
Brief Announcement: Replacement - Handling

Failures in a Replicated State Machine

Leander Jehl, Tormod Erevik Lea, and Hein Meling

University of Stavanger, Norway
{leander.jehl,tormod.e.lea,hein.meling}@uis.no

1 Introduction

State machine replication is a common approach for building fault-tolerant ser-
vices. A Replicated State Machine (RSM) typically uses a consensus protocol
such as Paxos [1] to decide on the order of updates and thus keep replicas con-
sistent. Using Paxos, the RSM can continue to process new requests, as long as
more than half of the replicas remain operational. If this bound is violated, how-
ever, the current RSM is forced to stop making progress indefinitely. To avoid
scenarios in which the number of failures exceeds the bound, it is beneficial to
immediately instantiate failure handling, if this can be done without causing a
significant disruption to request execution.

This can be done by reconfiguration, which is a general method to replace
one set of replicas with another. Classical reconfiguration relies on the RSM to
decide on a reconfiguration command [2]. For this, the old configuration must
have a majority of operational replicas and a single correct leader. The latter
can only be guaranteed if the replicas are sufficiently synchronized.

In this paper, we present Replacement [3], a reconfiguration algorithm spe-
cialized for replacing a faulty replica with a new one. Also Replacement requires
a majority of operational replicas. However, different from traditional reconfigu-
ration techniques, failure handling with Replacement does not rely on consensus.
Thus, by using Replacement, faulty replicas can be replaced even during times of
asynchrony, e.g. when clocks are not synchronized and the network experiences
unpredictable delays, or when multiple replicas are competing for leadership.
This is useful, since replacing slow or overloaded replicas can restore synchrony
and replaced replicas can no longer compete for leadership.

In [4] we showed that reconfiguration without consensus is possible. However,
the algorithm presented in [4] (ARec), has to stop the state machine during
reconfiguration. Replacement, our new method, includes minor adjustments to
the Paxos algorithm that allow the RSM to make progress, while replicas disagree
on the current configuration. It thus avoids the increased client latency and
temporary unavailability, caused by ARec.

2 Contribution

Replacement is similar to the round change in Paxos. A replacement request,
specifying an old replica and its replacements, is propagated to all replicas, which

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 531–532, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

532 L. Jehl, T.E. Lea, and H. Meling

then send Promise messages to the new replica. The new replica can determine
a correct state and start running Paxos, after collecting a quorum of promises.
The following ideas are key to Replacement.

New state only for the new replica. To ensure that no different values
can get chosen before and after the replacement, we guarantee that a value,
accepted by a majority before replacement, is still accepted by a majority after
replacement. For this, it is enough if the new replica stores any possibly accepted
value. Therefore, in Replacement, only the new replica needs to wait for promises,
while the other replicas can continue to run Paxos.

Vector Timestamps. In Replacement, replicas use a vector clock to times-
tamp the current configuration. By attaching this vector clock to messages, we
can detect and discard messages from replaced replicas. Thus Replacement can
allow replicas, that are not replaced, to continue running Paxos in the same
round. This is different from other reconfiguration methods [4,5] which enforce a
round change in Paxos, and thus discard all messages from the previous round.

Combining Replacements. Every replacement has a unique timestamp and
if two concurrent replacements are issued for the same replica, the one with the
higher timestamp will be executed. However, if two concurrent replacements are
issued for different replicas, both replacements will be executed, possibly in dif-
ferent orders. Thus, replacements for different replicas can be issued by different
agents, without the risk that some replacement is lost due to concurrency with
another, unrelated replacement.

Since replacements for different replicas are executed concurrently without any
order or priority, concurrent replacements can block each other. We solve this
with simple coordination among the replacing processes, which is only necessary
if a majority of the replicas are replaced concurrently.

Evaluation. Our evaluation shows that using ARec causes longer repair times
and temporary unavailability, compared to classical reconfiguration. Replace-
ment performs on par with classical reconfiguration in a synchronous setting,
but also allows failure handling in times of asynchrony.

References

1. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

2. Lamport, L., Malkhi, D., Zhou, L.: Reconfiguring a state machine. SIGACT
News 41(1), 63–73 (2010)

3. Jehl, L., Meling, H.: Towards fast and efficient failure handling for paxos state
machines. In: 2013 IEEE 33rd International Conference on Distributed Computing
Systems Workshops (ICDCSW), pp. 98–102 (2013)

4. Jehl, L., Meling, H.: Asynchronous Reconfiguration for Paxos State Machines. In:
Chatterjee, M., Cao, J.-N., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS,
vol. 8314, pp. 119–133. Springer, Heidelberg (2014)

5. Lamport, L., Malkhi, D., Zhou, L.: Vertical paxos and primary-backup replication.
In: PODC, pp. 312–313 (2009)

Brief Announcement: The Power

of Scheduling-Aware Synchronization�

Panagiota Fatourou1 and Nikolaos D. Kallimanis2

1 FORTH-ICS & University of Crete, Greece
faturu@csd.uoc.gr

2 FORTH-ICS, Greece
nkallima@ics.forth.gr

We present a new combining-based synchronization technique, called Hydra1, that
enables batching, on a single node, of the synchronization requests initiated by
threads running on the same core. The technique results in highly-increased com-
bining degree (which is the average number of requests that each combiner serves),
and significantly reduces the number of expensive synchronization primitives (like
CAS, Swap, Fetch&Add, etc.) performed.We prove that the performance power of
Hydra is tremendous when employed in an environment supporting cheap context
switching, like user-level threads. Hydra outperforms by far all previous state-of-
the-art synchronization algorithms.We experimentally show that the throughput
of Hydra is higher than that of CC-Synch, a state-of-the-art (blocking) synchro-
nization protocol presented in PPoPP ’12, by more than an order of magnitude.
Hydra’s throughput is surprisingly close to the ideal and this is achieved without
increasing the average latency in serving each request.

We also study a simple variant of P-Sim [2], called PSimX, with highly up-
graded performance; PSimX is wait-free. The performance of PSimX, albeit lower
than that of Hydra, is also close to the ideal. By employing user-level threads in
other synchronization protocols, the exhibited performance advantage is much
lower than that of Hydra and PSimX. Based on PSimX, it is easy to implement
useful wait-free primitives (e.g. multi-word CAS) at a surprisingly low cost.

Based on Hydra and PSimX, we implement and experimentally evaluate imple-
mentations of concurrent queues and stacks. These implementations outperform
by far all current state-of-the-art concurrent queue and stack implementations,
respectively. Although the current versions of Hydra and PSimX have been tested
in an environment supporting user-level threads, they can also run on top of any
threading library, preemptive or not (including kernel threads).

Protocol Description. Hydra maintains a linked list of nodes. Each node of
this list stores announced requests of active threads running on the same core
c. The first thread p among those running on c, that wants to apply a request,

� This work has been supported by the ARISTEIA Action of the Operational Pro-
gramme Education and Lifelong Learning which is co-funded by the European Social
Fund (ESF) and National Resources through the GreenVM project.

1 Lernaean Hydra was an ancient monster of Greek mythology that possessed many
heads. In Hydra, a processing core (the body) possesses a lot of user threads (the
heads).

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 533–535, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

534 P. Fatourou and N.D. Kallimanis

Alg throughput
Variant’s
throughput

speedup

CC-Synch 4.18 4.60 1.10
DSM-Synch 4.10 4.58 1.12

P-Sim 3.90 23.2 5.94
Lock-Free 2.00 1.87 0.94

CLH 1.58 1.7 1.08
FC 2.99 5.51 1.84

OyamaAlg 1.72 2.8 1.63

tries to store a pointer to a node nd in an array A. Other threads running on c
may simultaneously compete on the same position of A, so CAS is used.

If p successfully stores nd in A, it records its request in nd, initiates a recording
period by informing the other threads running on c that they can start recording
requests in nd, and calls Yield. To apply a request, some other thread executing
on c, discovers that a recording period is active and records its request in nd.
Then, it calls Yield until some combiner serves its request.

Fair scheduling results in the reactivation of p at some later point. Then, p
ends the current recording period, executes a Swap to append nd in the shared
list, and decides whether it should become a combiner. If p does not become a
combiner, it repeatedly calls Yield until a combiner either serves its request or
informs p that it is the new combiner. Otherwise, it first serves its own request
and then traverses the list and serves the requests recorded in the list nodes,
in order, until either it has traversed all elements of the list or it has served up
to some constant number of requests. Finally, p informs the process owning the
next to traverse node in the list that it is the new combiner.

Performance Evaluation. We evaluated Hydra and PSimX in a 64-core ma-
chine consisting of four AMD Opteron 6272 processors (Interlagos). For our
experiments, we consider the Fetch&Multiply benchmark used in [1,2]. The fig-
ure presents the throughput for the original versions of the evaluated algorithms
and their variants where the best number of user level threads per core was em-
ployed for each algorithm; all algorithms other than P-Sim and flat-combining
(FC) do not exhibit any serious performance gains when employing user level
threads. We experimentally compare Hydra with CC-Synch [1], P-Sim [2], flat-
combining (Hendler et. al, SPAA’10), OyamaAlg (Oyama et. al, PDSIA’99), a
blocking implementation based on (CLH or MCS) spin-locks, and a simple lock-
free implementation. Hydra outperforms CC-Synch by a factor of up to 11 without
sacrificing the good latency ensured by CC-Synch. The performance advantages
of Hydra over all other algorithms are even higher.

Although the current versions of Hydra and PSimX employ user-level threads,
they can also run on top of any threading library, preemptive or not. Hydra and
PSimX are linearizable. The full paper is provided in [3].

Brief Announcement: The Power of Scheduling-Aware Synchronization 535

References

1. Fatourou, P., Kallimanis, N.D.: Revisiting the combining synchronization technique.
In: Proc. of the 17th ACM Symp. on Principles and Practice of Parallel Program-
ming, pp. 257–266. ACM (2012)

2. Fatourou, P., Kallimanis, N.D.: Highly-Efficient Wait-Free Synchronization. Theory
of Computing Systems 53(4), 1–46 (2013)

3. Fatourou, P., Kallimanis, N.D.: The Power of Scheduling-Aware Synchronization.
Technical Report TR 442, FORTH ICS, Hellas (2014)

Brief Announcement: Assignment

of Different-Sized Inputs in MapReduce�

Foto Afrati1, Shlomi Dolev2, Ephraim Korach2,
Shantanu Sharma2, and Jeffrey D. Ullman3

1 National Technical University of Athens, Greece
2 Ben-Gurion University of the Negev, Israel

3 Stanford University, USA

Reducer Capacity. An important parameter to be considered in MapReduce
algorithms is the “reducer capacity.” A reducer is an application of the reduce
function to a single key and its associated list of values. The reducer capacity is
an upper bound on the sum of the sizes of the values that are assigned to the
reducer. For example, we may choose the reducer capacity to be the size of the
main memory of the processors on which the reducers run. We assume that all
the reducers have an identical capacity, denoted by q.

Motivation and Examples. We demonstrate a new aspect of the reducer
capacity in the scope of several special cases. One useful special case is where
an output depends on exactly two inputs. We present two examples where each
output depends on exactly two inputs and define two problems that are based
on these examples.

Similarity-join. Similarity-join is used to find the similarity between any two
inputs, e.g., Web pages or documents. A set of m inputs (e.g., Web pages) WP =
{wp1, wp2, . . . , wpm}, a similarity function sim(x, y), and a similarity threshold
t are given, and each pair of inputs 〈wpx, wpy〉 corresponds to one output such
that sim(wpx, wpy) ≥ t. It is necessary to compare all pairs of inputs when the
similarity measure is sufficiently complex that shortcuts like locality-sensitive
hashing are not available. Therefore, it is mandatory to compare every two inputs
(Web pages) of the given input set (WP).

Skew join of two relations X(A,B) and Y (B,C). The join of relations X(A,B)
and Y (B,C), where the joining attribute is B, provides the output tuples 〈a, b, c〉,
where (a, b) is in X and (b, c) is in Y . One or both of the relations X and Y

� More details appear in the technical report 14-05, Department of Computer
Science, Ben-Gurion University of the Negev, Israel, 2014. This work was
partially supported by the project Handling Uncertainty in Data Intensive
Applications, co-financed by the European Union (European Social Fund) and
Greek national funds, through the Operational Program “Education and Lifelong
Learning,” under the program THALES, the Rita Altura Trust Chair in Computer
Sciences, Lynne and William Frankel Center for Computer Sciences, Israel Science
Foundation (grant 428/11), the Israeli Internet Association, and the Ministry
of Science and Technology, Infrastructure Research in the Field of Advanced
Computing and Cyber Security.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 536–537, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Brief Announcement: Assignment of Different-Sized Inputs in MapReduce 537

may have a large number of tuples with the same B-value. A value of the joining
attribute B that occurs many times is known as a heavy hitter. In skew join of
X(A,B) and Y (B,C), all the tuples of both the relations with the same heavy
hitter should appear together to provide the output tuples.

Problem Statement. We define two problems where exactly two inputs are
required for computing an output, as follows: (i) All-to-All problem. In the
all-to-all (A2A) problem, a set of inputs is given, and each pair of inputs
corresponds to one output. Computing common friends on a social networking
site and similarity join are examples. (ii) X-to-Y problem. In the X-to-Y (X2Y)
problem, two disjoint sets X and Y are given, and each pair of elements 〈xi, yj〉,
where xi ∈ X, yj ∈ Y, ∀i, j, of the sets X and Y corresponds to one output. Skew
join and outer product or tensor product are examples.

The communication cost, i.e., the total amount of data transmitted from the
map phase to the reduce phase, is a significant factor in the performance of
a MapReduce algorithm. The communication cost comes with tradeoff in the
degree of parallelism however. Higher parallelism requires more reducers (hence,
of smaller reducer capacity), and hence a larger communication cost (because
the copies of the given inputs are required to be assigned to more reducers). A
substantial level of parallelism can be achieved with fewer reducers, and hence,
yield a smaller communication cost. Thus, we focus on minimizing the total
number of reducers, for a given reducer capacity q. A smaller number of reducers
results in a smaller communication cost.

Tradeoffs. The following tradeoffs appear in MapReduce algorithms and in
particular in our setting: (i) a tradeoff between the reducer capacity and the total
number of reducers, (ii) a tradeoff between the reducer capacity and parallelism,
and (iii) a tradeoff between the reducer capacity and the communication cost.

Mapping Schema. A mapping schema is an assignment of the set of inputs to
some given reducers under the following two constraints: (i) a reducer is assigned
inputs whose sum of the sizes is less than or equal to the reducer capacity, and
(ii) for each output, we must assign the corresponding inputs to at least one
reducer in common. The following two problems are proved to be NP-compete:

The A2A Mapping Schema Problem. An instance of the A2A mapping
schema problem consists of a set of m inputs whose input size set is W =
{w1, w2, . . . , wm} and a set of z reducers of capacity q. A solution to the A2A
mapping schema problem assigns every pair of inputs to at least one reducer in
common, without exceeding q at any reducer.

The X2Y Mapping Schema Problem. An instance of the X2Y mapping
schema problem consists of two disjoint sets X and Y and a set of z reducers of
capacity q. The inputs of the set X are of sizes w1, w2, . . . , wm, and the inputs
of the set Y are of sizes w′

1, w
′
2, . . . , w

′
n. A solution to the X2Y mapping schema

problem assigns every two inputs, the first from one set, X , and the second from
the other set, Y , to at least one reducer in common, without exceeding q at any
reducer.

Brief Announcement: Scheduling Multiple

Objects in Distributed Transactional Memory�

Costas Busch1, Maurice Herlihy2, Miroslav Popovic3, and Gokarna Sharma1

1 Louisiana State University, USA
2 Brown University, USA

3 University of Novi Sad, Serbia

Distributed Transactional Memory Model. We consider transactional
memory implementations in distributed networked systems, where we provide
several performance bounds and impossibility results. A network is modeled as
a weighted graph G and each transaction resides at a node and requires one or
more shared objects for read or write. We focus on the data-flow model where
objects are mobile and the time for an object to traverse an edge is equal to the
weight of the edge. In order to guarantee consistency, an object can have only
one writable copy in the network at any moment of time. A transaction which
is about to execute requires that all requested objects are available at its node.

An execution schedule specifies which transactions execute at any moment of
time. The schedule also determines the network paths that the objects will follow
while moving from one transaction node to another. We evaluate an execution
schedule with two performance metrics: communication cost, which is the total
distance traversed by all the objects, and execution time, which is the total time
to execute all transactions. For simplicity, we assume that once a transaction
has obtained all requested objects its actual computation time is instantaneous,
which implies that the execution time for a set of transactions depends only on
the edge traversal times of the requested objects along the followed paths.

Most of the previous works on distributed transactional memory focused on
analyzing problem instances with only one shared object. Herlihy and Sun [1]
provide a distributed directory approach and the first formal bounds for low
doubling dimension metrics. Sharma et al. [3] generalize their approach for gen-
eral network topologies. Zhang et al. [4] examine the special case of the work-
conserving model with multiple objects and the relation to object TSP tours.

Contributions. We give a comprehensive set of bounds for problem instances
where transactions require multiple objects. We assume batch problems where
all transactions and their requested objects are known before execution starts.
We provide offline schedules for the transactions that have near optimal com-
munication cost. We also provide non-trivial bounds for the execution time, and
explore trade-offs between communication cost and execution time. We continue
with a description of our detailed contributions.

Communication cost. We first observe that the problem of minimizing the
communication cost is NP-hard with a reduction from the graph TSP problem.

� This work is supported by the National Science Foundation grant CCF-1320835.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 538–539, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Scheduling Multiple Objects in Distributed Transactional Memory 539

We then give an upper bound for the communication cost. We use a univer-
sal TSP tour to schedule the transactions. A universal TSP tour [2] defines a
traversal order for the network nodes so that any subsequence of nodes is also
an approximate TSP tour for the respective nodes. By executing the transac-
tions in the order according to the universal TSP tour we guarantee that each
object follows an approximate TSP tour of the nodes with the transactions
that request the object. The overall schedule has communication cost within
O(log4 n/ log logn) factor from optimal, where n is the number of nodes. We
obtain better bounds for planar graphs and networks with low doubling metrics.

Execution time. The problem of optimizing the execution time is NP-hard,
and it is also hard to approximate it within any factor smaller than the number
of transactions (reduction from vertex-coloring). We give an O(Δ) approxima-
tion algorithm for the execution time, where Δ is the maximum number of
conflicts between transactions. This bound is obtained with a greedy coloring of
a weighted conflict graph of transactions.

An interesting question is whether there are efficient schedules with execution
time close to the optimal TSP tours of the objects. We answer this question to
the negative, namely, there is a problem instance where each shortest object walk
has length O(n5/6), while any execution schedule requires time Ω(n). The same
instance has O(log n) objects per transaction and Δ = O(n2/3 logn); thus, the
Ω(n) execution time does not follow trivially from other problem parameters.
This problem instance demonstrates a significant asymptotic gap between the
objects’ optimal TSP tour lengths and the execution time.

Time and communication trade-offs. We give a problem instance where it is
impossible to simultaneously optimize execution time and communication cost.
In this problem instance a lower bound for the execution time is Ω(n2/3) and
a lower bound for the communication cost is Ω(n). We provide two schedules,
one with optimal execution time O(n2/3), and another schedule with optimal
communication cost O(n). We observe that the first schedule has sub-optimal
communication cost, while the second schedule has sub-optimal execution time.
In fact, any schedule that achieves optimal execution time must have suboptimal
communication cost Ω(n4/3). Furthermore, any schedule with optimal commu-
nication cost must have suboptimal execution time Ω(n).

References

1. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks.
Distributed Computing 20(3), 195–208 (2007)

2. Jia, L., Lin, G., Noubir, G., Rajaraman, R., Sundaram, R.: Universal approximations
for TSP, Steiner tree, and set cover. In: STOC, pp. 386–395 (2005)

3. Sharma, G., Busch, C., Srivathsan, S.: Distributed transactional memory for general
networks. In: IPDPS, pp. 1045–1056 (2012), To appear in Distributed Computing

4. Zhang, B., Ravindran, B., Palmieri, R.: Distributed transactional contention man-
agement as the traveling salesman problem. In: Halldórsson, M.M. (ed.) SIROCCO
2014. LNCS, vol. 8576, pp. 54–67. Springer, Heidelberg (2014)

Brief Announcement: Relaxing Opacity
in Pessimistic Transactional Memory

Konrad Siek and Paweł T. Wojciechowski

Institute of Computing Science
Poznań University of Technology

60-965 Poznań, Poland
{konrad.siek,pawel.t.wojciechowski}@cs.put.edu.pl

Since in the Transactional Memory (TM) abstraction transactional code can
contain any operation (rather than just reads and writes), greater attention must
be paid to the state of shared variables at any given time. Thus strong safety
properties are important in TM, such as opacity [2], virtual world consistency [3],
or TMS1/2 [1]. They regulate what values can be read, even by transactions that
abort. In comparison to these, properties like serializability allow inconsistent
views, so they are relatively weak. However, strong properties virtually preclude
early release as a technique for optimizing TM. Early release is a mechanism that
allows transactions to read from other transactions, even if the latter are still
live. This can increase parallelism, and it is useful in high contention (see e.g.,
[4]). Thus, we introduce last-use opacity, a safety property that relaxes opacity.

Opacity consists of three core guarantees: serializability, preservation of real-
time order, and consistency. We concentrate on the latter, which stipulates that
non-local read operations (i.e. those that read values written by other transac-
tions than the current one) must only read values from committed or commit-
pending transactions. Last-use opacity relaxes this consistency criterion to only
provide last-use consistency [7] and recoverability. Then, a transaction can read
from another live transaction, if the latter will no longer access the variable in
question. Plus, transactions must commit or abort in the order in which they
access shared variables. These conditions are defined as follows:

Definition 1 (Commit-pending Equivalence). Transaction Ti in history H
is commit-pending–equivalent with respect to variable x if (a) Ti is live, and
(b) there is a read or write operation op on x in H�Ti, s.t. for any history Hc

for which H is a prefix (Hc � H �H �) op is the last read or write on x in Hc�Ti.

Definition 2 (Last-use Consistent Operation). Given a history H, a trans-
action Ti and a read operation opr � r�x�v on variable x returning v in sub-
history H�Ti, we say opr is last-use–consistent as follows: (a) If opr is local
then the latest write operation on x preceding opr writes value v to x; (b) If opr

is non-local then either v � 0 or there is a non-local write operation opw on
variable x writing v in H�Tk (k � i) where Tk is committed, commit-pending, or
commit-pending–equivalent with respect to x.

Definition 3 (Recoverable Last-use Consistency). History H is recover-
able last-use–consistent if (a) every read operation in H�Ti, for every transaction

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 540–541, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Brief Announcement: Relaxing Opacity in Pessimistic Transactional Memory 541

Ti in H is last-use–consistent, and (b) for every pair of transactions Ti, Tj such
that i � j and Tj reads from or writes after Ti, then Ti aborts or commits before
Tj aborts or commit, and if Ti aborts, then Tj also aborts.

Relaxing consistency necessarily leads to some inconsistent views to be ac-
cepted. Hence, while last-use opacity prevents overwriting (releasing x and writ-
ing to it afterwards), it does not prevent zombie transactions—ones that view
inconsistent state and are forced to abort. This happens if transaction Ti reads
from Tj which, for whatever reason, later aborts. Even if Ti eventually aborts,
it operates on stale data and, therefore, can behave unexpectedly. However, this
can be rendered harmless by, e.g. sandboxing [5], or enforcing invariants.

On the other hand, using last-use opacity yields performance benefits, espe-
cially in high contention. In Fig. 1 we compare two variants of the same dis-
tributed TM [6]: last-use–opaque LSVA and opaque OSVA. In all benchmarks
LSVA is able to process transactions faster, due to its ability to release early.

2 4 6 8 10

2
0

0
6

0
0

1
0

0
0

Nodes

T
h

ro
u

g
h

p
u

t
[%

]

80% readsLoan

● ● ● ●

●
●

●

●

●●

LSVA

OSVA

2 4 6 8 10

5
0

0
1

0
0

0
1

5
0

0
2

0
0

0

Nodes

T
h

ro
u

g
h

p
u

t
[%

]

80% readsVacation

●
●

●

●
●

● ● ●

●

●

LSVA

OSVA

2 4 6 8 10

1
0

0
1

4
0

1
8

0
2

2
0

Nodes

T
h

ro
u

g
h

p
u

t
[%

]

80% readsBank

●
●

●
● ●

● ● ● ●

●

LSVA

OSVA

Fig. 1. Percentage improvement relative to a lock-based implementation

Acknowledgments. The project was funded from National Science Centre
funds granted by decision No. DEC-2012/06/M/ST6/00463.

References

1. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and
verifying transactional memory. Formal Aspects of Computing 25 (September 2013)

2. Guerraoui, R., Kapałka, M.: On the Correctness of Transactional Memory. In: Proc.
PPoPP 2008 (February 2008)

3. Imbs, D., de Mendivil, J.R., Raynal, M.: On the Consistency Conditions or Trans-
actional Memories. Tech. Rep. 1917, IRISA (December 2008)

4. Ramadan, H.E., Roy, I., Herlihy, M., Witchel, E.: Committing Conflicting Transac-
tions in an STM. In: Proc. PPoPP 2009(February 2009)

5. Scott, M.: Transactional Semantics with Zombies. In: Proc. WTTM 2014 (July 2014)
6. Siek, K., Wojciechowski, P.T.: Atomic RMI: A Distributed Transactional Memory

Framework. In: Proc. HLPP 2014 (July 2014)
7. Siek, K., Wojciechowski, P.T.: Zen and the Art of Concurrency Control: An Explo-

ration of TM Safety Property Space with Early Release in Mind. In: Proc. WTTM
2014(July 2014)

Brief Announcement: A Practical Transactional
Memory Interface

Shahar Timnat1, Maurice Herlihy2, and Erez Petrank1

1 Computer Science Department, Technion
2 Computer Science Department, Brown University

Transactional memory (TM) is becoming an increasingly central concept in parallel
programming. Recently, Intel introduced the TSX extensions to the x86 architecture,
which include RTM: an off-the-shelf hardware that supports hardware transactional
memory. However, there are several reasons for a developer to avoid using hardware
transactional memory. First, HTM is only available for some of the computers in the
market. Thus, a code that relies on HTM only suits a fraction of the available computers.
Second, RTM transactions are “best effort” and are not guaranteed to succeed. Thus, to
work with HTM, a fall-back path must also be provided, in case transactions repeatedly
fail. Namely, developing software using HTM requires three code bases: one based on
transactions, a second one for platforms that do not support HTM, and a third code base
to handle transaction failures.

We propose a new programming discipline for highly-concurrent linearizable objects
that takes advantage of HTM when it is available, and still performs reasonably (around
X0.6) when it is not available. We suggest designing data structures using an opera-
tion similar to the well-known MCAS(Multi-word Compare And Swap) operation. The
MCAS operation executes atomically on several shared memory addresses. Each ad-
dress is associated with an expected-value and a new-value. An execution of MCAS
succeeds and returns true iff the data in all the addresses is equal to the expected value.
In such a case, the data in each address is replaced with the new value. If any of the
specified addresses contains data that is different from the expected value, then false is
returned and the data in the shared memory remains unchanged. MCAS execution is
not supported by common hardware, but there exists an algorithm that implements this
operation using standard single-word CASes [4]. Alternatively, MCAS can be easily
implemented using transactional memory or by locks.

We propose an extended interface of MCAS called MCMS (Multiple Compare Mul-
tiple Swap), in which we also allow addresses to be compared without being swapped.
The extension may seem redundant, because, in effect, comparing an address without
swapping it is identical to a regular MCAS in which this address’ expected value equals
its new value. However, when implementing the MCMS using transactional memory, it
is ill-advised to write a new (identical) value to replace an old one, since this may cause
unnecessary transaction aborts.

In order to study the usability of the MCMS operation, we designed two algorithms
that use it. One for the linked-list data structure, and one for the binary search tree. The
MCMS tree is almost a straightforward MCMS-based version of the lock-free binary

 This work was supported by the United States - Israel Binational Science Foundation (BSF)
grant No. 2012171. Maurice Herlihy was supported by NSF grant 1331141.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 542–543, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Brief Announcement: A Practical Transactional Memory Interface 543

search tree by Ellen et al. [1]. But interestingly, attempting to design a linked-list that
exploits the MCMS operation yielded a slightly new algorithm that turns out very effi-
cient also when used with locks. The main idea is to mark a deleted node in a different
and useful manner. Instead of using a mark on the reference (like Harris [3]), or using
a mark on the reference and additionally a backlink (like Fomitchev and Ruppert [2]),
or using a separate mark field (like the lazy linked-list [5]), we mark a node deleted
by setting its pointer to be a back-link, referencing the previous node in the list. This
approach works excellently with transactions, but can also be used with locks. In fact, a
lock-based version of this new algorithm outperforms all known linked-list implemen-
tations.

We present three simple fall-back alternatives to enable progress in case RTM exe-
cutions repeatedly fail. The simplest way is to use locks, in a similar manner to lock-
elision. The second approach is to use CAS-based MCMS ([4]) as a fall-back. The third
alternative is a copying scheme, where a new copy of the data structure is created upon
demand to guarantee progress. Both the linked-list and tree algorithm outperform their
lock-free alternatives when using either a lock-based fall-back path or a copying fall-
back path. The list algorithm performs up to X1.8 faster than Harris’s linked-list, and
the tree algorithm performs up to X1.2 faster than the tree of Ellen et al. A fall-back
path that relies on an MCMS fall-back path is at times a bit faster (up to X1.1) and at
times a bit slower than the lock-free alternatives, depending on the specific benchmark
and configuration.

Another important advantage of programming with MCMS is that the resulting al-
gorithms are considerably simpler to design and debug compared to standard lock-free
algorithms that build on the CAS operation. The stronger MCMS operation allows lock-
free algorithms to be designed without requiring complicated “helping” operations typ-
ically of lock-free algorithms.

References

1. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search trees. In:
PODC (2010)

2. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: PODC 2004, pp. 50–59
(2004)

3. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch, J.L. (ed.)
DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001)

4. Harris, T.L., Fraser, K., Pratt, I.A.: A practical multi-word compare-and-swap operation. In:
Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 265–279. Springer, Heidelberg (2002)

5. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.: A lazy concur-
rent list-based set algorithm. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS
2005. LNCS, vol. 3974, pp. 3–16. Springer, Heidelberg (2006)

Brief Announcement: On Dynamic

and Multi-functional Labeling Schemes

Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Noy Rotbart

Department of Computer Science, University of Copenhagen
Universitetsparken 5, 2100 Copenhagen
{soerend,knudsen,noyro}@di.ku.dk

1 Introduction

A labeling scheme is a method of distributing the information about the struc-
ture of a graph among its vertices by assigning short labels, such that a selected
function on pairs of vertices can be computed using only their labels. In their
seminal paper, Kannan et al. [1] introduced adjacency labeling schemes for trees
using at most 2 logn bits for each of the functions adjacency, siblings and ances-
try. Alstrup, Bille and Rauhe [2] established a lower bound of logn + log logn
for the functions siblings, connectivity and ancestry along with a matching up-
per bound for the first two. For adjacency, a logn + O(log∗ n) labeling scheme
was presented in [3]. A logn + O(log logn) labeling scheme for ancestry was
established only recently by Fraigniaud and Korman [4].

Cohen, Kaplan and Milo [5] considered dynamic labeling schemes, where the
encoder receives n leaf insertions and assigns unique labels that must remain
unchanged throughout the labeling process. In this context, they showed a
tight bound of Θ(n) bits for any dynamic ancestry labeling scheme. In light
of this lower bound, Korman, Peleg and Rodeh [6] introduced dynamic labeling
schemes, where node re-label is permitted and performed by message passing.
In this model they are able to maintain a compact labeling scheme for ancestry,
while keeping the number of messages small. Additional results in this setting
include conversion methods for static labeling schemes [7], as well as specialized
distance [7] and routing [8] labeling schemes.

2 Our Contributions

In the full version [9] we first stress the importance of the lower bound achieved
by Cohen et al. [5] by showing that it extends to routing, NCA, and distance.
In contrast, we observe that for the dynamic setting, we can achieve efficient
labeling schemes for the functions adjacency, sibling, and connectivity without
the need of relabeling. More precisely, we observe that the original 2 logn adja-
cency labeling scheme due to Kannan et al. [1] is in fact suitable for the dynamic
setting. Moreover, the original labeling scheme also supports sibling queries and
a slightly modified scheme is shown to work for connectivity. Our findings re-
veal an exponential gap between ancestry and the functions mentioned for the
dynamic setting.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 544–545, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Brief Announcement: On Dynamic and Multi-functional Labeling Schemes 545

We then present various families of insertion sequences for which labels of size
2 logn are required for each of the functions. This suggest that in the dynamic
setting the original labeling schemes are in fact optimal, and contrast the static
case, where adjacency labeling schemes requires strictly fewer bits than both
sibling and connectivity. We prove the lower bound by showing a family of n
insertion sequences that requires O(n2) distinct labels, as illustrated in Fig. 1.

Many other graph families enjoy (static) adjacency labeling schemes of size
O(log n). Among those, we mention graphs with bounded arboricity, graphs of
bounded treewidth and interval graphs. We show simple lower bounds of Ω(n)
for dynamic adjacency labeling schemes for those families.

Multi-functional labeling schemes. In this context, we show the following results.
First, we prove that 3 logn bits are necessary and sufficient for any dynamic
labeling scheme supporting adjacency and connectivity. Interestingly, the same
gap appears in the static setting where we prove that logn + 2 log logn bits
are sufficient and necessary for any unique labeling scheme supporting both
connectivity and siblings/ancestry, in contrast to logn + log logn [2] for each
function individually.

P1

L3
1

P2

P3

L3
2

P1

L2
1

P2 L2
2

L2
3

P1

L4
1

P2

P3

P4

P1

P2

P3

P4

P5

Fig. 1. The lower bound construction for adjacency dynamic labeling schemes. The
red nodes are the ones that must be labeled with distinct labels.

References

1. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM Journal
on Discrete Mathematics, 334–343 (1992)

2. Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees. SIAM
J. Discret. Math. 19(2), 448–462 (2005)

3. Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph
representations. In: FOCS 2002, pp. 53–62 (2002)

4. Fraigniaud, P., Korman, A.: An optimal ancestry scheme and small universal posets.
In: STOC 2010, pp. 611–620 (2010)

5. Cohen, E., Kaplan, H., Milo, T.: Labeling dynamic xml trees. SIAM Journal on
Computing 39(5), 2048–2074 (2010)

6. Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks.
Theory of Computing Systems 37(1), 49–75 (2004)

7. Korman, A.: General compact labeling schemes for dynamic trees. Distributed Com-
puting 20(3), 179–193 (2007)

8. Korman, A.: Compact routing schemes for dynamic trees in the fixed port model.
In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN 2009. LNCS, vol. 5408,
pp. 218–229. Springer, Heidelberg (2009)

9. Dahlgaard, S., Knudsen, M.B.T., Rotbart, N.: Dynamic and multi-functional label-
ing schemes, arXiv preprint arXiv:1404.4982

Brief Announcement: Update Consistency

in Partitionable Systems

Matthieu Perrin, Achour Mostéfaoui, and Claude Jard

LINA – University of Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
{matthieu.perrin,claude.jard,achour.mostefaoui}@univ-nantes.fr,

Data replication is essential to ensure reliability, availability and fault-tolerance
of massive distributed applications over large scale systems such as the Inter-
net. However, these systems are prone to partitioning, which by Brewer’s CAP
theorem [1] makes it impossible to use a strong consistency criterion like atom-
icity. Eventual consistency [2] guaranties that all replicas eventually converge to
a common state when the participants stop updating. However, eventual consis-
tency fails to fully specify shared objects and requires additional non-intuitive
and error-prone distributed specification techniques, that must take into account
all possible concurrent histories of updates to specify this common state [3]. This
approach, that can lead to specifications as complicated as the implementations
themselves, is limited by a more serious issue. The concurrent specification of
objects uses the notion of concurrent events. In message-passing systems, two
events are concurrent if they are enforced by different processes and each process
enforced its event before it received the notification message from the other pro-
cess. In other words, the notion of concurrency depends on the implementation
of the object, not on its specification. Consequently, the final user may not know
if two events are concurrent without explicitly tracking the messages exchanged
by the processes. A specification should be independent of the system on which
it is implemented.

We believe that an object should be totally specified by two facets: its abstract
data type, that characterizes its sequential executions, and a consistency crite-
rion, that defines how it is supposed to behave in a distributed environment. Not
only sequential specification helps repeal the problem of intention, it also allows
to use the well studied and understood notions of languages and automata. This
makes possible to apply all the tools developed for sequential systems, from their
simple definition using structures and classes to the most advanced techniques
like model checking and formal verification.

Eventual consistency (EC) imposes no constraint on the convergent state, that
very few depends on the sequential specification. For example, an implementa-
tion that ignores all the updates is eventually consistent, as all replicas converge
to the initial state. We propose update consistency (UC), a new consistency cri-
terion in which the convergent state must be obtained by a total ordering of the
updates that contains the sequential order of each process. Another equivalent
way to approach it is that, if the number of updates is finite, it is possible to
remove a finite number of queries such that the remaining history is sequentially
consistent. Unlike Fig. 1a, Fig. 1b presents an eventually consistent history, as
both processes read {1, 2} once they have converged. However, it is not update

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 546–547, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Brief Announcement: Update Consistency in Partitionable Systems 547

•
I(1)

•
D(2)

•
R{1}

•
Rω

{2}

•
I(2)

•
D(1)

•
R∅

•
Rω

{1}

(a) Not EC and not UC

•
I(1)

•
D(2)

•
R{1}

•
Rω

{1,2}

•
I(2)

•
D(1)

•
R∅

•
Rω

{1,2}

(b) EC but not UC

•
I(1)

•
D(2)

•
R{1}

•
Rω

{1}

•
I(2)

•
D(1)

•
R∅

•
Rω

{1}

(c) EC and UC

Fig. 1. Three histories for a set of integers, with different consistency criteria. An event
labeled ω is repeated infinitely often.

consistent: in any linearization of the updates, a deletion must appear as the
last update, so this history cannot converge to state {1, 2}. State {1} is possible
because the updates can be done in the order I(2),D(1), I(1),D(2), so Fig. 1c, is
update consistent. As update consistency is strictly stronger than eventual con-
sistency, an update consistent object can always be used instead of its eventually
consistent counterpart.

We can prove that update consistency is universal, in the sense that every ob-
ject has an update consistent implementation in a partitionable system, where
any number of crashes are allowed. The principle is to build a total order on the
updates on which all the participants agree, and then to rewrite the history a
posteriori so that every replica of the object eventually reaches the state corre-
sponding to the common sequential history. Any strategy to build the total order
on the updates would work. For example, this order can be built from a times-
tamp made of a Lamport’s clock [4] and the id of the process that performed
it. The genericity of the proposed algorithm is very important because it may
give a substitute to composability. Composability is an important property of
consistency criteria because it allows to program in a modular way, but it is very
difficult to achieve for consistency criteria. A same algorithm that pilots several
objects during a same execution allows this execution to be update consistent.
This universality result allows to imagine automatic compilation techniques that
compose specifications instead of implementations.

References

1. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. ACM SIGACT News 33, 51–59 (2002)

2. Vogels, W.: Eventually consistent. Queue 6, 14–19 (2008)
3. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: Specifi-

cation, verification, optimality. In: Proceedings of the 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 271–284. ACM
(2014)

4. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM 21, 558–565 (1978)

Brief Announcement:

Breaching the Wall of Impossibility Results
on Disjoint-Access Parallel TM

Sebastiano Peluso1,2,3, Roberto Palmieri1, Paolo Romano2,
Binoy Ravindran1, and Francesco Quaglia3

1 Virginia Tech, Blacksburg, VA, USA
{peluso,robertop,binoy}@vt.edu
2 IST/INESC-ID, Lisbon, Portugal
{peluso,romanop}@gsd.inesc-id.pt
3 Sapienza University, Rome, Italy

{peluso,quaglia}@dis.uniroma1.it

Abstract. Transactional Memory (TM) implementations guaranteeing
disjoint-access parallelism (DAP) are desirable on multi-core architec-
tures because they can exploit low-level parallelism. In this paper we look
for a breach in the wall of existing impossibility results on DAP TMs, by
identifying the strongest consistency and liveness guarantees that a DAP
TM can ensure while maximizing efficiency in read-dominated workloads.
Along the path of designing this protocol, we report two impossibility
results related to ensuring real-time order in a DAP TM.

Keywords: Transactional Memory, Disjoint-Access Parallelism, Real-
Time Order.

1 Overview of the Achieved Results

Aproperty that is deemed as crucial for the scalability of a TM is its ability to avoid
any contention on shared objects, also called base objects, among transactions that
access disjoint data sets – disjoint-access parallelism (orDAP) [1]. Also, sincemany
real-world workloads are often read-dominated, another aspect with strong im-
pact on performance of TM algorithms is optimizing the processing of read-only
transactions. In this sense, twomain properties are regarded as particularly impor-
tant for read-only transactions: wait-freedom, i.e. transactions are never blocked
or aborted (WFRO), and invisible reads, i.e. read operations never update any
datum or base object (IRO). We succinctly denote their union as WFIRO.

Given the set of impossibility results related to implementing TM algorithms
that guarantee different variants of the DAP property, as well as alternative
consistency and liveness criteria [1,2,3], in this paper we find a breach in this
wall of impossibility results, seeking an answer to the following question: what
are the strongest consistency and liveness guarantees that a TM can ensure
while remaining scalable — by ensuring DAP — and maximizing efficiency in
read-dominated workloads — by having WFIRO? Our search space considers the
Cartesian product of the consistency criteria specified by Adya’s hierarchy [4]

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 548–549, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Breaching the Wall of Impossibility Results on Disjoint-Access Parallel TM 549

and of a set of liveness properties that comprises both TM-specific criteria [5],
as well as classical progress criteria, i.e. obstruction-, lock- and wait-freedom.

Along the path that leads us to answer the above question, we also prove two
novel impossibility results. If one selects any consistency criterion that ensures
Real Time Order (RTO), i.e. by ensuring that transactions appear as executed
without reversing the partial order defined by non-concurrent transactions, and
independently of the isolation guarantees for concurrent transactions, it is im-
possible to ensure also WFRO, obstruction-free update transactions and the
weakest form of DAP [1]. Further, even assuming weakly progressive update
transactions [5], we are still faced with an impossibility result if we want IRO.

These results highlight the necessity of relaxing RTO to implement a scalable
TM that maximizes the efficiency of read-only transactions by jointly guaran-
teeing DAP and WFIRO. This leads us to introduce a weaker variant of RTO,
named Witnessable Real Time Order (WRTO), which demands that the RTO is
enforced only among transactions exhibiting (transitive) data conflicts.

By adopting WRTO, we design a WFIRO TM that guarantees the strongest
variant of DAP [2], strong progressiveness [5] and a consistency criterion whose
semantics is very close to those provided by popular safety properties for TM,
such as Opacity. This consistency criterion, known as Extended Update Serial-
izability (EUS) [4,6] guarantees the serializability of the history of committed
update transactions. Further, EUS ensures that all transactions (also transac-
tions that eventually abort) observe a snapshot producible by some equivalent
serialization of the history of (committed) update transactions.

Acknowledgments. This work is supported in part by US NSF under grant
CNS-1217385 and by FCT via grants PEst-OE/EEI/LA0021/2013 and EXPL/
EEI-ESS/0361/2013.

References

1. Attiya, H., Hillel, E., Milani, A.: Inherent Limitations on Disjoint-Access Parallel
Implementations of Transactional Memory. J. Theory Comput. Syst. 49(4), 698–719
(2011)

2. Guerraoui, R., Kapalka, M.: On Obstruction-free Transactions. In: 20th Annual
Symposium on Parallelism in Algorithms and Architectures, pp. 304–313. ACM,
New York (2008)

3. Bushkov, V., Dziuma, D., Fatourou, P., Guerraoui, R.: The PCL Theorem. Trans-
actions cannot be Parallel, Consistent and Live. In: 26th Annual Symposium on
Parallelism in Algorithms and Architectures, pp. 178–187. ACM, New York (2014)

4. Adya, A.: Weak Consistency: A Generalized Theory and Optimistic Implementa-
tions for Distributed Transactions. PhD Thesis. MIT (1999)

5. Guerraoui, R., Kapalka, M.: The Semantics of Progress in Lock-based Transactional
Memory. In: 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 404–415. ACM, New York (2009)

6. Peluso, S., Ruivo, P., Romano, P., Quaglia, F., Rodrigues, L.: When Scalability
Meets Consistency: Genuine Multiversion Update-Serializable Partial Data Repli-
cation. In: 32nd IEEE International Conference on Distributed Computing Systems,
pp. 455–465. IEEE Computer Society, Washington, DC (2012)

Brief Announcement: COP Composition

Using Transaction Suspension in the Compiler

Hillel Avni1 and Adi Suissa-Peleg2

1 Ben Gurion University
hillel.avni@gmail.com

2 Harvard University
adisuis@seas.harvard.edu

Abstract. Combining a number of transactions into a single atomic
transaction is an important transactional memory (TM) feature sup-
ported by many software TM (STM) implementations. This composi-
tion, however, typically results in long transactions with an increased
contention probability.

In consistency oblivious programming (COP), the read-only prefix of
a data structure operation is performed outside of a TM transactional
context. The operation is then completed by using a transaction that
verifies the prefix output and performs updates. In STM, this strategy
effectively reduces much of the overhead and potential contention.

In this work we emphasize the importance of transaction-suspension,
which enables performing non-transactional memory accesses inside a
transaction. Suspension not only simplifies the use of COP, but also
enables the composition of a sequence of COP-based operations into
a single transaction. We add transaction-suspension support to GCC-
TM, and integrate COP into TM applications. We also support TM-Safe
memory reclamation in transactions with COP operations, by adding
privatization before a transaction abort to the GCC-TM library.

Introduction. Consistency Oblivious Programming (COP) [2], is a program-
ming methodology for improving a TM-based data structure performance. In
COP, the read-only prefix (ROP) of a data structure operation is performed in
a non-transactional context. The operation is then completed by using a trans-
action that verifies the ROP output and performs updates. COP-based data
structures effectively reduce much of the TM instrumentation overhead and po-
tential contention.

The ROP may observe inconsistent states, and must avoid crashing as a result.
It is the responsibility of the programmer to keep the ROP from hitting infinite
loops or uninitialized pointers. Another type of crash may be caused by an
ROP code segment that accesses a memory location after it was released by a
concurrent transaction. To prevent this scenario we modified the privatization
algorithm in the STM.

A useful feature supported by many STM implementations is transactions
composability, the ability to combine a number of transactional atomic blocks

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 550–552, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

COP Composition Using Transaction Suspension in the Compiler 551

to be executed in a single transaction. This fosters the use of TM-based data
structures, and facilitates the creation of non-trivial atomic transactions that
access different data structures.

In this paper, we introduce a methodology that uses GCC-TM, the GNU
C Compiler (GCC) [1] STM implementation, to support efficient and natu-
ral composition of COP operations. Our methodology is based on transaction-
suspension, which enables executing non-transactional, non-instrumented in-
structions inside a transactional block. In order to support a suspension of a
transaction in GCC-TM, we mark functions with the TM-Pure attribute1 [4],
that omits the instrumentation of these functions when called from transactions.
We apply our methodology to the linked list and red-black tree, that are part
of the data-structures library which is used by the STAMP applications. Our
results show that this mechanism reduces 80% of the aborts caused by conflicts.

COP Composing Using Suspended Transactions. When using transaction-
suspension, a COP operation, OP, embedded in a transaction T, goes through
the following steps:

Tstart →Any code→Tsuspend →OProp →Tresume →OPverify→OPupdates →Any

code→Tend

OPverify should verify the validity of the data gathered during the ROP code.
This code is executed locally and must be concise, so that it does not introduce
additional overhead.

In addition, note thatOProp can be executed several times in non-transactional,
suspendedmode, and only if verification failure persists, it should fallback to trans-
actional mode. If the transactional execution of the ROP, i.e., the fallback, aborts,
the transaction naturally aborts.

The only way to compose COP operations without transaction-suspension, is
the one proposed by [5], i.e., execute all ROP parts of the composed operations
before starting the transaction, then, inside the transaction, verify their output
and complete the transactions updates. This method allows composition only if
an operation is not writing data that may later be accessed by another COP
operation in the same transaction.

Safe Memory Reclamation. Two important functions that are TM-Safe [4],
i.e., can be executed inside a transaction, are malloc and free. These functions
are made safe by privatization. If transaction T wrote to memory, then before it
commits, it waits for the termination of the transactions that started before its
commit [3]. As a side effect of privatization, in case T detaches some memory
block from a data structure and successfully commits, then T can free that block.

On the other hand, if T allocates some block of memory,M , and then aborts, it
can free M without privatization. The reason is that the pointer to the tentative
memory block is not exposed to other transactions.

1 A function that is marked with the TM-Pure attribute is executed as a non-
transactional code block. The TM-Pure attribute is supported by the GCC-TM
implementation.

552 H. Avni and A. Suissa-Peleg

This is violated when COP is involved. If the non-transactional ROP code
block traverses the data structure, it may acquire a pointer to a newly allocated
memory block, and upon an abort of T and freeing M , the ROP may try to
access unmapped memory. To prevent this scenario, we added privatization to
writing transactions that are about to perform rollback. If a transaction is a
read-only transaction, it can free its tentative memory blocks unconditionally.
If, however, the transaction updated some memory location, it has to perform
privatization as if it was successfully committed. Our evaluation showed that
this privatization has a negligible impact on performance.

With the suspended mode, and rollback privatization, malloc and free become
also COP safe. The reason is that memory is not recycled as long as there is
a transaction in progress, and the COP operations are always encapsulated in
transactions. One restriction is that allocation cannot take place in a ROP,
because, in case the validation fails, the allocated memory will not be freed, as
we do not abort the transaction in this case. However, as the ROP code typically
avoids from writing to memory, it does not need to allocate or free memory.

References

1. Gcc version 4.7.0 (April 2012), http://gcc.gnu.org/gcc-4.7/
2. Afek, Y., Avni, H., Shavit, N.: Towards consistency oblivious programming. In:

Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp.
65–79. Springer, Heidelberg (2011)

3. Dice, D., Matveev, A., Shavit, N.: Implicit privatization using private transactions.
In: TRANSACT (2010)

4. Riegel, T.: Software Transactional Memory Building Blocks. PhD thesis, Technis-
chen Universitat Dresden, geboren am 1.3.1979 in Dresden (March 2013)

5. Xiang, L., Scott, M.L.: Composable partitioned transactions. In: WTTM (2013)

http://gcc.gnu.org/gcc-4.7/

Brief Announcement: Non-blocking Monitor
Executions for Increased Parallelism�

Wei-Lun Hung, Himanshu Chauhan, and Vijay K. Garg

The University of Texas at Austin
{wlhung@,himanshu@,garg@ece.}utexas.edu

Motivation and Approach: Monitors are a prevalent programming technique
for thread synchronization in shared-memory parallel programs. The current
design of monitors uses the wait/notification mechanism that blocks threads
from executing without exclusive access to critical sections. We explore the idea
of allowing non-blocking executions of monitor methods to improve the collective
worker thread throughput and cache-locality in multi-threaded programs.

Our proposed framework, called ActiveMonitor, uses the concept of futures
[1,2] to provide non-blocking monitors by creating: (i) an executor for every
monitor object (similar to remote-core-locking [3]), and (ii) tasks — equivalent
to monitor methods — that are submitted to the executors. Our framework
handles these steps automatically. The framework allows the programmer to use
the keyword ‘nonblocking’ in signatures of monitor methods to make their exe-
cution non-blocking. Non-blocking methods return a future reference, which can
be used to retrieve the result of method invocation. We re-interpret linearizabil-
ity in this context, and enforce two rules to guarantee correctness: (a) all the
tasks submitted to one monitor executor are processed in FIFO order. (b) tasks
corresponding to a worker thread’s invocations of methods on different monitors
are processed in program order (of the worker thread). See [4] for details.

Evaluation: We present the performance evaluation of our approach for two
monitor-based problems in Java. In our benchmark, each worker (thread) per-
forms 512000 operations on shared data protected by monitors. We vary the
number of workers from 2 to 24 on a 24-way machine, and measure the time
required for all the workers to complete their operations.

1. Bounded-Buffer Problem: Every producer’s put invocation is non-blocking,
and every consumer’s take is blocking. Items are plain objects. We also compare
runtimes of Java’s ArrayBlockingQueue based implementation (denoted by ABQ).
We collect runtimes by varying: (a) number of workers for a fixed buffer-size
(=4). (b) buffer-size for fixed number of producers/consumers (=16 each). (c)
limit on non-blocking tasks allowed for fixed buffer-size (=4), and 16 producers
and consumers each. Fig. 1 shows the results of these three experiments. Across
all results, we use these legends for implementation techniques: LK: Java Reen-
trant locks, AS: AutoSynch [5], AM: ActiveMonitor (this paper).
2. Sorted Linked-List Problem: Worker threads insert or remove, with equal

� Supported in part by NSF Grants CNS-1346245, CNS-1115808, and Cullen Trust.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 553–554, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

554 W.-L. Hung, H. Chauhan, and V.K. Garg

 0
 1
 2
 3
 4
 5
 6
 7
 8

 2 4 8 16

R
un

tim
e(

se
cs

)

of Producers (= Consumers)

LK
AS

AM
ABQ

(a) Buffer-size = 4

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 1 2 4 8 16 32 64 128 256
Buffer size

LK
AS
AM

ABQ

(b) Varying buffer-size

 0
 1
 2
 3
 4
 5
 6
 7
 8

 5 10 15 20 25 30 35 40 45 50
Size of task queue

Queue size = x
Blocking

Unbounded Queue

(c) Varying tasks-queue size

Fig. 1. Runtimes (mean values across 25 runs) for bounded-buffer

probability, random integer values on a pre-populated linked-list of integers that
is sorted in non-decreasing order. Both insert and remove operations are non-
blocking. Each worker thread also performs some local operations outside the
critical section (CS) between successive updates to the list. We collect the
runtimes by varying: (a) number of workers, keeping local operations outside
CS/worker fixed at 250. (b) number of workers as well as number of local oper-
ations outside CS. The results of these two experiments are shown in Fig. 2.

See [4] for extended evaluation on other monitor problems, details of CPU and
memory consumption, and comparison with other implementation techniques.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 2 4 8 16

R
un

tim
e(

se
cs

)

of Threads

LK
AS
AM

(a) Varying # of workers

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 200 400 600 800 1000

R
un

tim
e

ra
tio

: L
K

/A
M

of Operations outside CS

2T 4T 8T 16T 24T

(b) Varying # of workers, and ops outside CS

Fig. 2. Results (mean values across 25 runs) for sorted linked-list

References

1. Halstead, R.H.: Multilisp: A language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst. 7(4), 501–538 (1985)

2. Kogan, A., Herlihy, M.: The future(s) of shared data structures. In: PODC (2014)
3. Lozi, J.-P., et al.: Remote core locking: Migrating critical-section execution to im-

prove the performance of multithreaded applications. In: USENIX Annual Technical
Conference, pp. 65–76 (2012)

4. http://arxiv.org/abs/1408.0818
5. Hung, W.-L., Garg, V.K.: AutoSynch: An Automatic-signal Monitor Based on Pred-

icate Tagging. In: PLDI, pp. 253–262 (2013)

http://arxiv.org/abs/1408.0818

Brief Announcement:

Agreement in Partitioned Dynamic Networks

Adam Sealfon and Aikaterini Sotiraki

Massachusetts Institute of Technology
{asealfon,katesot}@mit.edu

Abstract. In the dynamic network model, the communication graph is
assumed to be connected in every round but is otherwise arbitrary. We
consider the related setting of p-partitioned dynamic networks, in which
the communication graph in each round consists of at most p connected
components. We explore the problem of k-agreement in this model for
k ≥ p. We show that if the number of processes is unknown then it
is impossible to achieve k-agreement for any k and any p ≥ 2. Given
an upper bound N on the number of processes, we provide algorithms
achieving k-agreement in p(N−p−1)+1 rounds for k = p and in O(N/ε)
rounds for k = �(1 + ε)p�.

Keywords: distributed algorithms, dynamic networks, agreement, par-
titioned networks.

Dynamic graphs are a model for distributed algorithms which were introduced
by Kuhn, Lynch and Oshman [1]. In this paper we explore the capabilities and
limitations of a modification to the dynamic graph model addressing additional
challenges arising in wireless communication.

In the dynamic graph model, the network is assumed merely to be connected
in each round, with no additional assumptions about consistency from round to
round. We weaken this assumption further, allowing the network to consist of
more than one connected component. Formally,

Definition 1. A dynamic graph G = (V,E) is said to be p-partitioned if at each
round t, it consists of at most p connected components.

Processes communicate in synchronous rounds using local broadcast. The edges
in each round are chosen by an adaptive adversary.

In this setting, many of the problems previously considered in the dynamic
network model cannot be solved. In particular, tasks such as token dissemina-
tion, leader election and consensus which cannot be solved in partitioned static
networks clearly are also impossible in partitioned dynamic networks. We con-
sider the problem of k-agreement for constant k, which can be solved in static
p-partitioned networks as long as k ≥ p. The conditions for k-agreement are the
following:

1. Agreement: All decision values are in W, where W is a subset of the initial
values with |W | = k.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 555–556, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

556 A. Sealfon and A. Sotiraki

2. Validity: Any decision value is the initial value of some process.
3. Termination: All processes eventually decide.

We show that k-agreement is not possible in the setting of p-partitioned
dynamic networks if the number of processes is unknown, but that it can be
achieved for any k ≥ p given an upper bound on the number of processes. Our
results are qualitatively different from the case of ordinary dynamic networks,
for which there are known consensus protocols which do not assume knowledge
of the size of the network [2].

Theorem 1. For all p ≥ 2, k ≥ 1 there is no algorithm which will solve k-
agreement on p-partitioned dynamic graphs given no information about the size
of the network.

Theorem 2. For any p ≥ 1, we can solve p-agreement in p(N − p − 1) + 1
rounds on any p-partitioned dynamic graph, where N is a known upper bound
on the number of vertices.

Theorem 3. For any ε > 0, p ≥ 1, we can solve �(1+ε)p�-agreement in O(N/ε)
rounds on any p-partitioned dynamic graph, where N is a known upper bound
on the number of vertices.

Our results apply to both undirected and directed graphs. More details and
the complete proofs can be found in [3].

It would be interesting to consider whether it is possible to achieve agreement
in fewer rounds in a p-partitioned dynamic network. Our algorithms solve �(1 +
ε)p�-agreement in O(N/ε) rounds and p-agreement in p(N−p−1)+1 rounds. It is
unclear whether this dependence on p is intrinsic or whether p-agreement can be
achieved in O(N) rounds regardless of p. It would also be interesting to explore
whether p-agreement can be achieved in fewer rounds with high probability
against a nonadaptive adversary.

We have shown that it remains possible to solve nontrivial problems under
the weaker assumption that the network at each round consists of at most p
connected components. It remains open what additional problems can be solved
in this model.

Acknowledgments. We would like to thank Mohsen Ghaffari and Nancy Lynch
for helpful discussions. This material is based upon work supported in part by
the National Science Foundation Graduate Research Fellowship under Grant No.
1122374.

References

1. Kuhn, F., Lynch, N., Oshman, R.: Distributed Computation in Dynamic Networks.
In: Proc. 42nd ACM Symp. on Theory of Computing, STOC (2010)

2. Oshman, R.: Distributed Computation in Wireless and Dynamic Networks. PhD
Thesis (2012)

3. Sealfon, A., Sotiraki, A.: Agreement in Partitioned Dynamic Networks. CoRR,
abs/1408.0574 (2014)

Brief Announcement: The 1-2-3-Toolkit for

Building Your Own Balls-into-Bins Algorithm

Pierre Bertrand1 and Christoph Lenzen2

1 Ecole Normale Suprieure Cachan
Avenue du prsident Wilson, 94230 Cachan

pierre.bertrand@ens-cachan.fr
2 MPI for Informatics

Campus E1 4, 66123 Saarbrcken
clenzen@mpi-inf.mpg.de

Abstract. We examine a generic class of simple distributed balls-into-
bins algorithms and compute accurate estimates of the remaining balls
and the load distribution after each round. Each algorithm is classified
by (i) the load that bins accept in a given round and (ii) the number
of messages each ball sends in a given round. Our algorithms employ a
novel ranking mechanism resulting in notable improvements. Simulations
independently verify our results and their high accuracy.

1 Problem and Algorithm

Consider a distributed system of n anonymous balls and n anonymous bins,
each having access to (perfect) randomization. Communication proceeds in syn-
chronous rounds, each of which consists of the following steps.
1. Balls perform computations and send messages to bins.
2. Bins receive them, perform computations, and respond to received messages.
3. Each ball may commit to a bin, inform it, and terminate.
The main goals are to minimize the maximal number of balls committing to the
same bin, the number of rounds, and the number of messages. This fundamental
load balancing task has a wide range of applications, cf. [5].

Today, we understand the asymptotics of this problem very well [3,4,6]. How-
ever, lower and upper bounds have in common that they are not very pre-
cise. Arguably, with running time bounds like, e.g., Θ(log logn/ log log logn) or
log∗ n + O(1), the involved constants are essential. In this work, we provide a
simple, yet accurate analysis of a general class of algorithms. We introduce a
novel ranking mechanism, resulting in superior performance.

Concretely, in each round i ∈ N, the following steps are executed.
1. Each ball sends Mi ∈ N messages to uniformly independently random (u.i.r.)

bins. These messages carry ranks 1, . . . ,Mi.
2. A bin of current load � responds to (up to) Li − � balls, where smaller ranks

are preferred. Ties are broken by choosing u.i.r.
3. Each ball that receives a response commits to the responding bin to which

it sent the message of smallest rank.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 557–558, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

558 P. Bertrand and C. Lenzen

2 Techniques and Results

Applying Chernoff’s bound, it is not hard to show that the number of bins with
a given load and the number of remaining balls are strongly concentrated around
the expected values. With high probability, the error resulting from assuming
that these expected values are matched exactly is hence negligible. Using this
argument (and the union bound) repeatedly, we can infer that it suffices to
compute expected values, approximating the true distribution by expected val-
ues. We complement the derived analytical results by simulations, confirming
that the deviations are indeed very small. Moreover, we use the simulations to
compare to other algorithms from the literature.

Table 1. Evaluated specific scenarios (analytical and simulation results match)

goal rounds max. load messages exp. fraction of balls left L M

small load 3 2 < 5.5n < 6 · 10−7 (2, 2, 2) (2, 5, 5)

few rounds 2 3 < 5.5n < 6 · 10−10 (2, 3) (2, 5)

few messages 3 3 < 3.5n < 5 · 10−8 (2, 3, 3) (1, 2, 2)

safe termination 3 3 < 3.85n < 6 · 10−19 (2, 2, 3) (1, 4, 5)

Our simulations also show that the proposed algorithms compare favorably
with all previous ones from the literature. The full paper, comprising a discussion
of related work, the derivation of the analytical bounds, and details on the
simulation results, is available on arxiv [2]. The used code can be found online [1].

Acknowledgements. Christoph Lenzen has been supported by the Deutsche
Forschungsgemeinschaft (DFG, reference number Le 3107/1-1).

References

1. Bertrand, P.: Python scripts used for simulations and computations (2014),
http://people.mpi-inf.mpg.de/~clenzen/babi/

2. Bertrand, P., Lenzen, C.: The 1-2-3-Toolkit for Building Your Own Balls-into-Bins
Algorithm. Computing Research Repository abs/1407.8433 (2014)

3. Even, G., Medina, M.: Parallel Randomized Load Balancing: A Lower Bound for
a More General Model. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J.,
Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 358–369. Springer, Heidel-
berg (2010)

4. Lenzen, C., Wattenhofer, R.: Tight Bounds for Parallel Randomized Load Balancing:
Extended Abstract. In: Proc. 43rd Symposium on Theory of Computing (STOC),
pp. 11–20 (2011)

5. Mitzenmacher, M., Richa, A., Sitaraman, R.: The Power of Two Random Choices:
A Survey of the Techniques and Results. In: Handbook of Randomized Computing,
vol. 1, pp. 255–312. Kluwer Academic Publishers, Dordrecht (2001)

6. Stemann, V.: Parallel Balanced Allocations. In: Proc. 8th Symposium on Parallel
Algorithms and Architectures (SPAA), pp. 261–269 (1996)

http://people.mpi-inf.mpg.de/~clenzen/babi/

Brief Announcement:

k-Selection and Sorting in the SINR Model

Stephan Holzer1,�, Sebastian Kohler2, and Roger Wattenhofer2

1 Massachusetts Institute of Technology (MIT), Cambridge, USA
holzer@mit.edu

2 ETH Zurich, Zurich, Switzerland
sebastian.kohler@alumni.ethz.ch, wattenhofer@ethz.ch

Abstract. We study algorithms and lower bounds for k-selection and
sorting in the signal-to-interference-plus-noise-ratio (SINR) model. For
the problem of finding the k-th smallest value in the network, we pro-
vide a O(log2 n) algorithm based on the aggregation trees presented
in [2]. We argue that any algorithm using this approach has runtime
Ω(log2 n/ log log n). We show that sorting can be done in time Θ(n) .

1 Model and Preliminaries

In the SINR model [1,5] we consider a set V := {v1, v2, . . . , vn} of n := |V | nodes
in the Euclidean plane. Each node v ∈ V has a unique ID idv ∈ {1, . . . , n} and
is given an arbitrary input value xv ∈ [W] for some W ∈ O(poly(n)). Time is
slotted into discrete time steps of equal length and every node wakes up at the
same time. Local computation does not count towards the complexity-measure
as we are interested in communication complexity. Communication bandwidth is
limited, only one message containing Θ(1) values from [n] and Θ(1) values from
[W] can be sent/received by a node in a single time step. In each time step, each
node v ∈ V can choose an arbitrary transmission power Pv ≥ 0. A message sent
by a node s is received by node r if Pr = 0 and the received SINR at r exceeds a

constant threshold β > 1, i.e., the SINR condition Ps/d(s,r)
α

∑
s′∈V \{s} Ps′/d(s

′,r)α+N ≥ β

is satisfied. Here, α > 2 is the constant path-loss exponent and N ≥ 0 is the
ambient noise. The positions of the nodes, their IDs, n and W are known to all
nodes. A probabilistic event A happens with high probability if Pr[A] ≥ 1− 1/n.

2 Algorithms and Lower Bounds

We start with a sketch of an algorithm for k-selection (finding the k-th smallest
value in the network). We use the construction of a minimum-latency aggregation
schedule (MLAS) presented in Section 7.1 in [2], which is based on the fact that
in our model Ω(n) links of a minimum spanning tree of V can be scheduled in a

� Part of this work has been done at ETH Zurich. At MIT the author is supported
by the following grants: AFOSR Contract Number FA9550-13-1-0042, NSF Award
0939370-CCF, NSF Award CCF-1217506, NSF Award number CCF-AF-0937274.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 559–561, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

560 S. Holzer, S. Kohler, and R. Wattenhofer

single time step. While the tree in [2] is stated to be directed towards the root,
we can also obtain such a tree with bidirectional links using the bidirectional
version of the amenability in [2]. Using these trees and a canonically derived link
scheduling technique we call level schedule we show how to shrink O(log n) times
the range in [W] that contains the kth-largest element by a constant factor, each
time using O(log n) time steps to find a new range.

Theorem 1. The k-selection problem can be solved in O(log2 n) time steps on
an aggregation tree with a level schedule.

Algorithm and proof of this theorem can be found in [3]. It has been shown in
[2] that any distributive aggregation function can be computed in O(log n) time
steps in the SINR model with an MLAS. A matching lower bound [2] extends
to k-selection, as finding the minimum is a special case of k-selection (i.e., k-
selection with k = 1). Thus we could still hope for a quadratic speedup. However,
this (if it is possible) requires new techniques since we show that by using a level
schedule this can not be achieved.

Theorem 2. The number of time steps required to solve the k-selection problem
w.h.p. in an aggregation tree with a level schedule is in Ω(log2 n/ log logn).

The formal proof can be found in [3]. The theorem is proved with two reduc-
tions. First, solving the k-selection problem cannot be harder than solving the
k-selection problem w.r.t. a subset of V . Second, it can be shown that in every
MLAS aggregation tree as constructed in [2], there exist two disjoint subsets
of V of size Ω(

√
n) with the property that sending a message from one set to

the other requires Ω(log n/ log logn) time steps. Any algorithm that solves the
k-selection problem on an aggregation tree with a level schedule can therefore be
used to build an algorithm that is Ω(log n/ log logn) times faster in the setting
of the two-party k-selection problem (see [4]). This combined with a lower bound
of Ω(log n) for the two-party k-selection problem [4] proofs Theorem 2.

Finally we study sorting. We say that data in a network is sorted when each
node v ∈ V knows the idv-th smallest input value in the network. An O(n)
algorithm and the full proof of Theorem 3 can be found in [3].

Theorem 3. Assume α > 0. Every (possibly randomized) algorithm in the
SINR model for sorting has runtime Ω(n) in the worst case.

Acknowledgements: We like to thank Magnus Halldórsson.

References

1. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. The-
ory 46(2), 388–404 (2000)

2. Halldórsson, M.M., Mitra, P.: Wireless connectivity and capacity. In: Proc. 23rd
SODA 2012, pp. 516–526 (2012)

k-Selection and Sorting in the SINR Model 561

3. Kohler, S.: New algorithms for fundamental problems in wireless networks. Master’s
thesis, ETH Zürich, Department ITET, Zürich, Switzerland (2012)

4. Kuhn, F., Locher, T., Wattenhofer, R.: Tight bounds for distributed selection. In:
Proc. 19th SPAA 2007, pp. 145–153 (2007)

5. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol Design Beyond Graph-Based
Models. In: Workshop on Hot Topics in Networks (2006)

Brief Announcement: Distributed

3/2-Approximation of the Diameter

Stephan Holzer1,�, David Peleg2,��,
Liam Roditty3,� � �, and Roger Wattenhofer4

1 Massachusetts Institute of Technology (MIT), Cambridge, USA
holzer@mit.edu

2 Weizmann Institute, Rehovot, Israel
david.peleg@weizmann.ac.il

3 Bar-Ilan University, Ramat-Gan, Israel
liamr@macs.biu.ac.il

4 ETH Zurich, Zurich, Switzerland
wattenhofer@ethz.ch

Abstract. We present an algorithm to 3/2-approximate the diameter of
a network in time O(

√
n log n+D) in the CONGEST model. We achieve

this by combining results of [2,6] with ideas from [7]. This solution is
a factor

√
log n faster than the one achieved in [4] and uses a different

approach. Our different approach is of interest as we show how to ex-
tend it to compute a (3/2 + ε)-approximation to the diameter in time
O(

√
(n/(Dε)) log n+D). This essentially matches the Ω(

√
(n/D)ε+D)

lower bound for (3/2− ε)-approximating the diameter [1].

1 Model and Basic Definitions

The CONGEST model [5] is a message passing model with limited bandwidth.
We are interested in the number of communication rounds required by a dis-
tributed algorithm to solve a problem in the CONGEST model. Thus we neglect
internal computations subsequently. We denote the number |V | of nodes of a
network by n. The (hop-)distance of nodes u and v in G is denoted by d(u, v). A
k-dominating set for a graph G is a subset DOM of vertices with the property
that for every v ∈ V there is a node u ∈ DOM at distance of at most k to
v. The diameter D := maxu,v∈V d(u, v) of a graph G is the maximum distance
between any two nodes of the graph.

� Corresponding author. Part of this work has been done at ETH Zurich. Work
at MIT supported by grants: AFOSR Contract Number FA9550-13-1-0042, NSF
Award 0939370-CCF, NSF Award CCF-1217506, NSF Award number CCF-AF-
0937274.

�� Supported in part by grants from the Israel Science Foundation, the United-States
- Israel Binational Science Foundation and the Israel Ministry of Science.

� � � Work supported by the Israel Science Foundation (grant no. 822/10).

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 562–564, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Distributed 3/2-Approximation of the Diameter 563

2 Results

Theorem 1. Algorithm 1 computes a 3/2-approximation of the diameter w.h.p.
in O(

√
n logn+D) time.

We present Algorithm 1 which is inspired by [7] and can be implemented in a
distributed way. Details of this implementation and a proof of Theorem 1 will
appear in a journal version that merges [2] and [6]. Here, Ck(w) denotes the
set of k closest vertices to w visited by a (partial) breadth first search (BFS)
starting in w that stops after visiting k nodes (ties are broken arbitrarily, e.g.
by lexicographical order in the tree’s topology).

Algorithm 1. Computes a 3/2-approximation to the diameter of G

1: each node v joins set S with probability
√

log(n)/n;
2: compute a BFS from each node in S;
3: for every v ∈ V , compute pS(v) := the closest node in S to v;
4: w := argmaxv∈V d(v, pS(v));
5: compute a BFS tree from w as well as Cs(w);
6: for every v ∈ Cs(w), compute a BFS tree from v;
7: return the maximum depth of any BFS tree that was computed;

Theorem 2. For any 0 < ε ≤ 1/3, a (3/2 + ε)-approximation of the diameter

can be computed w.h.p. in O
(√

n/(Dε) logn+D
)
time.

Details of the algorithm and a proof of Theorem 2 will appear in a journal ver-
sion that merges [2] and [6]. We only sketch the main insight, which is to modify
Algorithm 1 by using ideas of an algorithm to (1+ ε)-approximate the diameter
presented in [2]. First we obtain a 2-approximation D′ of D by computing the
depth of a BFS from the node with smallest ID. Next we compute a Θ(εD′)-
dominating set DOM of size O(n/(εD′)) using [3]. Now we execute Algorithm
1 restricted to the nodes in DOM, where 1) nodes join S with a probability√
log(n)/|DOM| instead of

√
log(n)/n, and 2) nodes not in DOM implicitly

participate in the algorithm (mainly by forwarding messages). Executing Algo-
rithm 1 on this Θ(εD′)-dominating set affects the approximation ratio only by
Θ(ε). This reduction of the number of vertices to O(n/(εD′)) yields the speedup.

References

1. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks Cannot Compute Their Di-
ameter in Sublinear Time. In: Proc. 23rd SODA 2012, pp. 1150–1162 (2012)

2. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and appli-
cations. In: Proc. 31st PODC 2012, pp. 355–364 (2012)

3. Kutten, S., Peleg, D.: Fast distributed construction of small k-dominating sets and
applications. Journal of Algorithms 28(1), 40–66 (1998)

564 S. Holzer et al.

4. Lenzen, C., Peleg, D.: Efficient distributed source detection with limited bandwidth.
In: Proc. 32nd PODC 2013, pp. 375–382 (2013)

5. Peleg, D.: Distributed computing: A locality-sensitive approach. Society for Indus-
trial and Applied Mathematics, Philadelphia (2000)

6. Peleg, D., Roditty, L., Tal, E.: Distributed algorithms for network diameter and
girth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012,
Part II. LNCS, vol. 7392, pp. 660–672. Springer, Heidelberg (2012)

7. Roditty, L., Williams, V.V.: Fast approximation algorithms for the diameter and
radius of sparse graphs. In: Proc. 45th STOC 2013, pp. 515–524 (2013)

Brief Announcement: Space-Optimal Silent

Self-stabilizing Spanning Tree Constructions
Inspired by Proof-Labeling Schemes

Lélia Blin1,� and Pierre Fraigniaud2,��

1 LIP6-UPMC, University of Evry-Val d’Essonne, France
2 CNRS and University Paris Diderot, France

Abstract. We present a general roadmap for the design of space-optimal
polynomial-time silent self-stabilizing spanning tree constructions. Our
roadmap is based on sequential greedy algorithms inspired from the de-
sign of proof-labeling schemes.

Context and Objective.One desirable property for a self-stabilizing algorithm
is to be silent, that is, to keep the individual state of each process unchanged once
a legal state has been reached. Silentness is a desirable property as it guaran-
tees that self-stabilization does not burden the system with extra traffic between
processes whenever the system is in a legal state. Designing silent algorithms is
difficult because one must insure that the processes are able to collectively decide
locally of the legality of a global state of the system, based solely on their own
individual states, and on the individual states of their neighbors. This difficulty
becomes prominent when one takes into account an important complexity mea-
sure for self-stabilizing algorithms: space complexity. Keeping the memory space
limited at each process reduces the potential corruption of the memory, and en-
ables to maintain several redundant copies of variables (e.g., for fault-tolerance)
without hurting the efficiency of the system.

Our objective is to compute some spanning tree T of G. Typically, the tree T
is rooted at some node r, and it is distributedly encoded at each node v by the
identify of v’s parent p(v) in T . (The root r has p(r) = ⊥). We are interested in
all kinds of spanning trees, but will mostly focus our attention to two specific
kinds of spanning trees: minimum-weight spanning trees (MST), and minimum-
degree spanning trees (MDST). Constructing MSTs is a classical problem in the
distributed computing setting. In the case of MDSTs, we aim at designing an
algorithm which, for any given (connected) graph G, constructs a spanning tree
T of G whose degree is minimum among all spanning trees of G. Our interest in
MDSTs is motivated by resolving issues arising in the design of MAC protocols
for sensor networks under the 802.15.4 specification. It is also worth pointing
out that MDSTs arise in many other contexts, including electrical circuits, com-
munication networks, as well as in many other areas. Since Hamiltonian-path

is NP-hard, we actually slightly relax our task, by focussing on the construction

� Additional supports from ANR project IRIS.
�� Additional support from ANR project DISPLEXITY, and INRIA project GANG.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 565–566, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

566 L. Blin et al.

of spanning trees whose degree is within +1 from the minimum degree opt of
any spanning tree in the given graph.

It is known that, for every task with a proof-labeling scheme on k-bit labels,
there is a silent self-stabilizing algorithm for that task using registers on O(k +
logn) bits in n-node networks [2]. However, the convergence time of the generic
algorithm in [2] may be exponential.

Our Results. We present a general roadmap for the design of space-optimal
polynomial-time silent self-stabilizing constructions of spanning trees optimizing
different kinds of criteria, under the state model1. Following our roadmap, we
were able to design space-optimal algorithms for both MST and MDST con-
structions. Our MST algorithm uses registers of size O(log2 n) bits in n-node
networks, which is known to be optimal. While there exists more compact MST
algorithms, these algorithms designed for minimizing the size of the memory
are not silent. Our MDST algorithm is an additive approximation algorithm.
It returns a spanning tree with degree at most opt + 1. It uses registers of
O(log n) bits, which is know to be optimal. It exponentially improves the pre-
vious best known (opt + 1)-approximation algorithm, which is not silent, yet
is using Ω(n log n) bits of memory per node, and is converging in the same
number of rounds. Both our algorithms converge in a number of rounds poly-
nomial in n, and perform polynomial-time computation at each node. In fact,
our MDST algorithm constructs a special kind of trees, named FR-trees after
Fürer and Raghavachari. Indeed, we show that verifying whether a given tree
is an arbitrary trees of degree ≤ opt + 1 cannot be done in polynomial time,
unless NP = co-NP. Instead, we show that there is a proof-labeling scheme for
FR-trees using labels on O(log n) bits.

Our roadmap relies on a collection of ingredients. The first ingredient is the
design of sequential greedy algorithms guided by proof-labeling schemes. The sec-
ond ingredient is a redundant proof-labeling scheme for spanning trees, enabling
the design of silent loop-free self-stabilizing algorithms for permuting tree edges
with non-tree edges. The third ingredient is the design of a silent algorithm for
the construction of the O(log n)-bit label informative-labeling scheme for nearest
common ancestor (NCA) from the literature, in order to identify the fundamen-
tal cycles. The two latter ingredients are used for implementing the sequential
algorithms of the first ingredient in a distributed silent self-stabilizing manner.

More details are available in [1,2].

References

1. Blin, L., Fraigniaud, P.: Polynomial-Time Space-Optimal Silent Self-Stabilizing
Minimum-Degree Spanning Tree Construction. Tech. Rep. arXiv 1402.2496 (2014)

2. Blin, L., Fraigniaud, P., Patt-Shamir, B.: On Proof-Labeling Schemes versus Silent
Self-Stabilizing Algorithms. In: 16th SSS (2014)

1 Recall that, in the state model, every node has read/write access to its own pub-
lic variables, and read-only access to the public variables of its neighbors in the
network G connecting the node.

Brief Announcement:

Secure Anonymous Broadcast

Mahnush Movahedi, Jared Saia, and Mahdi Zamani

Dept. of Computer Science, University of New Mexico, Albuquerque, NM, USA 87131
{movahedi,saia,zamani}@cs.unm.edu

Consider a network of n parties, where there is a private and authenticated com-
munication channel between every pair of parties. In anonymous broadcast, one or
more of the parties want to anonymously sendmessages to all parties. This problem
is used in many applications such as anonymous communication, private informa-
tion retrieval, distributed auctions, and multi-party computation. To the best of
our knowledge, known techniques for solving this problem either scale poorly with
n or are vulnerable to jamming attacks [2,4], collisions [9], or traffic analysis [3].

We propose a decentralized algorithm for anonymous broadcast whose commu-
nication and computation scale linearly (up to a polylogarithmic factor) with the
number of parties and is not vulnerable to jamming, collision, and traffic analy-
sis. Our protocol is information-theoretically secure, does not require any trusted
party, and is load-balanced. The protocol can tolerate up to a (1/6 − ε) fraction
statically-scheduledByzantine parties, for somepositive constant ε.We assume the
communication is synchronous, and we do not require reliable broadcast channels.

Similar to DC-Nets [2,4,9], we useMulti-Party Computation (MPC) for achiev-
ing anonymity with traffic analysis resistance. In MPC, a set of n parties, each
having a secret input, compute a known function over their inputs without reveal-
ing the inputs to any party. In DC-Nets, all parties participate in a multi-party
sum protocol with a zero input except one that participates with an input equal
to a message it wants to broadcast. At the end, the sum result, which is equal
to the nonzero input, is revealed to all parties anonymously.

Unlike DC-Nets, we let parties participate in a multi-party shuffling protocol,
where the parties collaborate with each other to randomly shuffle their inputs.
To achieve scalability, we perform local communications and computations in
logarithmic-size groups of parties called quorums, where we ensure that the
fraction of dishonest parties in each quorum is guaranteed not to exceed a certain
value. We create a set of quorums using the polylogarithmic Byzantine agreement
protocol of Braud-Santoni et al. [1]. We prove the following theorem in [7].

Theorem. For any ε > 0, there exists an unconditionally-secure n-party protocol
tolerating t < (1/6− ε)n dishonest parties such that, with high probability, each
honest party sends its message to all parties anonymously. The protocol has
O(log n) rounds of communication and requires each party to send Õ(1) bits and
compute Õ(1) operations for delivering one anonymous bit.

Protocol Overview. To perform multi-party shuffling, we assign to each mes-
sage a uniform random value, and then obliviously sort the messages according
to the random values. We implement this in a decentralized fashion by evaluating

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 567–568, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

568 Mahnush Movahedi, Jared Saia, Mahdi Zamani

the sorting circuit of [6] over secret-shared1 inputs. A sorting circuit consists of
comparator gates each with two inputs and two outputs, where the outputs are
determined by comparing the inputs. Our protocol first builds a set of quorums
in a one-time setup phase and then, assigns each comparator to a quorum that is
responsible for computing the functionality of the comparator over secret-shared
values using the secure comparison protocol of [8]. Then, the circuit is evaluated
level-by-level, passing the outputs of one level as the inputs to the next level.
Once the local computation is finished in each quorum, the result is forwarded
to the next quorum via one-to-one communication with parties of the next quo-
rum. Finally, at the highest level, the shuffled messages are reconstructed and
sent back to all parties via a binary tree structure.

When forwarding a secret-shared value from one quorum to another, we need
to ensure that no coalition of dishonest parties from the quorums involved can
learn anything about the secret value. To this end, we first generate a random
polynomial that passes through the origin, and then add it to the polynomial that
corresponds to the shared secret. The result is a new polynomial that represents
the same secret but with fresh random coefficients (see [7] for a formal definition).

One issue with the shuffling-via-sorting technique described above is that if the
random values are not distinct, then the resulting distribution can deviate from
the uniform distribution. In [7], we show that by choosing the random values from
a sufficiently large domain, we can prevent such collisions with high probability.
Namely, we prove that a domain of sizeΩ(kn2 logn) elements guaranteesa uniform
random shuffle with probability 1− 1/nk, for any constant k > 0.

References

1. Santoni, N., Guerraoui, R., Huc, F.: Fast Byzantine agreement. In: PODC 2013, pp.
57–64 (2013)

2. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology 1, 65–75 (1988)

3. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: USENIX Security Symposium 2004, p. 21 (2004)

4. Golle, P., Juels, A.: Dining cryptographers revisited. In: Cachin, C., Camenisch, J.L.
(eds.) EUROCRYPT2004. LNCS, vol. 3027, pp. 456–473. Springer, Heidelberg (2004)

5. Katz, J., Koo, C.-Y., Kumaresan, R.: Improving the round complexity of VSS in
point-to-point networks. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 499–510. Springer, Heidelberg (2008)

6. Leighton, T., Plaxton, C.G.: A (fairly) simple circuit that (usually) sorts. In: FOCS
1990, pp. 264–274 (1990)

7. Movahedi, M., Saia, J., Zamani, M.: Secure Anonymous Broadcast. ArXiv e-prints,
1405.5326 (May 2014)

8. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison
without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)

9. Zamani, M., Saia, J., Movahedi, M., Khoury, J.: Towards provably-secure scalable
anonymous broadcast. In: USENIX Free and Open Comm. on Internet, FOCI (2013)

1 We use the verifiable secret sharing scheme of [5] that builds upon Shamir’s scheme.

Brief Announcement:

Privacy-Preserving Location-Based Services

Mahnush Movahedi and Mahdi Zamani

Dept. of Computer Science, University of New Mexico, Albuquerque, NM, USA 87131
{movahedi,zamani}@cs.unm.edu

Nowadays, mobile users frequently ask Location-Based Services (LBS) to find
points of interest near them, to receive information about traffic along their
route, or to receive customized advertising. Unfortunately, shared location data
can be used by others (e.g., providers and governments) for precise surveillance
and hence, compromising user privacy. As far as we know, current privacy-
preserving LBS protocols have at least one of the following drawbacks: (1) as-
sumption of trusted third parties [2,6], (2) vulnerability to global attacks such as
traffic analysis [5,6], (3) inaccurate query results due to spatial cloaking [2,5,6],
and (4) insecurity against malicious behaviors [2,5,6].

In this paper, we propose an efficient protocol for privacy-preserving LBS that
is secure against malicious attacks as well as global attacks. Our protocol scales
well with the number of clients and is load-balanced. Load-balancing is crucial
since mobile devices usually have very limited resources. Moreover, unlike the
majority of previous work which rely on centralized trusted servers, our con-
struction is fully-decentralized. Our protocol provides polylogarithmic per-client
communication and computation costs with respect to the number of clients and
achieves the highest location accuracy by avoiding location cloaking.

Theorem. [1] Consider n clients in a fully-connected synchronous network with
private channels, where each client has a locational query to send to a server.
There exists an n-party cryptographic protocol tolerating up to t < (1/6 − ε)n
malicious clients such that, with high probability, each honest client sends its
query to the server anonymously. The protocol requires each client to send Õ(1)
bits and compute Õ(1) operations in O(log n) rounds of communication.

Protocol Overview. Consider n parties P1, P2, ..., Pn each having a locational
query xi, for all i ∈ [n]. The parties want to anonymously send their queries to
a location-based server and receive the query results back. Our high-level idea
is to perform a multi-party shuffling among all clients ensuring that their inputs
remain private, and no adversary can trace the messages to their corresponding
senders. To this end, we adopt and implement the distributed shuffling tech-
nique of [7] with cryptographic assumptions for achieving location privacy. This
protocol first builds a set of quorums1 in a one-time setup phase, and then uses
the quorums in an online phase for shuffling client queries: a uniform random
value is assigned to each message, and then the messages are sorted obliviously
according to the random values using a sorting circuit [7]. Figure 1 (left) depicts

1 A quorum is a group of O(log n) parties, where the fraction of malicious parties in
each quorum is guaranteed not to exceed a certain value.

F. Kuhn (Ed.): DISC 2014, LNCS 8784, pp. 569–571, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

570 Mahnush Movahedi, Mahdi Zamani

Location-Based Server

ffsff

BTS

BTS

BTS

BTS

(x’1,…,x’n)

…

x1

P1

xn

Pn
5 10 15 20

5

10

15

20

25

30

35

40

45

Log number of clients

L
o
g

n
u
m

b
e
r

o
f
K

ilo
b
y
te

s
s
e
n
t

Dani et al. [4]

Boyle et al. [3]

Our Result

Fig. 1. Our architecture (left) and our simulation results (right)

our protocol architecture based on the algorithm of [7]. Each circle depicts a
quorum of mobile users who connect to their local base station. Once the lo-
cal computation is finished in each quorum, the result is forwarded to the next
quorum via one-to-one communication with clients of the next quorum. Finally,
at the highest level, the shuffled queries are reconstructed and sent to the LBS.
Once the queries are processed, the server broadcasts the results to the parties
(see [1] for a precise protocol description).

To study the feasibility of our scheme and compare it to previous work, we
implemented a simulation of our protocol and two other protocols [3,4] that can
be used for shuffling n queries randomly in a similar setting. As far as we know,
these protocols have the best scalability with respect to the network size among
other works. Figure 1 (right) shows the simulation results obtained for various
network sizes between 25 and 220 (between 32 and about 1 million). We observe
that our protocol performs significantly better than others (see [1] for a complete
simulation setup and discussion on the results).

References

1. Full version of this paper, http://cs.unm.edu/~zamani/papers/lbs-full.pdf
2. Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting anonymous location queries in

mobile environments with PrivacyGrid. In: WWW 2008, pp. 237–246 (2008)
3. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-party

computation: How to run sublinear algorithms in a distributed setting. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376. Springer, Heidelberg (2013)

4. Dani, V., King, V., Movahedi, M., Saia, J.: Quorums quicken queries: Efficient asyn-
chronous secure multiparty computation. In: Chatterjee, M., Cao, J.-N., Kothapalli,
K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 242–256. Springer, Hei-
delberg (2014)

http://cs.unm.edu/~zamani/papers/lbs-full.pdf

Brief Announcement: Privacy-Preserving Location-Based Services 571

5. Ghinita, G., Kalnis, P., Skiadopoulos, S.: Prive: Anonymous location-based queries
in distributed mobile systems. In: WWW 2007, pp. 371–380 (2007)

6. Mokbel, M.F., Chow, C.-Y., Aref, W.G.: The new casper: Query processing for
location services without compromising privacy. In: VLDB 2006, pp. 763–774 (2006)

7. Movahedi, M., Saia, J., Zamani, M.: Secure Anonymous Broadcast. ArXiv e-prints,
1405.5326 (May 2014)

Author Index

Afrati, Foto 536
Alistarh, Dan 61
Aspnes, James 61
Attiya, Hagit 376
Avni, Hillel 550

Bertrand, Pierre 557
Blin, Lélia 565
Bonnet, François 76
Busch, Costas 538

Calciu, Irina 406
Capdevielle, Claire 288
Castañeda, Armando 91
Chauhan, Himanshu 553
Chen, Ho-Lin 16
Chockler, Gregory 273
Cornejo, Alejandro 46
Cummings, Rachel 16
Czyzowicz, Jurek 122

Dahlgaard, Søren 544
Défago, Xavier 76
Demaine, Erik D. 484
Denysyuk, Oksana 333
Dolev, Shlomi 536
Dornhaus, Anna 46
Doty, David 16

Fatourou, Panagiota 533
Förster, Klaus-Tycho 212
Fraigniaud, Pierre 1, 565

Gafni, Eli 1
Garg, Vijay K. 553
G ↪asieniec, Leszek 122
Ghaffari, Mohsen 197
Gilbert, Seth 227, 361
Golab, Wojciech 361
Gonczarowski, Yannai A. 91
Gorry, Thomas 122
Gotsman, Alexey 376

Halldórsson, Magnús M. 454
Hans, Sandeep 376

He, Yuxiong 152
Hegeman, James W. 514
Helmi, Maryam 303
Herlihy, Maurice 243, 406, 538, 542
Higham, Lisa 303
Holzer, Stephan 559, 562
Hung, Wei-Lun 553

Indyk, Piotr 484

Jard, Claude 546
Jehl, Leander 531
Johnen, Colette 288

Kallimanis, Nikolaos D. 533
Keidar, Idit 273
King, Valerie 61
Knudsen, Mathias Bæk Tejs 544
Kohler, Sebastian 559
Konrad, Christian 454
Korach, Ephraim 536
Kranakis, Evangelos 122
Kutten, Shay 469

Langner, Tobias 31
Lea, Tormod Erevik 531
Lenzen, Christoph 197, 557
Lesani, Mohsen 391
Lev-Ari, Kfir 273
Li, Yi 499
Liu, Zhiyu 243
Lynch, Nancy 46

Mahabadi, Sepideh 484
Martin, Russell 122
McKinley, Kathryn S. 152
Mehrabian, Abbas 346
Meling, Hein 531
Mendes, Hammurabi 406
Milani, Alessia 288
Moses, Yoram 91
Mostéfaoui, Achour 546
Movahedi, Mahnush 567, 569

Nagpal, Radhika 46
Nanongkai, Danupon 439, 469

574 Author Index

Newport, Calvin 227, 258, 318
Nguyen, Thanh Dang 76

Pagourtzis, Aris 107
Pajak, Dominik 122
Palmieri, Roberto 548
Palsberg, Jens 391
Panagiotakos, Giorgos 107
Pandurangan, Gopal 469
Parter, Merav 167
Peleg, David 562
Peluso, Sebastiano 548
Pemmaraju, Sriram V. 514
Perrin, Matthieu 546
Petrank, Erez 542
Popovic, Miroslav 538
Potop-Butucaru, Maria 76
Pourmiri, Ali 346

Quaglia, Francesco 548

Rajsbaum, Sergio 1
Ravindran, Binoy 548
Ren, Shaolei 152
Rinetzky, Noam 376
Robinson, Peter 469
Roditty, Liam 182, 562
Rodrigues, Lúıs 333
Romano, Paolo 548
Rotbart, Noy 544
Roy, Matthieu 1

Saia, Jared 61, 567
Sakavalas, Dimitris 107

Sardeshmukh, Vivek B. 514
Sealfon, Adam 555
Seidel, Jochen 212
Sharma, Gokarna 538
Sharma, Shantanu 536
Siek, Konrad 540
Soloveichik, David 16
Sotiraki, Aikaterini 555
Stolz, David 31
Su, Hsin-Hao 439
Suissa-Peleg, Adi 550
Sun, Xiaoming 499

Talmage, Edward 421
Timnat, Shahar 542
Tov, Roei 182

Uitto, Jara 31
Ullman, Jeffrey D. 536

Vakilian, Ali 484

Wang, Chengu 499
Wattenhofer, Roger 31, 212, 559, 562
Welch, Jennifer L. 421
Woelfel, Philipp 303
Wojciechowski, Pawe�l T. 540
Woodruff, David P. 499

Yamashita, Masafumi 137
Yamauchi, Yukiko 137

Zamani, Mahdi 567, 569
Zheng, Chaodong 227

