 
an be expressed by the rule (4) with ei = i+ 3 and a = 2, namely:[(0); f(k) (0)k+3(1)k+2(2)k+1 : : : (k + 2)g℄(8) 00 0 0 10 0 0 0 1 1 1 2 2 31 20 0 0 0 0 1 1 1 1 2 2 2 3 3 4Figure 2. The partial generating tree for the spe
i�
ation (8)In fa
t, if we don't 
are of the order of the balls thrown away, so that the 
on�guration (1; 4),(5; 8), (2; 10) is 
onsidered to be the same as (1; 2), (4; 5), (8; 10); it 
an be proved that the numberof (4; 2)-sequen
es of length 2n in whi
h the last-but-one element is 2n+ k � 1 
orresponds to thenumber of nodes with label k at level n in the generating tree of Figure 2 (for example, the possiblesequen
es of length 2 are (1; 2); (1; 3); (1; 4); (2; 3); (2; 4) and (3; 4)). �Example 4. Printers.In [9℄ the authors present a 
ombinatorial model for studying the 
hara
teristi
s of job s
hedulingin a slow devi
e, for example a printer in a lo
al network. The poli
y usually adopted by spoolingsystems is 
alled First Come First Served (FCFS) and 
an be realized by queuing the pro
essesa

ording to their arrival time and by using a FIFO algorithm. A job (printing a �le) 
onsistsin a �nite number of a
tions (printing-out a single page). Ea
h a
tion takes 
onstant time to beperformed (a time slot). If we �x n time slots, and suppose that at the end of the period the queuebe
omes empty, while it was never empty before, the su

essive states of the jobs queue 
an be
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32Figure 3. The s
hedules 
orresponding to two parti
ular 1-histograms.des
ribed by a 
ombinatorial stru
ture 
alled labeled 1-histograms. A 1-histogram of length n is ahistogram whose last 
olumn only 
ontains 1 
ell and, whenever a 
olumn is 
omposed by k 
ells,then the next 
olumn 
ontains at least k�1 
ells. It is at all obvious that a 1-histogram 
orrespondsto a path in the generating tree produ
ed by the spe
i�
ation [(1); (k)  (1) : : : (k + 1)℄. A labeled1-histograms of length n is a 1-histogram in whi
h we label ea
h 
ell a

ording to some rules (see [9℄for the details). Figure 3 illustrates the possible s
hedules for two parti
ular 1-histograms of length3: the �rst one, for example, 
orresponds to i) a �rst job whi
h 
onsists in printing two pages anda se
ond job, whi
h starts at time slot 2; and 
orresponds to printing a page at time slot 3; andii) three di�erent jobs whi
h 
onsists in printing a single page, the �rst at time slot 1; the se
ondat time slot 2 and the third at time slot 3; after queuing at time slot 2: It 
an be proved that thenumber of s
hedules of length n with k jobs request at the �rst time slot 
orresponds to the numberof nodes at level n having label k + 1 in the generating tree with spe
i�
ation:[(1); f(k) (1)2 : : : (k)2(k + 1)g℄ :This gives that the number Sn of possible s
hedules 
orresponds to the nth small S
hr�oder number,that is, the generating fun
tion for Sn is (1� 3z �p1� 6z + z2)=(4z): �A
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