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Abstract:    Accurate wave forecasting with a couple of hours of warning time offers improvements in safety for maritime  
operation-related activities. Autoregressive (AR) model is an efficient and highly adaptive approach for wave forecasting. How-
ever, it is based on linear and stationary theory and hence has limitations in forecasting nonlinear and non-stationary waves. 
Inspired by the capability of empirical mode decomposition (EMD) technique in handling nonlinear and non-stationary signals, 
this paper describes the development of a hybrid EMD-AR model for nonlinear and non-stationary wave forecasting. The EMD-
AR model was developed by coupling an AR model with the EMD technique. Nonlinearity and non-stationarity were overcome 
by decomposing the wave time series into several simple components for which the AR model is suitable. The EMD-AR model 
was implemented using measured significant wave height data from the National Data Buoy Center, USA. Prediction results 
from various locations consistently show that the hybrid EMD-AR model is superior to the AR model. This demonstrates that 
the EMD technique is effective in processing nonlinear and non-stationary waves.  
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1  Introduction 
 

Short-term wave prediction at a location is es-
sential in the design and implementation of maritime 
operations. Reliable prediction allows improvements 
in safety for conducting operation-related activities, 
helps offshore structures to avoid the dangers of 
harsh conditions (Jain and Deo, 2007), and improves 
the efficiency of wave energy converters (Li et al., 
2012). The operational wave forecast has been  

widely explored for its application value in engineer-
ing over recent decades. A large number of wave 
forecast models have been developed. According to 
the theoretical differences among the various meth-
ods, wave forecast models may be classified into 
four types of approaches: energy balance equation 
(EBE)-based models, classical time series models, 
intelligent-technique-based nonlinear models, and 
hybrid models.  

Conventional numerical models for wave fore-
casts were based on EBEs. EBE-based numerical 
models are usually used to forecast waves over a 
large spatial and temporal domain (The Wamdi 
Group, 1988; Komen et al., 1994; Janssen, 2008; 
Sandhya et al., 2014; Tolman, 2014). However, their 
predictions depend on how precisely the phenomena 
are expressed in formulations (Mandal and Praba-
haran, 2010). In addition, their implementation re-
mains difficult because of the high computational 
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cost and the unavailability of forcing functions 
(Londhe and Panchang, 2006). 

Classical time series models provide another 
possible way for achieving wave forecasting. Their 
simple model methodology without wind-to-wave 
conversion does not require exogenous data and 
massive computing memory and time (Jain and Deo, 
2007). However, classical time series models are not 
suitable for nonlinear and non-stationary wave pre-
diction because of their linear and stationary as-
sumptions. Therefore, several improved models, 
such as the bilinear model (Hannan, 1982), the 
threshold autoregressive model (Tong and Lim, 
1980), and the autoregressive conditional heteroske-
dasticity model (Engle, 1982), have been developed. 
These nonlinear models are limited by the hypothe-
sized explicit relationships for the available data se-
ries (Zhang et al., 1998). 

To resolve the nonlinearity of ocean waves,  
intelligent-technique-based nonlinear models such as 
artificial neural networks (ANNs) and genetic pro-
gramming (GP) models have been extensively stud-
ied. Real-life applications of these soft computing 
techniques can be found in different fields (Chau, 
2007; Wu and Chau, 2013; Taormina and Chau, 
2015). In these studies, it was found that the ANN 
model performed better for short-interval prediction 
and produced similar results to classical time series 
models for long-interval forecast. GP provides an-
other possible intelligent solution for nonlinear 
ocean wave prediction. Real-time wave forecasting 
at two locations in the Gulf of Mexico (Gaur and 
Deo, 2008) suggested that GP performed better than 
ANN for higher interval forecasts. Even the  
intelligent-technique-based nonlinear models may 
perform well in handling nonlinearity, they may not 
be capable of modeling non-stationary data without 
preprocessing (Cannas et al., 2006; Deka and Prah-
lada, 2012), especially for long-interval forecast. In 
addition, a substantial sample size is strictly required 
in training ANN models, which may imply that a 
high computational cost is incurred. For example, 
Deo et al. (2001), Agrawal and Deo (2002), Mandal 
and Prabaharan (2010), and Kamranzad et al. (2011) 
used 80% of the data to train ANN models. 

Modeling a nonlinear and non-stationary data 
set by applying a single nonlinear model is very dif-
ficult because there are too many possible patterns 
hidden in the data. A single model may not be gen-

eral enough to capture all the important features. 
Hybrid models that combine pre-techniques with 
single models provide more effective modeling. 
Time series of wave height are frequently decom-
posed into several simple components. Then, each 
component is modeled using single prediction  
models.  

Conventionally, Fourier transform and wavelet 
analysis are the approaches adopted most often. As 
Fourier transform is a linear and stationary method, 
it is unsuitable for nonlinear and non-stationary time 
series. Wavelet-based models, such as wavelet fuzzy 
logic model (Özger, 2010) and wavelet neural net-
work (WLNN) (Deka and Prahlada, 2012), have 
been used for wave forecasting in which the wavelet 
technique is effective in handling non-stationarity. 
However, wavelet-based hybrid models have defi-
ciencies in nonlinear and non-stationary wave fore-
casting. Essentially, wavelet transform is a linear and 
non-stationary technique. It represents a signal by a 
linear combination of wavelet basis functions. Its 
decomposition results for nonlinear data can be mis-
leading (Huang and Wu, 2008; Kim et al., 2012). 
Furthermore, wavelet analysis suffers from its non-
adaptive nature as it applies the same type of basis 
functions to the entire range of data. A set of basis 
functions that reflects the time-varying property of a 
signal is required.  

A data-driven technique known as empirical 
mode decomposition (EMD) has been proposed by 
Huang et al. (1998). This approach is powerful and 
adaptive in analyzing nonlinear and non-stationary 
data sets. It provides an effective approach for de-
composing a signal into a collection of so-called in-
trinsic mode functions (IMFs), which can be treated 
as empirical basis functions. EMD technique acts 
essentially as a dyadic filter (Flandrin et al., 2004) 
that separates a complex signal with wide frequency 
band into relatively simple components with various 
time scales.  

The EMD technique has been widely applied to 
improve the performance of prediction models 
(Duan et al., 2015; Wang et al., 2015). In this study, 
a hybrid EMD-AR model was developed for the 
nonlinear and non-stationary wave forecasting. 
Compared with the intelligent-technique-based non-
linear models, the AR model is promising in practi-
cal engineering applications as it is convenient for 
real-time model identification, is highly adaptive, 
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and requires a low computational cost (Zhang and 
Chu, 2005). However, it suffers from the limitations 
of nonlinearity and non-stationarity. This situation is 
overcome by hybridizing the EMD technique with 
the AR model. Implementation of the EMD-AR 
model for wave forecast consists of three steps. In 
the first step, the measured wave time series is de-
composed into several stationary components called 
IMFs. In the second step, AR is used to forecast each 
component. In the final step, the prediction results of 
all components are aggregated to obtain the expected 
wave forecasts. 

Derived from the EMD technique and AR mod-
el, the EMD-AR model is data-driven, highly adap-
tive, and suitable for nonlinear and non-stationary 
time series. An investigation of the EMD-AR model 
for nonlinear and non-stationary wave forecasting 
was conducted by using wave data sets from three 
buoys. The buoys were located at various sites and 
maintained by the National Data Buoy Center 
(NDBC), USA. For comparison, the AR model was 
also studied using the same data sets. The results 
indicate the superiority of the EMD-AR model and 
the effectiveness of the EMD technique in extending 
the scope of the AR model in wave forecasting. 

In this paper, the theoretical formulations and 
numerical schemes of the AR and EMD-AR models 
are presented first, then brief descriptions of the 
wave data and accuracy measures are given, finally, 
numerical results using various significant wave 
height data sets are presented. 

 
 

2  Theoretical formulations 

2.1  AR prediction model 

The AR model considers relations among vari-
ables of the time sequence; therefore, the present 
variable can be represented by using the previous 
time variable. For a given time series {x(t), t=1, 2, …, 
n}, the model is formulated as 
 

x(t)=φ1x(t−1)+φ2x(t−2)+…+φpx(t−p)+a(t), 
t=1, 2, …, n,                            (1) 

 
where p is the model order, {φ1, φ2, …, φp} are pa-
rameters of the AR model, which are unknown. The 
variable {a(t), t=1, 2, …, n} is zero-mean white 

noise. Identification of the AR model shown in 
Eq. (1) involves the selection of model order p and 
corresponding parameters {φ1, φ2, …, φp}. 

A variety of algorithms have been developed 
for estimating the model parameters, of which, least 
mean squares (LMS), recursive least squares (RLS), 
and Levinson–Durbin (L-D) algorithms are mostly 
used. However, LMS algorithms suffer from low 
convergence speed and eigenvalue spread problems. 
The use of the RLS algorithm introduces problem 
that program code for the sliding-window RLS algo-
rithm is complicated to implement, memory inten-
sive, and potentially numerically unstable (Douglas, 
1996). Additionally, the determination of forgetting 
factor is not always adaptive, leading to non-
negligible fluctuations in prediction accuracy. There-
fore, the L-D algorithm was adopted to estimate the 
model parameters in this study. 

For a given time sequence {x1, x2, , xn−1, xn}, 
the L-D algorithm for an AR model with a order of p 
consists of the following steps: (1) compute the au-
tocorrelation matrix R with a size of (p+1)×(p+1) 
using Eq. (2); (2) set the initial conditions using 
Eqs. (3) and (4); (3) compute the coefficients of  
order k using the coefficients of model order k−1 
based on Eqs. (5)–(8) until k equals the preset  
order p. 
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where rk denotes the autocorrelation function of the 
sequence {x1, x2, , xn−1, xn} for a lag k.  
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where φ1,1 is the first-order model parameter, σ1 is 
the variance, and ρ1 is the reflection coefficient as 
shown in the following equation: 
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where φi,k is the kth order model parameter and σk is 
the corresponding variance. The kth order reflection 
coefficient ρk is formulated as 
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Another problem in AR modeling is the selec-
tion of an optimal order. In recent decades, numer-
ous criteria have been proposed to determine the AR 
order of specified time series. Although it has been a 
long time since they were first proposed, the Akaike 
information criterion (Akaike, 1974) and Bayesian 
information criterion (BIC) (Akaike, 1979) are still 
the most popular approaches. These criteria have 
been widely used in various principles of engineer-
ing, especially in economic studies. Assume that the 
residual variance representing the measure of fitness 

of AR(p) to the data is defined as 2
aˆ ( )p . It can be 

formulated as 
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With the definition of the residual variance, or-
der selection criteria of BIC are briefly described as  
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In this study, the BIC principle is applied in or-
der selection. The model order p0 leading to the min-
imum BIC value is chosen as the optimal order. 
Once the prediction model as presented in Eq. (1) is 
determined, a k-step-ahead adaptive predictor can be 
presented as 
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where ˆ( )x t k  is the prediction of advancing k steps. 

2.2  Hybridization process of the EMD-AR model 

Decomposition is a critical part of signal pro-
cessing. Complex signals are frequently decomposed 
into several simple components and then the infor-
mation in each component is analyzed to reduce the 
complexity and enhance interpretability. EMD was 
proposed by Huang et al. (1998), and it is powerful 
and adaptive in analyzing the nonlinear and non-
stationary data sets. It provides an effective approach 
to decompose a signal into a collection of so-called 
IMFs, which can be treated as empirical basis func-
tions driven by data. An IMF result from the EMD 
procedure should satisfy two conditions: (I) the 
number of extrema and the number of zero-crossings 
should differ or be equal to 1 and (II) the local aver-
age should be zero, i.e., the mean of the upper enve-
lope defined by the local maxima and the lower en-
velope defined by the local minima should be zero. 
The first condition is similar to the traditional narrow 
band requirements for a stationary Gaussian process 
(Huang et al., 1998). Therefore, the IMF produced 
through the EMD procedure is stationary. 

For a given sequence x(t), implementation 
schemes of EMD comprise the following steps: (1) 
identify the local extrema; (2) generate the upper 
envelope u(t) and the lower envelope l(t) via spline 
interpolation among all the local maxima and the 
local minima, respectively, and then obtain the mean 
envelope: m(t)=[l(t)+u(t)]/2; (3) subtract m(t) from 
the signal x(t) to obtain the IMF candidate, that is 
h(t)=x(t)−m(t); (4) verify whether h(t) satisfies the 
conditions for IMFs and do steps (1)–(4) until h(t) is 
an IMF; (5) get the nth IMF component imfn(t)=h(t) 
(after n shifting processes) and the corresponding 
residue r(t)=x(t)−h(t); (6) repeat the whole algorithm 
with r(t) obtained in step (5) until the residue is a 
monotonic function.  

By implementing the presented algorithm, the 
signal can be decomposed according to the following 
Eq. (12). As an example, Fig. 1 displays decomposi-
tion results of the significant wave height data shown 
in Fig. 4a, where it can be clearly seen that the com-
plex wave height time series can be represented by 
several simple components.  
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When implementing EMD technique in time se-
ries prediction problem, the boundary effects should 
be taken into account. Researchers have proposed 
certain techniques for processing boundary effects, 
such as the characteristic wave extending method 
(Huang et al., 1998), the ratio extension method (Wu 
and Riemenschneider, 2010), and the mirror image 
extending method (Zhao and Huang, 2001). Among 
the various approaches, the symmetric extending 
method is the most popular. However, extended re-
sults from the symmetric extension method are far 
from satisfactory. Distinct differences always exist 
between the extended extrema and the real ones. The 
influence of end effects on the performance of EMD-
based models has been examined by Xiong et al. 
(2014) and Huang et al. (2015). They found that 
prediction models for end effect processing lead to 
more reasonable extended results. In this study, the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AR prediction model presented in Section 2.1 was 
used in the processing of boundary effects.  

Time series of ocean waves are a kind of com-
plicated nonlinear and non-stationary signal that 
consists of different oscillation scales. The multiple 
oscillation scales cause difficulties for AR models 
when conducting wave forecasts. The combination 
of an EMD model with an AR model provides an 
effective way to improve wave prediction. The pro-
cedure of carrying out wave forecast using the hy-
brid EMD-AR models comprises three steps (Fig. 2). 
In the first step, the wave height time series is de-
composed into a couple of simple and meaningful 
IMFs and a residual by EMD. In the second step, 
prediction of decomposed components is performed 
individually using the AR model. In the final step, 
the predictions are aggregated to attain the final  
predictions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Decomposition results of significant wave height time series data set I using the EMD technique 
Figs. 1a–1h display the simple components with different amplitude and frequency modulations. The data were measured by 
buoy 42085, which was maintained by the NDBC. Details about the data are provided in Table 1 
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3  Brief descriptions of the wave data 

 
Ocean wave data from three buoys maintained 

by the NDBC were used in the forecasting study. 
The geographical locations where the significant 
wave height time series are measured and brief non-
stationarity analysis of wave data are described in 
Sections 3.1 and 3.2. Statistical error measures for 
evaluating prediction performance are presented in 
Section 3.3. 

3.1  Locations and data 

To study the performance of the models in fore-
casting ocean waves with sufficiently different statis-
tical characteristics, significant wave height data 
measured by buoys on the coast of Ponce  
(No. 42085), San Juan (No. 41053), and the South 
Virgin Islands (No. 41052) were chosen. Location 
information and data availability of these buoys are 
depicted in Table 1. Some of the hourly time series 
records (source files from http://www.caricoos. 
org/drupal/data_download) of the significant wave  
 
 
 
 
 
 
 
 
 

heights are presented in Fig. 3. The variation in the 
range of significant wave heights among the three 
buoys can be seen in Table 1. In view of these dif-
ferences among the sites, it is reasonable to describe 
the data from these three buoys as representing a 
range of geographical and statistical properties 
(Londhe and Panchang, 2006). 

3.2  Non-stationarity analysis 

According to traditional definition, a time series, 
{x(t)}, is stationary in general, if, for all t, 
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Table 1  Buoy locations and data availability 

Data  Station ID and location Available data 
Range of the signifi-

cant wave heights (m)

Data set I 
No. 42085-Southeast Ponce, Puerto Rico 

(17°51'36" N, 66°31'25" W) 
24/05/2013–26/02/2014 0.25–2.5 

Data set II 
No. 41053-San Juan, Puerto Rico  

(18°28'27" N, 66°5'57" W) 
23/07/2010–03/05/2013 0.75–9.0 

Data set III 
No. 41052-South Virgin Islands  

(18°14'55" N, 64°45'45" W) 
15/04/2011–11/05/2013 0.30–4.0 

Fig. 3  Significant wave height time series from the wave 
measurements by buoys: (a) No. 42085, (b) No. 41053, 
and (c) No. 41052 
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Fig. 2  Implementation of significant wave height fore-
casting using the EMD-AR model 
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where E[·] is the expected value defined as the en-
semble average of the quantity, and R is the covari-
ance function. 

Based on the definition of a stationary process, 
quantitative methods of consecutive statistics are 
used to analyze the stationarity of significant wave 
height time series. For stationary time series, their 
expected value and covariance functions are required 
to be constants. Fig. 4 shows the expected value and 
covariance functions of a stationary time series. For 
specification, the time delay τ in the covariance func-
tion R(τ) is assumed to be 10. It is clearly verified 
that the expected and covariance functions of the 
stationary time series are nearly constants. Accord-
ing to the definition of stationary process formulated 
in Eq. (13), it is demonstrated that the IMF produced 
by the EMD in Fig. 4a is stationary. Fig. 5 presents 
the statistical functions of significant wave height 
data. It shows that expected value functions and co-
variance functions R(10) are notably time varying, 
demonstrating the presence of non-stationarity in the 
significant wave height data. 

3.3  Evaluation of forecasting performance 

Error measures that are used for the evaluation 
of forecasting performance usually include the root  
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mean square error (RMSE), the correlation coeffi-
cient (r), the scatter index (SI), and the mean abso-
lute error (MAE). Each one of these error criteria has 
usefulness and limitations (Kalra et al., 2005). For 
example, the correlation coefficient r is a widely 
accepted measure of the degree of linear association 
between the target and the realized outcome, but it is 
highly sensitive to the extreme values. Hence, they 
should be viewed together while drawing any infer-
ence based on their magnitude. 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Expected value and covariance functions of a sta-
tionary time sequence  
(a) Example of IMF produced by implementing EMD tech-
nique; (b) Expected value and covariance functions of IMF 
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Fig. 5  Statistics of significant wave height data: expected 
values and covariance functions of data set I (a), data set
II (b), and data set III (c) 
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In this study, prediction results were studied by 
(I) comparing time histories of the above models’ 
forecasts with measured wave heights, (II) compu-
ting the RMSE, the correlation coefficient (r), and 
the SI as shown in Eqs. (14)–(16), and (III) drawing 
scatter diagrams and computing the corresponding 
best-fit line slope. The RMSE is a measure repre-
senting the ensemble error of the prediction results. 
It is proportional to the observed mean. The SI forms 
a good non-dimensional error measure. 
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where ˆtx  is the forecast results with the mean value 

of ˆmx , xt the measured wave height motions, xm the 

mean value of xt, and n the testing times. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4  Results and discussion 
 

The AR and EMD-AR models were tested us-
ing significant wave heights measured by buoys  
(No. 42085, No. 41053, and No. 41052). A fixed 
sliding window with a sample size of 500-h wave 
height records was designed to construct prediction 
models, while the subsequent 500-h data were used 
for validation purposes.  

4.1  Results 

4.1.1  Prediction results using data set I 

1-h, 3-h, and 6-h historical predictions of signif-
icant wave heights on the coast of Ponce are shown 
in Figs. 6–8. Scatter diagrams of the forecasts are 
presented in Figs. 9–11. The values of the error 
measures, including r, RMSE, and SI, under various 
lead times are summarized in Table 2 (p.124). Addi-
tionally, the error measures of RMSE and r are plot-
ted in Fig. 12 to show the relations between their 
magnitudes and the prediction lead times.  

4.1.2  Prediction results using data set II 

Further comparisons of the prediction models 
were carried out using the significant wave height  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  1-h forecast of significant wave height on the coast of Ponce by AR model (a) and EMD-AR model (b) 
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Fig. 8  6-h forecast of significant wave height on the coast of Ponce by AR model (a) and EMD-AR model (b) 
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Fig. 7  3-h forecast of significant wave height on the coast of Ponce by AR model (a) and EMD-AR model (b) 
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Fig. 10  Scatter diagram of observations and 3-h predictions by AR (a) and EMD-AR (b) models using data set I 
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Fig. 12  RMSE (a) and correlation coefficient (b) of prediction models with various lead times using data set I 
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Fig. 11  Scatter diagram of observations and 6-h predictions by AR (a) and EMD-AR (b) models using data set I 
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Fig. 9  Scatter diagram of observations and 1-h predictions by AR (a) and EMD-AR (b) models using data set I 
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records measured by buoy 41053 on the coast of San 
Juan. Figs. 13 and 14 show the 1-h and 6-h predicted 
time histories, respectively, while Figs. 15 and 16 
exhibit the corresponding scatter diagrams. Ensem-
ble error measures are summarized in Table 3, and 
the RMSE and r are plotted in Fig. 17. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1.3  Prediction results using data set III 

Explorations of the prediction models were 
consolidated by forecasting simulations using signif-
icant wave heights measured by buoy 41052 ar-
ranged on the coast of the South Virgin Islands. Sim-
ilarly, results are represented in the form of historical  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Error measures of AR and EMD-AR models in predicting significant wave heights in Ponce 

Prediction lead time (h) 
AR EMD-AR 

RMSE SI r RMSE SI r 

1 0.08 0.0625 0.92 0.04 0.0313 0.97 
2 0.10 0.0781 0.87 0.05 0.0391 0.96 
3 0.11 0.0859 0.81 0.07 0.0547 0.94 
6 0.20 0.1563 0.65 0.08 0.0625 0.90 

Table 3  Error measures of the AR and EMD-AR models in predicting significant wave heights in San Juan 

Prediction lead time (h) 
AR EMD-AR 

RMSE SI r RMSE SI r 

1 0.47 0.1794 0.93 0.24 0.0916 0.98 
2 0.51 0.1966 0.91 0.30 0.1145 0.96 
3 0.52 0.1985 0.90 0.33 0.1256 0.96 
6 0.63 0.2405 0.86 0.38 0.1450 0.94 
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Fig. 15  Scatter diagram of observations and 1-h predictions by AR (a) and EMD-AR (b) models using data set II 

Fig. 14  6-h forecast of significant wave on the coast of San Juan by AR (a) and EMD-AR (b) models 
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Fig. 13  1-h forecast of significant wave on the coast of San Juan by AR (a) and EMD-AR (b) models 
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time series, scatter diagrams, and error measures. For 
brevity, only 6-h forecasting time historical results 
(Fig. 18) and the corresponding scatter diagrams  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Fig. 19) are presented. Summaries of error measures 
used in various prediction lead times are shown in 
Table 4 and Fig. 20.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 19  Scatter diagram of observations and 6-h predictions by AR (a) and EMD-AR (b) models using data set III 
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Fig. 18  6-h forecast of significant wave on the coast of South Virgin Islands by AR (a) and EMD-AR (b) models 
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Fig. 16  Scatter diagram of observations and 6-h predictions by AR (a) and EMD-AR (b) models using data set II 
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Fig. 17  RMSE (a) and correlation coefficient (b) of  prediction models with various lead times using data set II 
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4.2  Discussion 

It is clear from the results that 1-h wave fore-
casts at various locations using the AR model agree 
with the measurements to a reasonable degree. As 
Figs. 6 and 13 suggest, the general patterns of the 
recorded significant wave height variation in differ-
ent locations were well captured by the AR model. 
Tables 2–4 present the values of the forecasting 
measure errors, where the correlation coefficients for 
the wave forecasts in Ponce, San Juan, and the South 
Virgin Islands were 0.92, 0.93, and 0.97, respective-
ly, indicating a relatively high degree of linear asso-
ciation between the predicted and recorded wave 
heights.  

However, prediction errors remain noticeable in 
the predicted time series as shown in Figs. 6 and 13. 
Spatial offsets appear as large parts of the troughs 
and peaks are underestimated. Figs. 9 and 15 show 
that the best-fit line slopes for the scatters with re-
spect to wave forecasts in Ponce and San Juan are 
only 0.857 and 0.785, respectively. In addition to the 
spatial offsets, Figs. 6 and 13 imply that even if the 
peaks and troughs were well predicted by the AR 
model, a shift between the recorded and predicted 
wave time series can still be noted. The shift is a  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
kind of prediction error that can also be found in 
other research studies of wave forecasting using the 
AR model (Deo and Sridhar, 1998) and ANN 
(Londhe and Panchang, 2006). The shift results 
mainly from the non-stationarity hidden in the meas-
ured wave time series. Even if the nonlinear ANN is 
used to forecast the nonlinear and non-stationary 
wave height, the shift remains. 

The shift is proportional to the lead time. In 
Figs. 6–8, it is easy to see that the shift between the 
AR-based predicted and recorded wave time series 
increases as the lead time grows. Predictions by the 
AR model in San Juan and the South Virgin Islands 
support these observations. As presented in Ta-
bles 2–4 and in Figs. 12, 17, and 20, the RMSE and 
SI increase, while the correlation coefficient de-
creases with the increase of the lead time. 

Owing to the linear and stationary limitations, 
the AR model fails to predict the nonlinear and non-
stationary wave heights accurately when the lead 
time reaches 6 h. The best-fit line slopes of the scat-
ters with respect to wave forecasts in Ponce, San 
Juan, and the South Virgin Islands are only 0.614, 
0.702, and 0.798, respectively, indicating a relatively 
low level of forecasting accuracy. The nonlinear and 

Table 4  Error measures of the AR and EMD-AR models in predicting significant wave heights in South Virgin 
Islands 

Prediction lead time (h) 
AR EMD-AR 

RMSE SI r RMSE SI r 

1 0.06 0.0942 0.97 0.03 0.0471 1.00 

2 0.07 0.1099 0.98 0.04 0.0628 0.99 

3 0.09 0.1413 0.96 0.05 0.0785 0.98 

6 0.13 0.2041 0.91 0.07 0.1099 0.97 

Fig. 20  RMSE (a) and correlation coefficient (b) of prediction models with various lead times using data set III 
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non-stationary wave forecasts are considerably im-
proved by using the proposed EMD-AR model. The 
predictions of the hybrid EMD-AR show better 
agreement with the targets. When the lead time is 
short, not only are the peaks and troughs of the tar-
gets precisely captured for the most part but also the 
short-term fluctuations in the sequence are repro-
duced remarkably well (Figs. 6 and 13). For instance, 
the spatial offsets resulting from the observations 
and the predictions by the AR model are quite no-
ticeable in the range of 650–700 h, especially for 
forecasts with a large lead time (Fig. 14). This situa-
tion is noticeably improved by introducing the EMD 
technique (Figs. 13 and 14). Additionally, the best-fit 
line slopes in the scatter of 1-h wave forecasts using 
the AR and EMD-AR models in Ponce (Fig. 9) are 
0.876 and 0.957, respectively. Despite the small spa-
tial offsets relative to the target when the lead time 
grows, forecasts of the EMD-AR model display a 
level of fidelity in the measured significant wave 
heights which is certainly acceptable for most practi-
cal applications.  

As shown in Figs. 6–8, 13, 14, and 18, the shifts 
between the predicted and recorded wave time series 
in various locations were eliminated by using the 
EMD-AR model instead of the AR model. This im-
provement is confirmed by comparing the error 
measures of the EMD-AR and AR models. For ex-
ample, the correlation coefficients of the 6-h predic-
tions in Ponce, San Juan, and the South Virgin Is-
lands by the AR model were 0.65, 0.86, and 0.91, 
respectively, while those by the EMD-AR model are 
0.90, 0.94, and 0.97, respectively. Meanwhile, the 
SIs of the 6-h predictions in these locations by the 
AR model were 0.1563, 0.2405, and 0.2041, while 
those of the EMD-AR model were 0.0625, 0.1450, 
and 0.1099, respectively. In addition, Tables 2–4 and 
Figs. 12, 17, and 20 summarize error measures with 
various lead times, providing general evidence for 
the above claims. The EMD-AR model led to lower 
ensemble RMSE and higher r. The graphs in 
Figs. 12, 17, and 20 combined with Tables 2–4 
demonstrate large improvements in prediction accu-
racy by using the EMD technique in the AR model. 
Considerable reductions in RMSE and increases in 
correlation coefficient were obtained. Taking 6-h 
wave forecasts as an example, in Table 2, the reduc-

tion in RMSE was about 60%, while the increase in 
the correlation coefficient was more than 50%. 

 
 

5  Concluding remarks 
 
This study developed a hybrid EMD-AR model 

to improve the accuracy of prediction of nonlinear 
and non-stationary waves. The EMD-AR and AR 
models were compared using wave data with various 
geographical and statistical properties measured by 
NDBC buoys in Ponce, San Juan, and the South Vir-
gin Islands. Consistent results were obtained from 
the predictions of significant wave heights in differ-
ent locations. For short-interval predictions, the AR 
model may produce reasonable results. However, 
spatial offsets and shifts occur widely in the nonline-
ar and non-stationary wave forecast. This is because 
the AR model is suitable only for linear and station-
ary time series prediction, whereas nonlinearity and 
non-stationarity are features of all the measurements. 
These errors increased as the lead time grew. This 
difficulty was overcome by the proposed hybrid 
EMD-AR model. Owing to the capability of the 
EMD technique in processing nonlinearity and non-
stationarity, the accuracy of the wave forecast was 
greatly improved. Not only were the general tenden-
cies satisfactorily reproduced but also most part of 
the peaks and troughs were correctly captured. Con-
siderable improvements in prediction accuracy were 
obtained using the hybrid EMD-AR model. Graphs 
related to predicted time histories (Figs. 6–8, 13, 14, 
and 18) suggest that the shifts between the predicted 
and recorded wave time series were eliminated by 
the EMD technique. The superiority of the EMD-AR 
model to the AR model was confirmed by the en-
semble of the smaller RMSE and SI, and higher r. 
However, the hybrid EMD-AR model has a limita-
tion: it requires more computational resource than 
the single AR model. 
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中文概要 
 

题 目：一种用于非线性非平稳波浪极短期预报的复合

经验模态分解自回归模型 

目 的：相对于由能量平衡方程得到的数值预报模型和

以神经网络为代表的非线性模型而言，自回归

（AR）模型在波浪预报中具有计算效率高、自

适应性强和建模所需的样本小等优点，但同时

存在局限于平稳线性假设的缺陷。针对非线性

非平稳波浪的极短期预报问题，提出一种复合

的经验模态分解自回归预报模型，提高波浪预

报精度。 

创新点：1. 研究非线性非平稳波浪极短期预报问题，提

出一种复合的预报方法；2. 基于三个不同地理

位置的海洋波浪实测数据对预测模型进行验

证，并分析非线性非平稳性对波浪预报结果的

影响。 

方 法：1. 在 AR 模型中引入经验模态分解（EMD）方

法，形成复合的 EMD-AR 预报模型；2. 分析实

测波浪数据的非线性和非平稳性特点，并基于

实测波浪数据获得 AR 模型和 EMD-AR 模型的

预报结果；3. 基于多种预报误差度量分析 AR 模

型和 EMD-AR 模型的预报性能以及非线性非平

稳性对波浪预报结果的影响。 

结 论：1. 波浪非线性和非平稳性会导致 AR 预报模型精

度降低。预报误差中，幅值上的偏差主要由波

浪的非线性引起，而相位上的偏差则是源于波

浪的非平稳性；2. EMD 方法能够有效地克服波

浪非线性和非平稳性对 AR 模型在精度上所带来

的不良影响，在精度上 EMD-AR 模型的预报结

果较 AR 模型有较大提高。 

关键词：波浪预报；非线性和非平稳性；自回归模型；

经验模态分解；经验模态分解自回归模型 

 
 
 
 

 


