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Extended Abstract

Whole Genome Sequencing is increasingly used to identify Mendelian variants
in clinical pipelines. These pipelines focus on single nucleotide variants (SNVs)
and also structural variants, while ignoring more complex repeat sequence vari-
ants. We consider the problem of genotyping Variable Number Tandem Repeats
(VNTRs), composed of inexact tandem duplications of short (6−100 bp) repeat-
ing units. VNTRs span 3% of the human genome, are frequently present in
coding regions, and have been implicated in multiple Mendelian disorders (e.g.,
Medullary cystic kidney disease, Myoclonus epilepsy, and FSHD) and complex
disorders such as bipolar disorder. In some cases, the disease associated vari-
ants correspond to point mutations in the VNTR sequence while in other cases,
changes in the number of tandem repeats (RU count) show a statistical asso-
ciation (or causal relationship) with disease risk. While existing tools are able
to recognize VNTR carrying sequence, genotyping VNTRs (determining repeat
unit count and sequence variation) from whole genome sequenced reads remains
challenging. We describe a method, adVNTR, that models the problems of RU
counting and mutation detection using HMMs trained for each target VNTR.
adVNTR models can be developed for short-read (Illumina) and single molecule
(PacBio) whole genome and exome sequencing. It has three components: (i)
HMM training module for model parameter estimation; (ii) read recruitment;
and, (iii) estimating RU counts and variant detection. We compared read recruit-
ment with alignment-based methods. The results show that while adVNTR
works well for a range of RU counts, other mapping tools work well only when
the simulated RU count matches the reference RU count. We performed a long
range (LR)PCR experiment on the individual NA12878 to assess the accuracy
of the adVNTR genotypes. To test performance of counting of Repeat Units on
real data where the true VNTR genotype is not known, we confirmed our results
by checking for Mendelian inheritance consistency at 865 VNTRs in two trios.
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For short VNTRs, adVNTR can be an effective tool for larger population-scale
studies of VNTR genotypes using WGS data replacing labor intensive gel elec-
trophoresis. We found the RU count frequencies for two disease-linked VNTRs in
GP1BA and MAOA genes, using 150 PCR-free WGS data. The 2R/3R genotypes
in GP1BA are associated with Aspirin Treatment failure for stroke prevention.
Notably, our results suggest that the 2R genotype is absent in African popula-
tions suggesting that this shorter allele arose after the out of Africa transition.
adVNTR is available at https://github.com/mehrdadbakhtiari/adVNTR.

Reference

1. Bakhtiari, M., Shleizer-Burko, S., Gymrek, M., Bansal, V., Bafna, V.: Targeted
genotyping of variable number tandem repeats with adVNTR. bioRxiv, p. 221754
(2017)

https://github.com/mehrdadbakhtiari/adVNTR


Positive-Unlabeled Convolutional Neural
Networks for Particle Picking in

Cryo-electron Micrographs

Tristan Bepler1,2, Andrew Morin2,6, Alex J. Noble3, Julia Brasch4,
Lawrence Shapiro4,5, and Bonnie Berger1,2,6(B)

1 Computational and Systems Biology, MIT, Cambridge, MA, USA
bab@mit.edu

2 Computer Science and AI Laboratory, MIT, Cambridge, MA, USA
3 National Resource for Automated Molecular Microscopy, Simons Electron

Microscopy Center, New York Structural Biology Center, New York, NY, USA
4 Department of Biochemistry and Molecular Biophysics, Columbia University,

New York, NY, USA
5 Mortimer B. Zuckerman Mind Brain Behavior Institute,

New York, NY, USA
6 Department of Mathematics, MIT, Cambridge, MA, USA

Background

Structure determination with cryoEM involves reconstructing a 3D molecule
from 2D projections. This process often requires tens to hundreds of thousands
of experimental projections, or particles. Locating these particles in cryoEM
micrographs, referred to as particle picking, is a major bottleneck in the cur-
rent protein structure determination pipeline. This pipeline generally consists
of sample and EM grid preparation, imaging, particle picking, and eventually
structure determination. Labeling a sufficient number of particles to determine
a high resolution structure can require months of effort – even with the use of
existing methods designed to automate the process. Limitations of these tools
include high false positive rates, requiring many hand-labeled training examples,
and poor performance on non-globular proteins.

In order to better automate particle picking, and thus accelerate structure
determination, we newly frame the particle picking problem as an instance of
positive-unlabeled classification. In our framework, for a set of micrographs con-
taining particles of interest with a small number labeled for training, we learn a
convolutional neural network (CNN) to classify particles from background using
a novel generalized-expectation criteria [1] to regularize the model’s posterior
over the unlabeled micrograph regions. This advance allows us to achieve state-
of-the-art particle detection results with minimal hand-labeling required.

B.Berger — This work was partially supported by grants: NIH R01-GM081871,
NIH R01-MH1148175, Simons Foundation (349247), NYSTAR, NIH NIGMS
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Methods

We develop Topaz, the first particle picking pipeline to use CNNs trained using
only positive and unlabeled examples and GE-binomial, a general objective func-
tion for learning classifier parameters from positive and unlabeled data. The GE-
binomial objective penalizes the negative log-likelihood of the labeled data points
while regularizing the classifier’s posterior over the unlabeled data to match a
binomial distribution prior on the number of unlabeled positives. Denoting the
set of labeled positive data points by P , the probabilistic classifier as g, the clas-
sifier’s posterior over the number of unlabeled positives as q, and the binomial
prior as p, the GE-binomial objective function is: − E

x∈P
[log g(x)] + KL(q ‖ p),

where KL is the Kullback-Leibler divergence.
In the Topaz pipeline, CNN classifiers are fit to labeled particles and the

remaining unlabeled micrograph regions using minibatched stochastic gradient
descent to minimize the GE-binomial objective. Predicted particle coordinates
are next extracted by scoring each micrograph region with the trained classi-
fier and then using the non-maximum suppression algorithm to greedily select
candidate particle coordinates.

Results

We show that the Topaz pipeline is able to accurately detect particles when
trained with very few labeled example particles. On the EMPIAR-10096 cryoEM
data set [2], Topaz achieves 46% precision at 90% recall with only 1000 labeled
particles. In contrast, at the same recall level, EMAN2’s byRef method [3] only
reaches 33% precision with the same set of labeled particles – corresponding to
71% more false positives than Topaz. Remarkably, Topaz still achieves better
precision than EMAN2 at 90% recall with 1/10th and even 1/100th the num-
ber of labeled particles. At all numbers of labeled particles tested, we improve
substantially over EMAN2’s byRef method in area under the precision-recall
curve. The relative improvement in particle detection provided by Topaz is even
greater on a second, unpublished dataset provided by the Shapiro lab, contain-
ing stick-like particles with low signal-to-noise ratio. Furthermore, we show that
combining a convolutional decoder with the convolutional feature extractor and
classifier learned with GE-binomial to form a hybrid classifier+autoencoder can
further improve generalization when very few labeled data points are available.
Finally, we demonstrate that our GE-binomial objective function outperforms
other positive-unlabeled learning methods never before applied to particle pick-
ing. Topaz runs efficiently, training in hours and predicting in seconds with a
single consumer grade GPU. We expect Topaz to become an essential component
of single particle cryoEM analysis and our GE-binomial objective function to be
widely applicable to positive-unlabeled classification problems.
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Édouard Bonnet1, Pawe�l Rz ↪ażewski2, and Florian Sikora3(B)

1 Department of Computer Science, Middlesex University, London, UK
edouard.bonnet@dauphine.fr

2 Faculty of Mathematics and Information Science,
Warsaw University of Technology, Warsaw, Poland

p.rzazewski@mini.pw.edu.pl
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An RNA sequence is a word over an alphabet on four elements {A,C,G,U} called
bases. RNA sequences fold into secondary structures where some bases pair with
one another while others remain unpaired. Pseudoknot-free secondary structures
can be represented as well-parenthesized expressions with additional dots, where
pairs of matching parentheses symbolize paired bases and dots, unpaired bases.
The two fundamental problems in RNA algorithmic are to predict how sequences
fold within some model of energy and to design sequences of bases which will
fold into targeted secondary structures. Predicting how a given RNA sequence
folds into a pseudoknot-free secondary structure is known to be solvable in cubic
time since the eighties [15, 16] and in truly subcubic time by a recent result of
Bringmann et al. [3], whereas Lyngsø has shown it is NP-complete if pseudoknots
are allowed [13]. As a stark contrast, it is unknown whether or not designing a
given RNA secondary structure is a tractable task; this has been raised as a
challenging open question by several authors [2, 6, 7, 9, 11, 14]. Because of its
crucial importance in a number of fields such as pharmaceutical research and
biochemistry, there are dozens of heuristics and software libraries dedicated to
RNA secondary structure design [1, 2, 4, 5, 8]. It is therefore rather surprising
that the computational complexity of this central problem in bioinformatics has
been unsettled for decades.

As our main result we show that, in the simplest model of energy which is the
Watson-Crick model the design of secondary structures is NP-complete if one
adds natural constraints of the form: index i of the sequence has to be labeled by
base b. This negative result suggests that the same lower bound holds for more
realistic models of energy. It is noteworthy that the additional constraints are by
no means artificial: they are provided by all the RNA design pieces of software
and they do correspond to the actual practice (see for example the instances of
the EteRNA project [12]). Our reduction from a variant of 3-Sat has as main
ingredients: arches of parentheses of different widths, a linear order interleaving
variables and clauses, and an intended rematching strategy which increases the
number of pairs if and only if the three literals of a same clause are false. The
correctness of the construction is also quite intricate; it relies on the polynomial
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algorithm for the design of saturated structures – secondary structures without
dots – by Haleš et al. [9, 10], counting arguments, and a concise case analysis.

We also show that a naive brute-force algorithm for RNA Design can be
improved by a careful structural analysis.
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Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
919–931. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-
8 77

https://doi.org/10.1007/3-540-45061-0_2
https://doi.org/10.1007/3-540-45061-0_2
https://doi.org/10.1007/11682462_2
https://doi.org/10.1007/978-3-319-19929-0_20
https://doi.org/10.1007/978-3-319-19929-0_20
https://doi.org/10.1007/978-3-540-27836-8_77
https://doi.org/10.1007/978-3-540-27836-8_77


250 É. Bonnet et al.

14. Lyngsø, R.B.: Inverse folding of RNA (2012). http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.226.5439&rep=rep1&type=pdf

15. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure
of single-stranded RNA. Proc. Nat. Acad. Sci. 77(11), 6309–6313 (1980)

16. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Res. 9(1), 133–148
(1981)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.5439&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.5439&rep=rep1&type=pdf


Generalizable Visualization of Mega-Scale
Single-Cell Data

Hyunghoon Cho1, Bonnie Berger1,2(B), and Jian Peng3(B)

1 CSAIL, MIT, Cambridge, MA 02139, USA
2 Department of Mathematics, MIT, Cambridge, MA 02139, USA

bab@mit.edu
3 Department of Computer Science, UIUC, Urbana, IL 61801, USA

jianpeng@illinois.edu

1 Introduction

Single-cell RNA sequencing (scRNA-seq) has been a key tool in dissecting inter-
cellular variation in biomedical sciences. A standard analysis for scRNA-seq data
is to visualize the cells in a low-dimensional (2D or 3D) space via methods such
as t-stochastic neighbor embedding (t-SNE) [1], where each cell is represented as
a dot and dots of cells with similar expression profiles are located close to each
other in space. Such visualization reveals the salient structure of the data in a
form that is easy for researchers to grasp and further analyze.

Recent advances in sequencing technologies has led to an exponential growth
in the number of cells sequenced in a study. For example, 10x Genomics recently
published a dataset of 1.3 million mouse neurons [2]. The emergence of such
mega-scale data poses new computational challenges before they can be widely
adopted, as many of the existing tools for scRNA-seq analysis (including t-SNE)
require prohibitive runtimes or computational resources for data of this size.

We introduce neural t-SNE (net-SNE), a scalable and generalizable method
for visualizing millions of cells for scRNA-seq analysis. net-SNE learns a high-
quality mapping function that takes an expression profile as input and outputs
a low-dimensional embedding in 2D or 3D for visualization. Unlike t-SNE, the
mapping function learned by net-SNE can be used to map previously unseen
cells. In addition to allowing fast visualization of datasets with millions of cells,
net-SNE enables novel workflows for single-cell genomics, where newly observed
cells are visualized in the context of existing datasets for translational analysis.

2 Methods

Our method (net-SNE) models the position of each cell in the visualization as
the output of a parameterized map evaluated at the given expression profile. We
use feedforward neural networks (NNs) to represent the embedding function,
drawing from the intuition that NNs have sufficient expressive capacity to find
high-quality maps similar to those typically uncovered by t-SNE. To optimize
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the NN parameters, net-SNE minimizes the same objective score optimized by t-
SNE via gradient descent. This choice of objective allows net-SNE to emulate the
behavior of t-SNE while newly achieving generalizability and scalability. Notably,
net-SNE is compatible with existing optimizations for t-SNE—our implementa-
tion of net-SNE incorporates an efficient variant of t-SNE based on Barnes-Hut
approximation [1]. We achieve further efficiency by employing stochastic opti-
mization techniques, where only a subset of cells are used to approximate each
parameter update. Such stochastic acceleration is newly enabled by net-SNE due
to the fact that parameters being optimized are shared across all cells.

3 Results

We observed that net-SNE learns an embedding that closely matches t-SNE on
13 scRNA-seq datasets with known clusters in terms of both visual quality and
clustering accuracy. Furthermore, when an entire cluster of cells was withheld
and placed onto the visualization after the fact, net-SNE accurately positioned
the held-out cells as a distinct cluster, despite not having seen any cells from the
missing cluster. To demonstrate fast visualization of mega-scale datasets, we also
pre-trained net-SNE on a random subset of 100K cells from the 10x Genomics
dataset and used the learned embedding to instantly visualize the entire dataset
in less than a minute. This approach obtained a higher quality map than t-SNE
with the default parameters, the latter of which took 13 h to finish. While the
pre-training of net-SNE took 3 h in our experiment, we note that a pre-trained
embedding may be readily available in certain use cases. We provide example
visualizations by net-SNE in Fig. 1.

PBMC68kZeiselKleinKolodziejczyk 10x Genomics

Fig. 1. Example 2D visualizations of single-cell RNA-seq datasets by net-SNE

Overall, our results demonstrate that net-SNE not only learns high quality
maps like t-SNE, but also gracefully generalizes to unseen cells. This allows net-
SNE to efficiently visualize mega-scale single-cell data by using a pre-trained
embedding from a subsampled or an existing dataset. Our work is widely appli-
cable to other data science domains with millions of data points to be visualized.
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The combination of massive parallel sequencing with high-throughput cell
biology technologies has given rise to single-cell Genomics. Similar to the
paradigm shift of the 90 s characterized by the first molecular profiles of tis-
sues, it is now possible to characterize molecular heterogeneities at the cellular
level (Saliba et al. 2014). The statistical characterization of heterogeneities in
single-cell expression data thus requires an appropriate model, since the tran-
scripts abundance is quantified for each cell using read counts. Hence, standard
methods based on Gaussian assumptions are likely to fail to catch the biologi-
cal variability of lowly expressed genes, and Poisson or Negative Binomial dis-
tributions constitute an appropriate framework (Chen et al. 2016). Moreover,
dropouts, either technical (due to sampling difficulties) or biological (no expres-
sion or stochastic transcriptional activity), constitute another major source of
variability in scRNA-seq (single-cell RNA-seq) data, which has motivated the
development of the so-called Zero-Inflated models (Kharchenko et al. 2014). A
standard and popular way of quantifying and visualizing the variability within a
dataset is dimension reduction, principal component analysis (PCA) being the
most widely used technique in practice. Model-based PCA (Collins et al. 2001)
offers the unique advantage to be adapted to the data distribution and to be
based on an appropriate metric, the Bregman divergence. It consists in speci-
fying the distribution of the data through a statistical model. A probabilistic
zero-inflated version of the Gaussian PCA was proposed by Pierson and Yau
(2015) in the context of single cell data analysis (the ZIFA method). However,
scRNA-seq data may be better analyzed by methods dedicated to count data
such as the Non-negative Matrix Factorization (Lee and Seung 1999, NMF) or
the Gamma-Poisson factor model (Cemgil 2009). However, none of the currently
available dimension reduction methods fully model single-cell expression data,
characterized by overdispered zero inflated counts (Zappia et al. 2017). Our
method is based on a probabilistic count matrix factorization (pCMF). We pro-
pose a dimension reduction method that is dedicated to over-dispersed counts
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with dropouts, in high dimension. Our factor model takes advantage of the Pois-
son Gamma representation to model counts from scRNA-seq data (Zappia et al.
2017). In particular, we use Gamma priors on the distribution of principal com-
ponents. We model dropouts with a Zero-Inflated Poisson distribution, and we
introduce sparsity in the model thanks to a spike-and-slab approach (Malsiner-
Walli and Wagner 2011) that is based on a two component sparsity-inducing prior
on loadings (Titsias and Lázaro-Gredilla 2011). The model is inferred using a
variational EM algorithm that scales favorably to data dimension, as compared
with Markov Chain Monte Carlo (MCMC) methods (Blei et al. 2017). Then we
propose a new criterion to assess the quality of fit of the model to the data,
as a percentage of explained deviance, because the standard variance reduction
that is used in PCA needs to be adapted to the new framework dedicated to
counts. We show that pCMF better catches the variability of simulated data and
experimental scRNA-seq datasets. Finally, pCMF is available in the form of a R
package available at https://gitlab.inria.fr/gdurif/pCMF.
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Motivation. Engineering artificial biological systems promises broad applica-
tions in synthetic biology, biotechnology and medicine. Here, the rational design
of multi-stable RNA molecules is especially powerful, since RNA can be gener-
ated with highly specific properties and programmable functions. In particular,
designing artificial riboswitches became popular due to their potential as ver-
satile biosensors [1]. Effective in-silico methods proved to greatly facilitate the
design approach and have tremendous impact on their cost and feasibility.

Statement of Problem. Most methods for computational design share a similar
overall strategy: one or several initial seed sequences are generated and optimized
subsequently. In this contribution we revisit the first main ingredient of (multi-
target) design methods, namely the sampling of sequences, which energetically
favor several given target structures at the same time. While previous multi-
target methods [4, 6] relied on ad-hoc sampling strategies, sampling seeds from
the uniform distribution was solved only recently [2, 3].

Algorithmic Contributions. We generalize Boltzmann sampling for RNA design,
which was recently shown powerful for single targets in IncaRNAtion [5], to
design for multiple structural targets. After showing that even uniform sampling
is #P-hard, we introduce the tree decomposition-based fixed parameter tractable
(FPT) sampling algorithm RNARedPrint. Finally, we combine our FPT stochas-
tic sampling algorithm with multi-dimensional Boltzmann sampling over distri-
butions controlled by expressive RNA energy models. We show that sampling t
sequences of length n for k target structures takes O(2d nk + t n k) time, where
d := min(w+ c+1, 2(w+ 1)), depending on the tree width w of the dependency
graph (covering all dependencies between sequence positions introduced by the
energy function) as well as the number c of connected components in the com-
patibility graph (covering the constraints enforcing canonical base pairings). Due
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to a constraint framework, RNARedPrint supports generic Boltzmann-weighted
sampling for arbitrary additive RNA energy models; this moreover enables tar-
geting specific free energies or GC-content, compare Fig. 1.

Empirical Results. We study general properties of the approach and generate bio-
logically relevant multi-target Boltzmann-weighted designs. Thereby, we observe
significant improvements over ad-hoc methods or even uniform sampling.

Extensibility of the Approach. The presented framework is designed to enable
even more general new possibilities for sequence generation in the field of RNA
sequence design by enforcing additional constraints, including more complex
sequence constraints, e.g. forbidden motifs in the designed sequences.

Fig. 1. General outline of RNARedPrint. From a set of target secondary structures (i),
base-pairs are merged (ii) into a compatibility graph (iii). Based on its tree decompo-
sition (iv), we compute the partition function, followed by a Boltzmann sampling of
valid sequences (v). An adaptive scheme learns weights to achieve targeted energies
and GC-content, leading to the production of suitable designs (vi).

Availability as free software: https://github.com/yannponty/RNARedPrint
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Introduction

The significant contribution of structural variants (e.g. deletion, insertion, and
inversion) to function, disease, and evolution is well reported. However, in many
cases, the mechanism by which these variants contribute to the phenotype is
not well understood. This is especially the case for studying non-coding struc-
tural variants and their potential biological impact. With the advent of high-
throughput chromosome conformation capture (Hi-C [1]) we have novel insights
into genome structure and its contribution to gene regulation. Using Hi-C data
we are able to study the genomic interactions, such as enhancer-promoter inter-
actions that are the main mechanism for gene regulation. The analysis of Hi-C
data has also provided evidence that genome folds into different compartments
and domains which guide the regions of the genome that can interact with each
other. One of these types of domains discovered is called topological associ-
ated domains (TADs) and has provided a novel understanding of how genome
structure contributes to regulation [2]. Recent studies reported structural vari-
ants (SVs) that disrupted the three-dimensional genome structure by fusing two
TADs, such that enhancers from one TAD interacted with genes from the other
TAD, could cause severe developmental disorders [3]. However, no method exists
for directly scoring and ranking structural variations based on their effect on the
three-dimensional structure such as the TAD disruption. In this paper, we for-
mally define TAD fusion and provide a combinatorial approach for assigning a
score to quantify the level of TAD fusion for each deletion denoted as TAD fusion
score.

Methods

Our goal is to develop a computational method that can provide a score for
deletions based on its level of modifying the 3D genomic structure and potential
of causing a TAD fusion. In our method, the input consists of a Hi-C contact
matrix of the genome with reference allele (i.e., without the deletion) and the
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coordinates of the deletion. The output is a score representing the number of new
genomic interactions made (i.e., TAD fusion score) as a result of the deletion.
For this paper, we are only considering deletions, however, this approach can be
extended to consider other SV types (e.g. translocations).

We propose a two-step framework for calculating the TAD fusion score: (i)
predicting a new Hi-C contact matrix G of the mutated chromosome (i.e. with
the deletion) given the Hi-C contact matrix H of a genome without the deletion
and the deletion coordinates as the inputs; (ii) comparing this predicted/new
Hi-C contact matrix G with the original Hi-C contact matrix H to estimate the
number of new interactions created as a result of that deletion. For the first step,
we extend the power law model (i.e. length-based model) by adding new param-
eters that represent the TAD structure. By that, all model parameter values can
be estimated by solving a linear programming. For the second step, we define
TAD fusion score as the expected number of additional genomic interactions
created as a result of the deletion. Here, the genomic interactions can be defined
by a simple step function or by a Bayesian formula.

Results

We show that our extended model gives a better prediction of the Hi-C con-
tact matrix than the (length-based) power law model. In addition, our method
can accurately score deletions which result in TAD fusion, and it outperforms
the approaches which use predicted TADs to overlay the deletion on them for
predicting TAD fusion. Furthermore, we show that our method correctly gives
higher scores to deletions reported to cause developmental disorders as a result of
disrupting genome structure in comparison to the deletions reported in the 1000
genomes project. Finally, we also show that deletions that cause TAD fusion are
rare and under negative selection in general population.

TAD fusion score is available at https://github.com/huynhvietlinh/
FusionScore.
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The problem of genome assembly is ultimately linked to the repeat charac-
terization problem, the compact representation of all repeat families in a genome
as a repeat graph [1]. Long read technologies have not made the repeat charac-
terization problem irrelevant. Instead, they have simply shifted the focus from
short repeats to longer repeats comparable in length to the median SMS read
size; e.g., Kamath et al. [2] analyzed many bacterial genomes that existing SMS
assemblers failed to assemble into a single contig. Since even bacterial (let alone,
eukaryotic) genomes have long repeats, SMS assemblers currently face the same
challenge that short read assemblers faced a decade ago, albeit at a different
scale of repeat lengths.

Most algorithms for assembling long error-prone reads use an overlap-layout-
consensus (OLC) approach that does not provide a repeat characterization [3,
4]. In contrast, de Bruijn graphs emerged as a popular approach for short read
assembly because they offered an elegant representation of all repeats in a
genome that reveals their mosaic structure. Most short read assemblers con-
struct the de Bruijn graph based on all k -mers in reads and further transform it
into an assembly graph using various graph simplification procedures. However,
in the case of SMS reads, the key assumption of the de Bruijn graph approach
(that most k -mers from the genome are preserved in multiple reads) does not
hold even for short k -mers, let alone for long k -mers (e.g., k = 1000). As a
result, various issues that have been addressed in short read assembly (e.g., how
to deal with the fragmented de Bruijn graph, how to transform it into an assem-
bly graph, etc.) remain largely unaddressed in the case of the de Bruijn graph
approach to SMS assemblies.

Here, we describe the Flye algorithm for constructing repeat graphs (which
have properties similar to de Bruijn graphs) from SMS reads. Flye is built on top
of the ABruijn assembler [5], which generates accurate overlapping contigs but
does not reveal the repeat structure of the genome. In contrast to ABruijn, Flye
initially generates inaccurate overlapping contigs (i.e., contigs with potential
assembly errors representing random walks on the true repeat graph) and com-
bines these initial contigs into an accurate assembly graph that encodes all pos-
sible assemblies consistent with the reads. Flye further resolves bridged repeats
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in the assembly graph thus constructing a new, less tangled assembly graph, and
finally outputs accurate final contigs formed by paths in this graph. Flye also
introduces a new algorithm that uses small differences between repeat copies to
resolve unbridged repeats that are not spanned by any reads. We benchmarked
Flye against several state-of-the-art SMS assemblers using various datasets and
demonstrated that it generates accurate assemblies while also providing insight
into how to plan additional experiments (e.g., using contact or optical maps)
to finish the assembly. Flye is freely available at http://github.com/fenderglass/
Flye.
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Introduction. Transferring biological knowledge between species is funda-
mental for many important problems in genetics. These problems range from
the molecular-level, such as predicting protein function or genetic interac-
tions [4], to the organism-level, such as predicting human disease models [5].
The most common approach researchers have taken is to use orthologs inferred
from DNA sequencing data. More recently, researchers have sought to expand
beyond sequence-based orthologs using high-throughput proteomics data under
the hypothesis that genes with similar topology in protein-protein interaction
(PPI) networks have similar functions. Many methods have been introduced to
infer homology across species (i.e. a node matching) from sequence similarity
and PPI networks, including network alignment [1]. More recently, Jacunski, et
al. [4] identified connectivity homologous gene pairs using a small set of features
derived from PPI networks. These prior works are focused on node matching and
constructing node feature vectors, but do not address the problem of embedding
genes from different species into a shared, general-purpose space.

Methods. We introduce a new algorithm, Homology Assessment across
Networks using Diffusion and Landmarks (HANDL), that leverages graph ker-
nels to embed nodes from two PPI networks into a biologically meaningful and
general-purpose vector space using network and sequence data.1 Kernels, par-
ticularly kernels that capture random walks and/or heat diffusion processes on
graphs, have been widely and successfully used for computing similarity between
nodes within biological networks [2].

The main computational challenge HANDL solves is relating network kernel
matrices from different species. Because the kernel matrices from networks of

1 An implementation of HANDL is available at https://github.com/lrgr/HANDL.

c© Springer International Publishing AG, part of Springer Nature 2018
B. J. Raphael (Ed.): RECOMB 2018, LNBI 10812, pp. 263–265, 2018.
https://doi.org/10.1007/978-3-319-89929-9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89929-9&domain=pdf
https://github.com/lrgr/HANDL


264 M. D. M. Leiserson et al.

Fig. 1. HANDL embeds nodes into a shared vector space.

different species have different dimensions, traditional kernel transfer learning
approaches (e.g. [3]) cannot be directly applied. We show a schematic of the
HANDL algorithm in Fig. 1. HANDL takes as input a source network, a target
network, and a set of landmarks shared between the networks to embed nodes
from the target species into the vector space of the source species. The inner-
product between embeddings gives HANDL similarity scores between nodes in
different species. As HANDL is a general algorithm, the landmarks and graph
kernel can be customized for particular applications. In this work, we use a
subset of homologs between the source and target species as landmarks and the
regularized Laplacian kernel specifically to capture protein functional similarity.

Results. We show that the human-mouse and baker’s-fission yeast cross-species
embeddings constructed by HANDL are biologically meaningful with three cross-
species tasks. First, we find that HANDL similarity scores are strongly correlated
with cross-species functional similarity, and that pairs with the highest HANDL
similarity scores are more functionally similar than pairs with the closest connec-
tivity homology profiles [4]. Next, we use the algorithm and data from McGary,
et al. [5] and HANDL-homologs (node pairs with high HANDL similarity scores)
to find new, novel human-mouse disease models (phenologs, i.e orthologous phe-
notypes) that are supported by biological literature. Finally, we show that node
vectors themselves are of more general use. We use HANDL to transfer knowl-
edge of synthetic lethal (SL) interactions in baker’s to fission yeast (and vice
versa). We compute embeddings for the source and target species then train a
support vector machine (SVM) only on embeddings of the source species. We
find that that the SVM also separates embeddings of the target species with
respect to SLs and non-SLs on previously unseen data.

These results show how HANDL can transfer knowledge of genetics between
humans and model organisms. We anticipate that HANDL can serve as the
foundation for more sophisticated approaches for transfer learning across species.
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1 Introduction

Protein kinase phosphorylation is one of the primary forms of post-translation
modification (PTM) that transduce cellular signals and regulate cellular pro-
cesses. Defective signal transductions, which are associated with protein phos-
phorylation, have been linked to many human diseases, such as cancer. Defining
the organization of the phosphorylation-based signaling network and, in partic-
ular, identifying kinase-specific substrates can help reveal the molecular mecha-
nism of the signaling network and understand their impacts on human diseases.

2 Methods

We present DeepSignal, a deep learning based method for predicting the sub-
strate specificity of kinase domains. Unlike most of the previous methods that
only focus on using substrate sequences to derive the kinases specificity, DeepSig-
nal takes into account the information in both kinase domain sequences and
substrate peptides, and translates a kinase sequences into its specificity profile
(e.g., a position-specific scoring matrix, PSSM). DeepSignal employs the Long
Short-TermMemory (LSTM) network, a deep learning architecture with memory
units, to process the kinase sequences with various lengths using a single model,
enabling the learning of universal knowledge across multiple kinase domains. Our
deep learning based method is able to automatically extract complex features
in kinase domain sequences that best explains the substrate specificity of this
kinase. For example, with the memory ability of LSTM, DeepSignal can exploit
and record the long and short range dependencies between residues spanning over
an arbitrary distance in the kinase domain, which is challenging for previous non-
deep learning methods of phosphosites prediction. In addition, DeepSignal can
transfer the knowledge from currently available kinase-substrate data to predict
phosphosites for new kinases, which is infeasible for many existing kinase-specific
methods.
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3 Results

We evaluated the ability of DeepSignal on predicting the substrate specificity
of kinase domains. Our method is able to achieve 0.875 AUROC (area under
the receiver operating characteristic curve) and 0.21 AUPRC (area under the
precision-recall curve) scores in a five-fold cross-validation, which is a substan-
tial improvement over previous methods GPS 2.0 [1] and NetPhorest [2]. To
test the generalization ability of our method, we further apply DeepSignal to
predict the binding specificity of SH2 domain (Fig. 1), another phosphorylation-
based signaling modular domain, on four high-throughput datasets. DeepSignal
significantly outperforms two SH2-peptide interaction methods (SMALI [3] and
SH2PepInt [4]) and one general protein-protein interaction method (PrePPI [5]).
Although trained on 80% of the data in the five-fold cross-validation, our method
still achieves higher or comparable AUROC scores when compared to a method
(MSM/D-PEM [6]) that was pre-trained on all the binding data of each dataset.
Overall, these results demonstrated the ability of DeepSignal on predicting the
binding specificity of phosphorylation-based signaling domains.

Fig. 1. Evaluation of prediciton performance on prediction of the binding between SH2
domains and phosphotyrosine peptides.

To study the impact of mutations on cancer, we used DeepSignal to con-
struct the signaling network using only the protein primary sequences of 16,254
proteins, including 307 kinase domains, 122 SH2 domains and 190,427 phos-
phoproteins across 18 cancer types. For each cancer type, we mapped all the
coding mutations from TCGA on the protein sequences. This resulted 6,286
mutations on kinase domains, 776 mutations on SH2 domains and 37,996 muta-
tions on phosphoproteins. We use DeepSignal to quantify the change of the bind-
ing specificity caused by the cancer mutations of a given kinase/SH2-peptide,
and predict a ranking list of single-nucleotide variants (SNV) that potentially
disrupt phosphosites. We found DeepSignal is more sensitive in detecting known
cancer genes related to signaling transduction than an existing statistical app-
roach [6]. DeepSignal can further discover new perturbed pathways related to
cancer including CTNNB1 pathway in UCEC, PTEN pathway in GBM and
SMAD4 pathway in LUAD.
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Cancer is a genetic disease that develops through a branched evolutionary
process. It is characterised by the emergence of genetically distinct subclones
through the random acquisition of mutations at the level of single-cells and
shifting prevalences at the subclone level through selective advantages purveyed
by driver mutations. This interplay creates complex mixtures of tumour cell pop-
ulations which exhibit different susceptibility to targeted cancer therapies and
are suspected to be the cause of treatment failure. Therefore it is of great inter-
est to obtain a better understanding of the evolutionary histories of individual
tumours and their subclonal composition.

Most of the current data on tumour genetics stems from short read bulk
sequencing data. While this type of data is characterised by low sequencing
noise and cost, it consists of aggregate measurements across a large number
of cells. It is therefore of limited use for the accurate detection of the distinct
cellular populations present in a tumour and the unambiguous inference of their
evolutionary relationships. Single-cell DNA sequencing instead provides data of
the highest resolution for studying intra-tumour heterogeneity and evolution,
but is characterised by higher sequencing costs and elevated noise rates.

As the strengths and weaknesses of bulk and single-cell sequencing data are
to a large extent complimentary with respect to phylogeny inference, using both
data types for a joint inference should improve our understanding of subclonal
tumour evolution over using each type of data alone. In this work, we develop
B-SCITE, the first computational approach that infers trees of tumour evolu-
tion from combined bulk and single-cell sequencing data. B-SCITE employs an
MCMC search scheme to find the mutation tree that maximizes the joint like-
lihood of both data types. The model accounts for typical sequencing biases
and artifacts, including the variability in depth of coverage among different bulk
sequencing datasets and the contamination of single-cell data by doublets. Using
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a comprehensive set of simulated data, we show that B-SCITE systematically
outperforms existing methods with respect to tree reconstruction accuracy and
subclone identification. High-fidelity reconstructions are obtained even with a
modest number of single cells, suggesting that combined bulk and single-cell
data may be a competitive strategy for tumor phylogeny reconstruction. On real
data, we show that B-SCITE provides more realistic mutation histories compared
to the results reported in previous studies or obtained by existing methods.
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The ability to issue sequence-level searches over publicly available databases
of assembled genomes and known proteins has played an instrumental role in
many studies in the field of genomics, and has made BLAST [2] and its variants
some of the most widely-used tools in all of science. However, until recently,
tools for searches over genomic data were restricted to reference sequences. As
a result, the vast majority of publicly-available sequencing data (e.g., the data
deposited in the SRA [3]) has been difficult to search because it exists in the
form of raw, unassembled sequencing reads.

Recently, Solomon and Kingsford introduced the sequence Bloom tree
(SBT) [8] for performing searches over thousands of sequencing experiments.
This seminal work introduced both a formulation of this problem, and the ini-
tial steps toward a solution. The space and query time of the SBT structure has
been further improved by Solomon and Kingsford [9] and Sun et al. [10].

Sequence Bloom trees repurpose Bloom filters to index large sets of raw
sequencing data probabilistically and, as a result, they are forced to cope with
Bloom filters’ limitations. For example, the SBT needs to merge Bloom filters,
but Bloom filters must be the same size to be merged, and they cannot be resized.
Consequently, SBTs use Bloom filters of the same size to represent sets of widely
varying cardinalities. As a result, most of the Bloom filters in the SBT are sub-
optimally tuned and inefficient in their use of space. (SBTs partially mitigate
this issue by compressing their Bloom filters using an off-the-shelf compressor.)

We introduce Mantis, a space-efficient data structure that can be used to
index thousands of raw-read experiments and facilitate large-scale sequence
searches on those experiments. Mantis uses counting quotient filters [5] instead
of Bloom filters, enabling rapid index builds and queries, small indexes, and
exact results, i.e., no false positives or negatives. Furthermore, Mantis is also a
colored De Bruijn graph (cDBG) representation, and supports the same fast de
Bruijn graph traversals as Squeakr [4], and hence may be useful for topological
analyses such as computing the length of the query covered in each experiment
(rather than just the fraction of k-mers present).
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Mantis has several advantages over prior work:

– Mantis is exact. A query for a set Q of k-mers and threshold θ returns exactly
those data sets containing at least fraction θ of the k-mers in Q. There are no
false positives or false negatives. In contrast, we show that SBT-based systems
exhibit only 57–67% precision, meaning that many of the results returned for
a given query are, in fact, false positives.

– Mantis supports much faster queries than existing SBT-based systems. In our
experiments, queries in Mantis ran up to 100× faster than when using an (in
RAM) SSBT.

– Mantis supports much faster index construction. For example, we were able
to build the Mantis index on 2,652 data sets in 16 hours and 35 min. SSBT
reported 97 hours to construct an index on the same collection of data sets.

– Mantis uses less storage than SBT-based systems. For example, the Mantis
index over the 2,652 experiments used for evaluation is 20% smaller than the
compressed SSBT index.

– Mantis returns, for each experiment containing at least 1 k-mer from the
query, the number of query k-mers present in this experiment. Thus, the full
spectrum of relevant experiments can be analyzed. While these results can
be post-processed to filter out those not satisfying a θ-query, we believe the
Mantis output is more useful, as one can analyze which experiments were close
to achieving the θ threshold, and can examine if a natural filtering “cutoff”
exists.

Mantis builds on Squeakr, a k-mer counter based on the counting quotient
filter (CQF). Prior work has shown how CQFs can be used to improve perfor-
mance and simplify the design of k-mer-counting tools [4] and de Bruijn graph
representations [6].

In a similar spirit, Mantis uses the CQF to create a simple space- and time-
efficient index for searching for sequences in large collections of experiments.
Mantis is based on cDBGs. The “color” associated with each k-mer in a cDBG
is the set of experiments in which that k-mer occurs (similar to Rainbowfish [1]).
We use an exact CQF to store a table mapping each k-mer to a color ID, and
another table mapping color IDs to the actual set of experiments containing
that k-mer. Mantis uses an off-the-shelf compressor [7] to store the bit vectors
representing each set of experiments.

Mantis takes as input the collection of CQFs representing each data set, and
outputs the search index. Construction is efficient because it can use sequential
I/O to read the input and write the output CQFs. Similarly, queries for the color
of a single k-mer are efficient since they require only two table lookups.

Mantis is available at https://github.com/splatlab/mantis.

https://github.com/splatlab/mantis
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Abstract. Identifying cell-type specific associations of genes with dis-
ease and mapping known associations to particular cell types is a key
in understanding disease etiology. While developments in technologies
for profiling genomic features such as gene expression and DNA methy-
lation have led to the availability of large-scale tissue-specific genomic
data, prohibitive costs drastically restrict collection of cell-type specific
genomic data. This, in turn, limits the identification of disease-related
genes and cell types. It is therefore desired to develop new approaches for
detecting cell-type specific associations between phenotypes and tissue-
specific genomic data.

We suggest a new matrix factorization formulation, which allows us
to deconvolve a two-dimensional input (observations by features) into
a three-dimensional output. Traditional matrix factorization formula-
tions essentially take as an input a multiple-source heterogeneous matrix
of observations and output a matrix of source-specific weights and a
matrix of source-specific features. We generalize this approach by assum-
ing that source-specific features are unique for each observation rather
than shared across all observations, and we propose Tensor Composi-
tion Analysis (TCA), a method for estimating observation- and source-
specific values based on the model.

We apply our model in the context of epigenetic association studies,
where DNA methylation data measured from a heterogeneous tissue are
often used, and we show that TCA allows us to extract cell-type specific
methylation levels from two dimensional tissue-specific methylation data.
We further derive a statistical test for detecting cell-type specific effects
of methylation on phenotypes based on the TCA model, and using a
simulation study we demonstrate its potentials and limitations. Finally,
using five large whole-blood methylation datasets, we demonstrate that
our model allows the detection of novel replicating cell-type specific asso-
ciations without collecting cost prohibitive cell-type specific data, thus

c© Springer International Publishing AG, part of Springer Nature 2018
B. J. Raphael (Ed.): RECOMB 2018, LNBI 10812, pp. 274–275, 2018.
https://doi.org/10.1007/978-3-319-89929-9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89929-9&domain=pdf


Tensor Composition Analysis Detects 275

suggesting an exciting new opportunity to unveil more of the hidden sig-
nals in genomic association studies with potential design implications for
future data collection efforts.
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Extended abstract

The ability to quickly and inexpensively describe the taxonomic diversity in an
environment is critical in this era of rapid climate and biodiversity changes.
The currently preferred molecular technique, barcoding, is low-cost and widely
used, but has drawbacks. As sequencing costs continue to fall, an alternative
approach based on genome-skimming has been proposed [1, 2]. This approach
first applies low-pass (100 Mb – several Gb per sample) sequencing to voucher
and/or query samples and then recovers marker genes and/or organelle genomes
computationally. In contrast, we suggest the use of the unassembled sequence
data for taxonomic identification using an alignment-free approach based on the
k-mer decomposition of the sequencing reads. Specifically, we first estimate the
average sequencing depth and error rate for each genome skim, by comparing
our derived theoretical distribution of k-mers’ multiplicity and the histogram
of k-mer counts computed using Jellyfish [3]. The genome length is also esti-
mated from the average sequencing depth accordingly. Then, the similarity of
two genome skims is measured by the Jaccard index between their correspond-
ing k-mer collections. Finally, the hamming distance between genomes is esti-
mated from the Jaccard index, using the following formula obtained by modeling
the impact of low sequencing coverage, sequencing error, and differing genome
lengths on the similarity of genome skims:

D = 1 −
(

2(ζ1L1 + ζ2L2)J
η1η2(L1 + L2)(1 + J)

)1/k

.
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In this equation, when coverage is low, we use all k-mers and set:

ηi = 1 − e−ci(1−k/�)(1−εi)
k

, ζi = ηi + ci(1 − k/�)(1 − (1 − εi)k) .

For higher coverages, we remove k-mers with multiplicity below a threshold m,
and set:

ζi = ηi = 1 −
m−1∑
t=0

(ci(1 − k/�)(1 − εi)k)t

t!
e−ci(1−k/�)(1−εi)

k

.

In these equations, k and � are k-mer and read length, respectively, and ci, εi,
and Li are substituted from the estimates of coverage, error rate, and genome
length for each genome skim. The Jaccard index between two genome skims, J ,
is computed by Mash [4] efficiently using a hashing technique.

We have tested our tool, Skmer, on genome skims simulated from assemblies
of 90 species from two genera of insects (Anopheles and Drosophila) and across
the avian tree of life. We test the accuracy of the distances computed by Skmer,
and subsequently use the distances to find the exact/closest match to a query
sample in a reference set of genome skims. Comparing to the other k-mer based
tools, Skmer shows excellent performance in our simulation studies, especially
when the coverage is below 4X [5].

Skmer makes the assembly-free approach to genome-skimming a viable alter-
native to the traditional barcoding. The software is made publicly available on
Github (https://github.com/shahab-sarmashghi/Skmer.git).
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Introduction. Recent advances in sequencing technologies now allow to assay
the entire complement of somatic alterations in large tumour cohorts [5]. Sev-
eral computational methods have been recently designed to identify driver alter-
ations, associated to the disease, and to distinguish them from passenger alter-
ations not related with the disease. The identification of driver alterations is
complicated by the extensive intertumour heterogeneity, with large (100–1000’s)
and different collections of alterations being present in tumours from different
patients and no two tumours having the same collection of alterations [6, 7].
One of the reasons for such heterogeneity is that driver alterations target cancer
pathways, groups of interacting genes performing given functions in the cell and
whose alteration is required to develop the disease [2, 7]. One of the main remain-
ing challenges is the identification of alterations with functional impact [3].

Several methods for the de novo discovery of mutated cancer pathways have
leveraged the mutual exclusivity of cancer alterations, with cancer pathways
displaying at most one alteration for each patient [3, 7]. The mutual exclusivity
property is due to the complementarity of genes in the same pathway, with
alterations in different members of a pathway resulting in a similar impact at
the functional level. An additional source of information that can be used to
identify genes with complementary functions are quantitative measures for each
samples such as functional profiles, obtained for example by genomic or chemical
perturbations [1]. The employment of such quantitative measurements is crucial
to identify meaningful complementary alterations since one can expect mutual
exclusivity to reflect in functional properties of altered samples which are specific
to the altered samples.

Methods and Results. We study the problem of finding sets of alterations with
complementary functional associations using alteration data and a quantitative
(functional) target measure from a collection of cancer samples. We provide a
rigorous combinatorial formulation for the problem and prove that the associated
computational problem is NP-hard. We develop two efficient algorithms, a greedy
algorithm and an ILP-based algorithm to identify the set of k genes with the
highest association with a target and prove rigorous guarantees in the quality of
their solutions.
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Our algorithms are implemented in our tool fUNctional Complementar-
ity of alteratiOns discoVERy (UNCOVER)1. We compared UNCOVER with
REVEALER [4], a recently developed greedy algorithm to identify mutually
exclusive sets of alterations associated with functional phenotypes. Consider-
ing four cancer datasets from [4], we compared the solutions obtained by our
algorithms with the solutions from REVEALER in terms of the information
coefficient (IC), the target association score used in [4] as a quality of the solu-
tion. Surprisingly, in two out of four datasets our methods, which do not consider
the IC score, identify solutions with IC score higher (by at least 5%) than the
solutions reported by REVEALER, while for the other two datasets the IC score
is very similar. These results show that UNCOVER identifies better solutions
than REVEALER when evaluated using our objective function and also when
evaluated according to the objective function of REVEALER.

In addition, UNCOVER has a running time that is on average two orders of
magnitude smaller than required by REVEALER. The efficiency of UNCOVER
enables the analysis of a large number of targets. We have run UNCOVER
on a dataset with thousands of functional targets and tens of thousands alter-
ations from the Achilles project dataset2 and the Cancer Cell Line Encyclope-
dia (CCLE). While running UNCOVER (including preprocessing) on the entire
dataset required 24 h, based on the runtime required on the instances reported
in [4] running REVEALER on this dataset would have required about 5 months
of compute time. On such large dataset, UNCOVER identifies several statisti-
cally significant associations between target values and mutually exclusive alter-
ations in genes sets.
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1 Computer Science and AI Lab, MIT, Cambridge, MA, USA
bab@mit.edu

2 Department of Mathematics, MIT, Cambridge, MA, USA

Background: Barcoded read sequencing allows short-reads to carry long-range
information by virtue of read “barcodes”, and has several advantages (including
significantly reduced cost and lower error rates) over long-read sequencing. Here
we introduce a two-tiered statistical binning approach, EMerAld—or EMA for
short—to barcoded read sequence alignment, an essential component of any bar-
coded sequencing pipeline, and as a result improve downstream genotyping and
phasing. Our method enables the probabilistic placement of reads between differ-
ent read clouds [1], and also in a single cloud that spans homologous elements.
The two tiers consist of: (i) a novel latent variable model to probabilistically
assign reads to possible source fragments; and (ii) newly exploiting expected read
coverage (read density) to resolve the difficult case of multiple repetitive align-
ments of reads within a single read cloud. These ambiguous alignments account
for a large fraction of the rare variants that currently cannot be resolved and
are of great interest to biologists [2].

Methods: Current linked-read alignment methods first perform a standard all-
mapping, then partition the resulting alignments into groups of nearby reads
with a common barcode called “read clouds”. Reads are then assigned to one of
their possible clouds by optimizing a global score function that takes into account
edit distance, mate pairs, read clouds, etc. Our two main conceptual advances
are as follows. Intuitively, rather than assigning each read to just one of its pos-
sible alignments at any given time, we make use of probabilistic assignments of
reads to clouds and employ a latent variable model to determine final alignment
probabilities; thereby, we select the most likely cloud (and thus alignment) for
each read. During the cloud alignment process, we also utilize a disjoint-set data
structure over read clouds to normalize alignment probabilities in a physically
sensible way. Once reads are assigned to clouds, we propose a different statis-
tical binning optimization approach to better handle the ubiquitous repetitive
regions of the genome. Whereas currently-used methods simply pick the lowest
edit distance alignment of a read in a given cloud, we instead optimize a com-
bination of edit distance and “read density”, which takes into account the read
density distribution over fragments. This two-tiered process can be interpreted
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Fig. 1. Overview of EMA pipeline. (a) Idealized model of linked-read sequencing,
wherein some number of unknown source fragments in a single droplet are sheared,
barcoded and sequenced to produce linked-reads. (b) EMA’s “read clouds” are con-
structed by grouping nearby-mapping reads sharing the same barcode; these clouds
represent possible source fragments. EMA then partitions the clouds into a disjoint-set
induced by the alignments, where two clouds are connected if there is a read aligning to
both; connected components in this disjoint-set (enclosed by dashed boxes) correspond
to alternate possibilities for the same unknown source fragment. EMA’s latent variable
model optimization is subsequently applied to each of these connected components indi-
vidually. (c) EMA applies a novel statistical binning optimization algorithm to clouds
containing multiple alignments of the same read to pick out the most likely alignment,
by optimizing a combination of alignment edit distances and read densities within the
cloud. In the figure, the green regions of the genome are homologous, thereby resulting
in multi-mappings within a single cloud. (d) While the statistical binning optimization
operates within a single cloud, EMA’s latent variable model optimization determines
the best alignment of a given read between different clouds, and produces not only the
final alignment for each read, but also interpretable alignment probabilities.

as statistical binning first in assigning reads to clouds and then within clouds.
The EMA pipeline is shown in Fig. 1.

Results: EMA is much faster and less memory intensive compared to other tools.
EMA’s overhead over the initial run of an all-mapper is virtually negligible,



282 A. Shajii et al.

and EMA is at least 1.5× faster than Lariat (the current 10x alignment tool
[1]), which translates into days faster for the user. In addition, we show that
genotypes called from EMA’s alignments contain over 30% fewer false positives
than those called from Lariat’s, with a fewer number of false negatives, on 10x
WGS datasets of NA12878 and NA24385, as compared to NIST GIAB gold
standard variant calls. We also demonstrate that EMA’s alignments improve
phasing performance over Lariat’s in both NA12878 and NA24385, producing
fewer switch/mismatch errors and larger phased blocks on average.

Moreover, we demonstrate that EMA is able to effectively resolve alignments
in regions containing nearby homologous elements—a particularly challenging
problem in read mapping—through the introduction of our novel statistical bin-
ning optimization framework, which enables us to find variants in the pharma-
cogenomically important CYP2D region that go undetected when using Lariat or
BWA. This enhanced capability addresses one of the major weaknesses of linked-
read sequencing as compared to long-read sequencing, where only a relatively
small subset of the original source fragment is observed—and more specifically,
that the order of reads within the fragment is not known—making it difficult to
produce accurate alignments if the fragment spans homologous elements.

Discussion: Our advance is a general framework applicable to many barcoded
sequencing problems. It is likely to be of interest to any developers, and even
users, of barcoded or linked-read sequencing technologies that come along. We
highlight that 10x sequencing is just an instance of general “barcoded read
sequencing”, and other technologies that make use of the same paradigm already
exist and are likely to emerge in the future, given its numerous advantages over
long-read sequencing. Several technologies already employ barcoded sequencing
in addition to 10x Genomics’, such as Illumina’s TruSeq SLR platform (formerly
Moleculo), and Complete Genomics’ Long Fragment technology. Our framework
should apply to these (and similar) technologies as well. Due to their substantial
improvements over existing methods for aligning and interpreting linked-read
data, the algorithms employed by EMA are likely to be a fundamental compo-
nent of read cloud-based methods in the future.
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Introduction: Recent rapid advancements in sequencing technologies allowed
the collection of DNA, RNA, and protein data from tens of thousands of can-
cer patients. Mathematical and computational tools are used to analyze these
complex data sets, aiming to reveal mechanistic and predictive insights into
tumor treatment and progression. Key to achieving these goals is finding molec-
ular alterations that drive tumorigenesis, or drivers, such as single nucleotide
variants (SNVs), copy number alterations (CNAs), changes in the transcrip-
tional activity of genes, or changes in protein concentration. Groups of such
functionally connected genetic alterations, also termed cancer driver modules or
pathways, activate mechanisms that gradually contribute to triggering the hall-
marks of cancer, conferring fitness advantages to the tumors. The identification
of such driver modules is an important challenge in the field of cancer genomics,
since clinically targeting driver pathways can improve patient treatment. Nev-
ertheless, most of the existing computational tools to address this problem use
primarily somatic mutations, not fully exploiting additional data types. Here,
we describe ModulOmics, a method to de novo identify cancer driver modules
by integrating multiple sources of biological information (protein-protein inter-
actions, mutual exclusivity of mutations or copy number alterations, transcrip-
tional co-regulation, and RNA co-expression) into a single probabilistic model.

Methods: Given a set G = {G1, . . . , Gn} of genes and a collection
M = {M1, . . .Mm} of models for different data types, we introduce SG,
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the ModulOmics probabilistic score of the set G, reflecting how likely are the
genes in G to be functionally connected. SG is computed as the mean of m proba-
bilistic scores P (G | Mk), each representing the degree of functional connectivity
of the set G, under a different model:

SG =
1
m

m∑
k=1

P (G | Mk) (1)

Here, we consider four models, as follows: M1 computes the connectivity of the
genes in G based on their proximity in the protein-protein interaction (PPI)
network, M2 estimates the degree of mutual exclusivity among DNA alterations
of the genes in G across the patient cohort, M3 assesses the co-regulation of
the genes in G on the basis of their shared transcriptional regulators that are
active in the patient cohort, and M4 evaluates the transcriptional connectivity
of the genes in G based on their coexpression profiles. The goal of ModulOmics
is to identify groups that maximize the global score in Eq. 1. As the number of
candidate groups grows exponentially with maximal group size, we use a heuristic
two-step optimization procedure. The optimization routine first performs an
approximation of the exact scores of the set G under each of the four models Mk,
by decomposing them into pairwise scores and using integer linear programming
(ILP) to find good initial solutions. The initial solutions are further refined via
stochastic search starting from these initial solutions and using the global score.

Results: Using ModulOmics, we accurately identify known cancer driver genes
and pathways in three large-scale TCGA datasets of breast cancer, glioblas-
toma (GBM) and ovarian cancer, outperforming state-of-the-art methods for
module detection. Notably, in breast cancer subtypes, the highest scoring mod-
ules reliably separate cancerous from normal tissues in an independent patient
cohort. Focusing on individual subtypes, the modules of Her2 and Basal are
enriched with Gene Ontology (GO) terms related to cell proliferation, reflecting
their more aggressive nature. Driver modules in triple negative (TN) samples
capture the accumulation of down-regulated tumor suppressors such as TP53,
BRCA1, RB1 and PTEN, a pattern also supported by reverse phase protein
array (RPPA) data. The highest scoring modules in Luminal A suggest two
potential functionalities of PTEN : a canonical one as part of the PI3K path-
way, and a non-canonical one as a regulator of cell proliferation. ModulOmics
is freely available in two forms, as an open-source R code for the identification
of cancer driver modules from a cohort of cancer samples (https://github.com/
danasilv/ModulOmics), and as a webserver for the evaluation of any set of genes
of interest using the TCGA data processed in this study (http://anat.cs.tau.ac.
il/ModulOmicsServer/).
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Abstract. Understanding the evolution of cancer is important for the
development of appropriate cancer therapies. The task is challeng-
ing because tumors evolve as heterogeneous cell populations with an
unknown number of genetically distinct subclones of varying frequen-
cies. Conventional approaches based on bulk sequencing are limited in
addressing this challenge as clones cannot be observed directly. Single-cell
sequencing holds the promise of resolving the heterogeneity of tumors.
However, this advantage comes at the cost of elevated noise due to the
limited amount of DNA material present in a cell and the extensive DNA
amplification required prior to sequencing.

Here, we present SCIΦ, the first single-cell-specific variant caller that
combines single-cell genotyping with reconstruction of the cell lineage
tree. SCIΦ leverages the fact that the somatic cells of an organism are
related via a phylogenetic tree where mutations are propagated along
tree branches. Our inference scheme starts with an initial identification
of possible mutation loci and then performs joint phylogenetic inference
and variant calling via posterior sampling.

In a first step, likely mutated loci are identified using the posterior
probability of observing at least one mutated cell at a specific locus. In
order to do so, SCIΦ models the nucleotide counts using a beta-binomial
distribution. This is especially useful in the single-cell setting, since the
beta-binomial distribution can be described as a Pólya urn model, which
in turn is a very close approximation of the multiple displacement ampli-
fication commonly used to amplify the genomic material of a single-cell.

In a second step, the identified loci are used to infer the tumor phy-
logeny. Here, we account for dropout events by modeling the likelihood
of observing a mutation in a cell as a weighted mixture of the likelihoods
of homozygous reference genotype, heterozygous genotype, and homozy-
gous alternative genotype. Our model to infer tumor phylogeny consists
of three parts: the genealogical tree, the mutation attachments to edges,
and the parameters of the model. Because the tree search space grows
superexponentially in the number of cells, we employ a Markov Chain
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Monte Carlo scheme to traverse through the tree space with mutation
assignment and learn the parameters of the model.

Using the relationship between cells, we are able to reliably call
mutations in each single-cell even in experiments with high dropout
rates and missing data. We show that SCIΦ outperforms existing meth-
ods on simulated data and apply it to different real-world datasets.
Availability: https://github.com/cbg-ethz/SCIPhI

https://github.com/cbg-ethz/SCIPhI
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Extended Abstract

Synthetic RNA molecules are increasingly used to alter cellular functions [1–4].
These successful applications indicate that RNA-based therapeutics might be
able to target currently undruggable genes [5, 6]. However, to achieve this
promise, an effective method for delivering therapeutic RNAs into specific cells
is required. Recently, RNA aptamers emerged as promising delivery agents due
to their ability of binding specific cell receptors [7, 8]. Crucially, these aptamers
can frequently be internalized into the cells expressing these receptors on their
surfaces. This property is leveraged in aptamer based drug delivery systems by
combining such receptor-specific aptamers with a therapeutic “cargo” such that
the aptamer facilitates the internalization of the cargo into the cell [9–11]. The
advancement of this technology however is contingent on an efficient method to
produce stable molecular complexes that include specific aptamers and cargoes.
A recently proposed experimental procedure for obtaining such complexes relies
on conjugating the aptamer and the cargo with complementary RNA strands
so that when such modified molecules are incubated together, the complemen-
tary RNA strands hybridize to form a double-stranded “sticky bridge” connect-
ing the aptamer with its cargo [12, 13]. However, designing appropriate sticky
bridge sequences guaranteeing the formation and stability of the complex while
simultaneously not interfering with the aptamer or the cargo as well as not caus-
ing spurious aggregation of the molecules during incubation has proven highly
challenging.

To fill this gap, we developed AptaBlocks, a computational method to design
sticky bridges to connect RNA-based molecules (blocks). Accounting for the
three-step procedure [12, 13], we formulate the sticky bridge sequence design
as an optimization problem utilizing an objective function which reflects the
biophysical characteristics of the assembly process. Specifically, we designed the
objective function considering the equilibrium probabilities of the target struc-
tures over all possible structures of the aptamer-stick and cargo-stick, the proba-
bility of the interaction between the aptamer-stick and cargo-stick at equilibrium,
the hybridization energy between the sticky bridge sequences, and additional
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sequence constraints including but not limited to the GC content. We further
provide a simulated annealing algorithm that enables efficient estimation of the
corresponding combinatorial optimization problem. The effectiveness of the algo-
rithm has been verified computationally and experimentally. AptaBlocks can be
used in a variety of experimental settings and its preliminary version has already
been leveraged to design an aptamer based delivery system for a cytotoxic drug
targeting Pancreatic ductal adenocarcinoma cells [14]. It is thus expected that
AptaBlocks will play a substantial role in accelerating RNA-based drug delivery
design.
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Imputation has been widely utilized to aid and interpret the results of Genome-
Wide Association Studies(GWAS). Imputation methods, that aim to fill in
“data” at untyped SNPs, have emerged as an effective strategy to increase the
power of GWAS since the causal variant may not be directly observed or typed
in these studies. In the context of GWAS, there are two broad classes of methods
to impute association statistics at untyped SNPs. The first class, termed Two-
step imputation, imputes genotypes at untyped SNPs followed by computing
association statistics at the imputed genotypes [1–6]. In practice, the first step of
genotype imputation relies on discrete Hidden Markov Models (HMM) [1, 6]. The
second class of methods, termed summary statistic imputation (SSI), directly
imputes association statistics at untyped SNPs given the association statistics at
the typed SNPs. The joint distribution of association statistics at the typed SNPs
and untyped SNPs has been shown to follow a multivariate normal distribution
(MVN) [7–9]. SSI is appealing as it tends to be computationally efficient while
only requiring the summary statistics from a study while the Two-step impu-
tation methods require access to individual-level data which can be difficult to
obtain in practice.

Current summary-statistic based imputation methods calibrate the imputed
statistics using a technique we call variance re-weighting (SSI-VR). Despite
recent progress, the statistical properties of summary statistic imputation meth-
ods (including the impact of variance re-weighting) and the connection between
the two classes of summary statistic imputation methods has not been ade-
quately understood.

In this paper, we show that the two classes of imputation methods, Two-
step imputation and SSI are asymptotically multivariate normal with small
differences in the underlying covariance matrix. Using this asymptotic equiva-
lence, we can understand the effect of the imputation method on the power of
the study. Our new method, SSI, performs summary statistic imputation with-
out variance re-weighting. The resulting statistics do not then have unit variance
as in traditional summary statistic imputation but instead correctly take into
account the ambiguity of the imputation process.

We compared the performance of the different imputations methods on the
Northern Finland Birth Cohort (NFBC) data set [10] to show thatSSI increases
power over no imputation while SSI-VR can sometimes lead to lower power.
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Finally, we compared the results from SSI, SSI-VR and Two-step impu-
tation on the NFBC dataset and show that the resulting statistics are close
thereby justifying the theory.
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Introduction: A given regulatory protein may have multiple modes of interaction with
the genome; at some sites, it may directly bind cognate DNA motifs, while at others it
may bind indirectly via protein-protein interactions with other regulators. Each
protein-DNA interaction mode may be associated with distinct sequence motifs, and
may also produce distinct patterns in high-resolution protein-DNA binding assays. For
example, the ChIP-exo [1] protocol precisely characterizes protein-DNA crosslinking
patterns by combining chromatin immunoprecipitation (ChIP) with 5’ to 3’ exonu-
clease digestion. Since different regulatory complexes will result in different
protein-DNA crosslinking signatures, analysis of ChIP-exo sequencing tag patterns
should enable detection of multiple protein-DNA binding modes for a given regulatory
protein. However, current ChIP-exo analysis methods either treat all binding events as
being of a uniform type, or rely on DNA motifs to cluster binding events into subtypes.

We introduce the ChIP-exo mixture model (ChExMix) to systematically detect
multiple protein-DNA interaction modes in a single ChIP-exo experiment. ChExMix
discovers and characterizes binding event subtypes in ChIP-exo data by leveraging
both sequencing tag enrichment patterns and DNA motifs. ChExMix defines possible
binding event subtypes by both clustering observed ChIP-exo tag distribution patterns
and performing targeted de novo motif discovery around the positions of the predicted
binding events. ChExMix then uses an Expectation Maximization learning scheme to
probabilistically model the genomic locations and subtype membership of binding
events using both ChIP-exo tag locations and DNA sequence information. In analyzing
ChIP-exo data, ChExMix offers a more principled and robust approach to character-
izing binding subtypes than simply clustering binding events using motifs.

Results: ChExMix uses DNA motif and ChIP-exo tag distribution patterns to accu-
rately estimate multiple binding subtypes within a single ChIP-exo. We demonstrate
the ability of ChExMix to estimate binding subtypes and assign binding events to
subtypes by creating datasets that computationally mix data from CTCF and FoxA1
ChIP-exo experiments. CTCF and FoxA1 are known to display distinct ChIP-exo tag
distribution patterns at their respective binding events. We simulated different repre-
sentations of each subtype by modulating the relative number of tags drawn from each
ChIP-exo experiment. ChExMix detects the two subtypes and accurately assigns
subtypes to binding events over a wide range of relative sampling rates from the CTCF
and FoxA1 subtypes. In contrast, a motif-driven approach fails to appropriately classify
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many of the FoxA1 subtype binding events. ChExMix performance remains reasonably
high when we remove DNA motifs from consideration and assign subtypes using only
ChIP-exo tag distribution information. Our results demonstrate that ChExMix enables
discovery of unique subtypes within a single ChIP-exo dataset and accurately assigns
subtypes to binding events.

To assess ChExMix’s ability to characterize binding locations, we compare
ChExMix performance in predicting human CTCF and mouse FoxA2 binding event
locations to that of seven ChIP-exo analysis methods. ChExMix outperforms other
methods by exactly locating the CTCF events at the motif position in 90.2% of the
shared CTCF events. Similarly, ChExMix exactly locates the FoxA2 events at the
motif position in 67.4% of the shared FoxA2 events. ChExMix binding event pre-
dictions also contain instances of the cognate motif at a high rate. These results suggest
that ChExMix maintains high accuracy in protein-DNA binding event predictions.

We further demonstrate that ChExMix can characterize biologically relevant
binding event subtypes in ER positive breast cancer cells. FoxA1, ERα, and CTCF
have previously been shown to co-localize at a subset of genomic loci. However, how
these proteins interact with each other and DNA at specific sites remained elusive. In
FoxA1 ChIP-exo data, ChExMix identifies subtypes corresponding to ERα and CTCF
motifs, and about a half of these subtypes’ binding events display ERα and CTCF
ChIP-exo enrichment with similar tag distributions. Our results thus suggest that ERα
and CTCF may mediate binding of FoxA1 via protein-protein interactions at a subset of
the genomic loci where multiple factors are co-bound. These results strongly suggest
that ChExMix can discover binding event subtypes representing direct and indirect TF
interactions from a single ChIP-exo experiment.

Conclusions: ChExMix provides a principled platform for elucidating diverse
protein-DNA interaction modes in a single ChIP-exo experiment by exploiting both
ChIP-exo tag enrichment patterns and DNA motifs. Using a fully integrated frame-
work, ChExMix allows simultaneous detection of binding event locations, discovery of
binding event subtypes, and assignment of binding events to subtypes. ChExMix
enables new forms of insight from a single ChIP-exo experiment, taking analysis
towards a fine-grained characterization of distinct protein-DNA binding modes at
specific genomic loci. ChExMix is freely available from https://github.com/seqcode/
chexmix.
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Multi-species functional genomic data from various high-throughput assays are
highly informative for the comparative analysis of gene regulation to better
understand the molecular mechanisms of phenotypic diversity between human
and other mammalian species. Continuous-trait models, which are key to the
modeling of functional genomic signals, are gaining increasing attention in
genome-wide comparative genomic studies. However, computational models are
currently under-explored to fully capture continuous features in the context of
multi-species comparisons. There have been several types of continuous-trait
evolutionary models, including Brownian motion and Ornstein-Uhlenbeck (OU)
process. However, to the best of our knowledge, there are no existing computa-
tional methods available to simultaneously infer heterogeneous continuous-trait
evolutionary models along the genome based on functional genomic signals.

In this paper, we develop a new continuous-trait probabilistic model for more
accurate state estimation using multi-variate features from cross-species func-
tional genomic signals. We call our model phylogenetic hidden Markov Gaussian
processes (Phylo-HMGP). Phylo-HMGP incorporates the evolutionary affinity
among multiple species into the hidden Markov model (HMM) for exploiting
both temporal dependencies across species in the context of evolution and spa-
tial dependencies along the genome in a continuous-trait model. The goal of
the proposed method is to identify heterogeneous cross-species genomic feature
patterns more effectively. The Gaussian processes embedded in the HMM are
specialized to be multi-variate OU processes or Brownian motion in this study.

Both simulation studies and real data application demonstrate the effective-
ness of Phylo-HMGP. Importantly, we applied Phylo-HMGP to analyze a new
cross-species DNA replication timing (RT) dataset from the same cell type in
five primate species (human, chimpanzee, orangutan, gibbon, and green mon-
key). We demonstrate that our Phylo-HMGP model enables discovery of genomic
regions with distinct evolutionary patterns of RT. We found that regions with
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conserved early RT and conserved late RT exhibit strong correlation with con-
stitutive early RT and constitutive late RT, respectively, defined from human ES
cell differentiation. In addition, we found enrichment for specific cis-regulatory
elements in hominini specific early RT regions.

Taken together, the proposed Phylo-HMGP explores a new integrative frame-
work to utilize continuous-trait evolutionary models with spatial constraints to
study genome-wide functional genomic features across species. The new method
is also flexible such that varied continuous-trait evolutionary models or assump-
tions can be incorporated. We believe that Phylo-HMGP provides a generic
framework that has the potential to more precisely capture the evolutionary his-
tory of regulatory regions based on functional genomic signals across different
species.
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We study how to predict inter-protein residue-residue contacts between a pair of
putative interacting proteins, which has been reported useful for the 3D structure
modeling of a PPI or protein docking. Direct-coupling analysis (DCA) has been applied
to intra-protein and inter-protein contact prediction, but it does not fare well for pro-
teins without many sequence homologs. This is a big issue for inter-protein contact
prediction since it is challenging to find so many interlogs (i.e., interacting homologs).
Because of this, currently DCA for inter-protein contact prediction mainly focuses on
prokaryotes and mitochondria [1, 2] since it is relatively easy to find interlogs in
prokaryotes, but not in eukaryotes with abundant paralogs.

We have developed a deep learning (DL) method for intra-protein contact pre-
diction [3–5], which greatly outperformed DCA and was officially ranked first in
CASP12 [6]. Our DL method needs much fewer sequence homologs than DCA to be
effective because it makes use of contact occurrence patterns, in addition to
co-evolution, for contact prediction. This abstract shows that DL can also work on
inter-protein contact prediction, especially for eukaryotes. To avoid overfitting, we do
not train our DL model using any protein complex data (i.e., inter-protein contacts), but
use our previous DL model trained by only protein chains (i.e., intra-protein contacts)
to predict inter-protein contacts.

We propose a new phylogeny-based method to identify interlogs for a putative
interacting protein pair, especially for eukaryotes in which some interacting genes may
have big genomic distance. Coupled with DL, this new method works better on
eukaryotes than genome-based methods employed by Baker [1] and Marks [2].

As shown in Fig. 1, given a pair of putative interacting proteins A and B under
prediction, we first build multiple sequence alignments (MSAs) for A and B, respectively.
Then we employ genome- and phylogeny-based strategies to concatenate MSA_A and
MSA_B into two pairedMSAs consisting of only interlogs. Finally, we use ourDLmethod
to predict two inter-protein contact maps and average them for final prediction. Our DL
method outperforms pure DCA on three large datasets and works on both prokaryotes and
eukaryotes. Table 1 shows the performance comparison on Baker’s dataset.
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Fig. 1. Method flowchart

Table 1. Inter-protein contact prediction accuracy (%) on Baker’s data. GCNN is our method
and (s) indicates a web server. EVfold is same as EVcomplex, but run locally with our MSAs.
“Genome” and “Phylogeny” denote two MSA generation methods. “Merged” indicates
prediction is merged from “Genome” and “Phylogeny”. Columns 3–9 show accuracy of top
L/10, L/20, 20 and 10 predicted contacts.

Predictor MSA L/10 L/20 20 10

EVcomplex(s) Built-in 14.25 20.10 21.55 26.55
Gremlin(s) Built-in 23.74 33.23 41.21 52.76

EVfold Genome 28.01 39.45 46.90 57.59
EVfold Phylogeny 15.61 23.09 26.21 36.21

EVfold Merged 25.13 36.12 42.07 54.83
CCMpred Genome 28.44 39.54 47.41 53.45
CCMpred Phylogeny 17.04 25.49 30.34 39.31

CCMpred Merged 27.70 38.72 46.03 55.52
GCNN Genome 51.41 60.80 62.76 68.79
GCNN Phylogeny 32.61 39.30 42.24 47.59
GCNN Merged 48.25 57.09 60.52 65.86
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