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A common goal of eye movement analysis is the detec-
tion of fixations in the eye movement signal over the given
stimulus or within stimulus regions of interest (ROIs).
Most techniques rely on the measurement of visual angle,
where it is often tacitly assumed that the head is located at
a fixed distance to, and usually also perpendicular to, the
stimulus screen. Applicable signal analysis techniquescan
be grouped into three broad categories: position variance,
velocitybased, and ROI based.A goodclassificationof cur-
rent techniques is given by Salvucci and Goldberg (2000;
an earlier classification by Anliker, 1976, is also relevant).

In position-varianceschemes, the visual angle is used to
threshold the stationaryportionof the signal (e.g., in terms
of position). For example, if gaze remains invariant in an
area subtending 2º–5º of visual angle for 300 msec, this
portion of the signal is deemed a fixation. In velocity-
based schemes, the speed of successive data points is used
to distinguish fixations from saccades (the fast, often bal-
listic, eye movements used to reposition the fovea). The
latter analysis is usually accomplishedby thresholdingeye
movement velocity, expressed in degrees of visual angle
per second. Anywhere the signal exhibits fast velocity
(above threshold), this portion of the signal is deemed a
saccade, and conversely, everywhere else, the signal can
be considered a fixation (or some other type of relatively
slow eye movement, such as smooth pursuit). The velocity-
based saccade detection method can therefore be used as
a type of delineation scheme to find fixations in the eye
movement signal and is adopted as the underlying strategy

for eye movement analysis in virtual reality (VR). It should
be noted that for identifying fixations in raw eye move-
ment data recorded at a fixed sampling rate, both position-
variance and velocity-basedschemes are virtually identical.

The traditional two-dimensional (2-D) eye movement
analysis approach starts by measuring the visual angle of
the object under inspection between a pair (or more) of
raw eye movement data points in the time series (i.e., com-
posed of a sequence of the so-called point of regard, or
POR, denoted by [xi,yi]). Given the distance between suc-
cessive POR data points, r 5 || (xi,yi),(xj,yj) ||, the visual
angle, h, is calculated by the equation h 5 2tan21(r/2D),
where D is the (perpendicular) distance from the eyes to
the viewing plane, as is shown in Figure 1.

The arctangent approach assumes that D is measured
along the line of sight, which is assumed to be perpendic-
ular to the viewing plane. In general, however, the assump-
tion of a perpendicular visual target plane does not hold.
This has a significant implication for the measurement of
visual angle, since the farther away from the central axis
eye movements are made, the smaller the visual angle.
Upon further inspection of Figure 1, the visual angle cor-
rected for this foreshortening effect is calculated as

u 5 b 2 a 5 tan21 2tan21 ,

where d 1 r/2 is the distance of the POR center from the
projected central view axis. For large d (and constant r and
D), h > u. That is, the traditional=]arctangentapproachover-
estimates the visual angle at off-axis locations. An alter-
nate calculationof the corrected visual angle u can be made
directlyby examining the relationshipbetweenview vectors:

where P, Q, and C define the three-dimensional (3-D) ex-
tents of the POR and head center, respectively—for ex-
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ample, P 5 (d,0,D) and Q 5 (d1r,0,D) if C defines the
origin and gaze is recorded along the horizontal viewing
axis. The vector-based approach forms the basis of our 3-D
eye movement analysis.

The method of calculation of the visual angle notwith-
standing,eye movement analysis generally dependson the
size of fixated element r, which in turn is dependenton the
viewing distance D. Note that r and D, expressed in like
units (e.g., pixels or inches), are dependent on the resolu-
tion of the screen on which the POR data was recorded. A
conversion factor is usually required to convert one mea-
sure to the other (e.g., screen resolution in dots per inch
[dpi] converting D to pixels). The visual angle u and the
difference in timestamps Dt between the POR data points
allows velocity-basedanalysis, since u/D t gives eye move-
ment velocity in degrees of visual angle per second.

We present a velocity-basedeye movement analysis al-
gorithm in three dimensions, applicable to the 3-D eye
movement data recorded during immersion in a virtual en-
vironment (VE; Duchowski, Medlin,Gramopadhye,Mel-
loy, & Nair, 2001). Traditional 2-D eye movement analy-
sis methods can be applied directly to raw POR data in the
eye tracker reference frame. As a result, identified fixa-
tions could then be mapped to world coordinates to locate
fixated ROIs within the VE. We chose a different approach
by mapping raw POR data to world coordinates first, fol-
lowedby eye movementanalysis in three-space.We favored
this approach because the calculated gaze points in three-
space provide a composite 3-D representation of both left-
and right-eye movements. Applying the traditional 2-D

approach prior to mapping to (virtual) world coordinates
suggests a component-wise analysis of left- and right-eye
movements (in the eye tracker’s reference frame) possibly
ignoring depth (as generally would be the case with mono-
cular eye tracking). In three dimensions, depth informa-
tion, derived from binocular eye tracking, is implicitly
taken into account prior to analysis.

The paper is organizedas follows. First, we will describe
our operational platform and derive applicable gaze vec-
tor calculations includinga 2-D-to-3-D mapping required
for the calculation of gaze points in the VE. Device and
software calibration techniques, developed specifically to
address the use of a binoculareye tracker, will then be dis-
cussed. The novel 3-D eye movement analysis algorithm
will then be presented, followed by an evaluation of the
algorithm featuring a comparative analysis of several ve-
locity and acceleration filters for saccade detection. Fi-
nally, we will describe our application testbed, a VE used
for aircraft visual inspection training, and will discuss re-
sults obtained from experiments conducted in the VE.

EYE TRACKING IN VIRTUAL REALITY

Our primary rendering engine is a dual-rack dual-pipe
Silicon Graphics Onyx2 InfiniteReality2 system with
eight raster managers and eight MIPS R12000processors,
each with an 8-MB secondary cache.1 It is equipped with
8 Gb of main memory and 0.5 Gb of texture memory.

Multimodal hardware components include a binocular
eye tracker mounted within a Virtual Research V8 head-
mounted display (HMD). The V8 HMD offers 640 3
480 pixel resolutionper eye with individualleft- and right-
eye feeds. HMD position and orientation tracking is pro-
vided by an Ascension 6 Degree-of-Freedom (6DOF)
Flock Of Birds (FOB). The HMD is shown in Figure 2
(inset), with the FOB sensor just visible on top of the hel-

Figure 1. Two-dimensional geometry.

Figure 2. Binocular eye tracker optics (with head-mounted dis-
play inset above).
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met. A 6DOF-tracked hand-held mouse provides a means
to represent a virtual tool for the user in the environment.

The eye tracker is a video-based corneal reflection unit
built jointly by Virtual Research and ISCAN. Each of the
binocular video eye trackers is composed of a miniature
camera and infrared light sources, with the dual optics as-
semblies connected to a dedicated personal computer
(PC). The ISCAN RK-726PCI high resolution pupil/
corneal reflection processor uses corneal reflections (first
Purkinje images) of infrared LEDs mounted within the
helmet to measure eye movements.Figure 2 shows the dual
cameras and infrared LEDs of the binocular assembly.

Mounted below the HMD lenses, the eye imaging cam-
eras peer upward through a hole cut into the lens stem,
capturing images of the eyes reflected by a dichroic mir-
ror placed behind the HMD lenses. The processor typi-
cally operates at a sample rate of 60 Hz; however, while in
binocular mode, our measured sample rate decreases to
30 Hz. The subject’s eye position is determined with an ac-
curacy of approximately 0.3º over a 620º horizontal and
vertical range, using the pupil/corneal reflection differ-
ence. The maximum spatial resolution of the calculated
POR provided by the tracker is 512 3 512 pixels per eye.

The binocular eye-tracking assembly allows the mea-
surement of vergence eye movements, which in turn pro-
vides the capability of calculating the 3-D virtual coordi-
nates of the viewer’s gaze. Using the vendor’s proprietary
software and hardware, the PC calculates the subject’s real-
time POR from the video eye images. In the current VR
configuration, the eye tracker is treated as a black box de-
livering real-time eye movement coordinates (xl,yl, t) and
(xr,yr,t) over a 19.2-Kbaud RS-232 serial connection and
can be consideredas an ordinarypositionaltrackingdevice.

Eye Tracker Coordinate Mapping
Several processing steps are required to accurately cal-

culate the user’s gaze within the environment. Once the
gaze direction has been obtained, the resultant gaze vec-

tor is used to identify fixated regions in the environment
by first calculating the gaze/environment intersection
points and then applying signal analysis techniques to
identify fixations.

Given the extents of both application and eye tracker
screen coordinates, a simple linear interpolationmapping
is used to map raw POR data to the graphics screen coor-
dinates (Duchowski et al., 2000). Specifically, 2-D eye
tracker data expressed in eye tracker screen coordinates
must be mapped to the 2-D dimensions of the near view-
ing frustum. The 3-D viewing frustum employed in the
perspective viewing transformation is defined by the pa-
rameters left, right, bottom, top, near, and far. Figure 3
shows the dimensions of the eye tracker screen (left) and
the dimensions of the viewing frustum (right).

To convert the eye tracker coordinates (x9, y9) to graph-
ics coordinates (x,y), the following linear interpolation
mapping is used:

x 5 left 1 (1)

and

y 5 bottom 1 . (2)

Since the eye tracker origin is at the top left of the screen
and the viewing frustum’s origin is at the bottom left (a
common discrepancy between imaging and graphics ap-
plications), the term (512 2 y9) in Equation 2 handles the
necessary y-coordinate mirror transformation.

The above coordinate mapping assumes that the eye
tracker coordinates are in the range [0,511]. In practice,
the usable, or effective, coordinates will be dependent on
(1) the size of the application window and (2) the position
of the application window. Proper mapping between eye
tracker and application coordinates is achieved through
the measurement of the application window’s extents in
the eye tracker’s reference frame. This is accomplishedby

(512 2 y¢ )(top 2 bottom)
512

x¢(right 2 left)

512

Figure 3. Eye tracker to three-dimensional viewing frustum screen coordinate mapping.
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using the eye tracker’s own fine-grained cursor movement
and cursor location readout.

To obtain the extentsof the applicationwindow in the eye
tracker’s reference frame, the application window’s corners
are measured with the eye tracker’s cursor. These window
extents are then used in the linear mapping equation. Fig-
ure 4 illustratesan example of a 600 3 450 applicationwin-
dow as it would appear on the eye tracker scene monitor.

On the basis of the measurements shown in Figure 4,
the linear coordinate mapping is

x 5 (600) (3)

and

y 5 449 2 (450). (4)

Although seemingly trivial, this mapping is key to proper
calculation of the gaze vector in world coordinates from
raw POR data and is also essential for alignment of target
points displayed by the application program during cali-
bration of the eye tracker. Correct registration between eye
tracker and image coordinates is achieved if the linearly
mapped computer-generated calibration target points
align with the calibration points generated by the eye
tracker. Because both coordinates are ultimately subject
to the same optical distortions of the HMD (e.g., the pin-
cushion effect), the linear mapping is sufficient for coor-
dinate registration (Duchowski, 1998).

Gaze Vector Calculation
The calculation of gaze in three-space depends only on

the relative positions of the two eyes on the horizontal
axis. The parameters of interest are the 3-D virtual coor-
dinates, (xg ,yg ,zg), which can be determined from tradi-
tional stereo geometry calculations(Horn, 1986). Figure 5
illustrates the basic binocular geometry.

y¢ 2 53
(446 2 53 1 1)

x¢ 2 51
(482 2 51 1 1)

Figure 4. Mapping measurement example.

Figure 5. Basic binocular geometry.
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Helmet tracking determines both helmet position and
the (orthogonal) directional and up vectors, which deter-
mine head-centric coordinates. The helmet position is the
origin, the helmet directional vector is the optical z-axis,
and the helmet up vector is the y-axis.

Given instantaneouseye-tracked coordinates, (xl,yl) and
(xr,yr), in the left and right image planes (mapped from eye
tracker screen coordinates to the near view plane), and
head-trackedhead positioncoordinates, (xh,yh,zh), the co-
ordinates of the gaze point, (xg,yg,zg), are determined by
the following relations:

xg 5 (1 2 s) xh 1 s(xl 1 xr)/2, (5)

yg 5 (1 2 s) yh 1 s(yl 1 yr)/2, (6)

and

zg 5 (1 2 s) zh 1 sf, (7)

where s 5 b/(xl 2 xr 1 b), b is the interpupillary distance
at parallel vergence (looking at an infinitely distant ob-
ject), and f is the distance to the near viewing plane along
the head-centric z-axis.

Note that since the vertical eye-tracked coordinates yl
and yr are expected to be equal (since gaze coordinatesare
assumed to be epipolar), the vertical coordinateof the cen-
tral view vector defined by (yl 1 yr)/2 is somewhat extra-
neous; either yl or yr would do for the calculation of the
gaze vector. However, since eye tracker data is also ex-
pected to be noisy, this averaging of the vertical coordi-
nates enforces the epipolar assumption.

To enable collection of fixated points in the environ-
ment, it is necessary to calculate the intersection of the
user’s gaze with the environmentalpolygons.To calculate
gaze direction, the gaze point is expressed parametrically
as a point on a ray with origin (xh,yh,zh), with the ray em-
anating along a vector scaled by parameter s. That is,
rewriting Equations 5–7,

and
zg 5 zh 1 s( f 2 zh),

or, in vector notation,

g 5 h 1 sv, (8)

where h is the head position, v is the central gaze vector,
and s is the scale parameter as defined previously. The
view vector v is obtained by subtracting the helmet posi-
tion from the midpoint of the eye-tracked x-coordinate and
focal distance to the near view plane—that is,

(9)

where m denotes the left- and right-eye coordinate mid-
point. To align the gaze vector with the current head ori-
entation, it is first transformed to the instantaneoushead-
centric reference frame (instantaneous head orientation).
This is accomplished by multiplying the gaze vector v by
the orientationmatrix returned by the head tracker. Given
the 3-D gaze vector, v, specified by Equation 9, Equa-
tion 8 gives the coordinates of the gaze point parametri-
cally along a ray originatingat the head position (xh,yh,zh).
The depth of the 3-D gaze point in world coordinates is
valid only if s . 0.

Calculating Gaze Intersection Points
The computed gaze direction vector v is used for cal-

culating gaze/polygon intersections via traditional ray/
polygon intersection calculations commonly used in ray
tracing (Glassner, 1989). These points, termed here the
gaze intersectionpoints (GIPs) for brevity, are each found
on the closest polygon to the viewer intersecting the gaze
ray, assuming all the polygons are opaque. Adapted to
gaze in VR, this technique is similar to the traditional ray-
casting approach to selection in virtual environments (Bow-
man & Hodges, 1997).For comparison,Tanriverdiand Jacob
(2000) used a similar gaze-based ray-casting method for
selectionof objects. In theircomparisonof selectionmodal-
ities, Tanriverdi and Jacob showed that interaction with
eye movements was faster than interaction with hand-
pointing (using a 3-D mouse). Our gaze-based selection
mechanism is similar; however, our derivation of the gaze
ray is slightly different, owing to our use of binocular eye-
tracking optics.

Each gaze/polygon intersection point is found on the
closest polygon to the viewer intersecting the gaze ray, as-
suming all the polygonsare opaque.This polygonis found
by testing all the polygons in the scene for intersection
with the gaze ray. To find the intersection point g of the
gaze ray with the closest polygon, a new interpolant t is
obtained by calculating the gaze ray intersections with all
scene polygons. All such intersections are examined for
which t . 0.2 Note that the ray/polygon intersection algo-
rithm returns only the intersection point of the ray and the
infinite plane defined by the polygon’s face normal. Be-
cause the normal defines a plane of infinite extent, the
point g must be tested against all of the polygon’s edges,
to establishwhether the point lies inside the polygon.This is
an instanceof a solutionto the well-knownpoint-in-polygon
problem. If the point g is bounded by the perpendicular
planes defined by the polygon’s edges, then g lies within
the polygon; otherwise, it lies on the plane defined by the
face normal, but outside the polygonal region. The result-
ing algorithm generates a scanpath constrained to lie on
polygonalregionswithin the virtual environment.Provided
the number of polygonsis sufficiently small, the algorithm
executes in real time.

DEVICE AND SOFTWARE CALIBRATION

In practice, determination of the scalar s (dependent on
interpupillary distance, b) and focal distance f, used in
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Equations 5–7, is difficult. Interpupillary distance is not
easily measured in VR, since the left- and right-eye track-
ing components function independently. That is, there is
no common reference point. Physical measurement of in-
terpupillary distance outside VR—for example, at the
start of the viewing session—is, of course, possible; how-
ever, conversionof such a measurement to VR coordinates
is problematic (i.e., virtual coordinates are often unitless
but are generally homogeneously scalable, depending on
the required mapping between virtual and real dimen-
sions). Preliminary experiments were conducted to infor-
mally gauge this problem. Calculated GIPs were com-
pared against raw POR video footage. Frame-by-frame
visual inspection of video footage revealed a discrepancy

between calculated GIPs and the visual features subjects
appeared to be fixating. Since this error appeared to be
variable between but consistent within subjects and was
thought to be related to the unknown interpupillary dis-
tance, a 3-D calibrationprocedurewas designedto estimate
the interpupillary distance scaling factor s empirically.
The calibration procedure is currently specific to our ap-
plication testbed (see below).

EYE MOVEMENT ANALYSIS

Operating directly on GIP data in (virtual) world coor-
dinates, our initial fixation detection algorithm was based
on an estimate of velocity. Given raw gaze intersection
points in three dimensions, the velocity-based threshold-
ing calculation is, in principle, identical to the traditional
2-D approach, with the following important distinctions.

1. The head position, h, must be recorded to facilitate
the calculation of the visual angle.

2. Given two successive GIP data points in three-space,
pi 5 (xi,yi ,zi) and pi11 5 (xi11, yi11,zi11), and the head po-
sition at each instance, hi and hi11, the estimate of instan-
taneous visual angle at each sample position, ui, is calcu-
lated from the dot product of the two gaze vectors defined
by the difference of the gaze intersection points and aver-
aged head position:

(10)

where n is the sample size and vi 5 pi 2 h and h is the av-
eraged head position over the sample time period. Head
position is averaged since the eyes can accelerate to reach
a target fixation point much more quickly than can the
head (Watson, Walker, & Hodges, 1997).

With visual angle, ui, and timestamp difference be-
tween pi and pi11, the same velocity-based thresholding is
used as in the traditional 2-D case (see Figure 6). No con-

q i
i i

i i

v v

v v
i n=

×
Î- +

+
cos , [ , ),1 1

1

0

Figure 6. Eye movement analysis in three dimensions.

Figure 7. Finite impulse response filters.
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version between screen resolution and distance to target is
necessary, because all calculationsare performed in world
coordinates.

Although the algorithm generalizes to the use of wider
filters (by changing the subscript i11 to i1k for k . 1) for
improved smoothing, in our previous work we relied on a
short two-tap filter to estimate velocity. That is, using
Equation10 to calculateui, only two successive data points
were used to calculate eye movement velocity. This is
analogous to the calculation of velocity by using a convo-
lution filter with coefficients {1,1}—that is, a two-tap fi-
nite impulse response (FIR) filter.

A preliminary study was conducted to evaluate the 3-D
eye movementanalysisalgorithm.The results indicatedthat
owing to the somewhat noisy signal analysis approach, the
algorithmunderestimatedthe identifiednumberof fixations
and fixation durations (Duchowski et al., 2001). This result
was not wholly unexpected.The velocity-basedsaccade de-
tectionmethod is known to be a weak fixationdetectorwhen
used in isolation.However, it is often a necessary first step
to locating slow-moving eye movements, which can then
be processed further to isolate and group fixation points.

Furthermore, as was expected, we noted a high degree
of noise in the data. The two main sources of noise are,
most likely, the eye tracker and the short filter used in the
velocity-based algorithm. The eye tracker is inherently
somewhat noisy and frequently delivers null POR values,
usuallycoincidingwith blinks. Sample datawith null values
for either the left or the right POR was previously automat-
ically eliminated by our algorithm. Over all trials, we ob-
served an estimated mean 10% data loss. Consideringmean
trial durations of 177 sec and a sample rate of 30 Hz, this
data loss rate is quite high. The short filter used in the
velocity-basedanalysis is another source of noise. The fil-
ter is mathematically appropriate for gauging velocity
(when applied to saccade amplitude),but owing to its short
length, it is known to be quite noisy. For more robust off-
line fixation analysis, a longer filter shouldbe used. In the
following sections,we will compare results of the short fil-
ter to longer versions of velocity and acceleration filters.

Velocity and Acceleration Filtering
To address excessive noise in the eye movement signal

collectedin previousstudies,we began by replacingour two-
tap FIR filter with a five-tap FIR filter, shown in Figure 7A.

Owing to its longer sampling window, the filter is more
effective at signal smoothing (anti-aliasing).We also com-
pared the results of the velocity filter’s utility versus the
use of an acceleration filter, following the work of Tole
and Young (1981). The acceleration filter is shown in Fig-
ure 7B, and is convolvedwith eye movement velocity data
as obtainedvia either the two-tap or the five-tap velocity fil-
ter. The filter responses resemble the real velocity and ac-
celeration curves for a saccade characterized in Figure 8.

Our new algorithm calculates the velocity and acceler-
ation at each instantaneous estimate of visual angle, ui.
Note that ui is effectively a measure of instantaneous eye

movement magnitude (i.e., amplitude), and, therefore, im-
plicitly represents eye movement velocity. That is, the sig-
nal resembles the positivelyorientedvelocity peaks shown
in Figure 8B. Withholding division by the time difference
between successive samples (D t) facilitates the measure-
ment of velocity with arbitrarily long filters.

Velocity is obtained via convolution with pattern-
matching FIR filters of variable length. When convolved,
these filters respond to sampled data with profiles match-
ing that of the filter. These filters, denoted by hk, are es-
sentiallyunnormalized low-pass filters that tend to smooth
and amplify the underlying signal. Division by the dura-
tion of the sampling window yields velocity—that is,

expressed in degrees/second, where k is the filter length
and Dt 5 k 2 i. We compare the performance of the five-
tap filter with the previously implemented two-tap filter
with coefficients {1,1} below.

Ç , [ , ),q qi i j j
j

k

t
h i n k= Î -+

=
å1 0

0D

Figure 8. Characteristic saccade signal and filter responses.
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Acceleration is obtained via a subsequent convolution
of velocity, ui, with the acceleration filter, gj, shown in
Figure 7B. That is,

where k is the filter length and D t 5 k 2 i. The accelera-
tion filter is essentially an unnormalizedhigh-pass differ-
ential filter. The resulting value üi, expressed in degrees/
second2, is checked against threshold A. If the absolute
value of üi is greater than A, the correspondinggaze inter-
section point pi is treated as the beginning of a saccade.
Scanning ahead in the convolved acceleration data, each
subsequent point is tested in a similar fashion against
threshold B in order to detect the end of the saccade. Two

additional conditionsare evaluated to locate a saccade, as
given by Tole and Young (1981). The four conditions are
listed and illustrated in Figure 9.

Note that our velocity and acceleration filters differ
from those used by Tole and Young (1981). This is be-
cause Tole and Young applied their filters (the reverse of
ours, essentially)to the positionaleye movement signal (p),
whereas our filters are applied to the signal amplitude (u).
Pseudocode of the technique is presented in Algorithm 1.

Parameter Estimation
Thresholds are needed for saccade velocity, accelera-

tion, and duration, since our fixation detection algorithm
relies on the detection of saccades. Although eventually
determined empirically, algorithm fine tuning was guided

ÇÇ Ç , [ , ),q qi i j j
j

k

t
g i n k= Î -+

=
å1 0

0D

Algorithm 1
Acceleration-Based Saccade Detection

Input: p(n), gaze intersection points, h(k), g(k), velocity and acceleration filters,
respectively

Output: classification of each pi as fixation or saccade
1: // calculate instantaneous visual angle
2: for i 5 0 to n 2 1 do
3: qi 5 cos21(vi ? vi11 / || vi || || vi11 ||)
4: end for
5: // initialize accumulation arrays (convolution results)
6: for i 5 0 to n 2k 21 do
7: q·i 5 q̈ i 5 0
8: end for
9: // convolve with vel. filter

10: for i 5 0 to n 2 k 2 1 do
11: for j 5 0 to k do
12: q·i 5 q·i 1 qi1j *hj
13: end for
14: end for
15: // convolve with acc. filter
16: for i 5 0 to n 2 k 2 1 do
17: for j 5 0 to k do
18: q̈ i 5 q̈ i 1 q·i1j *gj
19: end for
20: end for
21: for i 5 0 to n 2 k 2 1 do
22: // condition 1
23: if |q̈ i|$A then
24: // condition 4 (implicit in loop)
25: for j 5 i 1 Tmin to (n 2 k) 2i ` (j2i) # Tmax do
26: //conditions 2 & 3
27: if | q̈ i 1 j |$B ` sgn(q̈ i1j) Þ sgn(q̈ i) then
28: for l 5 i to j do
29: pl 5 saccade
30: end for
31: else
32: pl 5 fixation
33: end if
34: end for
35: end if
36: end for
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by a review of the literature, briefly summarized here for
context. While scanpath characteristics may be task de-
pendent—that is, differing when one is looking at pictures
than when one is reading—for the purpose of initial esti-
mation of parameters, we assumed that, when one is look-
ing at pictures, normal scanpaths are characterized by a
number of saccades similar in amplitude to those exhib-
itedduring reading.This is largely a matter of convenience,
since eye movement characteristics during reading are
better established and more readily available than eye
movement characteristics for scene viewing.

The duration of saccades is related in a nonlinear man-
ner to their amplitude over a thousandfold range (39–50º;
Bahill, Clark, & Stark, 1975). Saccades of less than 15º or
20º in magnitude are physiologically the most important,
since most naturally occurring saccades fall in this region.
The saccade main sequence describes the relationships
between saccade duration, peak velocity, and magnitude
(amplitude). Because saccades are generally stereotyped,
the relationship between saccade amplitude and duration

can be modeled by the linear equation D t 5 2.2u 1 21
(Knox, 2001). Peak velocity reaches a soft saturation limit
up to about 15º or 20º but can range up to about 50º, reach-
ing velocity saturation at about 1,000 deg/sec (Clark &
Stark, 1975). In practice, the main sequence relationship
between amplitude and velocitycan be modeled by the as-
ymptotic equation q· 5 l(1 2 e2q /15), with velocity upper
limit (asymptote l) set to 750 deg/sec (Hain, 1999). For
saccade detectionvia velocity filtering,we chose a thresh-
old of 130 deg/sec for both two-tap and five-tap filters.
Using the asymptotic model of the main sequence rela-
tionship between saccade amplitude and velocity (limited
by 750 deg/sec), we reasoned that this threshold would ef-
fectively detect saccades of amplitude roughly greater
than 3º. User-adjustable threshold settings for the velocity
filter are shown in Figure 10A (bottom right quadrant).

Saccade detection via acceleration filtering requires
setting a larger number of parameters. In our current im-
plementation, we have chosen values of 10 and 300 msec
for Tmin and Tmax, respectively, to cover a fairly wide range

Figure 9. Acceleration thresholding.

Figure 10. User interface prior to (A, left) and following (B, right) binocular scale factor adjustment.

A B
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of saccade acceleration impulse pairs. The choice of the
remaining threshold for saccade acceleration was made
difficult, since no applicable models of saccadic acceler-
ation (e.g., a main sequence) could readily be found. In
fact, unlike commonly listed limits of amplitude,duration,
and velocity, there seems to be some disagreement re-
garding upper limits of acceleration.Peak acceleration has
been reported to average at about 30,000 deg/sec2 in sac-
cades of 10º with a saturation limit of 35,000 deg/sec2 for
u , 15º, whereas other findings are given of 20º saccades
with average peak accelerationof 26,000deg/sec2 (Becker,
1989). Since we followed Tole and Young’s (1981) accel-
eration filtering algorithm (incidentally, these authors re-
ported acceleration limits approaching 80,000 deg/sec2),
we decided to start with the authors’ recommended thresh-
olds for saccade acceleration. User-adjustable threshold
settings for the acceleration filter are shown in Figure 10B
(bottom right quadrant).

Tole and Young (1981) pointed out that variable noise
characteristics depend on the subject’s actions (e.g., dif-
ferent noise profile while gritting teeth). To adapt to such
signal changes, the authors recommend an adaptive thresh-
olding technique that dynamically adjusts the threshold,
on the basis of the current estimate of noise level. Indeed,
we also noted a very large peak-to-peak acceleration sig-
nal variance (see below). Following Tole and Young’s rec-
ommendation,we decided to implementan adaptive thresh-
olding technique in an effort to automatically set
acceleration thresholds A and B:

where k is the number of samples in time T proportional
to the length of the acceleration filter—that is,

This is a slightly different implementation of adaptive
thresholding than Tole and Young’s. Our threshold value
is slightly lower, and its adaptive adjustment relies on ex-
plicit calculation of the acceleration root-mean squared
(RMS). Also, our sampling window for this purpose is
also much shorter than the authors’ recommended win-
dow of T . 4 sec. Finally, in our implementation, the
adaptive techniquecurrently employs a “look-ahead”scan
of the acceleration data, suitable for off-line analysis.
Changing the i 1 k subscript to i 2 k provides a “look-
behind” scan that can be employed in real-time systems.

Fixation Grouping
The above algorithm classifies each GIP as either part

of a fixation or a saccade. Once each GIP has been classi-

fied, each string of consecutivefixationGIPs is condensed
to a single fixation point by finding the centroid of the
group. However, owing to the nature of the new algorithm,
we observed that, at times, isolated noisy GIPs were also
includedin fixationgroups.To prevent the inclusionof such
outlying points, we implemented a simple check to verify
that each fixation group’s duration is greater than or equal
to the minimumtheoreticalfixationduration(i.e., 150 msec;
Irwin, 1992). This parameter is also user adjustable and is
shown in Figures 10A and 10B (top right quadrant).

Eye Movement Data Mirroring
Although our new eye movement analysis algorithm is

mathematically more robust at handling signal noise, our
system is still susceptible to noise generated by the eye
tracker. In particular, our eye-trackingequipment randomly
drops POR data. In some cases (e.g., during a blink), null
POR values are recorded for both left and right eyes.
However, in some instances, only one eye’s POR is null,
whereas the other is not. We believe this occurs because of
calibration errors. To address this problem, we developed
a heuristic mirroring technique of the nonnull POR eye
movement data. Table 1 shows an example of this tech-
nique.The left eye POR at time t1 1 is recordedas an invalid
null point.

To estimate a nonnull left eye coordinate at t 1 1, the
difference between successive right-eyePOR values is cal-
culated and used to update the left-eye POR valuesat t 1 1,
as is shown in the equation above, giving (xlt 1 1,ylt 1 1) 5
(20.5 1 dx, 0 1 dy) 5 (20.4,0). Note that this solution
assumes static vergence eye movements. It is assumed that
the eyes remain at a fixed interocular distanceduring move-
ment. That is, this heuristic strategy clearly will not account
for vergence eye movements occurring within the short
corrective time period.

ALGORITHM EVALUATION

Evaluationof the eye movement analysis algorithmwas
conducted by two experiments: a short pilot experiment
to evaluate the data-mirroring technique, followed by a
comparative evaluation of several saccadic filter combi-
nations in the context of our chosen application testbed
(see the following section).

Data Mirroring
A short experiment was conducted to measure the per-

formance of our new heuristic data mirroring technique.
A subject was asked to don the HMD, and the eye tracker
was carefully calibrated to ensure minimal loss of either of
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Table 1
Example Technique

Time Left Eye Right Eye Correction Estimate

t (20.5, 0) (0.3,0) dx = xrt 1 1 2 xrt = 0.4 2 0.3 = 0.1
t 1 1 (0, 0) (0.4,0) dy = yrt 1 1 2 yrt = 0.0 2 0.0 = 0.0

Table 2
Mirroring Algorithm

Original No
Data Mirroring Mirroring

Experiment duration 44.4 sec 44.4 sec 44.4 sec
Usable data 44.0 sec 37.5 sec 44.0 sec
Fixation count 71 62 75
Mean fixation duration 159 msec 196 msec 144 msec
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the eyes’ POR during the experiment. The 3-D calibration
scenario was loaded, and the subject was asked to look at
each numbered calibrationpoint.The experiment duration
was 44.4 sec. Following immersion, it was noted that less
than 0.005% of the generated data containedmissing POR
information for either eye. The POR file was copied, and
monocular POR data were manually decimated at random
points in the data stream. Overall, 15% of the data was ar-
tificially decimated to simulate noise caused by problem-
atic calibration.

Table 2 compares the results of the mirroring technique
over the artificially altered POR data file.

The first column of Table 2 lists eye movement data sta-
tistics over the unaltered data. Using the two-tap velocity-
based algorithm, the second and third columns compare
the effects of the mirroring heuristic. The eye-mirroring
technique recovers nearly all of the 15% of the artificially
decimated data. Using recovered data, the velocity-based
algorithm reported an increase in fixation counts of 17%
(75 fixations vs. 62 fixations with no mirroring). This
suggests that the recovered data, following the heuristic
mirroring technique, fairly closely resemble the original
(nearly lossless) signal. In other words, the heuristic mir-
roring technique allows the estimation of monocular data
that would normally be lost owing to eye tracker miscali-
bration.

Preliminary Filter Comparison
Using the nearly lossless data obtained from the 44.4-

sec immersion experiment above, we compared six dif-
ferent filter combinations: both the two-tap and the five-
tap velocity filters, and the seven-tap acceleration filter
applied to velocity following either two-tap or five-tap ve-
locity filtering, with and without adaptive thresholding.
Fixation count (following grouping), mean fixation dura-
tion, proportional time spent in fixations, and visual rep-
resentations of the scanpath were compared in order to
evaluate the different filters. All algorithms employed the
data-mirroring technique discussed above. The results
from velocity filtering are listed in Table 3 and those from
acceleration filtering in Table 4.

Figure 11 shows typical plots of the eye movement sig-
nal and filter responses. According to accepted saccade
amplitude estimates, we expected the measured instanta-
neous eye movement amplitude (u) to range up to about
20º. Our observed data ranged up to 136º (M, 1.5º; SD,

9.7º; median, 0.3º), which appears to be within normal
limits, except for a few outliers (possibly owing to head
motion or head/eye-tracking instrument noise; see Fig-
ure 11A). Our observed velocity averaged at 106 deg/sec
(SDs, 635 and 451 deg/sec), depending on the filter (see
Table 3 and also Figures 11B and C). Our observed accel-
eration averaged at 4,453 deg/sec2 (SD, 22,475 deg/sec2)
and 3,966 deg/sec (SD, 17,470 deg/sec2), depending on
the velocity filter used (see Table 4 and also Figure 11D).

The two-tap velocity filter performed surprisingly well
against other filter combinations (outperforming the con-
stant thresholding acceleration filter). However, visual
inspection of the resulting scanpath revealed that both
the two-tap and the five-tap velocity filters appeared to
miss short-duration fixations. The adaptive thresholding
acceleration-based technique generated the best overall
results for detecting fixations of longest duration. It was
also more complicated to use, since it required estimation
and control of a larger number of parameters. As com-
pared with the 150- to 650-msec fixation durations re-
ported as common during reading (Irwin, 1992), our fix-
ation durations (17 detected fixations with mean duration
of 1.9 sec) were quite long. Although reading eye move-
ments may resemble those made during picture viewing
(Bahill et al., 1975), there may be at least three reasons for
our findings: (1) Our analysis technique effectively elim-
inates low-amplitude saccades, (2) the sampling rate of
our eye tracking apparatus is too low, or (3) contrary to the
above assumption, eye movements in VR may exhibit dif-
ferent characteristics than in reading—it has been noted
that eye movements recorded during voluntary head rota-
tion are remarkably free of saccades, implying that the
vestibulo- ocular system is involved in combing the gen-
eration of saccades (saccadic restraint; McDonald,Bahill,
& Friedman, 1983). In reading, there is a distinctive pat-
tern of successive saccades on the words of the text, re-
flecting the serial processing of the information. In pic-
ture viewing, by contrast, there is no canonical scanpath
for particular objects (i.e., there is no particular “right
way” to look at objects; Kennedy, 1992). Kennedy sug-
gests that the reading task is composed almost exclusively
of saccades, whereas picture viewing is composed of
shifts, pursuits, and drifts. There may be context differ-
ences at play. Continuing the debate about context effects
for scenes and sentences,Kroll (1992) states that although

Table 3
Velocity Algorithm Comparisons

Statistics Two-Tap Five-Tap

Fixation groups 30 21
Mean fixation duration (msec) 1,079 1,450
Time spent in fixations 73% 69%
Min q· (deg/sec) 0 1
Max q· (deg/sec) 12,385 5,592
M q· (deg/sec) 106 106
SD q· (deg/sec) 635 451

Table 4
Acceleration Algorithm Comparisons

Two-Tap Five-Tap

Statistics Adaptive Constant Adaptive Constant

Fixation groups 20 17 17 14
Mean fixation duration (msec) 1,633 1,583 1,937 1,983
Time spent in fixations 74% 61% 74% 63%
Min q̈ (deg/sec2) 2257,653 2182,037
Max q̈ (deg/sec2) 248,265 167,144
M q̈ (deg/sec2) 4,453 3,966
SD q̈ (deg/sec2) 22,475 17,470
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Figure 11. Eye movement signal and filter responses.
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there may be similarities between the two tasks, the tasks
are very different. Eye movements in reading are, to a
large extent, driven by the well-known, practiced task. In
VR, viewers’ eye movement strategies may differ signifi-
cantly from those adopted for reading.

APPLICATION: A VIRTUAL
ENVIRONMENT FOR AIRCRAFT
VISUAL INSPECTION TRAINING

Aircraft inspectionand maintenanceare an essentialpart
of a safe, reliable air transportation system. Training has
been identified as the primary interventionstrategy in im-

proving inspection performance (Gramopadhye, Bhag-
wat, Kimbler, & Greenstein, 1998). If training is to be suc-
cessful, inspectors need to be provided with training tools
to help enhance their inspection skills. In response to this
need, a diagnostic eye-racking VR system was developed
for the purpose of recording process measures (head and
eye movements,) as well as performance measures (search
time and success rate), during immersion in a VR aircraft
inspection simulator (Duchowski et al., 2000). The VR
simulator utilizes the binocular eye tracker to record the
user’s dynamicPOR within the VE duringvisual inspection.

The goal of the construction of the VE is to match the
appearanceof the physical inspectionenvironment,an air-

Figure 12. Aircraft cargo bay physical environment.

Figure 13. Raw eye tracker output: (A, left) left-eye point of regard (POR); (B, right) right-eye POR.

A B
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craft cargo bay, shown in Figure 12. The physical envi-
ronment is a complex 3-D cube-likevolume,with airframe
components (e.g., fuselage ribs) exposed for inspection.
A typical visual inspection task of the cargo bay involves
searching for surface defects, such as corrosion and cracks.

The model of the virtual inspection environment was
patterned after a simple 3-D enclosure (e.g., a cube), spec-
ified by the dimensionsof the real inspectionenvironment
(i.e., an aircraft’s cargo bay). The model was built entirely
out of planar polygons.There were two pragmatic reasons
for this design choice. First, since the representation of the
true complexityof the airframe structure was avoided, fast
displayrateswere possible.Second,planarpolygons(quadri-
laterals) facilitated texture mapping.

Raw output from the eye tracker is shown in Figure 13,
where the left- and the right-eye PORs are represented by
a small circle and a small crosshair, respectively, super-

imposed by the eye tracker’s scene-imaginghardware. The
VR scene image signal is split (viaVGA activepassthrough)
prior to HMD input and is diverted to the eye tracker.
Thus, the eye tracker and the HMD simultaneously dis-
play the same image as that seen by the user in the HMD.
In addition,each scene image generated by the eye tracker
contains the superimposedPOR indicator and a status bar,
at the bottom, indicating current pupil diameter, horizon-
tal and vertical POR coordinates, and the video frame
counter (HH:MM:SS:FF). Note that the images shown in
the figure were captured 3 sec apart.

Although our graphical environment is relatively sim-
ple, it appears to be sufficiently realistic for the purposes
of inspection training. An experiment conducted to eval-
uate the subjective quality of the simulator attempted to
measure the degree of presence felt by subjects immersed
in the environment (Vora et al., 2001). Analysis of re-

Figure 14. Registering regions of interest in virtual reality: (A, left) simulated corrosion; (B, right) highlighted environmental defects.

Figure 15. Detected fixations (two-tap velocity filter, ungrouped) prior to (A, left) and following (B, right) binocular scale factor ad-
justment.

A B
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sponses to a modified version of Witmer and Singer’s
(1998) Presence Questionnaire revealed that the system
scored high on presence-related questions. Visual aspects
of the environment, sense of objects, anticipation of sys-
tem response, surveying, and experience in the environ-
ment all contributed to a reported high level of involve-
ment in VR. Although student subjects were not qualified
inspectors, on average they indicated their experience in
the virtual environment to be consistent with a walk-
through of a real aircraft prepared for inspection. We ex-
pect that trained inspectors will find the simulator simi-
larly consistent with the real environment, at least in the
context of simulating the visual search task. We realize
our simulator is not necessarily photo-realistic (e.g.,
owing to the limited resolution of the HMD, and the
coarse flat appearance of texture maps); however, since
the purpose of the simulator is to train search behavior,we
believe the simulator is sufficiently functionally realistic
for this purpose.

Filter Comparison, Process Measures, and
Training Effects

An experiment was conducted to measure the training
effects of the VR aircraft inspection simulator. The objec-
tives of the experiment included (1) comparative analysis
of different saccadic filter combinations, (2) validationof
performance measures used to gauge training effects, and
(3) evaluationof the eye movement data as cognitive feed-
back for training. If we assume that eye movement analy-
sis correctly identifies fixations and the VR simulator is
effective for training (i.e., a positive training effect can be
measured), the number of detected fixations would be ex-
pected to decrease with the adoptionof an improved visual
search strategy (e.g., following training; Drury, Gramo-
padhye, & Sharit, 1997).

Method
Stimulus. The airframe inspection simulation featured inspection

of an aircraft cargo bay with dimensions similar to those of a real
cargo bay of an L1011 aircraft. Texture maps used in the virtual air-
craft cargo bay were created from photographs of an actual cargo
bay (see above).

For user interaction with the virtual environment and performance
measurement during immersion, a 6DOF mouse was used as a mul-
timodal device (see above). The 6DOF mouse allows subjects to per-
form a pointing and clicking function to indicate selection. The cri-
terion task consisted of inspecting the simulated aircraft cargo bay
in search of defects. Several defects can occur in a real-environment
situation. Three types of defects were selected to create inspection

scenarios: (1) corrosion, represented by a collection of gray and
white globules on the inner walls of the aircraft cargo bay and lo-
cated roughly at knee level, (2) cracks, represented by a cut in any
direction on the structural frames inside the aircraft cargo bay, and
(3) damaged conduits, shown as either broken or delaminated elec-
trical conduits in the aircraft cargo bay. Figure 14A shows an exam-
ple of corrosion defects, and the target defects are highlighted in Fig-
ure 14B (highlighted defects are shown to the operator but are not
typically displayed for the subject).

Performance and process measures. Data for performance and
cognitive feedback measures were collected, using search timing
and eye movement information, respectively. The following perfor-
mance measures were collected: (1) search time from region pre-
sentation to fault detection, (2) incremental stop time when the sub-
jects terminated the search in a region by deciding that the region did
not contain faults, (3) number of faults detected (hits), recorded sep-
arately for each fault type, and (4) number of faults that were not
identified (misses).

Fixation analysis enabled the collection of cognitive feedback mea-
sures, which were provided to the subjects during the training ses-
sion. Cognitive feedback measures were based on the eye movement
parameters that contribute to search strategies, as defined by Megaw
and Richardson (1979), including (1) total number of fixations,
(2) mean fixation duration, (3) percentage of the area covered, and
(4) total trial time. Cognitive feedback measures were graphically dis-
played offline by rendering a 3-D environment identical to the air-
craft cargo bay that was used during immersive trials. This display
represented the scanpaths of each trial to indicate the subject’s visual
search progression.

Subjects. To gauge training effects, 18 graduate students were
chosen as subjects, all in the 20- to 25-year-old age group. The sub-
jects were screened for 20/20 corrected vision. The subjects were
randomly assigned to three different groups (6 per group): the per-
formance feedback group (PFG), the cognitive feedback group
(CFG), and the cognitive 1 performance feedback group (CPFG).
The subjects received different forms of feedback during training
sessions before and after trials (see below).

To examine eye movement results from different filter combina-
tions, data were used from 7 subjects between 20 and 30 years of
age, selected randomly from a population of graduate and under-
graduate students at Clemson University. The subjects were screened
for 20/20 corrected vision.

Experimental design . The training study used a 3 3 2 experi-
mental design with three groups (PFG, CFG, and CPFG) and two tri-
als (before training and after training). Six subjects were placed in
each of the three groups. Grouping allowed testing of between-
subjects factors, whereas within-subjects factors were tested be-
tween trials. Performance and cognitive feedback measures together
constituted eight dependent variables, with training scenarios (im-
mersion in different defect inspection scenarios) serving as the in-
dependent variable (training treatment).

A 4 3 2 complete block experimental design was used to compare
saccadic filter combinations, with subjects acting as blocking fac-
tors. The four algorithm groups represented the following filter
combinations: Both two-tap and five-tap velocity filters and the
seven-tap acceleration filter applied to velocity following either two-
tap or five-tap velocity filtering, with adaptive thresholding.

Calibration procedure. Prior to each experimental trial, the user
first had to complete two short calibration trials: (1) a 5-point 2-D
calibration sequence to calibrate the eye tracker and (2) the 3-D cal-
ibration to enable accurate GIP calculation. The 3-D software cali-
bration procedure relied on a specially marked environment, con-
taining nine clearly visible fixation targets, illustrated in Figure 15.

The nine numerical targets were distributed on five walls of the
environment to allow head position to be taken into account during
analysis. Without a precise estimate of b and f, computed GIPs might
appear stretched or compressed in the horizontal or the vertical di-

Table 5
Description of Subtasks

No. Scenario Task Description

1 No (zero) defect search entire area with no defects
2 Single defect find corrosion defects
3 Single defect find crack defects
4 Single defect find damaged conduit defects
5 Multiple defect find all three types of defects
6 No (zero) defect search entire area with no defects



588 DUCHOWSKI ET AL.

rection, as is shown in Figure 15A (only five targets are visible in the
figure).

To shorten the trial duration, eye movement data were stored for
off-line analysis. The scalar parameter s was obtained manually
through the use of a simple interface, shown in Figure 10 (adjust-
ment sliders are in the upper left quadrant of the GUI—note the dif-
ferent scale factors in the two screenshots). As the operator manip-
ulated the scale factor sliders, GIP data were recalculated and displayed
interactively. The goal was to align the calculated GIP locations with
the environmental targets that the user was instructed to fixate dur-
ing calibration. An example of this type of adjustment is shown in
Figure 15B; note that the GIPs (represented by transparent spheres)
are now better aligned over the targets than are the raw data shown
in Figure 15A. Once determined, the scale factor s was used to ad-
just each subject’s eye movement data in all the subsequent trials.

Training procedure. Each subject was requested to complete a
consent form and a demographic questionnaire. Written and oral in-
structions were provided to ensure the subjects’ understanding of the
experiment. All the subjects were given information about their re-
quired task. Following device and software calibration, the subjects
were then shown the entire search area of the virtual aircraft cargo bay
and were provided with graphical and verbal descriptions of possible
types of defects. The subjects were then presented with a familiariza-
tion task similar to the actual trials in the VR simulator and were shown
how to use the 6DOF mouse for pointing at and selecting targets.

The before-training criterion task was an unpaced visual inspec-
tion search task. The subjects searched for defects on the walls, the
floor, and the ceiling of the simulated 3-D cargo bay. The entire
search task was divided into a series of six subtasks, listed in Table 5.

To cancel out order effects, all 6 subjects in each group completed
their assigned subtasks, following a counterbalanced order using a
6 3 6 Latin square design. Treatments were randomly assigned to
each of the 6 subjects.

On completion of the before-training trials, all the subjects un-
derwent respective training sessions for each of the three groups.
The first step in the training sessions was completion of a multi-
defect search task. The subjects received feedback training accord-
ing to the respective feedback training groups. (1) The subjects in
the PFG received performance measures feedback performance
(search times, errors). (2) The subjects in the CFG received two
forms of cognitive feedback: statistical and graphical. Statistical
feedback included the number of fixations, mean fixation duration,
number of fixations in ROIs, mean fixation duration in the ROIs,
and percentage of area covered. For graphical feedback, the subjects
viewed a graphical visualization of their scanpaths representing their
search patterns, with fixation indices showing their visual search
progression. (3) The subjects in the GPFG received both forms of
feedback, performance feedback training as well as cognitive feed-
back training. On completion of the training sessions, all the subjects
performed an after-training criterion task. This subtask was coun-
terbalanced to eliminate order effects.

Results
Process measures and training effects. An analysis

of variance (ANOVA) showed no significant differences
between subjects (feedback groups). However, an ANOVA
showed significant differences in mean search time, per-

Table 6
Mean and Standard Deviation Data for Number of Fixations, Fixation Duration, and Raw Fixation Points

Number of Fixations Fixation Durations (msec) Raw Fixation Points

Before After Before After Before After

Algorithm M SD M SD M SD M SD M SD M SD

Two-tap velocity 172.00 51.13 138.81 56.85 805.31 301.88 946.33 317.27 4,212.36 1,069.77 3,253.40 1,661.24
Five-tap velocity 148.19 45.9 117.86 42.66 934.62 392.55 881.86 360.47 4,081.90 1,206.74 3,325.12 1,615.10
Two-tap velocity/seven-tap
acceleration 131.74 34.92 100.52 42.39 1,089.67 339.66 1,331.64 898.67 4,152.98 1,167.68 3,592.00 1,621.45

Five-tap velocity/seven-tap
acceleration 117.71 34.48 87.36 33.97 1,306.60 468.59 1,578.79 1,021.86 4,482.21 1,159.30 3,657.00 1,575.83

Figure 16. Raw data (A, left); two-tap velocity-based analysis (B, right).
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centage of defects detected, incremental stopping time,
and total trial time within subjects.

Filter comparison:Number of fixations. A two-factor
ANOVA for number of fixations revealed no significant
trial 3 filter interaction.The trial factorwas found to be sta-
tistically significant [F(7,49) 5 38.84, p , .001], indicat-
ing that there was a difference in the mean number of fix-
ationsbetween before- and after-training trials. Similarly, the
algorithmfactorwas foundtobe significant[F(7,49)5 20.64,
p , .001], indicating that there was a difference in the
number of fixations identified by each filter combination.

Further post hoc analysis revealed that there was a sig-
nificant reduction in the number of fixations between
before- and after-training trials and that this was evident for
all four algorithms. A significant difference was found in
the computation of number of fixations between the two-
tap velocity filter and the other filter combinations. It was
found that the two-tap velocity filter generated the highest
number of fixationswhereas the seven-tap acceleration fil-
ter generated the lowest number of fixations. The five-tap
velocity filter showed a significantly different number of
fixations from both the acceleration filters. There was no
significant difference between the mean numbers of fixa-
tions shown by either of the acceleration filters.

Filter comparison: Fixation durations. A two-factor
ANOVA for fixation durations revealed no significant
trial 3 filter interaction. The trial factor was not found to
be significant, indicating no significant change in the
mean fixationdurationsbetween the before- and the after-
training trials. The computations for duration by different
filters were found to be statistically different from each
other [F(7,49) 5 7.91, p , .001].

Further post hoc analysis showed no statistical differ-
ence between the two velocity filters or between the two
acceleration filters in the computation of fixation dura-
tions. There was a statisticaldifference in the computation
of fixation durations between the velocity filters and the
acceleration filters. The shortest durations were found

with the two-tap velocity filter, and the longest durations
were detected with the seven-tap acceleration filter.

A two-factor ANOVA of raw fixation points revealed
no significant trial 3 filter interactionsand no significant
filter main effects. The trial factor was found to be signif-
icant [F(7,49) 5 8.61, p , .001]. Further post hoc analy-
sis revealed that there was no significant difference be-
tween the mean raw fixation points as labeled by all four
filters for any of the trials (before or after). The overall
mean data for number of fixations, fixationdurations, and
raw fixation points are provided in Table 6.

Filter comparison: 3-D visualization. Figures 16B
(right) and 17 show typical “raindrop” visualizations of
the resulting analysis following fixation grouping.The ra-
dius of each fixation sphere is proportional to fixation
duration.

Figure 16B (right) shows the resulting scanpath follow-
ing two-tap velocity-basedanalysis (the scanpath resulting
from five-tap velocity filtering is not shown but is similar).

Figure 17A (left) shows the resulting scanpath follow-
ing acceleration-based analysis with adaptive threshold-
ing, Figure 17B (right) shows acceleration-based analysis
without adaptive thresholding. Both acceleration-based
methods better represent long fixations,owing to localiza-
tion of fewer saccades.

Discussion
Analysis indicates that, overall, training in the VR air-

craft simulation has a positiveeffect on subsequent search
performance in VR, although there is apparently no differ-
ence in the type of feedback given to subjects. Cognitive
feedback, in the form of visualized scanpaths, does not ap-
pear to be any more effective than performance feedback.
It may be that the most effective common contributor to
trainingis the immersion in the VR environment—that is, the
exposure to the given task, or at least to the simulated task.

Whether the eye tracker, by providing cognitive feed-
back, contributes to the improvement of inspection per-

Figure 17. Acceleration-based (five-tap) analysis with adaptive thresholding (A, left) and without (B, right).
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formance is inconclusive.Users may benefit just as much
from performance feedbackalone.However, the eye tracker
is a valuabletool for collectingprocess measures. An analy-
sis of results leads to two observations. First, mean fixa-
tion times do not appear to change significantly following
training. This is not surprising, since eye movements are,
to a large extent, driven by physiology (i.e., muscular and
neurological functions) and cognitive skill. In this case,
the search task itself may not have altered cognitive load
per se; rather, prior experience in the simulator may have
facilitated a more efficient search in subsequent trials.
Second, the number of fixations decreases following
training. These results generally appear to agree with the
expectation of a reduced number of f ixations with the
adoptionof an improved visual search strategy (e.g., owing
to learning or familiarizationof the task). The implication
of a reduced number of fixations (without an increase in
mean fixation time) suggests that, in the posttrainingcase,
subjects tend to employ a greater number of saccadic eye
movements. That is, an improved visual search strategy
may be one in which subjects inspect the environment
more quickly (perhapsowing to familiarity gained through
training), reducing the time required to visually rest on
particular features.

CONCLUSION

In this paper, we have presented new developments for
eye movement analysis in 3-D, specifically dealing with
improved noise suppression. The paper described (1) the
use of velocity and acceleration filters for eye movement
analysis in three-space, (2) the utility of adaptive thresh-
olding and fixation grouping, and (3) a heuristic method
to recover lost eye movement data owing to miscalibra-
tion. The results indicate that heuristic data mirroring is an
effective strategy for recovering lost short-duration eye
movement data. Fixation grouping appears to be an effec-
tive means for the eliminationof spurious fixation outliers
following analysis. Provided proper thresholds are se-
lected, both velocity-based and acceleration-based filter-
ing approaches appear to generate acceptable results. Al-
though velocity-based analysis is easier to deal with, it is
more sensitive to noise (i.e., resulting in classification of
a greater number of saccades). Under different circum-
stances (e.g., with 12-bit sampled data), velocity filters in
general (and the two-tap filter in particular) may perform
more accurately (Bahill & McDonald, 1983). In contrast,
owing to the greater degree of freedom in parameter esti-
mation, the acceleration-based technique can be adjusted
to be less sensitive to smaller amplitude saccades, result-
ing in a more robust approach to fixation detection.

From our experiments conducted in our chosen eye-
tracked VR application, we note that performance mea-
sures quantify the level of improvement of subjects’ in-
spection performance (i.e., how the subject performed). If
improvement can be shown, we may conclude that train-
ing contributes to performance improvement and, addi-
tionally, that the VR simulator is a suitable environment

for training.In addition,process measures not only can cor-
roborate performance gains, but also can lead to discov-
eries of reasons for performance improvements (i.e., what
the subject performed). In particular, tracking the users’
eyes can potentially lead to further insights into the un-
derlying cognitive processes of human inspectors.
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NOTES

1. Silicon Graphics, Onyx2, and InfiniteReality are registered trade-
marks of Silicon Graphics, Inc.

2. If t , 0, the polygon may intersect the gaze ray, but behind the
viewer.
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