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Extended Abstract

Methods for inferring phylogenetic trees from very large datasets exist, yet, large-
scale tree reconstructions still require significant resources. New species are con-
tinually being sequenced, and as a result, even large trees can become outdated.
Reconstructing the tree de novo each time new sequences become available is
not practical. An alternative approach is phylogenetic placement where new
sequence(s) are simply added to an existing backbone tree. Phylogenetic place-
ment has applications other than updating trees, including sample identification,
where the goal is to detect the identity of given query sequences of unknown ori-
gins. This problem arises [3] in the study of mixed environmental samples that
make up much of the microbiome literature. Sample identification is also the
essence of barcoding and meta-barcoding, methods used often in biodiversity
studies.

Maximum Likelihood (ML) methods of phylogenetic placement are now avail-
able and in wide use (e.g., [4] and EPA(-ng) [2]). The ML approach is com-
putationally demanding, and in particular requires large amounts of memory,
and therefore, is limited in the size of the backbone tree it can use. More
fundamentally, existing placement tools take as input alignments of assembled
sequences for the backbone set, even when queries allowed to be unassembled
reads. This reliance on assembled sequences makes them unsuitable for alignment
and assembly-free scenarios. For example, sample identification using genome-
skimming is fast becoming cost-effective. Methods like Skmer [5] (introduced
in RECOMB 2018) can be used to infer k-mer-based estimates of phylogenetic
distance from genome skims, and these distances can potentially be used for
placement on phylogenetic trees. However, existing methods cannot be used for
this purpose.

Distance-based phylogenetics has a rich methodological history, and yet,
there are no existing tools for distance-based phylogenetic placement. Such
methods, if developed, can be scalable to ultra-large backbone trees. Moreover,

c© Springer Nature Switzerland AG 2019
L. J. Cowen (Ed.): RECOMB 2019, LNBI 11467, pp. 287–288, 2019.
https://doi.org/10.1007/978-3-030-17083-7

https://doi.org/10.1007/978-3-030-17083-7


288 M. Balaban et al.

distance-based methods only need distances, not assembled sequences, and there-
fore, can be used for sample identification from reads in an assembly-free and
alignment-free fashion.

We have developed a new method for distance-based phylogenetic place-
ment called APPLES (Accurate Phylogenetic Placement using LEast Squares).
APPLES finds the placement of a query sequence that minimizes the least square
error of phylogenetic distances with respect to sequence distances. It can also
operate on the minimum evolution principle, or a hybrid of minimum evolution
and least square error. Using dynamic programming, APPLES is able to per-
form placement in time and memory that both scale linearly with the size of the
backbone tree.

We have performed extensive studies on simulated and real datasets to eval-
uate APPLES. Our results show that in the alignment-based scenario, APPLES
is much faster than ML tools, uses much less memory, and is very close to ML
in the accuracy. Moreover, APPLES can handle much larger backbone trees (we
have tested up to 200,000 leaves), and has increased accuracy when the backbone
trees become larger and more densely sampled. In contrast, ML methods cannot
handle backbones with several thousand species. For assembly-free scenarios,
we study three genome skimming datasets of insects and show that APPLES
applied to Skmer distances can accurately identify genome skim samples using
coverage below 1X [1]. APPLES is open-source and freely available at https://
github.com/balabanmetin/apples.
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Extended Abstract

Cyclic and branch cyclic peptides (cyclopeptides) represent an important class of
bioactive natural products that include many antibiotics and anti-tumor compounds.
However, little is known about cyclopeptides in the human gut, despite the fact that
humans are constantly exposed to them. To address this bottleneck, we developed
CycloNovo algorithm [1] for de novo cyclopeptide sequencing that employs de Bruijn
graphs, the workhorse of DNA sequencing algorithms. Figure 1 illustrates the
CycloNovo pipeline. CycloNovo reconstructed many new cyclopeptides that we val-
idated with transcriptome, metagenome, and genome mining analyses.

We applied CycloNovo to high-resolution spectral dataset generated from daisy
seeds (Senecio vulgaris), human microbiome (HUMANSTOOL), and a large dataset of
40 high-resolution spectra from GNPS (GNPS). CycloNovo reconstructed ten
cyclopeptides in S. vulgaris including 4 known and 6 novel cyclopeptides that were
further validated using assembled RNA-seq transcripts. Our analysis revealed 703
cyclospectra in HUMANSTOOL dataset corresponding to 79 unique putative
cyclopeptides (identified by MS-Cluster) forming 69 spectral families (identified by
molecular networking). Dereplicator search yielded only nine PSMs with 0% FDR and
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P-value < 10−15, seven that originated from Flax cyclolinopeptides A [5], B [6], C [7],
D [7], H [7], E [7], and P [8] as well as Citrusin V and Massetolide F.
Cyclolinopeptides belong to the family of flaxseed orbitides that are present in the seeds
of Linum usitatissimum. We confirmed that the diet of the individual who provided the
HUMANSTOOL sample (L.S., co-author) contained flaxseed eaten frequently as an
ingredient in his cooking. Citrusin V belong to the citrusin family of antimicrobial
orbitides found in the extracts of various species from the Citrus genus [9]. Masse-
tolides are non-ribosomal lipopeptides produced by Pseudomonas fluoresences, an
indigenous member of human and plant microbiota [10, 11]. Analysis of the meta-
genome assembly of reads paired with the HUMANSTOOL dataset confirmed that
P. fluoresences is present in the stool samples where massetolide F was detected.

In addition to the nine identified cyclopeptides, CycloNovo reconstructed 32
cyclopeptides in the HUMANSTOOL dataset with P-values below 10−15 forming 26
cyclofamilies. Finding many bioactive cyclopeptides in our study that remain stable in
the proteolytic environment of the human gut raises the question of how these bioactive
antimicrobial cyclopeptides affect the bacterial composition of the human microbiota.

We analyzed cyclopeptide spectra identified in the GNPS dataset with the goal of
estimating the number of still unknown cyclopeptides from spectra already deposited in
GNPS. Dereplicator search of the entire GNPS dataset identified 80 unique known
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Fig. 1. CycloNovo outline illustrated using SpectrumSurugamide.CycloNovo includes six steps:
(i) recognizing cyclospectra using their spectral-convolution [2], (ii) predicting amino acids in a
cyclopeptide, (iii) predicting amino acid composition of a cyclopeptide, (iv), predicting k-mers in
a cyclopeptide, (v) constructing the de Bruijn graph of a spectrum, and (vi) generating
cyclopeptide reconstructions and calculating P-values [3, 4]. Only six top-scoring putative k-mers
for each putative amino acid composition are shown. Masses of amino acids occurring in
surugamide are shown in red and k-mers occurring in surugamide are underlined. To simplify the
de Bruijn graph (corresponding to the composition 711113512811471), all tips and isolated edges
in the graph were removed. Red, blue and green feasible cycles in the graph spell out three
cyclopeptides shown in the bottom table along with their P-values. The red cycle spells out
surugamide.
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cyclopeptides containing 41 cyclofamilies. CycloNovo predicted a total of 12,004
cyclopeptide spectra representing 512 putative cyclopeptides forming 213 cyclofami-
lies. These putative cyclopeptides include 67 (37 cyclofamilies) of the 80 known
cyclopeptides. We showed that even in the case of the phyla with extensively analyzed
cyclopeptides (Cyanobacteria, Pseudomonas, and Actinomyces), only less than 30% of
the predicted cyclopeptides are already known.

Link to preprint version: https://www.biorxiv.org/content/10.1101/521872v2
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Understanding the relationship between biological sequences and the associated
phenotypes is a fundamental problem in molecular biology. Accordingly, machine
learning techniques have been developed to exploit the growing number of phe-
notypic sequences in automatic annotation tools. Typical applications include
classifying protein domains into superfamilies [6, 9], predicting whether a DNA
or RNA sequence binds to a protein [1], its splicing outcome [3], or its chro-
matin accessibility [4], predicting the resistance of a bacterial strain to a drug
[2], or denoising a ChIP-seq signal [5]. Choosing how to represent biological
sequences is a critical part of methods that predict phenotypes from genotypes.
Kernel-based methods [6, 9, 8] have often been used for this task. They have
been proven efficient to represent biological sequences in various tasks but only
construct fixed representations and lack scalability to large amount of data. By
contrast, convolutional neural networks (CNN) [1] have recently shown scalable
and able to optimize data representations for specific tasks. However, they typ-
ically lack interpretability and require large amounts of annotated data, which
motivates us to introduce more data-efficient approaches.

In this work we introduce CKN-seq, a strategy combining kernel methods
and deep neural networks for sequence modeling, by adapting the convolutional
kernel network (CKN) model originally developed for image data [7]. CKN-seq
relies on a convolutional kernel, a continuous relaxation of the mismatch kernel
[6], and the Nyström approximation. The relaxation makes it possible to learn
the kernel from data, and we provide an unsupervised and a supervised algorithm
to do so—the latter leading to a special case of CNNs.

On a transcription factor binding prediction task and a protein remote homol-
ogy detection task, both approaches show better performance than DeepBind,
another existing CNN [1], especially when the amount of training data is small.
On the other hand, the supervised algorithm produces task-specific and small-
dimensional sequence representations while the unsupervised version dominates
all other methods on small-scale problems but leads to higher dimensional rep-
resentations. Consequently, we introduce a hybrid approach which enjoys the
benefits of both supervised and unsupervised variants, namely the ability of
learning low-dimensional models with good prediction performance in all data
size regimes. Finally, the kernel point of view of our method provides us simple
ways to visualize and interpret our models, and obtain sequence logos. On some
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simulated data, the logos given by CKN-seq are more informative and match bet-
ter with the ground truth in terms of any probabilistic distance measures. We
provide a free implementation of CKN-seq for learning from biological sequences,
which can easily be adapted to other sequence prediction tasks and is available
at https://gitlab.inria.fr/dchen/CKN-seq.

The fact that CKNs retain the ability of CNNs to learn feature spaces from
large training sets of data while enjoying a reproducing kernel Hilbert space
structure has other uncharted applications which we would like to explore in
future work. First, it will allow us to leverage the existing literature on kernels
for biological sequences to define the bottom kernel instead of the mismatch
kernel, possibly capturing other aspects than sequence motifs. More generally,
it provides a straightforward way to build models for non-vector objects such
as graphs, taking as input molecules or protein structures. Finally, it paves the
way for making deep networks amenable to statistical analysis, in particular to
hypothesis testing. This important step would be complementary to the inter-
pretability aspect, and necessary to make deep networks a powerful tool for
molecular biology beyond prediction.

A full version of the paper is available at https://doi.org/10.1101/217257.
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1 Introduction

Single-cell RNA sequencing enables the construction of trajectories [1] describ-
ing the dynamic changes in gene expression underlying biological processes such
as cell differentiation and development. The comparison of single-cell trajecto-
ries under two distinct conditions can illuminate the differences and similari-
ties between the two and can thus be a powerful tool for analysis [2]. Recently
developed methods for the comparison of trajectories [2, 3] rely on the concept
of dynamic time warping (dtw), originally proposed for the comparison of two
time series and consequently restricted to simple, linear trajectories. Here, we
adopt and theoretically link arboreal matchings to dtw and implement a suite
of exact and heuristic algorithms suitable for the comparison of complex trajec-
tories of different characteristics in our tool Trajan (Fig. 1). Trajan’s alignment
enables the meaningful comparison of gene expression dynamics along a common
pseudo-time scale. Trajan is available at https://github.com/canzarlab/Trajan.

2 Methods

Dynamic time warping (dtw) is the algorithmic workhorse underlying current
methods that compare linear single-cell trajectories. We develop Trajan, the
first method to compare and align complex trajectories (trees) with multiple
branch points. Trajan aligns each path in one tree to at most one path in the
second tree and vice versa and, similar to dtw, preserves the order of nodes along
the paths. In [4] we have introduced arboreal matchings that formalize such a
consistent path-by-path alignment of trees.

We devise scoring schemes for arboreal matchings that yield (guaranteed)
similar distance measures between linear trajectories as dtw, but naturally

The full version of this paper is available as preprint at bioRxiv 522672.
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Fig. 1. Complex trajectories, reconstructed from single-cell RNA measurements using,
e.g., Monocle 2, are aligned by Trajan based on arboreal matchings. The matching
warps individual pseudo-time scales into a shared one along which expression kinetics
can be compared.

extend to complex trajectories. Trajan implements a thoroughly engineered
branch-and-cut algorithm that allows to practically compare complex single-
cell trajectories. It repeatedly determines cutting planes that strengthen the
LP relaxation in [4] in polynomial-time and uses an in-house developed, non-
commercial, non-linear solver for all continuous optimization problems. For
trajectories with a small number of cell fates k we employ a fixed-parameter
tractable algorithm, parameterized by k, that applies a dynamic program simi-
lar to [5] to align them optimally.

3 Results

Adopting a strategy similar to [2], we re-analyzed two public single-cell datasets:
human skeletal muscle myoblast (HSMM) differentiation and human fibroblasts
undergoing MYOD-mediated myogenic reprogramming (hFib-MyoD). Trajan is
able to align the core paths of each complex trajectory, without any previous
knowledge of myoblast differentiation markers. From Trajan’s alignment, we con-
struct gene expression kinetics for a set of genes that were assessed in [2] and are
able to reproduce their key findings, including the molecular barriers identified
in [2] that hinder the efficient reprogramming of fibroblasts to myotubes.

In a perturbation experiment we demonstrate the benefits in terms of robust-
ness and accuracy of our model which compares entire trajectories at once, as
opposed to a pairwise application of dtw.

Acknowledgments. Sören Laue has been funded by Deutsche Forschungsgemein-
schaft (DFG) under grant LA 2971/1-1. Mislav Blažević was supported in part by
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Abstract

Motivation. Single-cell RNA-sequencing (scRNA-seq) enables high through-
put measurement of RNA expression in individual cells. Due to technical and
financial limitations, scRNA-seq datasets often contain zero counts for many
transcripts in individual cells. These zero counts, or dropout events, complicate
the analysis of scRNA-seq data using standard analysis methods developed for
bulk RNA-seq data. Current methods for analysis of scRNA-seq data typically
overcome dropout by combining information across cells, leveraging the obser-
vation that the cells measured in any scRNA-seq experiment generally occupy a
small number of RNA expression states.

Results. We describe an algorithm to overcome dropout by combining
information across both cells and genes. Our algorithm, netNMF-sc, combines
network-regularized non-negative matrix factorization with a specialized proce-
dure to handle the large fraction of zero entries in the transcript count matrix.
The matrix factorization results in a low-dimensional representation of the tran-
script count matrix, while the network regularization encourages two genes con-
nected in the network to be close in the low-dimensional representation. In addi-
tion, the two matrix factors can be used to cluster cells and to impute val-
ues for dropout events. While our netNMF-sc algorithm may use any type of
network as prior information, a particularly promising approach is to leverage
tissue-specific gene-coexpression networks derived from the vast repository of
RNA-seq/microarray studies of bulk tissue.

We show that netNMF-sc outperforms existing methods in both clustering
cells and imputing transcript counts on simulated data. netNMF-sc’s advantages
were especially pronounced at high dropout rates e.g. above 60%. Such high

c© Springer Nature Switzerland AG 2019
L. J. Cowen (Ed.): RECOMB 2019, LNBI 11467, pp. 297–298, 2019.
https://doi.org/10.1007/978-3-030-17083-7

https://doi.org/10.1007/978-3-030-17083-7


298 R. Elyanow et al.

dropout rates are common in newer scRNA-seq technologies, such as from 10X
Genomics, that measure large number of cells with low sequence coverage per cell.
We also show that netNMF-sc outperforms existing methods on real scRNA-seq
datasets, including the clustering of mouse embryonic stem cells into cell-cycle
states and the clustering of mouse embryonic brain cells into known cell types.
Finally, we show that gene-gene correlations computed from the netNMF-sc
imputed data are more biologically meaningful than the gene-gene correlations
obtained from existing algorithms.

Availability. netNMF-sc is available at https://github.com/raphael-
group/netNMF-sc. The preprint is available at https://www.biorxiv.org/
content/10.1101/544346v1.
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1 Introduction

Single-cell RNA-sequencing (scRNA-seq) experiments that profile hundreds of
thousands of cells or more are becoming increasingly common. These large-scale
data sets present a key computational bottleneck for conventional scRNA-seq
analysis pipelines [1]. Standard methods of reducing the size of data sets, such
as uniform downsampling, frequently remove rare transcriptional states, miti-
gating the advantage that large-scale experiments provide. Here we present geo-
metric sketching, an efficient downsampling method that newly preserves the
transcriptional heterogeneity of single-cell data sets by sampling evenly across
transcriptomic space, thinning out dense clusters of common cells and preferen-
tially selecting cells from sparser regions.

We empirically demonstrate that geometric sketches represent the geome-
try rather than the density of the original data set. We show that our sketches
enhance and accelerate downstream analyses by: preserving rare cell types, pro-
ducing visualizations that capture the full transcriptomic heterogeneity, and
facilitating the identification of cell types via clustering. Geometric sketching
downsamples from data sets with millions of cells in a matter of minutes, with
an asymptotic runtime nearly linear in the size of the data set. As the size of
single-cell data grows, geometric sketching will become increasingly crucial for
broadening access to single-cell omics experiments even for researchers without
expensive computational resources. The full version of this paper can be found
at https://www.biorxiv.org/content/10.1101/536730v2.

2 Methods

Geometric sketching is based on the key insight that common cell types form
dense clusters in transcriptomic space, while rare cell types may occupy larger
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regions with much greater sparsity. To accurately summarize the transcriptomic
landscape, geometric sketching first obtains a geometric approximation of the
data set with equal-sized, non-overlapping, axis-aligned boxes (hypercubes),
which we refer to as a plaid covering (Fig. 1). Once the geometry of the data is
approximated with a set of covering boxes, we sample cells by uniformly sam-
pling a covering box, then choosing a cell in the box also uniformly at random.
The samples therefore more evenly cover the gene expression landscape, natu-
rally diminishing the influence of densely populated regions and increasing the
representation of rare transcriptional states.

The plaid covering generalizes grid-based approximation while maintaining
computational efficiency in assigning points to their respective covering box. To
obtain a plaid covering, we fix an interval length �, and for each coordinate con-
struct a minimal covering of the projected data with intervals of length �. The
Cartesian product of these coordinate-wise coverings yields a plaid covering of
the original data set by axis-aligned boxes of side length �. Note that after an
O(n log(n)) sorting operation, points can be assigned to boxes by rounding up
or down, yielding an overall O(n log(n)) runtime in each dimension. In practi-
cal scenarios where each coordinate requires only a small constant number of
intervals to cover, we achieve O(n) time complexity by using linear scans to
find the next interval without sorting. We perform a binary search to find the
value of � that produces the number of covering boxes that match the number
of samples to be taken. In addition, we use a fast random projection-based PCA
to project the data to a relatively low-dimensional space (100 dimensions in the
experiments below) before applying the sketching algorithm.

Fig. 1. Geometric sketches capture transcriptional heterogeneity. (A) An
illustration of the geometric sketching algorithm. (B) Geometric sketches more evenly
represent the transcriptomic landscape of a data set. Shown are the sketches of 20k
cells sampled from a mouse brain data set with 666k cells.
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3 Results

Visualizations of geometric sketches reflect the geometric “map” of the tran-
scriptional variability within a data set, allowing researchers to more easily gain
insight into rarer transcriptional states (Fig. 1). On data sets with three clusters
of similar volumes but different densities, our algorithm samples each cluster
with near equal probability (KL divergence = 0.063 versus ≥ 0.85 for other
sampling methods). Our algorithm also detects rare cell types in a variety of
settings: 293T cells mixed with Jurkat cells at a concentration of 0.66%, CD14+
monocytes at a concentration of 1.2%, and macrophages in a mouse brain data
set at a concentration of 0.27%. In all cases, rare cell types are substantially
better represented in geometric sketches than in subsamples made with other
methods, which include spatial random sampling [2] and k-means++ [3], which
have not been previously considered for the problem of subsampling scRNA-seq
data. Finally, Louvain clustering on data subsampled via geometric sketching
resulted in comparable or better agreement with known cell labels across a range
of Louvain resolution parameters.
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Extended Abstract

Current practices in collaborative genomic data analysis (e.g. PCAWG [1]) neces-
sitate all involved parties to exchange individual patient data and perform all
analysis locally, or use a trusted server for maintaining all data to perform anal-
ysis in a single site (e.g. the Cancer Genome Collaboratory [2]). Since both
approaches involve sharing genomic sequence data - which is typically not fea-
sible due to privacy issues, collaborative data analysis remains to be a rarity in
genomic medicine.

In order to facilitate efficient and effective collaborative or remote genomic
computation we introduce SkSES (Sketching algorithms for Secure Enclave based
genomic data analysiS), a computational framework for performing data anal-
ysis and querying on multiple, individually encrypted genomes from several
institutions in an untrusted cloud environment. Unlike other techniques for
secure/privacy preserving genomic data analysis, which typically rely on sophis-
ticated cryptographic techniques with prohibitively large computational over-
heads, SkSES utilizes the secure enclaves supported by current generation micro-
processor architectures such as Intel’s SGX. The key conceptual contribution of
SkSES is its use of sketching data structures that can fit in the limited memory
available in a secure enclave.

While streaming/sketching algorithms have been developed for many appli-
cations, their feasibility in genomics has remained largely unexplored. On the
other hand, even though privacy and security issues are becoming critical in
genomic medicine, available cryptographic techniques based on, e.g. homomor-
phic encryption, secure multi-party computing or garbled circuits, can not always
address the performance demands of this rapidly growing field [3–6]. The alter-
native offered by Intel’s SGX, a combination of hardware and software solu-
tions for secure data analysis, is severely limited by the relatively small size of a
secure enclave, a private region of the memory protected from other processes [7].
SkSES addresses this limitation through the use of sketching data structures to
support efficient secure and privacy preserving SNP analysis across individually
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encrypted VCF files from multiple institutions. In particular SkSES provides the
users the ability to query for the “k most significant SNPs” among any set of
user specified SNPs and any value of k - even when the total number of SNPs
to be maintained is far beyond the memory capacity of the secure enclave.

SkSES processes individual genomic data presented as VCF files from par-
ticipating parties who aim to perform collective statistical tests. For compacting
the input VCF files, SkSES uses a simple scheme to filter out non-essential com-
ponents of a VCF file and encode essential components efficiently - reducing the
storage and communication needs and speeding up encryption/decryption within
the framework. SkSES then builds a sketch of the compacted VCF files, based
on either the count-min sketch [8] or the count sketch [9] structures in order to
approximate the actual allele count distribution with respect to L1 measure (the
difference between case and control) - as a proxy to the χ2 statistic.

Results: We tested SkSES on the extended iDASH-2017 competition data
set comprised of 1000 case and 1000 control samples related to an unknown
phenotype. SkSES was able to identify the top SNPs with respect to the χ2

statistic, among any user specified subset of SNPs across this data set of 2000
individually encrypted complete human genomes quickly and accurately - sig-
nificantly improving our iDASH-2017 (http://www.humangenomeprivacy.org/
2017/) runner-up software for secure GWAS - demonstrating the feasibility of
secure and privacy preserving computation at human genome scale via Intel’s
SGX.

Availability: https://github.com/ndokmai/sgx-genome-variants-search
Full Text: https://www.biorxiv.org/content/early/2018/11/12/468355
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1 Introduction

A plethora of biological functions are performed through various types of protein-
peptide binding, e.g., protein kinase phosphorylation on peptide substrates.
Understanding the specificity of protein-peptide interactions is critical for unrav-
eling the architectures of functional pathways and the mechanisms of cellular
processes in human cells. A line of computational prediction methods has been
recently proposed to predict protein-peptide bindings which efficiently provide
rich functional annotations on a large scale. To achieve a high prediction accu-
racy, these computational methods require a sufficient amount of data to build
the prediction model. However, the number of experimentally verified protein-
peptide bindings is often limited in real cases. These methods are thus limited
to building accurate prediction models for only well-characterized proteins with
a large volume of known binding peptides and cannot be extended to predict
new binding peptides for less-studied proteins.

2 Methods

We propose a new two phases meta-learning framework, named MetaKinase,
for the prediction of kinase phosphorylation sites. In phase one, using multiple
training kinase families, we train a model which can generate more adaptable
representations which are broadly suitable for every kinase family (called meta-
learning). In phase two, using a few (e.g., <10) known phosphorylation sites
from a new target kinase family, we fine-tune the model on this target fam-
ily to capture its specificity. With the general patterns captured in phase one,
the adaption to the target family in phase two is very sample-efficient: we can
tweak the model by only using a few data points to make it family-specific and
accurately predict the specificity of the target family (called few-shot learning).
With its transferability and fast adaptability, our framework can thus be applied
to mitigate the data scarcity issue in characterizing specificities of less-studied
kinases. Even with only a few known phosphorylation sites, the model is still
able to accurately characterize the specificity of the target kinase family.
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3 Results

a b

Fig. 1. Evaluation of few-shot learning. MetaKinase was trained with data of multiple
kinase families in the meta-learning phase and fine-tuned in the few-shot learning phase
using k samples of the test family for k = 1, 2, . . . , 10.

We compared our framework with three baseline methods: pan-family app-
roach (one prediction model for all kinase families), K-nearest neighbor, and
MusiteDeep [1]. We varied the value of k-shot from 0 to 10 (0-shot means the
model was trained on training family only), and for each value of k, we randomly
sampled k samples from the target family and used the remaining samples as
test data. The process was repeated for 50 times for each value of k. We used the
AUROC and AUPRC scores as the evaluation metrics and showed the results in
Fig. 1. We first observed that MetaKinase outperformed other methods for each
value of k in terms of both AUROC and AUPRC scores. In addition, while other
methods had relatively similar prediction performance as the number of k-shot
increased, we observed that the improvement was clear for MetaKinase when
more k-shot samples were provided. Our framework also achieved fast adap-
tion to a target family. For example, the predictor had a 0.316 AUPRC score
when using 2-shot samples in the few-shot learning phase, which was closed
to AUPRC score achieved with 10-shot (0.338). These results demonstrated the
transferability and fast-learning ability of MetaKinase. The full paper describing
MetaKinase is available at [2].
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While complex traits are highly heritable, individual genetic polymorphisms
typically explain only a small proportion of the heritability [1]. Polygenic scores
(PS), also known as polygenic risk scores for disease phenotypes, aggregate the
contributions of multiple genetic variants to a phenotype [2]. These scores can
be calculated using routinely recorded genotypes [1, 2], are strongly associated
with heritable traits [1], and are independent of environmental exposures or other
factors that are uncorrelated with germ line genetic variants. These properties
have motivated a rapidly expanding list of applications from basic science (e.g.
causal inference and Mendelian randomization [3], hierarchical disease models
and identification of pleiotropy [4]) to translation (e.g. estimating disease risk
[5], identifying patients who are likely to respond well to a particular therapy
[6], or flagging subjects for modified screening [7]).

Polygenic scores are calculated as a weighted sum of genotypes. This may
include all genotyped SNPs, but often only a small set is given nonzero weight
– such as a genome spanning but uncorrelated (LD-pruned) set or SNPs with
independent evidence of association with the phenotype of interest. Gene-specific
polygenic score are also generated using selected sets of SNPs within a region of
the genome, such as a window around the coding region of a particular gene [8].
The weights on the SNPs included in a polygenic score are often derived from
the regression coefficients of an external GWAS [9, 10], but they may instead
be based on predictive models using all SNPs. Joint predictive models include
LMMs and their sparse extensions and other regularized regression models such
as the lasso or elastic net [8, 11]. The predictions from these joint analyses
using genome wide variation are also approximated by post-processing of GWAS
summary statistics [8, 11].
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For these SNP-weights to accurately reflect the SNPs’ joint association with
the phenotype and to generate informative and interpretable polygenic scores,
the reference data set must match the target data set in many ways: the popu-
lations must have similar ancestry; the trait of interest must be measured; and
identical genotypes must be assayed or imputed. Further, the reference data must
be large enough to accurately learn the PS weights. An alternative approach is
to use the studied data set to build a reference-free PS. This eliminates the need
for an external reference data set with matched genotypes, phenotypes, and pop-
ulations. However, as we show below, naive approaches can easily overfit genetic
effects. This overfitting results in PS correlated with non-genetic components of
phenotype, that will induce bias or other errors in downstream applications.

Here we report an efficient method to generate PS by using the out-of-sample
predictions from a cross-validated linear mixed model (LMM). Our approach
generates leave-one-out (LOO) polygenic scores, which we call cvBLUPs after a
single LMM fit, with computational complexity linear in sample size. In addition
to eliminating the reliance on external data and guaranteeing the PS are gener-
ated from a relevant population and phenotype, we describe several applications
that are only feasible with cvBLUPs. We first demonstrate several desirable sta-
tistical properties of cvBLUPs and then consider applications including evidence
of polygenicity across metabolic phenotypes, estimation of the shrink term in lin-
ear mixed models, a novel formulation of mixed model association studies, and
selection of relevant principal components for downstream analyses. To make
the results of this work accessible to the community, we have implemented them
in the GCTA software package [12].

Full paper on bioRxiv at: https://doi.org/10.1101/517821
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Abstract

Background: Determining the clonal composition and somatic evolution of a
tumor greatly aids in accurate prognosis and effective treatment for cancer. In
order to understand how a tumor evolves over time and/or in response to treat-
ment, multiple recent studies have performed longitudinal DNA sequencing of
tumor samples from the same patient at several different time points. However,
none of the existing algorithms that infer clonal composition and phylogeny using
several bulk tumor samples from the same patient integrate the information that
these samples were obtained from longitudinal observations.

Results: We introduce a model for a longitudinally-observed phylogeny
and derive constraints that longitudinal samples impose on the reconstruc-
tion of a phylogeny from bulk samples. These constraints form the basis for
a new algorithm, Cancer Analysis of Longitudinal Data through Evolutionary
Reconstruction (CALDER), which infers phylogenetic trees from longitudinal
bulk DNA sequencing data. We show on simulated data that constraints from
longitudinal sampling can substantially reduce ambiguity when deriving a phy-
logeny from multiple bulk tumor samples, each a mixture of tumor clones. On real
data, where there is often considerable uncertainty in the clonal composition of a
sample, longitudinal constraints yield more parsimonious phylogenies with fewer
tumor clones per sample. We demonstrate that CALDER reconstructs more
plausible phylogenies than existing methods on two longitudinal DNA sequenc-
ing datasets from chronic lymphocytic leukemia patients. These findings show
the advantages of directly incorporating temporal information from longitudinal
sampling into tumor evolution studies.

Availability: CALDER is available at https://github.com/raphael-group.
Preprint: Preprint version of the full manuscript is available at https://

www.biorxiv.org/content/10.1101/526814v1.
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A central question in human genetics is to find the proportion of variation in a
trait that can be explained by genetic variation [1]. A number of methods have
been developed to estimate this quantity, termed narrow-sense heritability, from
genome-wide SNP data [2–6]. Recently, it has become clear that estimates of
narrow-sense heritability are sensitive to modeling assumptions that relate the
effect sizes of a SNP to its minor allele frequency (MAF) and linkage disequilib-
rium (LD) patterns [6, 7]. A principled approach to estimate heritability while
accounting for variation in SNP effect sizes involves the application of linear
Mixed Models (LMMs) [8] with multiple variance components where each vari-
ance component represents the fraction of genetic variance explained by SNPs
that belong to a given range of MAF and LD values. Beyond their importance
in accurately estimating genome-wide SNP heritability, multiple variance com-
ponent LMMs are useful in partitioning the contribution of genomic annotations
to trait heritability which, in turn, can provide insights into biological processes
that are associated with the trait.

Existing methods for fitting multi-component LMMs rely on maximizing the
likelihood of the variance components. These methods pose major computa-
tional bottlenecks that makes it challenging to apply them to large-scale genomic
datasets such as the UK Biobank which contains half a million individuals geno-
typed at tens of millions of SNPs.

We propose a scalable algorithm, RHE-reg-mc, to jointly estimate
multiple variance components in LMMs. RHE-reg-mc is a randomized
method-of-moments estimator with a runtime that is observed to scale as
O( NMB

max(log3(N),log3(M)) +k3) for N individuals, M SNPs, k variance components,
and B ≈ 10, a parameter that controls the number of random matrix-vector
multiplication. RHE-reg-mc also efficiently computes asymptotic and jackknife
standard errors. We evaluate the accuracy and scalability of RHE-reg-mc
for estimating the total heritability as well as in partitioning heritability.
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The ability to fit multiple variance components to SNPs partitioned according to
their MAF and local LD allows RHE-reg-mc to obtain relatively unbiased esti-
mates of SNP heritability. On the UK Biobank dataset consisting of ≈ 300, 000
individuals and ≈ 500, 000 SNPs, RHE-reg-mc can fit 250 variance components,
corresponding to genetic variance explained by 10 MB blocks, in ≈ 40 minutes on
standard hardware. The full version of the paper is available at: http://biorxiv.
org/cgi/content/short/522003v2.
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Extended Abstract

We consider the following problem: Let I and If each describe a collection of
n and m non-overlapping intervals on a line segment of finite length. Suppose
that k of the m intervals of If are intersected by some interval(s) in I. Under
the null hypothesis that intervals in I are randomly arranged w.r.t If , what
is the significance of this overlap? This is a natural abstraction of statistical
questions that are ubiquitous in the post-genomic era. The interval collections
represent annotations that reveal structural or functional regions of the genome,
and overlap statistics can provide insight into the correlation between different
structural and functional regions. However, the statistics of interval overlaps
have not been systematically explored. We propose a combinatorial algorithm
for a constrained interval overlap problem that can accurately compute very
small p-values. Specifically, we define N(i, h, k, a) as the number of randomized
arrangements of the first i intervals in I such that the i-th interval ends at
genomic location h, and k intervals in If are hit by the first i intervals in I
(a is an auxiliary binary variable). Assuming that the order of intervals in I is
retained, N(i, h, k, a) is computed using a dynamic programming algorithm in
pseudo-polynomial time O(ngm) [1], where n and m are the number of intervals
in I and If , and g is the genome length. The p-value of the overlap is then given
by

P -value(k) =
∑m

κ=k N1(n, g, κ, 0)
∑m

κ=0 N1(n, g, κ, 0)
.

We have also provided a fast approximate method based on Poisson binomial
distribution to facilitate problems consisted of very large number of intervals,
and have introduced parameter η as a measure of the spread of intervals to
estimate the closeness of approximated p-values.

We tested our tool, iStat, on simulated interval data to obtain precise esti-
mates of low p-values, and characterize the performance of our methods. We also
applied iStat to four cases of interval overlap problem from previous studies,
and showed that iStat can estimate very small p-values, considering the length
c© Springer Nature Switzerland AG 2019
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and structure of intervals, while avoiding inflated p-values reported from basic
permutation or parametric tests. The iStat software is made publicly available
on Github (https://github.com/shahab-sarmashghi/ISTAT.git).
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DNA methylation remains one of the most widely studied epigenetic markers.
One of the major challenges in population studies of methylation is the presence
of global methylation effects that may mask local signals [1, 2]. Such global
effects may be due to either technical effects (e.g., batch effects) or biological
effects (e.g., cell type composition, genetics). Many methods have been developed
for the detection of such global effects, typically in the context of Epigenome-
wide association studies [3–9]. However, current unsupervised methods do not
distinguish between biological and technical effects, resulting in a loss of highly
relevant information. Though supervised methods can be used to estimate known
biological effects, it remains difficult to identify and estimate unknown biological
effects that globally affect the methylome.

Here, we propose CONFINED (CCA ON Features for INter- dataset Effect
Detection), a reference-free method based on sparse canonical correlation analy-
sis (CCA) that captures replicable sources of variation across multiple methyla-
tion datasets such as age, sex, and cell-type composition and distinguishes them
from dataset-specific sources of variability (e.g., technical effects). Our method
is based on the observation that the same biological sources of variation typically
affect different studies that are performed under the same conditions (e.g., on the
same tissue type), while technical variability is study-specific. Thus, unlike pre-
vious unsupervised methods that utilize single-matrix decomposition techniques
to account for covariates in methylation data, we propose the use of canoni-
cal correlation analysis, which captures shared signal across multiple datasets.
Nonetheless, there are two substantial differences between CONFINED and tra-
ditional uses of CCA in genomic studies. First, CONFINED looks for shared
structure of one methylation profile across two sets of individuals rather than
looking for shared structure in one set of individuals across two sets of genomic
measurements. Second, CONFINED performs a feature selection procedure that
is critical to detect the shared sources of variability across the different datasets.
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Across several datasets we demonstrate that CONFINED accurately cap-
tures global biological sources of variability. Specifically, we shrow through sim-
ulated and real data that our approach captures replicable sources of biological
variation such as age, sex, and cell-type composition better than the state-of-
the-art methods and is considerably more robust to technical noise than previous
reference-free methods. Additionally, we demonstrate that the features selected
by CONFINED recapitulate biological functionality inherent to both datasets.
For example, when pairing two whole-blood datasets together, the sites best
ranked by CONFINED were significantly enriched for immune cell function.

CONFINED is available at https://github.com/cozygene/CONFINED as an
R package. The calculations in the R package were optimized with C++ code
using Rcpp and RcppArmadillo. Also included in the package is an ultra-fast
function for performing CCA. The preprint of the manuscript can be found at
https://www.biorxiv.org/content/early/2019/01/16/521146.
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1 Introduction

Molecular interaction networks are our basis for understanding functional inter-
dependencies among genes. Network embedding approaches analyze these com-
plicated networks by representing genes as low-dimensional vectors based on
the network topology. These low-dimensional vectors have recently become the
building blocks for a larger number of systems biology applications. Despite
the success of embedding genes in this way, it remains unclear how to effec-
tively represent gene sets, such as protein complexes and signaling pathways.
The direct adaptation of existing gene embedding approaches to gene sets can-
not model the diverse functions of genes in a set. Here, we propose GRep, a
novel gene set embedding approach, which represents each gene set as a multi-
variate Gaussian distribution rather than a single point in the low-dimensional
space. The diversity of genes in a set, or the uncertainty of their contribution
to a particular function, is modeled by the covariance matrix of the multivari-
ate Gaussian distribution. By doing so, GRep produces a highly informative and
compact gene set representation. Using our representation, we analyze two major
pharmacogenomics studies and observe substantial improvement in drug target
identification from expression-derived gene sets. Overall, the GRep framework
provides a novel representation of gene sets that can be used as input features
to off-the-shelf machine learning classifiers for gene set analysis. A full version
of the paper can be found on bioRxiv https://www.biorxiv.org/content/early/
2019/01/13/519033.

2 Methods

Biologically meaningful gene sets, such as signaling pathways and protein com-
plexes, aggregate gene level information into higher level patterns. A key obser-
vation behind our approach is that gene sets can have diverse molecular func-
tions and/or biological processes. GRep explicitly models this diversity as a low-
dimensional Gaussian distribution which summarizes both location and uncer-
tainty of each dimension. To summarize, GRep takes a network and a collection
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of gene sets as input. It first calculates the diffusion states of each gene and gene
set to characterize their topological information in the network. GRep then finds
the low-dimensional representations for genes and gene sets according to these
diffusion states. Each gene is represented as a single point in the low-dimensional
space. Each gene set is represented as a multivariate Gaussian distribution which
is parameterized by a mean vector and a covariance matrix. In this paper, we
present GRep (Gene set Representation), a novel computational method that
represents each gene set as a highly informative and compact multivariate Gaus-
sian distribution. GRep takes a biological network and a collection of gene sets
as input. It represents each gene as a single point and each gene set as a multi-
variate Gaussian distribution parameterized by a low-dimensional mean vector
and a low-dimensional covariance matrix. The mean vector of each gene set
describes the joint contribution of genes in this gene set, and the covariance
matrix characterizes the agreement among individual genes in each dimension.
By using this representation, GRep is able to differentiate between gene sets
that would be considered equivalent by average embedding. The key idea of
GRep is to use the prior knowledge in gene sets and group genes in the same
set closely as a multivariate Gaussian distribution in the low-dimensional space.
To achieve this, GRep solves an optimization problem to preserve the network
topology according to diffusion states. We evaluate GRep on a collection of drug
response correlated gene sets derived from Genomics of Drug Sensitivity in Can-
cer (GDSC) and The Cancer Therapeutic Portal (CTRP). We demonstrate that
representing those gene sets using GRep substantially outperforms comparison
approaches on drug-target identification in both datasets.

3 Results

To evaluate GRep, we performed large-scale drug target identification on two
pharmacogenomics studies, GDSC and CTRP. Our approach significantly out-
performs comparison approaches on both datasets. In CTRP, our method
achieved 0.8667 AUROC, which is much higher than 0.7102 AUROC of plain
average embedding, 0.7104 of weighted gene set average embedding and 0.7319
AUROC of weighted average embedding. The same improvement was observed
on GDSC where our method achieved 0.8890 AUROC, which is again substan-
tially higher than 0.6870 AUROC of plain average embedding, 0.7325 of weighted
average embedding and 0.6870 AUROC of weighted gene set average embed-
ding. All improvements were statistically significant (P < 0.05; paired Wilcoxon
signed-rank test). The above results suggest that representing a gene set through
simple averaging is not able to modeling uncertainty, leading to worse perfor-
mance. By incorporating prior knowledge about gene sets and jointly optimizing
the gene and gene set representations, our method substantially improved drug
target identification.
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Extended Abstract

Recent technological advances have facilitated unprecedented opportunities for
studying biological systems at single-cell level resolution. One notable example
is single-cell RNA sequencing (scRNA-seq), which enables the measurement of
transcriptomic information of thousands of individual cells in one experiment.
Single cell measurements open the ability of capturing the heterogeneity of a
population of cells and thus provide information that is not accessible using
bulk sequencing. Among its many applications, scRNA-seq is more prominently
employed in the identification of sub-populations of cells present in a sample,
and for comparative analysis of such sub-populations across samples [3–6, 8–11].

We report PopCorn (single cell Populations Comparison)– a new method
allowing for the identification of sub-populations of cells present within individ-
ual experiments and their mapping across experiments. PopCorn uses several
innovative ideas to perform this task accurately. First, in contrast to previous
approaches, PopCorn performs the two tasks (sub-population identification and
mapping) simultaneously by optimizing a function that combines both objec-
tives. This allows for integrating information across experiments and reducing
noise. The second key innovation consists of a new approach to identify sub-
populations of cells within a given experiment. Specifically, PopCorn utilizes
Personalized PageRank vectors [1] and a quality measure of cohesiveness of a
cell population to perform this task. Finally, the simultaneous identification of
sub-populations within each experiment and their mapping across experiments
uses a graph theoretical approach.

We tested the performance of PopCorn in two distinct settings. We demon-
strated its potential in identifying and aligning sub-populations informed by sin-
gle cell data from human and mouse pancreatic singe cell data [2]. In addition,
we applied PopCorn to the task of aligning biological replicates of mouse kidney
single cell data [7]. In both scenarios PopCorn achieved a striking improvement
over alternative tools.

Taken together, our results demonstrate that PopCorn’s novel approach pro-
vides a powerful tool for comparative analysis of single-cells sub-populations.
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The preprint of the manuscript is available at https://www.biorxiv.org/content/
early/2018/12/28/485979.article-metrics.
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Genetic correlation, i.e., the proportion of phenotypic correlation across a pair
of traits that can be explained by genetic variation, is an important parameter in
efforts to understand the relationships among complex traits [1]. The observation
of substantial genetic correlation across a pair of traits, can provide insights into
shared genetic pathways as well as providing a starting point to investigate
causal relationships. Attempts to estimate genetic correlations among complex
phenotypes attributable to genome-wide SNP variation data have motivated the
analysis of large datasets as well as the development of sophisticated methods.

Bi-variate Linear Mixed Models (LMMs) have emerged as a key tool to esti-
mate genetic correlation from datasets where individual genotypes and traits
are measured [2]. The bi-variate LMM jointly models the effect sizes of a given
SNP on each of the pair of traits being analyzed. The parameters of the bi-
variate LMM, i.e., the variance components, are related to the heritability of
each trait as well as correlation across traits attributable to genotyped SNPs. The
most commonly used method for estimating genetic correlation as well as trait
heritabilities in a bi-variate LMM relies on the restricted maximize likelihood
method, termed genomic restricted maximum likelihood (GREML) [3–6] How-
ever, GREML poses serious computational burdens. GREML is a non-convex
optimization problem that relies on an iterative optimization algorithm.

Another state-of-the-art method, LD-score regression (LDSC), requires only
summary statistics from genome-wide association studies (GWAS) to estimate
genetic correlations [1]. As LD-score preserves privacy and has substantially
reduced computational requirements (assuming that the summary statistics have
been computed), LDSC has some drawbacks: its estimates tend to have large
standard errors and is prone to bias in some settings [7].

We propose, RG-Cor, a scalable randomized Method-of-Moments (MoM)
estimator of genetic correlations in bi-variate LMMs. RG-Cor leverages the
structure of genotype data to obtain runtimes that scale sub-linearly with the
number of individuals in the input dataset (assuming the number of SNPs is
held constant). We perform extensive simulations to validate the accuracy and
scalability of RG-Cor. Compared to GREML estimators, we show that the loss in
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statistical inefficiency of RG-Cor is fairly modest. On the other hand, RG-Cor is
several orders of magnitude faster than other methods. RG-Cor can compute the
genetic correlations on the UK biobank dataset consisting of 430,000 individuals
and 460,000 SNPs in 3 hours on a stand-alone compute machine.

Link to the full paper: https://www.biorxiv.org/content/early/2019/01/20/
525055
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Accurate description of protein structure and function is a fundamental step towards
understanding biological life and highly relevant in the development of therapeutics.
Although greatly improved, experimental protein structure determination is still low-
throughput and costly, especially for membrane proteins. Predicting the structure of a
protein with a new fold is very challenging and usually needs a large amount of
computing power. We show that we can accurately predict the distance matrix of a
protein by deep learning (DL), even for proteins with few sequence homologs. Using
only the geometric constraints given by the resulting distance matrix we may construct
3D models without involving any folding simulation.

This work is an extension of our previous CASP-winning deep learning method
RaptorX-Contact [1] that uses deep and global (or fully) convolutional residual neural
network (ResNet) to predict protein contacts. ResNet is one type of DCNN (deep
convolutional neural network), but much more powerful than the traditional DCNN.
RaptorX-Contact is the first DL method that greatly outperforms DCA (direct coupling
analysis) and shallow learning methods such as the CASP11 winner MetaPSICOV. The
accuracy of RaptorX-Contact decreases much more slowly than DCA when more
predicted contacts are evaluated even when the protein under study has thousands of
sequence homologs (see Table 1 in the paper [1]). As reported in [1, 2], without folding
simulation, RaptorX-Contact may produce much better 3D models than DCA methods
such as CCMpred and shallow methods such as MetaPSICOV. RaptorX-Contact also
works well for membrane proteins even trained by soluble proteins [2] and for complex
contact prediction even trained by single-chain proteins [3]. Inspired by the success of
RaptorX-Contact, many CASP13 participants have adopted global ResNet or DCNN
into their prediction pipeline, as shown in the CASP13 abstract book, and made very
good progress. As a result, CASP13 has achieved the largest progress in the history of
CASP.

Instead of contact prediction, here we study distance prediction. The distance
matrix contains finer-grained information than contact matrix and provides more
physical constraints of a protein structure, e.g., distance is metric while contact is not.
A distance matrix can determine a protein structure (except mirror image) much more
accurately than a contact matrix. Different from DCA that aims to predict only a small
number of contacts and then use them to assist folding simulation, we predict the whole
distance matrix and then directly construct protein 3D models without invoking any
folding simulation at all. This significantly reduces running time needed for protein
folding, especially for a large protein. Distance prediction is not totally new. In addition

© Springer Nature Switzerland AG 2019
L. J. Cowen (Ed.): RECOMB 2019, LNBI 11467, pp. 324–325, 2019.
https://doi.org/10.1007/978-3-030-17083-7

https://doi.org/10.1007/978-3-030-17083-7


to few previous studies, my group employed a probabilistic neural network to predict
inter-residue distance and then derived protein- and position-specific statistical
potential from predicted distance distribution [4]. We have also studied folding sim-
ulation using this distance-based statistical potential [5]. Recently, we showed that
protein-specific distance potential derived from deep ResNet may improve by a large
margin protein threading with weakly similar templates [6].

We feed our predicted distance into CNS to generate 3D models for a protein under
prediction. Our method successfully folded 21 of the 37 CASP12 hard targets with a
median family size of 58 effective sequence homologs within 4 h on a Linux computer
of 20 CPUs. In contrast, DCA cannot fold any of these hard targets in the absence of
folding simulation, and the best CASP12 group folded only 11 of them by integrating
DCA-predicted contacts into complex, fragment-based folding simulation. Rigorous
experimental validation in CASP13 shows that our distance-based folding server
successfully folded 17 of 32 hard targets (with a median family size of 36 sequence
homologs) and obtained 70% precision on top L/5 long-range predicted contacts. In
CASP13, our method was officially ranked first in terms of contact prediction accuracy
among all CASP13 groups and our server was ranked second among all CASP13-
participating servers in terms of tertiary structure prediction.

An extended version of this abstract is available at https://www.biorxiv.org/content/
early/2018/12/20/465955 and https://arxiv.org/abs/1811.03481.
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Recent developments in whole-genome mapping approaches for the chromatin
interactome (such as Hi-C) have facilitated the identification of genome-wide
three-dimensional (3D) chromatin organizations comprehensively, and offered
new insights into 3D genome architecture. However, our knowledge of the evo-
lutionary patterns of 3D genome structures in mammalian species remains sur-
prisingly limited. In particular, there are no existing phylogenetic-model based
methods to analyze chromatin interactions as continuous features across different
species to uncover evolutionary patterns of 3D genome organization.

Here we develop a new probabilistic model, named phylogenetic hidden
Markov random field (Phylo-HMRF), to identify evolutionary patterns of 3D
genome structures based on multi-species Hi-C data by jointly utilizing spa-
tial constraints among genomic loci and continuous-trait evolutionary mod-
els. Specifically, Phylo-HMRF integrates the continuous-trait evolutionary con-
straints (based on Ornstein-Uhlenbeck process in this work) with the hidden
Markov random field (HMRF) model, enabling the joint modeling of general
types of spatial dependencies among genomic loci and evolutionary temporal
dependencies among species. The overview of Phylo-HMRF is shown in Fig. 1.
The effectiveness of Phylo-HMRF is demonstrated in both simulation evalua-
tion and application to real Hi-C data. We used Phylo-HMRF to uncover cross-
species 3D genome patterns based on Hi-C data from the same cell type in
four primate species (human, chimpanzee, bonobo, and gorilla). Phylo-HMRF
identified genome-wide evolutionary patterns of Hi-C contact frequency across
the four species, including conserved patterns and lineage-specific patterns. The
identified evolutionary patterns of 3D genome organization correlate with other
features of genome structure and function, including long-range interactions,
topologically-associating domains (TADs), and replication timing patterns.

This work provides a new framework that utilizes general types of spatial
constraints to identify evolutionary patterns of continuous genomic features and
has the potential to reveal the evolutionary principles of 3D genome organization.

Link to the bioRxiv preprint: doi: http://doi.org/10.1101/552505.
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Fig. 1. Overview of Phylo-HMRF. (A) Illustration of the possible evolutionary pat-
terns of chromatin interaction. The Hi-C space is a combined multi-species Hi-C con-
tact map, which integrates aligned Hi-C contact maps of each species. Each node
represents the multi-species observations of Hi-C contact frequency between a pair of
genomic loci, with a hidden state assigned. Nodes with the same color have the same
hidden state and are associated with the same type of evolutionary pattern represented
by a parameterized phylogenetic tree ψi. The parameters of ψi include the selection
strengths αi, Brownian motion intensities σi, and the optimal values θi based on the
Ornstein-Uhlenback (OU) process assumption. (B) Illustration of the OU process over
a phylogenetic tree with four observed species. Time axis represents the evolution his-
tory. X(t) represents the trait at time t. The trajectories reflect the evolution of the
continuous-trait features in different lineages, where the time points t1, t2, t3 represent
the speciation events. (C) A cartoon example of the possible evolutionary patterns
(partitioned with different colors). Phylo-HMRF aims to identify evolutionary Hi-C
contact patterns among four primate species in this work. The four Hi-C contact maps
represent the observations from the four species, which are combined into one multi-
species Hi-C map as the input to Phylo-HMRF, as shown in (A). The phylogenetic
tree of the four species in this study is on the left. The partitions with green borders
are conserved Hi-C contact patterns. The partitions with red or blue borders represent
lineage-specific Hi-C contact patterns.
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Extended Abstract

Single-cell technologies have seen widespread adoption in recent years. The
datasets generated by these technologies provide information on up to millions
or more individual cells; however, the identities of the cells are often only deter-
mined computationally. Single-cell computational pipelines involve two critical
steps: organizing the cells in a biologically meaningful way (clustering) and iden-
tifying the markers driving this organization (differential expression analysis).
Because clustering algorithms force separation, performing differential expres-
sion analysis after clustering on the same dataset will generate artificially low
p-values, potentially resulting in false discoveries.

While several differential expression methods exist, as a motivating exam-
ple we consider the classic Student’s t-test introduced in 1908 [2]. The t-test
was devised for controlled experiments where the hypothesis to be tested was
defined before the experiments were carried out. For example, to test the efficacy
of a drug, the researcher would randomly assign individuals to case and control
groups, administer the placebo or the drug, and take a set of measurements.
Because the populations were clearly defined a priori, so was the null hypothesis.
Therefore, under the null hypothesis where no effect exists, the mean measure-
ment should be the same across the two populations, and the p-value should be
uniformly distributed between 0 and 1.

For single-cell analysis, however, the populations are often obtained after
the measurements are taken, via clustering, and therefore we can expect the
t-test to return significant p-values even if the null hypothesis was true. Figure 1
shows how a measurement, such as expression of a gene, is deemed significantly
different between two clusters even though all samples came from the same
normal distribution. The clustering introduces a selection bias [1, 3] that would
result in several false discoveries if uncorrected.

In this work, we introduce the truncated normal (TN) test, an approximate
test based on the truncated normal distribution that corrects for a significant
portion of the selection bias generated by clustering. We condition on the cluster-
ing event using the hyperplane that separates the clusters. By incorporating this

Full paper available at https://www.biorxiv.org/content/early/2018/11/05/463265.
Code provided at https://github.com/jessemzhang/tn test.
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hyperplane into our null model, we can obtain a uniformly distributed p-value
even in the presence of clustering (Fig. 1). To our knowledge, the TN test is the
first test to correct for clustering bias while addressing the differential expression
question: is this feature significantly different between the two clusters? Based
on the TN test, we provide a data-splitting based framework that allows us to
generate valid p-values for differential expression of genes for clusters obtained
from any clustering algorithm. We validate the method using both synthetic and
real data, such as the peripheral blood mononuclear cell (PBMC) dataset gen-
erated using recent techniques developed by 10x Genomics [4], and we compare
the method to several existing differential expression methods.

Fig. 1. Artificially low p-values due to clustering. Although the 500 samples are drawn
from the same N (µ, 1) distribution, our simple clustering approach will always generate
two clusters that seem significantly different under the t-test. In this work, we explore
an approach for correcting the selection bias due to clustering. In other words, we
attempt to close the gap between the blue and green curves in the rightmost plot. We
introduce the TN test, which generates significantly more reasonable p-values.
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Introduction. Multiple hypothesis testing is an essential component in many
modern data analysis workflows. A very common objective is to maximize the
number of discoveries while controlling the fraction of false discoveries. For exam-
ple, we may want to identify as many genes as possible that are differentially
expressed between two populations such that less than, say, 10% of these iden-
tified genes are false positives.

In the standard setting, the data for each hypothesis is summarized by
a p-value, with a smaller value presenting stronger evidence against the null
hypothesis that there is no association. Commonly-used procedures such as the
Benjamini-Hochberg procedure (BH) [1] works solely with this list of p-values
[3, 7]. Despite being widely used, these multiple testing procedures fail to utilize
additional information that is often available in modern applications that are
not directly captured by the p-value.

For example, in expression quantitative trait loci (eQTL) mapping or
genome-wide association studies (GWAS), single nucleotide polymorphism
(SNP) in active chromatin state are more likely to be significantly associated
with the phenotype [2]. Such chromatin information is readily available in public
databases, but is not used by standard multiple hypothesis testing procedures—
it is sometimes used for post-hoc biological interpretation. Similarly, the location
of the SNP, its conservation score, etc., can alter the likelihood for the SNP to
be an eQTL. Together such additional information, called covariates, forms a
feature representation of the hypothesis; this feature vector is ignored by the
standard multiple hypothesis testing procedures.

In this paper, we present AdaFDR, a fast and flexible method that adaptively
learns the decision threshold from covariates to significantly improve the detec-
tion power while having the false discovery proportion (FDP) controlled at a
user-specified level. A schematic diagram for AdaFDR is shown in Fig. 1.

Full paper available at https://www.biorxiv.org/content/early/2018/12/13/496372.
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AdaFDR takes as input a list of hypotheses, each with a p-value and a covari-
ate vector. Conventional methods like BH use only p-values and have the same
p-value threshold for all hypotheses (Fig. 1 top right). However, as illustrated
in the bottom-left panel, the data may have an enrichment of small p-values
for certain values of the covariate, which suggests an enrichment of alterna-
tive hypotheses around these covariate values. Intuitively, allocating more FDR
budget to hypothesis with such covariates could increase the detection power.
AdaFDR adaptively learns such pattern using both p-values and covariates, result-
ing in a covariate-dependent threshold that makes more discoveries under the
same FDP constraint (Fig. 1 bottom right).
Methods. AdaFDR extends conventional procedures like BH and Storey-BH [1, 7]
by considering multiple hypothesis testing with side information on the hypothe-
ses. The input of AdaFDR is a set of hypotheses each with a p-value and a vec-
tor of covariates, whereas the output is a set of selected (also called rejected)
hypotheses. For eQTL analysis, each hypothesis is one pair of SNP and gene,
and the p-value tests for association between their values across samples. The
covariate can be the location, conservation, and chromatin status at the SNP
and the gene. The standard assumption of AdaFDR and all the related methods
is that the covariates should not affect the p-values under the null hypothesis.
AdaFDR learns the covariate-dependent p-value selection threshold by first fit-

Fig. 1. Intuition of AdaFDR. Top-left: As input, AdaFDR takes a list of hypotheses, each
with a p-value and a covariate that may be multi-dimensional. Bottom-left: A toy
example with a univariate covariate. The enrichment of small p-values in the bottom
right corner suggests more alternative hypotheses there. Leveraging this structure can
lead to more discoveries. Top-right: Conventional method uses only p-values and has the
same threshold for all hypotheses. Bottom-right: AdaFDR adaptively learns the uneven
distribution of the alternative hypotheses, and makes more discoveries while controlling
the false discovery proportion (FDP) at the desired level (0.1 in this case).
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ting a mixture model using expectation maximization (EM) algorithm, where
the mixture model is a combination of a generalized linear model (GLM) and
Gaussian mixtures. Then it makes local adjustments to the p-value threshold
by optimizing for more discoveries. We prove that AdaFDR controls FDP under
standard statistical assumptions. AdaFDR is designed to be fast and flexible — it
can simultaneously process more than 100 million hypotheses within an hour and
allows multi-dimensional covariates with both numeric and categorical values.
In addition, AdaFDR provides exploratory plots visualizing how each covariate
is related to the significance of the hypotheses, allowing users to interpret their
findings.
Results. We systematically evaluate the performance of AdaFDR across multiple
datasets. We first consider the problem of eQTL discovery using the data from
the Genotype-Tissue Expression (GTEx) project [2]. As covariates, we consider
the distance between the SNP and the gene, the gene expression level, the alter-
native allele frequency as well as the chromatin states of the SNP. Across all
17 tissues considered in the study, AdaFDR has an improvement of 32% over BH
and 27% over the state-of-art covariate-adaptive method independent hypothesis
weighting (IHW) [4]. We next consider other applications, including three RNA-
Seq datasets with the gene expression level as the covariate, two microbiome
datasets with ubiquity (proportion of samples where the feature is detected)
and the mean nonzero abundance as covariates, a proteomics dataset with the
peptides level as the covariate, and two fMRI datasets with the Brodmann area
label as the covariate that represents different functional regions of human brain.
In all experiments, AdaFDR shows a similar improvement. Finally, we perform
extensive simulations, including ones from a very recent benchmark paper [5],
to demonstrate that AdaFDR has the highest detection power while controlling
the false discovery proportion in various cases where the p-values may be either
independent or dependent. The default parameters of AdaFDR are used for every
experiment in this paper, both real data analysis and simulations, without any
tuning. In addition to the experiments, we theoretically prove that AdaFDR con-
trols FDP with high probability when the null p-values, conditional on the covari-
ates, are independently distributed and stochastically greater than the uniform
distribution, a standard assumption also made by related literature [1, 6].
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