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A data-base of electron temperature (7.) comprising of most of the available LEO satellite measurements in
the altitude range from 350 to 2000 km has been used for the development of a new global empirical model of T,
for the International Reference Ionosphere (IRI). For the first time this will include variations with solar activity.
Variations at five fixed altitude ranges centered at 350, 550, 850, 1400, and 2000 km and three seasons (summer,
winter, and equinox) were represented by a system of associated Legendre polynomials (up to the 8th order) in
terms of magnetic local time and the earlier introduced invdip latitude. The solar activity variations of T, are
represented by a correction term of the T, global pattern and it has been derived from the empirical latitudinal
profiles of T, for day and night (Truhlik et al., 2009a). Comparisons of the new 7. model with data and with the
IRI 2007 T, model show that the new model agrees well with the data generally within standard deviation limits
and that the model performs better than the current IRI 7. model.
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1. Introduction

There were numerous attempts to empirically describe
and model solar activity variations of the electron tempera-
ture in the upper ionosphere and plasmasphere e.g. Evans
(1973), Mahajan and Pandey (1979), Bilitza and Hoegy
(1990), Truhlik et al. (2001), Webb and Essex (2003), and
Sharma et al. (2010) but so far no model describes this fea-
ture accurately and it is therefore not yet included in the IRI
model. The elementary mechanisms that play an important
role in the T; variation with solar flux seem to be broadly
understood. The electron temperature is determined by the
balance of heating through photoelectrons that are created
by the solar EUV irradiance, cooling through collisions
with neutrals and ions, and heat conduction along magnetic
field lines. All three terms increase with solar activity due
to the increase in EUV flux, neutral density, neutral temper-
ature, and electron and ion densities. Since these processes
compensate each other, the result could be a 7. increase,
decrease, or no change at all (e.g. Bilitza et al., 2007 and
references therein). So while almost all ionospheric param-
eters increase with solar activity electron temperature is the
one parameter that shows a more complex solar activity de-
pendence. There are two main reasons why modeling of the
solar activity variations of the electron temperature is a very
difficult task:
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(a) Changes of T, caused by solar activity variations are
comparable or even below the day-to-day variability
and scatter of T, values, which is particularly impor-
tant in daytime. Thus, the solar activity variation of T,
is often hidden in the data scatter.

Frequent inconsistency among various 7, data sets es-
pecially in regimes of low electron density because
most techniques for measuring 7. depend critically on
the presence of a sufficient number of electrons.

(b)

Truhlik et al. (2009a) using a large data-base comprising
of almost all available satellite data established latitudinal
empirical profiles of the electron temperature for three lev-
els of solar activity (high, medium and low), three seasons
(summer, winter and equinox), five altitude ranges (350,
550, 850, 1400, and 2000 km) and two local times (day
and night). In this paper we use the results from Truhlik
et al. (2009a) and we incorporate them into a new global
empirical model of the electron temperature. The following
sections describe this model in detail.

2. Data

Our data-base which stretches over four solar cycles has
been described in detail in Bilitza et al. (2007). It in-
cludes data from the early Explorers (31) up to the ongoing
DMSP satellites. The altitude distribution of data is shown
in Fig. 1.

Bilitza et al. (2007) pointed out that in combining T, data
from different satellites it is extremely important to assess
the data quality of the individual data sets and to discard or
correct data sets with known contamination problems. We
follow their conclusions and besides their changes made
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Fig. 1. Distribution of data versus altitude from all data sets include in our data base.

to individual data sets, we have made several additional
changes. All changes that we use for the new model we
summarize as follows (see also Truhlik ef al., 2009a, b):

(1) ISIS-1 data were included only above 1500 km and
were reduced by 15%. The altitude threshold was
introduced because the ISIS-1 data at lower altitudes
show discrepancies with several of the other data sets.
The reduction factor at high altitudes is a compromise
based on the arguments given by Kohnlein (1986) and
by Webb and Essex (2003) and also on our own com-
parisons with data from Intercosmos 24 and 25.
Explorer 31 data were now included but only above
1500 km altitude because the 7., probe of this mission
is of a similar construction as the 7. probe onboard
ISIS-1 and the measured 7T, values indicated similar
concerns as for ISIS-1 data.

From Intercosmos 19 only data from altitudes above
750 km were included because the probe produces
unrealistically high T, for N, > 5- 10" m—3.

In the case of Intercosmos 24 and 25 the temperature
was determined as the median of T, Tey, and T,
(identical instruments on both satellites consisted of
three T, planar sensors in directions x, y and z; see
Truhlik et al. (2001) for more detail).

From the DMSP T, measurements only data for so-
lar activity PFip7 > 120 (for PFjo; definition see
next section) were taken because the low solar ac-
tivity (= low density) temperature data are unreal-
istically high (see Bilitza et al., 2007). Also, we
have selected only those data with “quality flag” 1
or 2 as recommended by DMSP SSIES team on
http://cindispace.utdallas.edu/DMSP/.

As a new data set we have added the temperature mea-
surements of the Indian SROSS C2 satellite.

2

3)

“)

(&)

(6)

Some of the data sets have very high time resolution,
much higher than required for our modeling purposes. In
these cases we have averaged the data to a 100 second time
resolution. The total number of measurements in our data-
base is about 9 million data points across 20 satellites.

3. Model Formulation
Based on the altitude distribution of data in our database
(see Fig. 1) and on the need to cover all important height

regimes, we have selected the following anchor altitudes
for our model: 350, 550, 850, 1400 and 2000 km. Simi-
lar to Brace and Theis (1981) and Truhlik et al. (2000) we
have averaged data on a local time-latitude grid and mod-
eled global variations using a spherical harmonics expan-
sion to 8th order. In the first step, we have built the core
T. model using the T, average in each bin. In the second
step, we have created a term describing the solar activity
variations in the bins based on the earlier work by Truhlik
et al. (2009a). The solar activity variation term is used as
an additive term to the core model. After the global models
are established for the 5 fixed altitudes they are combined
to produce the full altitude profile in the same way as it is
done now in the IRI model. The IRI approach is based on
the Booker-Epstein formalism (e.g. Bilitza, 1990) which di-
vides the profile into regions of constant gradient with the
boundaries given by the 5 fixed altitudes. Epstein-step func-
tions are used to transition from one region to the next thus
generating a continuous analytical representation of the T,
gradient and integration then results in the final T, formula.
For future upgrades of the IRI model physics-based field
aligned profile functions as for example deduced by Bilitza
(1975), Titheridge (1998), or Truhlik ez al. (2009b) could
bring further improvement.
3.1 The core model

The core model consists of submodels for individual alti-
tude ranges and seasons. All available data were grouped by
season (90 day periods centered on equinoxes and solstices)
and for the following altitude ranges (similar to Truhlik ez
al., 2000): 350 &£ 40 km, 550 £ 50 km, 850 £ 90 km,
1400 £ 150 km, and 2000 £ 300 km. For equinox we have
combined data from spring and autumn (90 day periods
centered on March 21 and September 23) from both hemi-
spheres, because we consider possible hemispheric asym-
metries as an influence of the 3rd order (1st order effects
are related to local time, and altitude; 2nd order to sea-
son, and solar activity; 3rd order to longitude, and hemi-
spheric differences). For solstices we have also combined
data from both hemispheres (northern three months peri-
ods centered on June 21 and southern three months periods
centered on December 21 for summer, and vice versa for
winter). Magnetic local time (MLT) and latitude were cho-
sen as the main coordinates. Longitudinal variation can be
reduced to a second order effect if a latitudinal coordinate
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Fig. 2. (a) Normalized latitude profiles for Equinox (solid line—T for high solar activity minus T, for low solar activity; dashed line—7; for medium
solar activity minus 7. for low solar activity). The numbers represent median value of PFjo7 in each latitude bin—upper row for high solar activity,
middle row for medium solar activity and the bottom row for low solar activity. Note that for low solar activity the corresponding curve is zero line.

is chosen that takes into account the real configuration of a system of associated Legendre polynomials up to the 8th
the geomagnetic field. The latitudinal coordinate (invdip), order was employed as an expansion function

introduced by Truhlik et al. (2001), is such a coordinate and

it is used for our model. Invdip is defined as

8
invdip a invl 48 diplat ) log (Te) = ag + Z{aloplo (cos 6)
o+ ﬁ =1
!
where @ = sin® | diplat | and g = cos’(invl). Thus, invdip + Z [a]" cos (mg) + b} sin (m)]
is close to the dip latitude (diplat) near the equator and gets m=1

closer to the invariant latitude (invl) at higher latitudes.

m
For each individual data group (height range and season) X P" (cos 9)} @
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Fig. 2. (b) The same as on Fig. 2(a) but for Solstice.

where

P/" = associated Legendre function
6 = invdip colatitude (0...m)

¢ = magnetic local time (0...2m).

Before applying this fitting procedure, medians of the com-
mon logarithm of T, data were calculated on a invdip vs.
MLT regular grid. The minimum number of bins in the
grid was 9 vs. 18 to guarantee coefficients fully recover-
able and free of aliasing effects (Martinec, 1991). Thus the
bins width of this grid corresponds to the maximal order of

Legendre polynomials (8th order) in Eq. (2). Medians of
PFyo7 pertaining to the T, data (for each altitude and sea-
son) denoted as PF97M were determined in each bin and
they were used to calculate the solar activity term (see the
next subsection).
3.2 The solar activity term

The solar index used for our model is the PFjy7 index
that is defined as PF10_7 = (F10_7A + F10'7 D)/2 with F10.7D
the daily Fjo7 solar radio flux index and Fjg7a its 81-day
average (3 solar rotations). PFj(7 has been shown to have
higher correlation with 7, than some of the other solar in-
dices (e.g. Richards et al., 1994). In the first step to obtain
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Fig. 3. Solar activity correction function—an example for 550 km equinox. Asterixes represent the normalized values from the normalized latitudinal
profiles for low, medium and high solar activity. The dashed line represents a mathematical interpolation/extrapolation in solar activity using the three
values (see more detailed explanation in the text). The values pertaining to the symbols see Fig. 2(a).

the solar activity term we have developed a solar activity
function denoted as fT,PFo7 again for each altitude and
season. This function describes how 7. depends on PFjg7
as function of local time and latitude. But because of the
limited amount of data available in each bin we had to re-
duce the number of MLT intervals to just two, a day (cen-
tered at 13 h MLT =+ 2.5 h) and a night (centered at 1 h
MLT = 3 h) interval. Thus, we have obtained f T, PFi.7day
and fT.PF07ign in the first step. To construct this func-
tion we have adopted the latitudinal profiles from Truhlik
et al. (2009a) that were derived for three levels of solar
activity (high, medium and low) and day and night. The
three levels of solar activity were defined in Truhlik ef al.
(2009a) as follows: (i) low PFjp7 < 110; (ii) medium
110 < PF10.7 < 180, (111) hlgh PF]0_7 > 180. We have
taken the low solar activity level as the reference point and
normalized the other two levels by determining the differ-
ence to this reference level (Figs. 2(a) and (b)). The nor-
malized values were denoted as 0, AT,,;, and AT, and
corresponding values of solar activity PFi07;, PF10.7m, and
PF07, were determined as medians in each latitude bin for
the three intervals (i, ii, and iii) of solar activity mentioned
above.

To calculate the solar activity function for an arbitrary
value of the PFjp; index we have used the following in-
terpolation procedure (see the example in Fig. 3): (1) a
quadratic fit inside the interval whose limits are PFj(7; and
PF071; (2) a linear extrapolation outside i.e. for the inter-

vals where PFy7 < PFiy7; and PF97 > PFi97;. Corre-
sponding expressions are as follows:

1) PFi71 < PFio7 < PFio7n:
JTePFi07
_ ATepy(PFi07 — PFi071)(PFro7 — PFi0.75)
~ (PFi07m — PF1071)(PF103m — PF1074)
ATep (PFr07 — PF107))(PF107 — PFio.7m)

(PFr.71 — PF1070)(PF1071 — PF1o7m)

(3a)
2) PFiyo7 < PFio7;:
AT, PF — PF
FT.PFiyy = emt (PF10.7 10.71) (3b)
(PF10.7m — PF1071)
PF197 > PFio7p :
fT.PFio7
_ (ATep — ATepy) (PF107 — PF1075) L AT,
(PFr0.71 — PF1o7m)
(3c)

The solar activity term, T, PF(7, normalized to the solar
activity of the core model can be calculated as
Te PF10.7 day,night (invdip, PF197)
= fT.PF10.7day,nign: (invdip, PFiq7)

— fTe PF10.7 day,nighe (invdip, PFi97M) . “4)

Full local time dependence was obtained using interpolation
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Fig. 4. Contour plots of the main T, model for equinox and solstice for five altitude intervals.

by harmonic function

Te PF10_7 (MLT, il’lVdip, PF10.7)

= (Te PF10.7day — Te PF10.7 night)

2
X |:1 — COoS % (MLT — 1)] /2 + T PF10.7night- (5)

3.3 The full model
The T, value of the full model as each altitude and season,
T.(mlt, invdip, PFj¢7), is obtained by addition of the core

model value T (mlt, invdip) and of the solar activity term
T. PF1p7(mlt, invdip, PF197):

Te (MLT, iIlVdip, PF10.7)

e0 (MLT, invdip)
+TePF10_7 (MLT, ianip, PF10.7) .

(6
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Fig. 5. (a) Equinox daytime (left column, MLT = 13 h &£ 2.5 h) and nighttime (right column, MLT = 1 h =& 3 h) electron temperatures from our data
base (median plus upper and lower quartiles) versus latitude (INVDIP) for different altitudes (1st row: 350 =40 km; 2nd row: 550 = 50 km; 3rd row:
850 %90 km; 4th row: 1400 £ 150 km; 5th row: 2000 £ 300 km) and three levels of solar activity: (a) low PFjo7 < 110 (dashed line with triangles),
(b) medium 110 < PFjo7 < 180 (dash dot line with squares), (c) high PFp.7 > 180 (solid line with circles); Ny is total number of measurements
for each curve.

4. Model Results and Discussion - T, increases with altitude and the altitude gradient dur-

4.1 The core model ing daytime is much larger than during nighttime at
Figure 4 shows the contour plot of the core model for all low latitudes (30 deg) during the nighttime the gra-

five altitudes and both seasons (equinox and solstice). The dient reaches its lowest value.

model reproduces all of the well known “large scale” fea- - The morning enhancement (morning overshoot) is

tures of the electron temperature distribution in the topside well developed at equatorial latitudes and at low al-

ionosphere (see e.g. Brace and Theis, 1981; Bhuyan and titudes (350, 550 to 850 km).

Chamua, 2006; Truhlik et al., 2000, 2003; Oyama et al., - The latitude dependence is more prominent at lower al-

2004): titudes (350 to 850 km). Generally the lowest electron
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Fig. 5. (b) The same as Fig. 5(a) but for T, values calculated by the new 7. model.

temperatures are observed close to the invdip equa-
tor. On the other hand the model does not capture
small scale spatial and temporal structures like the sub-
auroral electron temperature enhancement e.g. Brace
(1990), the evening electron temperature crests (Balan
et al., 1997) or structures in the high latitude region.

4.2 Comparisons with data

The performance of the model is evaluated in three ways:
(1) In the first test we have calculated latitude profiles of
T. for the same conditions as in Truhlik ez al. (2009a) and
then we have compared these profiles with the original data-

based profiles. (ii) in the second test we have used the
results of the comparison of several models with data in
Bilitza et al. (2007) and have added to these our new model
values for comparison. (iii) In the last test we have com-
pared the new model, and IRI Intercomos and Brace&Theis
models with T, data in our data-base.

4.2.1 Latitude profiles Figures 5(a)/5(b) and
6(a)/6(b) show data/model latitude profiles for equinox
and solstices, respectively. In each panel the medians
(minimum 10 measurements are required in each bin)
are plotted versus invdip latitude for low (blue), medium
(green), and high (red) solar activity (called LSA, MSA,
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Fig. 6. (a) The same as Fig.

and HSA). Upper and lower quartiles are shown as error
bars. In each figure each row of panels is for one of
the five altitude ranges and the panels on the left are for
daytime and the ones on the right are for nighttime. The
model values have been calculated for the same conditions
(latitude, longitude, altitude, day of year, and solar activity)
as measured data.

The latitudinal variation shows the well-known increase
of electron temperature towards higher latitudes. During
nighttime in all but the highest altitude range the electron
temperature is almost constant in the low and middle lati-
tude sector (from —40 to +40 degrees).

5(a) but for June solstice.

Let us first look at the equinox plots (Figs. 5(a)/5(b))
in greater detail. Excluding the 350 and 550 km daytime
cases, which will be discussed in the next paragraph, we
note that for all other cases the temperature increases from
LSA to MSA to HSA across all latitudes. The low altitude
nighttime case (right upper panels) shows almost linear be-
havior. However in all other cases the solar activity varia-
tion is not always linear. At 850 km, for example, we note
that the MSA and HSA curves are close together and sig-
nificantly (500-1000 K) above the LSA curve. At 1400 km,
on the other hand, the LSA and MSA curves are close to-
gether and well below the HSA. The model values show
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Fig. 6. (b) The same as Fig. 6(a) but for T, values calculated by the new 7. model.

a little bit less range. Overall the shape of the latitudinal
curves for the different levels of solar activity is very simi-
lar. An exception is the high latitude region where the large
data scatter makes an interpretation much more difficult.
The most interesting behavior is seen at 350, and 550 km
where the correlation with solar activity is strongly latitude
dependent and becomes negative at times. With our data,
which is reproduced well by the model, we find that the
correlation with solar activity reverses from positive near
the equator to negative at middle latitudes, to positive again
at high latitudes. The anti-correlation with solar activity
at mid-latitudes had been reported earlier with Incoherent

Scatter Radar (ISR) observations (see references in Truhlik
et al., 2009a).

Figures 6(a)/6(b) show the results for solstices (Northern
summer). Data coverage did not allow plotting the complete
latitudinal variations of electron temperature for high solar
activity at 350 km and for low solar activity at 850 km
and at 2000 km for daytime. The largest changes with
solar activity are seen in the summer hemisphere (Northern
hemisphere in Figs. 6(a)/(b)). Variations of T, with solar
activity are more than a factor of two larger in summer than
in winter due to the increased photoelectron heating. Again
we find mostly linear increase in electron temperature with
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Fig. 7. (a) Daytime electron temperature from our data base (mean plus standard deviation) versus solar activity for different seasons (columns) and
different altitudes (1st row: 550 = 50 km, 2nd row: 850 = 90 km; 3rd row: 2000 £ 300 km). Also include is a least-square fitted quadratic (at 2000
km linear) approximation to the data (black curve), new T, model (blue solid), the IRI 7, model (IK option) (blue dashed), the FLIP model (red),
and the ISR averages from the Millstone Hill model (green). The green line at 2000 km (lowest row of panels) shows the temperature averages from
Akebono/TED (see Bilitza et al., 2007). The orange line at 550 and 850 km (upper two rows of panels) represents the neutral temperature as given
by the MSIS-86 model. The total number of data points N, is given in the lower right of each panel. (b) Same as Fig. 7(a) but for nighttime instead
of daytime electron temperature.
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Fig. 8. Predictions of three models (New T, model, IRI T, model IK option and IRI 7. model Brace and Theis option) versus data points for all points
in low latitudes (—15° < invdip < 15°) in our database. Values of corr represent the linear Paerson correlation coefficient of calculated model and

measured data vectors.

increasing solar activity except for the low altitude daytime
cases (350, 550 and 850 km). At 550 km we find a positive
T, response to solar activity in Summer hemisphere and a
negative response in the Winter hemisphere. At 350 km the
positive response is observed at in the whole range of low
latitudes.

Generally, the new model reproduces the original latitude
profiles surprisingly well. There is only exception at sol-
stice 2000 km at equatorial latitudes at night. However, the
original data shows very large scatter for these conditions
(Fig. 6(a) lower right panel).

4.2.2 Comparison with other models and data
Figure 7(a) shows a comparison of the new T, model with
data and other models in terms of the solar activity depen-
dence for daytime, mid-latitudes and for different altitudes
and seasons. Typically, the electron temperature varies by
just a few hundred degrees Kelvin. We will first discuss the
behavior at 550 km. At this altitude the satellite data show
a positive correlation with PF(7 in summer, and a negative
correlation in equinox and winter. This seasonal behavior
is in general agreement with the Millstone Hill model. The
theoretical model (FLIP) (Bilitza et al., 2007) performs well
but tends to predict a little bit higher values. The values
from the new T. model generally follow the data very well.

The plots at 850 km contain a large number of data points
because this is the orbit altitude of the DMSP satellites.
The FLIP model and the new 7. model represent the data
quite well both in terms of the dependence on PF;7 and
of absolute magnitude. The Millstone Hill model, on the
other hand, underestimates the data and shows an increase
for all seasons. This may be due to the difficulties the ISR
techniques has in deducing electron temperatures in region
of very low electron density.

For the plasmaspheric altitude range (2000 km) the FLIP
model shows the expected increase with increasing solar
activity for all seasons. The new T, model shows the ex-
pected increase with solar activity for both solstices but for
equinox it seems to indicate a “V” type dependence similar
to the data averages. But the variation of the data averages
is likely due to bins with rather sparse data coverage that
are statistically not very reliable.

The comparison of the new T, model with data and other
models for nighttime is shown in Fig. 7(b). Temperatures

generally increase with solar activity or stay constant as is
to be expected from theory (e.g. in Truhlik ez al., 2009b).
FLIP underestimates the satellite data and the Millstone
Hill model values in summer and equinox and clearly re-
quires an additional heat source to elevate electron temper-
atures above the MSIS neutral temperature background. In
winter heating by photoelectrons from the conjugate sunlit
ionosphere helps to raise 7. above T, and brings the FLIP
temperatures closer to the satellite and radar measurements
(Bilitza et al., 2007). Comparing the satellite data with
the Millstone Hill model we find similar discrepancies at
850 km as were noted for daytime in the previous chapter.
Unfortunately, there was not enough of data for summer at
2000 km where only one data average was available. The
new T, model values are for almost all cases in the standard
deviations limit.

4.2.3 Comparison with IRI IK and Brace and Theis
model The last Fig. 8 shows predictions of three models
(New T, model, IRI T, model IK option and IRI 7. model
Brace and Theis option) versus data points for all points in
low latitudes (—15° < invdip < 15°) in our database. In
spite of considerable scatter (due to a natural scatter of T,
data) it can be seen that the new model shows better results
than other two models.

5. Conclusions

A new T, model for region from the upper ionosphere
to the lower plasmasphere is presented. It represents a
continuation and improvement of the previous model by
Truhlik ez al. (2000, 2001) but it is based on bigger volume
of data and it also includes a solar activity dependence
of the electron temperature based on Bilitza et al. (2007)
and Truhlik er al. (2009a, b). The model is available in
FORTRAN and IDL on the request from the authors.
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