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ABSTRACT
Multi-task optimization algorithm is an emergent paradigm which solves multiple self-contained tasks simultaneously. It is
thought that multi-factorial evolutionary algorithm (MFEA) can be seen as a novel multi-population algorithm, wherein each
population is represented independently and evolved for the selected task only. However, the theoretical and experimental evi-
dence to this conclusion is not very convincing and especially, the coincidence relation between MFEA and multi-population
evolution model is ambiguous and inaccurate. This paper aims to make an in-depth analysis of this relationship, and to provide
more theoretical and experimental evidence to support the idea. In this paper, we clarify several key issues unsettled to date,
and design a novel across-population crossover approach to avoid population drift. Then MFEA and its variation are reviewed
carefully in view of multi-population evolution model, and the coincidence relation between them are concluded. MFEA is com-
pletely recoded along with this idea and tested on 25 multi-task optimization problems. Experimental results illustrate its ratio-
nality and superiority. Furthermore, we analyze the contribution of each population to algorithm performance, which can help
us design more efficient multi-population algorithm for multi-task optimization.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Evolutionary algorithms (EAs) inspired by Darwinian’s principle of
“natural selection or survival of the fittest,” are a class of genetic
population-based metaheuristics [1]. Through computational ana-
logues of sexual reproduction or mutation, they are capable of pro-
ducing the offspring who can survive to the next generation and
likely move together towards fitter regions of the search landscape.
Over the past decades, EAs have been successfully applied to solve
a wide variety of complex optimization problems in science and
engineering. These problems can essentially be divided into two
main categories: single-objective optimization and multi-objective
optimization [2].

Multi-task optimization (MTO) is an emergent paradigm in evo-
lutionary computation, that focuses on dealing with multiple self-
contained tasks simultaneously using a single run of EA [3]. Note
that it is classified into one of three distinct conceptual realiza-
tions developed for transfer optimization [4]. Part of the origi-
nal motivation behind the idea came from the observation that
real-world problems seldom exist in isolation and every human
being possesses the most remarkable ability to effectively manage
and execute multiple tasks at the same time, for example, talk-
ing while walking or driving [5]. Inspired by the well-established
model of multi-factorial inheritance, multi-factorial evolutionary
algorithm (MFEA) was recently proposed to efficiently realize the
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MTO paradigm [6]. If the optimization tasks happen to bear some
commonality or complementarity, then the inclusion of knowledge
transfer often leads to significant performance improvements rela-
tive to conventional EAs alone.

In past decades, many multi-population techniques were developed
to improve the optimization performance of EAs and swarm intel-
ligence algorithms [7]. The original population is divided into mul-
tiple small homogeneous or heterogeneous populations to tackle
various optimization problems. Existing results demonstrate that
multi-population method is able to search different spaces simul-
taneously, and in favor of population diversity. Note that the con-
cept of multi-population is also described using other terms such as
multi-swarm, parallel, cooperative, co-evolution, island, and so on.

A key cornerstone of MFEA is the unified representation scheme of
solutions in a uniform search space. All individuals have the chance
to evolve through a common law. On the other hand, each individ-
ual in a population has its own task, which means that the whole
population can be viewed as being divided into multiple popula-
tions by task assignment. Thus, MFEA can be naturally explained
as a special multi-population evolution model and some features,
which are different from the standard island model, were also out-
lined in [8]. However, the evidence for this conclusion is not abun-
dant enough, although it seems like that this conclusion is widely
accepted. For example, in algorithm analysis, the coincidence rela-
tion between MFEA and multi-population evolution model is not
clear. Furthermore, there is no experimental verification to support
this conclusion.
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In this paper, four key questions are answered firstly to clear up any
misunderstandings, including performance evaluation, evaluation
numbers, population drift, and population size. In view of multi-
population evolution model, the algorithm details of MFEA are
explained carefully and then the coincidence relation between them
are concluded. Furthermore, other MTO paradigms currently pro-
posed are also reviewed by a similar measure. These analysis results
indicate a way to design efficient MTO algorithms with novel evo-
lutionary operators. Next, the basic structure of MFEA is reframed
following multi-population evolution model, and some key opera-
tors and parameters are redefined in order to ensure the consistency
with the original MFEA. Experimental results demonstrate its ratio-
nality. What’s more, with the help of new multi-population MFEA,
we can analyze the evolution process precisely and then design more
efficient multi-population EA algorithm for MTO.

Within this context, the contribution to evolutionary computa-
tion of this paper is some solid evidence to support, both the-
oretically and experimentally, that MFEA can be explained and
executed as multi-population evolution model. More specifically,
the innovative work contains threefold. First, the conventional
MFEA is explained in view of multi-population evolution model,
and the coincidence relation between them is also summarized.
Second, following the same idea, other variations of MFEA are
reviewed to indicate potential scheme of new operator in MTO
paradigm. Third, experimental results on three test suites contain-
ing 25 MTO benchmark problems illustrate two versions (namely
single-population and multi-population) of MFEA have equal effi-
cacy, and multi-population evolution model facilitates designing
more efficient EAs for MTO.

The rest of this paper is organized as follow. Section 2 describes the
related background, including single-population evolution model,
multi-population evolution model, detailed description of MFEA,
and related works on MTO. In Section 3, we first answer some key
issues, which are very confused and not solved by Hashimoto [8] or
other researchers. Then MFEA and its variation are reviewed care-
fully in view of multi-population evolution model. The basic struc-
ture of multi-population MFEA is proposed in Section 4, and then
two MFEA algorithms are compared in order to reveal our work’s
rationality and superiority. Finally, the work in this paper is con-
cluded and the future works are discussed in Section 5.

2. BACKGROUND

2.1. Single-Population Evolution Model

The canonical EA model is run based on one population, as shown
in Figure 1. The evolution model starts from an initial population
of individuals (solutions) generated randomly. Then it incorporates
standard steps of offspring reproduction (through genetic operators
like crossover and mutation) followed by a computational analogue
of natural selection. As a result, it can gradually guide an evolving

Figure 1 Single-population evolution model for a single task.

population towards favorable regions, which are characterized by
high fitness values in the search space [9].

2.2. Multi-Population Evolution Model
for MTO

For MTO, multiple tasks should be well approached at the same
time. Solving this optimization in a natural way is the multi-
population evolution strategy, which allows each subpopulation
to exploit separate search space in order to solve the correspond-
ing task. As an example, in Figure 2, a multi-population evolution
model is depicted to solve two tasks.

In multi-population evolution model, two subpopulations evolve
independently according to different (or same) evolutionary
schemes, and then export their best solutions as the final solu-
tion of each task. Compared with Figure 1, a core feature of multi-
population evolution model is the across-population reproduction
operator, which is deemed to help exchange information and assist
to find the promising solutions.

Another important feature is that the parent and its child individual
must belong to and evolve in the same subpopulation. One of the
advantages of it is to maintain population stability as far as possible.
To depict this feature in Figure 2, solid line and dotted line represent
different evolution process of two subpopulations. Of course, the
child individual (R1

t) in subpopulation 1 may be produced with the
help of the individuals (P2

t) from subpopulation 2, and vice versa.

2.3. Multi-Factorial Evolutionary Algorithm

As the first implementation, MFEA corporates genetic algorithm
(GA) into the MTO paradigm [6]. To efficiently tackle the across-
task knowledge, the feasible solutions are encoded into a unified
search space Y by the uniform random-key scheme [10]. Gener-
ally, if there are K tasks to be optimized, Y is normalized to [0, 1]D,
where the dimension number D should be max{Dj} and j = 1, 2, . . . ,
K. To compare the individuals for multi-tasking optimization, the
following properties are assigned to each individual.

Factorial Cost: In general, the factorial cost fji of individual pi is its
fitness value on a particular task Tj.

Factorial Rank: The factorial rank rji is simply defined as the index
of pi in the list of population members sorted in ascending order
with respect to their factorial cost on specific task Tj.

Figure 2 Multi-population evolution model for a simple case
comprising two tasks.
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Scalar Fitness: The scalar fitness of 𝜑i is defined based on its best
factorial rank over all tasks, which is given by 𝜑i =

1
min

j∈{1,2,⋯,K}
{rij}

.

Skill Factor: The skill factor 𝜏i refers to the most effective task on
which individual pi possesses the strongest competence among all
other tasks in MTO, which is computed as by 𝜏i = argminj {rij}.

The basic structure of MFEA is shown in Algorithm 1 [6]. Similar
to other classical EAs, it also stars with a randomly generated popu-
lation (line 1), and all individuals are evaluated on all tasks (line 2).
All individuals are distributed across this space, and each individ-
ual is assigned a skill factor in population initialization (line 3).

Algorithm 1: Multi-factorial Evolutionary Algorithm.
Input: K tasks (T1, T2, . . . , TK)
Parameter: random mating probability (rmp)
Output: K best solutions (S1, S2, . . . , SK)
1: Generate an initial population randomly and store it in

current-pop
2: Evaluate every individuals with respect to every optimization task

in multi-tasking environment
3: Compute the skill factor of each individual
4: while stopping conditions are not satisfied do
5: Apply genetic operators on current-pop to generate an

offspring-pop
6: Evaluate the individuals in offspring-pop for selected optimization

task only
7: Concatenate offspring-pop and current-pop to form an

intermediate-pop
8: Update the scalar fitness and skill factor of every individual in

intermediate-pop
9: Select the fittest individuals from intermediate-pop to form the

next current-pop
10: end while

During evolution (lines 4–10), MFEA uses assortative mating
and vertical cultural transmission firstly to generate the offspring
(line 5), thereby leading to population diversification and implicit
knowledge transfer across different tasks.

Assortative mating: For the two randomly selected parents pa and
pb, if they possess the same skill factor (𝜏a = 𝜏b) or a prescribed
rmp is satisfied, they can undergo crossover. Otherwise, they will
perform mutation independently. The notion of assortative mat-
ing guarantees that the individuals from the same task have a high
probability to mate and generate the offspring.

Vertical cultural transmission: For a given offspring c generated by
assortative mating, if it is generated by the crossover of two parents
pa and pb, its skill factor 𝜏c will be 𝜏a or 𝜏b with a equal probability.
On the contrary, c is generated by the mutation of one parent, and
its skill factor will be assigned as the same as its parent. Following
vertical cultural transmission in MFEA, the phenotype of offspring
is directly inherited by the phenotype of its parents.

At the end of each iteration, MFEA adopts an elitist selection strat-
egy (lines 6–9) that ensures that the fittest individuals will survive
through the generations.

2.4. Related Works on MTO

Since the first invention of MFEA in 2016, intensive research efforts
have been devoted to this area. For the sake of clarity, these works
can be divided into three categories: algorithm framework, algo-
rithm improvement, and typical application [11]. Several ways of
algorithm improvement will be discussed in Section 3.3, and influ-
ential results in terms of algorithm framework and typical appli-
cation are mentioned here to reflect the latest progress of the
discipline.

A general framework, the evolution of biocoenosis through sym-
biosis (EBS), was proposed for EAs to deal with many-tasking prob-
lems [12]. This framework has two main features, i.e., the adaptive
control of knowledge transfer among tasks and the selection of can-
didates for evaluation from concatenate offspring. Another multi-
population evolution framework (MPEF) was first established for
MTO, wherein each population addresses its own optimization task
and genetic material transfer can be implemented and controlled in
an effective manner [13]. A multi-task bi-level evolutionary algo-
rithm (M-BLEA) was provided as a promising paradigm to enhance
the performance of bi-level optimization [14]. In M-BLEA, lower
level optimization is a multi-task problem, which can speed up the
convergence to high quality solutions and also promote solving the
upper level problem. Recently, MTO with dynamic resource allo-
cation (MTO-DRA) was proposed [15]. It can allocate and control
computational resources to each task adaptively according to the
requirements.

In the literature, there exist a lot of works to apply MFEA to tackle
real-world problems, such as complex supply chain network man-
agement [16], bi-level optimization problem [14], double-pole bal-
ancing problem [17], composites manufacturing problem [14,18],
branch testing in software engineering [19], cloud computing ser-
vice composition problem [20], pollution-routing problem [21],
operational indices optimization of beneficiation process [22], and
time series prediction problem [23].

3. ANALYSIS OF MFEA AND ITS VARIANTS
IN TERMS OF MULTI-POPULATION
EVOLUTION MODEL

As the most famous MTO paradigm, MFEA has wide applications
in complex scientific and engineering optimization problems, and
lays an important basis for later progress in evolutionary computa-
tion area [24]. Thus, a deep analysis of it can help us to understand
other existing MTO paradigms and design novel ones in terms of
multi-population evolution model.

Notice that, more theoretical and experimental evidence are pro-
vided in this paper to support the idea that the canonical MFEA can
be explained and executed as multi-population evolution model.
Thus, MFEA and its variants are analyzed carefully, but we don’t try
to improve or modify MFEA in any way in this section.

3.1. Key Issues to be Settled

In MFEA, each individual in a population has its own task and
the task assignment is based on its relative strength (skill factor)
for each task [8]. As a result, a population can be viewed as being

Pdf_Folio:1123



1124 N. Wang et al. / International Journal of Computational Intelligence Systems 12(2) 1121–1133

divided into multiple subpopulations by the task assignment. In
other word, individuals with the same skill factor can be regarded
as a subpopulation. The number of subpopulations is the same as
that of tasks to be solved. Under this assumption and consensus,
four specious questions are explained firstly as following.

Question1:How to properly evaluate the individual’s performance?

In evolutionary computation theory, direct fitness is a good mea-
sure of an individual’s ability to survive and reproduce. In contrast,
an individual’s performance is evaluated by the scalar fitness in
MFEA, not the objective function value as usual. The scalar fitness
is calculated based on factorial rank, and the factorial rank further
comes from factorial cost, which is equal to the objective function
value. Clearly, the intention of these concepts is that it is possible to
thoroughly evaluate an individual for all optimization tasks.

However, an interesting observation from algorithm implementa-
tion is, in order to reduce the total number of function evaluations
as many as possible, an individual generated in MFEA is evaluated
by objective function on one valid task only [6]. This means that the
scalar fitness and the objective function value are in one-to-one cor-
respondence. In short, the objective function value is an ideal alter-
native of the scalar fitness in algorithm implementation.

Question 2: How to reduce the potentially large number of function
evaluations per iteration?

In multi-population evolution model, in view of each individual
assigned in one subpopulation, it is evaluated only once in its search
space. In theory, each individual in a uniform search space must be
evaluated for all tasks, and then it is assigned to one subpopulation
based on its skill factor. However, it requires a prohibitively large
number of function evaluations to achieve a good result.

In the actual implementation process, instead of evaluating an off-
spring for every task, the offspring is evaluated only for one task
that is its parent’s skill factor. As mentioned above, the incorpora-
tion of cultural effects can significantly reduce the total number of
function evaluations required as noted in [6].

Question 3: How to avoid population drift during across-
population crossover?

In MFEA, by vertical cultural transmission, the algorithm allows
the offspring to imitate the skill factor of any one of their parents.
When the offspring undergoes across-population crossover, it has
half chance to drift to other subpopulation, and the parent and his
child may be attached to the different subpopulations. This result
doesn’t coincide with the basic feature of multi-population evolu-
tion model.

In order to avoid population drift, a new simulated binary crossover
(SBX) approach across subpopulations Pk and Pr (k ≠ r) is proposed
as follows:

xk
j∗ =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0.5 × [(1 + 𝛾) xk
i + (1 – 𝛾) xr

j ] , 0 < rand < 0.25

0.5 × [(1 + 𝛾) xk
j + (1 – 𝛾) xr

i ] , 0.25 < rand < 0.5

0.5 × [(1 + 𝛾) xr
i + (1 – 𝛾) xk

j ] , 0.5 < rand < 0.75

0.5 × [(1 + 𝛾) xr
j + (1 – 𝛾) xk

i ] , 0.75 < rand < 1

(1)

where 𝛾 =
⎧⎪
⎨⎪
⎩

(2u)
1

𝜂+1 , u < 0.5( 1
2(1–u)

) 1
𝜂+1 , u > 05

, u follows a uniform distribu-

tion within [0, 1], distribution index 𝜂 = 1, xk
i , xk

j and xk
i∗ are the

i-th, j-th individual and the i-th corresponding updated individual
in subpopulation Pk (i ≠ j), and xr

i and xr
j are the i-th and j-th indi-

viduals in subpopulation Pr, respectively. Obviously, according to
Eq. (1), the parent

(
xk
i
)

and his child
(
xk
i∗
)

belong to the same sub-
population (Pk). What’s more, based on experimental results shown
in Section 4, it has the same effectiveness as the original across-
population crossover used in [6].

Question 4: How to control the population size during population
evolution?

General speaking, for multi-population evolution, a fixed size of
each subpopulation is given in the initialization stage. Based on the
definition of skill factor in MFEA, the subpopulation size depends
on the skill factor of individuals and varies over population evolu-
tion period. The more the number of individuals with the same skill
factor, the larger its subpopulation size.

It is seemingly a contradiction. In fact, if the algorithm strictly fol-
lows the original intention, we will get out of control MFEA algo-
rithm. Therefore, in order to avoid it happening, in the population
iteration process, the number of the fittest individuals is fixed to
form the next subpopulation [6]. That is to say, the subpopulation
size is equal to the total population number divided by the number
of tasks to be solved.

3.2. Micro-Level Analysis of MFEA

After answering these key and easily confused questions, now we
can reexamine MFEA operators in view of multi-population evolu-
tion model as follows.

Population initialization (lines 1–3 in Algorithm 1) is understood
lightly as a multi-population approach and omitted here for sim-
plicity. Population iteration (lines 4–10 in Algorithm 1) is the
focus of our research in this section. We start from the current-pop(
Pt = P1t ∪ P2t

)
, in which two subpopulations (P1t and P2

t ) with the
same size (as explained later in this section) will evolve and solve
two desired task, respectively.

Initially, assortative mating (line 5 in Algorithm 1) is applied on
current-pop to generate an offspring-pop. According to the defi-
nition of assortative mating in MFEA, two parent candidates (pa
and pb) selected randomly from current-pop may undergo one of
three genetic operators as follows. First, two individuals from the
same task will crossover and mutate as single-population repro-
duction in Figure 2. Second, two individuals from two different
tasks may crossover and mutate as across-population reproduction
in Figure 2. Lastly, two individuals from two different tasks may
only mutate independently of each other as other single-population
reproduction in Figure 2.

After that, vertical cultural transmission is run in MFEA. One of the
following three operations will happen corresponding to the above
three cases. For the first and third cases, two offspring individu-
als belong to their parent populations evidently, which are unique
and definite. However, the second case becomes complicated. At
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this time, it is possible that the offspring individuals belong to the
opposing parent subpopulation, which means this result does not
coincide with multi-population evolution model. Fortunately, this
inconsistency can be prevented simply, as explained in Section 3.1,
by novel crossover operator described in Eq. (1). As a result, the
child and his parent individuals are in the same subpopulation.

After reproduction (crossover and mutation), two subpopulations
(R1t and R2t ) are reserved and constitute the offspring-pop. Then
this population will concatenate with current-pop to form an
intermediate-pop. It is called concatenation (line 7 in Algorithm 1).

The next step is to update the scalar fitness and skill factor (line 8
in Algorithm 1). As mentioned above, all individuals are only eval-
uated on a special task only (the fitness value is infinite for other
tasks), which means the skill factor does not change from one task/-
subpopulation to another. Therefore, this step can be skipped for
multi-population evolution model.

The last iterative step is to select the fittest individuals to form
the next current-pop

(
Pt+1 = P1t+1 ∪ P2t+1

)
(line 9 in Algorithm 1).

According to the source code of MFEA written by Gupta et al. [6],
the number of individuals selected for different tasks is equal. As
shown in Figure 2, two new subpopulations (P1t+1 and P2

t+1) with the
same size are generated to solve two tasks simultaneously. This is
why they are set equally at the very beginning of algorithm analysis
in this section.

In a word, the conventional MFEA can be explained reasonably
in terms of multi-population evolution model, even though it is
originally designed as single-population EA strategy. Accordingly,
it is essential to indicate explicitly the comparison relationship of
each element, operator, and parameter between MFEA and multi-
population evolution model, as listed in Table 1.

3.3. Other Works Analysis

To make multi-population method more efficient, several basic
issues of the algorithm design should be solved, including the num-
ber of subpopulations, the communication between subpopula-
tions, the search area of each subpopulation, and the search strategy
of each subpopulation [7]. Considering the particularity of MTO,
the number of subpopulations is fixed as the number of tasks,

Table 1 The comparison relationship between MFEA and
multi-population evolution model.

MFEA Multi-Population Evolution Model

Population (Pt ) Subpopulations
(
P1t , P

2
t , … , P

k
t

)
where K is

the number of tasks
Random-key

representation in a
unified search space

Direct representation in single search space

Across-domain decoding None
Scalar fitness, factorial

rank, factorial cost
Function fitness

Single-population SBX Eq. (12)
Across-population SBX Eq. (1)
Polynomial mutation Polynomial mutation
Elitist selection strategy Elitist selection strategy
Random mating

probability (rmp)
Across-population reproduction probability

(arp)

and the search area is a unified search space for each subpopula-
tion in general. Therefore, in order to plan a new multi-population
EA for MTO as shown in Figure 2, it is crucial to design the
reproduction operator (including single-population reproduction,
across-population reproduction, occurrence intensity of knowledge
transfer, etc.) and selection operator (including evaluation method,
comparison level, selection strategy, etc.), respectively. Each new
operator, in a sense, often leads to a novel EA for MTO. The pur-
pose of this section is twofold. We argue that (1) other variants of
MFEA can also be explained as multi-population evolution model;
and (2) these existing operators facilitate and inspire more innova-
tive and efficient operator, or even algorithm.

Although not clearly stated, up to now, several interesting
approaches were proposed to follow along with multi-population
evolution model.

(1) Single-population reproduction. It is the same as the nor-
mal reproduction in single-population evolution model shown in
Figure 1. As a core search operator, it can significantly affect the
performance of multi-population EAs, and be used to distinguish
them.

The most widely utilized one is probably genetic mechanisms,
namely crossover and mutation. Specifically, several typical genetic
strategies include SBX [6,17], ordered crossover [25], one-point
crossover [26], guided differential evolutionary crossover [27],
Gaussian mutation [6], swap mutation [25], polynomial mutation
[17,28], and swap-change mutation [29]. The other three EAs, dif-
ferential evolution (DE) [13,30–32], particle swarm optimization
(PSO) [31,33–35], and genetic programming (GP) [23], are also uti-
lized as fundamental algorithm for MTO paradigms.

(2) Across-population reproduction. The prominent difference
between Figures 1 and 2 is across-population reproduction operator
in MPEF. Its major function is knowledge transfer between differ-
ent subpopulations, which may help accelerate the search process
and find global solutions. The most natural and direct way is a sim-
ilar operation as single-population reproduction.

Take MFEA as an example, knowledge transfer is done by across-
population SBX crossover as below [6]:

xk
i∗ orxr

i∗ = {
0.5 × [(1 + 𝛾) xk

i + (1 – 𝛾) xr
j ] , rand < 0.5

0.5 × [(1 + 𝛾) xr
j + (1 – 𝛾) xk

i ] , rand > 0.5
(2)

Compared with single-population SBX crossover, two parents come
from two different subpopulations (Pk and Pr). For MT-CPSO
(multi-tasking coevolutionary PSO), the across-population repro-
duction is provided as follows [33]:

xk
i∗ = 0.5 ×

(
[1 + rand] × xk

i + [1 – rand] × xr
gb

)
(3)

where xk
i and xk

i∗ are the position of the i-th particle and its cor-
responding updated particle in subpopulation Pk, respectively, xr

gb
is the current global best position in subpopulation Pr, and rand
is a random number within 0 and 1. For AMFPSO (adaptive
multi-factorial PSO), the velocity is updated using the following
equation [35]:

vk
i∗ = 𝜔 × vk

j + c1 × rand ×
(
xk
lb – xk

i
)

+c2 × rand ×
(
xk
gb – xk

i

)
+ c3 × rand ×

(
xr
r1 – xr

r2
) (4)
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where vk
i and vk

i∗ are the velocity of the i-th particle and its corre-
sponding updated particle in subpopulation Pk, respectively, xk

i and
xk
lb are the position of the i-th particle and its found-so-far best par-

ticle in subpopulation Pk, respectively, xk
gb is the current global best

position in subpopulation Pk, r1 and r2 are random and mutually
exclusive integers, c1, c2, c3, and 𝜔 are four parameters to adapt to
problems, and rand is a random number within 0 and 1. For MPEF-
SHADE (MPEF - success-history based adaptive DE), the mutation
operator with genetic materials transfer is defined as following [13]:

xk
i∗ = xk

i + Fi ⋅
(
xr
gb – xk

i

)
+ Fi ⋅

(
xr
r1 – xr

r2
)

(5)

where xk
i and xk

i∗ are the i-th individual and the corresponding
updated individual in subpopulation Pk, respectively, xr

gb is the cur-
rent best individual in subpopulation Pr, Fi is the scaling factor, and
r1 and r2 are random and mutually exclusive integers.

In addition to these routine operations, another interesting repro-
duction approach is called explicit genetic transfer across tasks and
proposed recently [36]. By configuring the input and output layers
to represent two task domains, the hidden representation provides a
possibility for conducting knowledge transfer across task domains.
In particular, let P and Q represent the set of solutions uniformly
and independently sampled from the search space of two different
tasks T1 and T2, respectively. Then the mapping M from T1 to T2
is given by

M =
(
QPT) (PPT)–1 (6)

Therefore, the transfer of useful genetic solutions can be conducted
simply by multiplication operation with the learned M. It is very
recently that a novel genetic transform strategy has been proposed
[37]. Given two tasks T1 and T2, two mapping vectors M12 (from
T1 to T2) and M21 (from T2 to T1) are calculated as follows:

M21 =
(
meanT1 + 𝜀

)
./
(
meanT2 + 𝜀

)
(7)

M12 =
(
meanT2 + 𝜀

)
./
(
meanT1 + 𝜀

)
(8)

where meanT1 and meanT2 are mean vectors of some selected indi-
viduals specific to the two tasks, respectively, and 𝜀 represents a
small positive number. The operator. / performs element-wise divi-
sion of two vectors. Based on the two vectors, two parent individu-
als can be mapped to the vicinity of the other solutions.

In many-task optimization environment, a task may be only helpful
to some tasks. Therefore, it is important to choose the most suitable
task (or assisted task) to be paired with the present task (or target
task) for knowledge transfer. An adaptive selection mechanism of
choosing suitable task was proposed by simultaneously considering
the similarity between tasks and the accumulated rewards of knowl-
edge transfer during the evolution [38].

(3) Occurrence intensity of knowledge transfer. As illustrated
in Figure 2, the offspring can be generated in two ways: single-
population reproduction and across-population reproduction. On
one hand, some inductive biases provided by another task/sub-
population are helpful to improve performance. On the other
hand, excessive across-population reproduction may lead to nega-
tive genetic transfer and bad algorithm performance [5]. Thus a nat-
ural question in multi-population evolution model is how to adjust
the intensity of knowledge transfer.

In classic MFEA, parameter rmp is used to balance the diversity
and convergence capability of obtained solutions and is set as a
constant of 0.3 [6]. A larger value of rmp induces more explo-
ration of the entire search space, thereby facilitating population
diversity. In contrast, a smaller value would encourage the exploita-
tion of current solutions and speed up the population conver-
gence. In TMO-MFEA, a larger rmp is used for diversity-related
variables to enhance its diversity, while a smaller rmp is designed
for convergence-related variables to achieve a better convergence
[22,39].

In fact, knowledge transfer across tasks can also occur with a fixed
generation interval along the evolution search. In EMT (evolution-
ary multi-tasking), the interval of across-population reproduction
is set to 10 generations [36]. Experimental results based on island
model reveal that better results are observed from small transfer
intervals than large transfer intervals [8].

In MT-CPSO, if a particle does not improve its personal best
position over a prescribed consecutive generation, the across-
population reproduction operator is then triggered [33]. Obviously,
the greater the value of the prescribed iterations, the smaller the
probability of across-population reproduction.

Another potential research direction is parameter control or adap-
tation, especially for rmp. If a task can be improved more times by
the offspring from other tasks, the probability of knowledge trans-
fer should be increased; otherwise, we will decrease this rate [12].
Thus the probability is defined by

rmpk =
Ro

k
Rs

k + Ro
k

(9)

where Rs
k and Ro

k are the proportions of times that the current best
solution in subpopulation Pk is improved by the offspring of the
same task and other tasks, respectively. In MPEF, this parameter is
adaptively determined based on the evolution status [13]:

rmpk = {min
(
rmpk + c ⋅ tsrk, 1

)
, tsrk > srk

max
(
rmpk – c ⋅ (1 – tsrk) , 0

)
, tsrk < srk

(10)

where srk is the success rate of the subpopulation Pk, tsrk is the
success rate of that offspring generated with the genetic material
transfer, and c is a constant parameter. A simple random searching
method was introduced to adjust this parameter [35]. The current
rmp is stored in the candidate list when at least one of K best solu-
tions is updated by a better solution. Otherwise, the parameter is
adapted as follows:

rmpk = rmpk + 𝛿 ⋅ N (0, 1) (11)

where 𝛿 is a constant parameter, and N(0, 1) is a Gaussian noise
with zero mean and unit variance. It is very recently reported that
an online rmp estimation technique was proposed in order to the-
oretically minimize the negative interactions between distinct opti-
mization tasks [17]. Specifically, the extent of transfer parameter
matrix is learned and adapted online based on the optimal blending
of probabilistic models in a purely data-driven manner.

(4) Evaluation method. General speaking, the complete definition
of a good selection operator is composed of evaluation, compar-
ison, and selection method. The individual’s performance can be
evaluated directly or indirectly. As an indirect method, the scalarPdf_Folio:1126
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fitness was originally proposed in MFEA [6]. On the other hand,
the fitness value of objective function is a nature and typical direct
method [12,13,32,33]. As indicated in Section 3.1, scalar fitness and
function fitness are equivalence relation in multi-population evolu-
tion model.

(5) Comparison level. After evaluating all individual’s perfor-
mance (function fitness or scalar fitness), the next question is the
scope or level of comparison objects. In MFEA, the offspring-pop
(Rt) and current-pop (Pt) are concatenated and then a sufficient
number of individuals are selected to yield a new population [6].
This approach can be called population-based (or all-to-all) com-
parison. As a contrast, individual-based (or one-to-one) compari-
son is also utilized [13,23,30,33]. Once the off-spring individual is
generated by single-population or across-population reproduction,
it is compared with its parent directly and then the better one can
remain in the next generation.

(6) Selection strategy. For the case of population-based compar-
ison, some alternative strategies are proposed to select the fittest
individuals from the joint population. For example, MFEA and
its variation follow elitist selection [6], level-based selection [28],
and self-adaptive selection [40]. Furthermore, it may remove the
worse or redundant individuals so as to create more population
diversity [23].

4. EXPERIMENTAL VERIFICATION AND
DISCUSSION

4.1. Algorithm Implementation

In order to illustrate the rationality of multi-population evolution
model, the most classic MTO paradigm is completely recoded as
shown in Algorithm 2 and its flowchart is also depicted in Figure 3.
In fact, two versions of MFEA were proposed by Gupta [6] and Da
[41], respectively. They differ on (1) the relation between crossover
and mutation, and (2) the mutation method performed. In consid-
eration of rich experimental results and simple structure, MFEA
proposed by Da in [41] is confirmed as the baseline algorithm in
this paper.

In population initialization (lines 1–5 in Algorithm 2), K subpopu-
lations (P1, P2,⋯, PK) are generated randomly and evaluated based
on each task Tk (k = 1, 2, . . . , K). This process corresponds to lines
1–3 of Algorithm 1. Note that, as mentioned above, function fitness
based on task Tk is the evaluation object for each individual in sub-
population Pk.

In population evolution (lines 6–23 in Algorithm 2), each indi-
vidual xk

i in subpopulation Pk undergoes one of three crossover
approaches with a certain probability (lines 9–15 in Algorithm 2)
and then polynomial mutation (line 16 in Algorithm 2). Their func-
tion corresponds to assortative mating and vertical cultural trans-
mission of MFEA. The first approach (lines 9–11 in Algorithm 2) is
SBX in subpopulation Pk with a probability of 50% as follows:

xk
i = {0.5 × [(1 + 𝛾) xk

i + (1 – 𝛾) xk
j ] , rand < 0.5

0.5 × [(1 + 𝛾) xk
j + (1 – 𝛾) xk

i ] , rand > 0.5 (12)

Algorithm 2: Multi-population MFEA.
Input: K tasks (T1, T2,⋯, TK)
Parameter: across-population reproduction probability (arp)
Output: K best solutions (S1, S2,⋯, SK)
1: for each task Tk do
2: Generate an initial subpopulation Pk randomly
3: Evaluate all individuals in subpopulation Pk based on task Tk
4: Find the best solution Sk for task Tk
5: end for
6: while stopping conditions are not satisfied do
7: for each task Tk do
8: for each individual xi

k in subpopulation Pk do
9: if rand < 0.5 then
10: Select j-th individual xj

k in subpopulation Pk randomly
11: Generate an offspring individual based on (12)
12: elseif rand < arp + 0.5 then
13: Select j-th individual xj

r in subpopulation Pr randomly
14: Generate an offspring individual based on (1)
15: end if
16: Apply polynomial mutation on individual xi

k

17: Evaluate individual xi
k based on task Tk

18: end for
19: Concatenate the offspring subpopulation oPk and the current

subpopulation Pk to form an intermediate subpopulation
20: Select the fittest individuals from intermediate subpopulation to

form the next subpopulation Pk + 1
21: Update the best solution Sk for task Tk
22: end for
23: end while
24: Return K best solutions (S1, S2,⋯, SK)

Figure 3 Flowchart of multi-population multi-factorial
evolutionary algorithm.
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The second (lines 12–14 in Algorithm 2) is SBX across subpopula-
tions (Pk and Pr) with a probability of arp as described by (1). The
last way is to remain unchanged temporarily.

Similar to the single-population MFEA, in order to update each
next subpopulation (Pk + 1), multi-population MFEA also adopts an
elitist selection strategy (lines 19–21 in Algorithm 2) according to
the scalar fitness. Following that, we will update the best solution
set for the current task Tk.

What needs to be pointed out is that no separate local search step
is performed in Algorithm 2. In contrast, in MFEA proposed by
Gupta, all individuals undergo a simple local search (quasi-newton
algorithm) to improve solution quality [6]. Thus, it is the third
difference between two MFEA versions in algorithm design and
implementation.

4.2. Experimental Setup

Single-population MFEA proposed by Da in [41] is abbreviated as
sp-MFEA in this section. To express conveniently, multi-population
MFEA as shown in Algorithm 2 is abbreviated as mp-MFEA.

In this section, we present the details of MTO benchmark problems
and parameter setting in our experiments.

4.2.1. Benchmark problems

Three test suites containing 25 MTO problems are employed in
the experiment. These MTO problems possess different degrees of
latent synergy between their involved component tasks.

The first benchmark suite contains nine standard single-objective
MTO problems, which details can be referred to the technical report
[41]. The second benchmark suite contains ten complex single-
objective MTO problems, and each task is a benchmark function
from 2014 IEEE Congress on Evolutionary Computation (CEC
2014). They are both provided by Feng et al. in the Competition
on Evolutionary Multi-task Optimization, CEC 2019, and are avail-
able at http://www.bdsc.site/websites/MTO/index.html. Each of the
standard and complex MTO problems consists of two continuous
optimization tasks, while each MTO problem in the third suite
consists of three component tasks. To generate six 3-task MTO
problems, six standard 2-task MTO problems are employed as base
functions while adding the third base function different from the
two existing ones. All of the 25 MTO problems used in this paper
are summarized in Table 2.

4.2.2. Parameter setting

While rmp is utilized in MFEA, arp is utilized in Algorithm 2. Their
values are set equal to 0.3 and 0.15, respectively. Figure 4 describes
the role of these key parameters in two MFEA algorithms vividly.

To make a fair comparison, other parameters used in SBX and poly-
nomial mutation are the same for sp-MFEA and mp-MFEA. Fur-
thermore, 100,000 function evaluations (the total population size is
100, and the number of maximum iteration is 1000) is adopted as
the termination condition. In order to eliminate statistical errors,
each algorithm conducts 100 independent runs on each MTO
problem.

Table 2 Description of 25 MTO problems.

Test Suite MTO Problem Base Functions

1 Griewank (T1), Rastrigin (T2)
2 Ackley (T1), Rastrigin (T2)
3 Ackley (T1), Schwefel (T2)
4 Rastrigin (T1), Sphere (T2)

Standard 2-tasks 5 Ackley (T1), Rosenbrock (T2)
problem 6 Ackley (T1), Weierstrass (T2)

7 Rosenbrock (T1), Rastrigin (T2)
8 Griewank (T1), Weierstrass (T2)
9 Rastrigin (T1), Schwefel (T2)

10 #7 (T1), #8 (T2)
11 #7 (T1), #12 (T2)
12 #7 (T1), #15 (T2)
13 #8 (T1), #15 (T2)

Complex 2-tasks 14 #9 (T1), #10 (T2)
problem 15 #9 (T1), #11 (T2)

16 #10 (T1), #16 (T2)
17 #11 (T1), #13 (T2)
18 #13 (T1), #14 (T2)
19 #14 (T1), #16 (T2)
20 Griewank (T1), Rastrigin (T2),

Ackley (T3)
21 Ackley (T1), Rastrigin (T2),

Weierstrass (T3)
22 Rastrigin (T1), Sphere (T2),

Rosenbrock (T3)
3-tasks problem 23 Ackley (T1), Rosenbrock (T2),

Weierstrass (T3)
24 Rosenbrock (T1), Rastrigin (T2),

Griewank (T3)
25 Griewank (T1), Weierstrass (T2),

Sphere (T3)

MTO = multi-task optimization.

Figure 4 Role of two key parameters in different multi-factorial
evolutionary algorithm (MFEA) algorithms.

4.3. Experimental Results

It is emphasized again that, the main purpose of this paper is to
provide theoretical and experimental evidence to support the idea
that sp-MFEA can be explained and executed as multi-population
evolution model. Thus, it is not necessary to compare mp-MFEA
separately with the state of the art other EAs. That is to say, if sp-
MFEA is superior to any other competitor, we have every reason to
believe that mp-MFEA is also superior to that one.

The experimental results on 25 MTO problems are provided in
Table 3.Pdf_Folio:1128
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Table 3 Mean performance of two MFEA algorithms on 25 MTO problems.

MTO Problem Task sp-MFEA mp-MFEA Error(%)

1 T1 0.3722 0.3712 −0.2687
±0.06208 ±0.06245

T2 196.2531 197.8287 0.8028
±39.2357 ±43.9761

2 T1 4.5929 4.7939 4.3763
±0.6896 ±0.9310

T2 230.3932 233.1326 1.189
±52.8207 ±53.3635

3 T1 20.186 20.1783 −0.0381
±0.08046 ±0.08111

T2 3702.7842 3705.324 0.0686
±435.8346 ±442.5599

4 T1 602.8853 591.9885 −1.8074
±120.7635 ±110.4832

T2 9.4473 8.7615 −7.2592
±2.1345 ±1.7955

5 T1 3.5523 3.6058 1.5061
±0.5926 ±0.5562

T2 697.7636 693.0246 −0.6792
±261.5233 ±255.1908

6 T1 19.9451 19.8801 −0.3259
±0.7805 ±1.4307

T2 20.2608 21.1484 4.3809
±2.4460 ±3.1628

7 T1 951.3895 894.6049 −5.9686
±484.5731 ±623.0197

T2 283.7447 279.7397 −1.4115
±92.7225 ±93.0268

8 T1 0.4139 0.4095 −1.0631
±0.06906 ±0.07272

T2 26.9026 26.6582 −0.9085
±2.8228 ±2.9572

9 T1 627.5886 604.3195 −3.7077
±114.6623 ±130.6374

T2 3683.4686 3750.888 1.8303
±404.4735 ±483.9195

10 T1 691.4073 701.2433 1.4226
±0.06149 ±0.06294

T2 887.2425 883.8248 −0.3852
±0.5208 ±5.1133

11 T1 693.9376 701.2482 1.0535
±0.1102 ±0.09062

T2 1228.9126 1200.258 −2.3317
±0.09984 ±0.06575

12 T1 690.1628 701.2613 1.6081
±0.1845 ±0.08907

T2 1552.9553 1536.98 −1.0287
±11.2278 ±10.5782

13 T1 851.4715 831.112 −2.3911
±4.0491 ±4.7456

T2 1566.3998 1536.776 −1.8912
±10.0199 ±9.1995

14 T1 1211.3314 1189.84 −1.7742
±50.4861 ±47.584

T2 1767.7217 1856.799 5.0391
±225.8596 ±241.5125

15 T1 1202.806 1215.996 1.0966
±47.713 ±52.7256

T2 6338.8597 6721.543 6.0371
±750.7684 ±794.1648

16 T1 1760.2002 1809.771 2.8162
±255.2642 ±261.4864

T2 1556.9887 1619.849 4.0373
±0.6051 ±0.7181

17 T1 6918.7345 7067.598 2.1516
±627.7413 ±763.0831

T2 1299.8032 1300.566 0.05869
±0.8912 ±0.10962

(continued)
Pdf_Folio:1129
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Table 3 Mean performance of two MFEA algorithms on 25 MTO problems.
(Continued)

MTO Problem Task sp-MFEA mp-MFEA Error(%)

18 T1 1297.0837 1300.604 0.2714
±0.1242 ±0.1086

T2 1396.0996 1400.401 0.3081
±0.169 ±0.1895

19 T1 1402.1645 1400.395 −0.1262
±0.2227 ±0.20471

T2 1558.4454 1619.672 3.9287
±0.5257 ±0.654

20 T1 0.3949 0.3914 −0.8923
±0.09946 ±0.05741

T2 219.3648 214.9281 −2.0225
±60.3468 ±51.6896

T3 2.9733 3.0568 2.8094
±0.2498 ±0.4617

21 T1 4.5455 4.7334 4.1328
±1.008 ±0.8037

T2 250.3884 253.1382 1.0982
±48.891 ±55.4667

T3 11.2499 11.6872 3.8876
±1.825 ±1.7124

22 T1 296.2614 288.745 −2.5371
±100.1678 ±89.8639

T2 12.4034 11.7768 −5.0517
±3.0553 ±2.7105

T3 1154.5031 1103.511 −4.4168
±589.3421 ±516.4512

23 T1 3.7924 3.9066 3.012
±0.5793 ±0.6347

T2 1129.359 1075.021 −4.8114
±980.7422 ±899.4705

T3 9.8274 9.8191 −0.08427
±1.7825 ±1.6221

24 T1 1291.5757 1258.213 −2.5831
±850.1225 ±782.4116

T2 309.8185 303.9567 −1.892
±99.7586 ±102.2846

T3 0.506 0.49818 −1.536
±0.05174 ±0.07614

25 T1 0.4806 0.4751 −1.139
±0.08905 ±0.07231

T2 26.4804 28.079 6.037
±3.4817 ±3.0328

T3 13.3453 12.6569 −5.1581
±5.7749 ±2.8255

MFEA = multi-factorial evolutionary algorithm; MTO = multi-task optimization.

From Table 3, the average best results obtained by two algorithms,
sp-MFEA and mp-MFEA, are similar to each other. Not surpris-
ingly, the same conclusion applies to all test suites: standard MTO
problems, complex MTO problems, and 3-task MTO problems. In
most cases, the relative error is less than 5% as shown in the last
column of Table 3. The performance difference between the two
algorithms over all MTO benchmark problems is not statistically
significant at p < 0.05 (Wilcoxon rank-sum). These results demon-
strate that multi-population evolution model is very credible within
an easy-to-understand configuration.

4.4. More Discussion

Compared with sp-MFEA, the other advantage of mp-MFEA is
that it provides an opportunity to analyze the evolution process of

subpopulations. For instance, for each individual xk
i in subpopula-

tion Pk, before generating an offspring, it will undergo one of three
reproduction processes: (1) single-population crossover and muta-
tion (called group 1); (2) across-population crossover and mutation
(called group 2); and (3) only mutation (called group 3). A natural
and interesting question is what are their contributions to algorithm
performance.

In order to answer this question exactly, take MTO problem 1 as
an example, the number of individuals and improved individu-
als (its function fitness is smaller than its parent’s) and the ratio
of improved individuals in three groups are recorded as shown in
Figures 5–7, respectively. As is clear from Figure 5, each event’s
probability fluctuates slightly over generations (population size is
100 in this paper). The average probability for each group is 50%,
15%, and 35%, respectively, which coincide with the theoretical
probability as shown in Figure 4.
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Figure 6 reveals the number of improved individuals also changes
continually over generations. It declines slowly during the initial
400 generations and then moves towards stabilization. Compara-
tively speaking, both the number and the ratio of improved indi-
viduals in group 1 is the largest among three groups from Figures 6
and 7. In this run, the average number and the average ratio is 8.91
and 17.75%, respectively. As a result, we can conclude that individ-
uals underwent single-population crossover and mutation have the
greatest contribution to improve the algorithm performance.

Notice from Figure 7, at the beginning of population evolution,
the ratio of improved individuals underwent across-population
crossover and mutation is high (although unstable). However, the
number of improved individuals in group 2 is almost zero at the end
of this run, as shown by Figure 5, which means it has zero (even neg-
ative) effect to advance the algorithm performance. Thus a research
direction in future is to adjust the occurrence probability of differ-
ent reproduction operators adaptively.

Unfortunately, for classic sp-MFEA, each individual may come
from any tasks and change over and over during population evolu-
tion. Therefore it is impossible to analyze the corresponding con-
tribution of each group as shown above.

Figure 5 Number of individuals in different groups for
multi-task optimization (MTO) problem 1.

Figure 6 Number of improved individuals in different
groups for multi-task optimization (MTO) problem 1.

Figure 7 Ratio of improved individuals in different groups
for multi-task optimization (MTO) problem 1.

5. CONCLUSION

While some people agree that MFEA is seen as a novel
multi-population EA for MTO, wherein each subpopulation is
represented independently and evolved for its own task only, it
is an intuitive or even mediumistic idea. In this study, we make
an in-depth analysis of the coincidence relation between multi-
population evolution model and MFEA.

Firstly, in order to clear up potential misunderstandings, we answer
several key questions unsettled to date, and design a novel across-
population crossover approach to avoid population drift. Then
MFEA and its variation are reviewed carefully in view of multi-
population evolution model, and the coincidence relation between
them are concluded. These analysis results provide more evidence
to support the opinion by Hashimoto in [8].

Massive experimental results on sp-MFEA and mp-MFEA also
reveal our work’s rationality and superiority. What is even more
important is that, with the help of it, we can analyze the evolution
process precisely and then design more efficient multi-population
EA for MTO. From experimental results, we notice that individuals
from a different group may have positive, zero, or negative contri-
bution to improve the algorithm performance.

We will seek the hidden reason and find an effective way to adjust
the intensity of knowledge transfer adaptively. In the future, fol-
lowing multi-population evolution model, we also hope to predict
theoretically the effect of the parameters and genetic operators of
MFEA on the quality of global solutions.
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