Hosam et al Journal of Engineering
Journal of Engineering and Applied Science (2022) 69:102

https://doi.org/10.1186/544147-022-00155-8 and Applied Science

RESEARCH Open Access

o o q
Classification feature sets for source code iy

plagiarism detection in Java

Eman Hosam ®, Mayada Hadhoud, Amir Atiya and Magda Fayek

*Correspondence:

eman.hosam@eng.cu.edu.eg Abstract

Computer Engineering In programming learning environments, the pressure of delivering many programming
Department, Faculty assignments makes plagiarism the easiest solution. This highly threatens the learning
of Engineering, Cairo University, process; therefore, the need of an automatic, fast, and accurate detection of source

Cairo, Egypt L
o rp code plagiarism becomes essential. To detect whether a pair of Java files is plagiarized,

this paper proposes four classification feature sets: (i) structural histogram features, his-
togram-based features for summarizing similarity matrices; (ii) lexical per-class features,
extracted from a lexical similarity matrix between the classes of the two compared files
based on character 3-grams; (jii) structural counting features, twelve counting features
representing the code structure; and (iv) modified original features: a set of modifica-
tions on the features of the used baseline. The results show that the best feature sets
in F-measure are the structural histogram features and the lexical per-class features
combined, which improve the F-measure by 4% compared to the baseline. The added
features slow down the execution time. However, it is still efficient, given that it can
classify 70k pairs in 23 min. In addition, we partially re-annotated the SOurce COde Re-
use dataset. After the re-annotation, the F-measure of both the baseline and our work
is improved, and our work achieves an F-measure of 93.6%, which is 7.5% higher than
the new F-measure of the baseline. In addition, some remarks and recommendations
are provided for using the SOurce COde Re-use dataset as a benchmark.

Keywords: Source code plagiarism detection, Source code reuse detection, Software
similarity detection, Machine learning, Classification, Similarity matrix

Introduction
Source code plagiarism highly complicates the learning process. Some students find it
easier to plagiarize programming assignments than spending time to solve them. This
makes the instructors also detectives! They should not only focus on teaching students
and correcting their mistakes, but they also have to spend huge time to make sure that
each student code is truly his code and not plagiarized. Detecting source code plagia-
rism is very important, not only for the fairness between students but also for making
them achieve the learning outcomes of the assignments. Therefore, source code plagia-
rism detection becomes very essential.

Due to numerous source codes available online and source codes available for the

same course in previous years, the task of manually comparing each source code pair

. ©The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
@ Sprlnger Open use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
— author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http//creativecommons.org/publi
cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

http://orcid.org/0000-0002-8202-9872
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-022-00155-8&domain=pdf

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102 Page 2 of 18

becomes infeasible because the number of all possible pairs of N files is: N* (N - 1) / 2
(e.g., if N = 3000, then the number of program pairs to compare = 4.5 million pairs!).
The complexity of detection = O(N?) times the complexity of one file pair comparison;
hence, the computational time is essential, and the need for automatic, fast, and accurate
tools for detecting source code plagiarism highly arises. However, not all programs with
high similarity are a result of plagiarism. That is why instructors should manually review
the results of the plagiarism tools and give the final decision. Therefore, the main target
of plagiarism tools is to shrink the number of program pairs (i.e., keep only the highly
similar pairs) to be manually reviewed by instructors.

Using raw text plagiarism detection techniques for source code plagiarism detection
[1, 2] produces poor results. The text-based detection approach is programming-lan-
guage independent, but it can be confused by trivial attacks such as identifiers’ renaming.
Programming languages have a structure different from human languages. In program-
ming languages, there may be changes in the text, but the same semantics are preserved
(e.g., renaming identifiers, replacing for with while loops [3—6]). There are mainly two
categories of techniques for source code plagiarism detection: attribute-based and struc-
ture-based techniques [7].

Attribute-based detection techniques extract numeric characteristics from each file
(e.g., number of classes, functions, tabs, underscores). Hence, there will be a feature vec-
tor for each file, then, several ways can be applied to estimate the similarity between
these vectors (e.g., classification [8—10] or clustering [11]). The results of attribute-based
techniques are better than text-based, but attribute-based usually have many false posi-
tives because they depend only on numeric features.

Structure-based detection techniques utilize the structure of the targeted program-
ming language. First, it generates a representation of the structure of each file. This rep-
resentation can be sequential or hierarchical [12]. Sequential representations can be
token strings [5, 7, 13] or low-level representation [4, 14]. Hierarchical representations
can be trees (e.g., abstract syntax tree [15, 16], parse trees [17]) or graphs (e.g., program
dependency graph [6], control flow graphs [18]). After generating a representation for
each file, a similarity measure should be used (e.g., subgraph isomorphism algorithm
[19, 20] for graphs, and tree kernel algorithm [21] for trees). Structure-based techniques
are more accurate, but time-consuming and programming-language dependent.

The gap that we target in our work is enhancing source code plagiarism detection
results by incorporating different feature sets that better represent code similarities,
while being extracted in an efficient time. This paper proposes four feature sets:

1 Structural histogram features: For measuring the similarity of function signatures, a
histogram-based method is used to summarize similarity matrices with considering
all matrix values.

2 Lexical per-class features: For measuring the lexical similarity of classes, a lexical
similarity matrix is built between classes, and we proposed two new concepts: can-
didates and extreme ranges for representing the matrix particularly for the similarity
comparison.

3 Structural counting features: twelve counting features, representing how similar the
code structure is, are extracted (e.g., number of classes, functions, loops).

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102 Page 30f 18

4 Modified original features: a modified version of the structural features of Ganguly
et al. [8] is presented, incorporating the candidates and extreme ranges concepts.

The contributions of this paper are as follows:

« It presents four feature sets for source code plagiarism detection.

« It chooses structural histogram features and lexical per-class features combined to be
our best-proposed feature sets in results.

+ Anincrease of 4% in F-measure is achieved compared to (Ganguly et al., 2018) [8] on
the SOurce COde Re-use (SOCO-14) dataset [22].

+ It performs a time analysis, and the results demonstrate that the classification time is
slower due to extracting the proposed feature sets, but still efficient (23 min for clas-
sifying 70K pairs).

«+ It provides a partial re-annotation of the SOCO-14 dataset [22].

« After the re-annotation, the results of both the baseline (Ganguly et al., 2018) [8] and
our work are improved. An increase of 7.5% in F-measure is achieved compared to
(Ganguly et al,, 2018) [8]. An F-measure of 93.6% is reached.

+ It provides some remarks on using the SOCO-14 dataset [22].

The rest of this paper is organized as follows. Section 2 presents the four proposed fea-
ture sets with the detailed extraction steps. Section 3 presents the experimental results,
in addition to the performed time and dataset analysis. Finally, Section 4 presents the
conclusion and future work.

Methods

In our work, four feature sets are proposed for classifying if a Java program pair is pla-
giarized. In the structural histogram features, histograms are used for summarizing
function prototypes similarity matrices. On the other hand, the lexical per-class features
represent the lexical similarity between each class pair, while introducing and incorpo-
rating the candidates and extreme ranges of similarity matrices. Then, the structural
counting features represent the structure of the two compared programs in terms of
counting some code structure properties such as: number of loops, conditional, and
functions. Finally, the modified original features propose a modified version of the struc-
tural features of Ganguly et al. [8] incorporating the candidates and extreme ranges of
the similarity matrices. The following subsections present each feature set in detail.

Structural histogram features

The target of the structural features is to measure how similar the function signatures
of the two compared files. The structural features proposed by Ganguly et al. [8] are
extracted from two similarity matrices for function signatures (one for data types and
the other for identifiers). They built the similarity matrices for only function signatures,
not the body, for keeping the time efficient. You can read more about how the two matri-
ces are built in Ganguly et al. [8], but in general, the two matrices represent how much
the functions signatures of the compared files are similar in terms of their data types and
identifiers names.

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102 Page 4 of 18

The structural features extracted by Ganguly et al. [8] from the two similarity matrices
are the minimum, maximum, and average of each matrix (six features). Aggregating the
similarities of each matrix to only the minimum, maximum, and average is exaggerated
compaction, ignoring the similarity value of the other cells. That is why we propose a
more informative aggregation of the matrix based on the histogram of similarity values.

To build the histogram of similarity values, we divided the similarity range (i.e., from
zero to one) which are calculated in [8] into “NPartition” partitions (i.e., sub-ranges). An
example of a similarity matrix and its extracted histogram vector using “NPartition” =
4 is shown in Fig. 1. Each matrix cell contains the similarity between the corresponding
function signature pair (column and row), as shown in Fig. 1la. The count of similarity
values within the range of each partition is calculated and normalized by dividing by
the total count of cells, as shown in Fig. 1b. The 4-dimensional feature vector “Hf Vec-
tor” consists of the normalized count of similarity values of each partition. A high value
of “Hf_Vector[0]” indicates the high dissimilarity between function pairs, while a high
value of “Hf Vector[3]” indicates high similarity.

For the two similarity matrices of function signatures [8], we extracted two histogram
feature vectors that include eight features in total. These features, structural histogram
features, reflect the similarity between function signatures better than only the mini-

mum, maximum, and average.

Lexical per-class features

The target of the lexical per-class features is to measure the lexical similarity between the
classes of the two compared files. In the lexical per-class features, the lexical similarity
between the two files to compare is measured by (i) calculating the lexical similarity for
each class pair of the two files separately, (ii) building a similarity matrix between class
pairs, and (ii) summarizing this matrix into three informative features representing the
overall lexical similarities between the two files. Before explaining how to extract the
lexical per-class features, we need to introduce the following definitions: lexical per-class
similarity matrix, candidates of a similarity matrix, and histogram extreme ranges.

Lexical per-class similarity matrix
The per-class similarity matrix is a matrix that includes the similarity of each class
pair in the two files to compare. The rows of the matrix represent the classes of the

a Functions of File 2 b
. 5 3 7 !-hghly I-!lghly
crack |encode | Main |decode Different Moderate Similar
1
i Partition 1 § Partition 2 |
i 1
G | G
| ¥
0 0.25 0.5

Functions of
File 1

Hf Vector = (0.167, 0.167, 0.25, 0.417)

e
=
ey
(=1
=
o
N
1)

3-
merge

Fig. 1 a A similarity matrix. b Its histogram features

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102

first file while the columns represent the classes of the second file as shown in Figs. 2
and 3a. Each cell represents the similarity between one class pair.

The lexical per-class similarity matrix is a per-class similarity matrix whose cells
contain the lexical similarities between class pairs. The lexical similarity between a
class pair is calculated using the cosine similarity of the binary vector representation
of the character 3-grams of the two classes (as calculated in Ganguly et al. [8] but for
each class pair separately, not for the entire files as a one unit). Some pre-processing
steps are performed such as removing java keywords, lowering case, and removing
white spaces.

CLASSES of File 2

1- 2- 3- 4-
Service Table User ItemlList
(o
1-
0
:" sardla 1 0.125 0 0.2
[
® 2 |01 1 01 005
Table : : ’
[9)]
%]
7
a 3- 0 0.1 1 0.15
User
3}
4-
ItemList 0.2 0.05 0.15 1

Fig. 2 A lexical per-class similarity matrix of two verbatim-copy files

a CLASSES of File 2 b
% 2 % % ** Final CandidateList **:
Service Table User ItemlList { 0;8 ’ l ’ Q ’ M ’ 0;6 ’ 0.9 ’ l)‘
| oome | 08 06 05 07 | 08 * Average:
- {0.857}
[+
3 Mi.nu 0.3 0.4 0.05 1 1 * Histogram Values (NPartition=4):
é {0,0,0.143, 0.857 }
3
g customer | 03 o 0.9 0 0.9 * Extreme Ranges (Low=0.3, High=0.7):
{0, 0857}
0.8 0.6 0.9 1

Fig. 3 a A similarity matrix. b Its candidates and features

Page 5 of 18

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102 Page 6 of 18

Candidates of a similarity matrix

Considering all matrix cells in calculating the features is misleading. For clarifying this,
consider the similarity matrix of two example verbatim-copy files shown in Fig. 2. The
diagonal cells contain ones because they represent the lexical similarity of the same
class; however, the other cell values contain very low similarity values because they com-
pare each class with the other different classes. These low values will be counted in the
histogram of dissimilarity partitions, indicating that the files are dissimilar despite being
verbatim copies. This example clarifies that, in any similarity matrix, considering all cells
in calculating the features is misleading.

Instead, this paper proposes a method to discard the misleading cells and select a sub-
set of the matrix cells, called “candidates,” that better and more indicatively represent
the matrix. Any feature extracted from a similarity matrix (e.g., minimum, maximum,
average, or histogram features) is better to be extracted from the candidates rather than
all matrix cells.

The proposed way to extract the candidates of a similarity matrix is as follows: for each
row/column which represents the classes of the first/second file, take only the maximum
value of this row/column into the candidate list. If the maximum value of row I is in
column J (cell of row I and column J), this indicates that class J of the second file is the
most similar class to class I in the first file. Figure 3a shows an example of a lexical per-
class similarity matrix and its candidates (the outside underlined cells). The minimum,
maximum, average, and histogram values that are calculated from the candidate list are
shown in Fig. 3b. It is worth noting that any feature normalization division is by seven
(the count of the candidates).

It is worth noting that the maximum similarity of both each row and each column is
included in the candidates. This is because, as noticed in Fig. 3a, although some classes
are mutually the most similar to each other (e.g., “Order” and “Service”), there are some
classes that are not mutually the most similar to each other (e.g., the most similar to
“Table” is “Order”; however, the most similar to “Order” is “Service”). That is why we
included the maximum of both each row and each column.

Histogram extreme ranges

In structural histogram features (Section 2.1), the histogram features were calculated
using four partitions as shown in Fig. 1. However, the extreme partitions (i.e., the first
and last partitions) are the most indicative because they represent the lowest and highest
similarities. We called the histogram values of these two partitions, histogram extreme
ranges. The used “Low” and “High” similarity thresholds of the extreme ranges are cho-
sen as 0.3 and 0.7 respectively. Hence, the candidates of the low extreme range are the
candidates with values from 0 to 0.3, and the candidates of the high extreme range are
the candidates with values from 0.7 to 1. Equation 1 and 2 show how to calculate the
low and high extreme ranges from the candidates, respectively. In Fig. 3b, the histogram
extreme ranges are also calculated.

Count(Candidates <= Low)

ExtR Low) =
xtRange(Low) Count (AllCandidates)

(1)

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102 Page 7 of 18

Count(Candidates >= High)

ExtR High) =
xtRange(High) Count(AllCandidates)

Extracting the lexical per-class features

Finally, putting it all together, Table 1 explains the main steps of extracting the pro-
posed lexical per-class features. First, the class codes are extracted from the two files.
Then, the lexical per-class similarity matrix is built, and the candidates of the matrix
are extracted. Finally, the candidates are used for extracting the three lexical per-class
features: the average of the candidates and their two histogram extreme ranges. In
brief, the lexical per-class features represent the code similarity between the class

pairs of the two files and can be used to detect source code plagiarism.

Structural counting features

The target of the structural counting features is to measure how similar the high-level
code structure of the two compared files in terms of number of functions, classes, etc.
The twelve structural counts shown in Table 2 are extracted from each compared pro-
gram file. After extracting these counts for each file separately, Eq. 3 is used for each
corresponding two counts of the two compared files to calculate their similarity, where
“Countl” and “Count2” in the equation represent the count of a specific feature (e.g.,
number of classes) in File 1 and File 2 respectively. The twelve similarity values calcu-
lated for the twelve counts of the two files are called structural counting features.

Min(County, County)
Max(Count,, Counts)

Similarity(Count,, County) = (3)

To understand how Eq. 3 represents the similarity, assume that the number of
classes in File 1 and File 2 is 3 and 5 respectively, then the two files are similarly hav-
ing the count of 3 classes, but File 2 has 2 more classes. Hence, the minimum (i.e., the
numerator) represents the count similarity, and the maximum (i.e., the denominator)
is for normalization.

Table 1 The extraction steps of the lexical per-class features

Input: A file pair: File1, File2
Output: The Lexical Per-Class Features: LexicalPerClassFeatures
Procedure: 1. Extract the list of class codes of FileT: ClassList1

2. Extract the list of class codes of File2: ClassList2

3. Build a lexical per-class similarity matrix, SimMatrix, where:
SimMatrix[l][J] = LexicalSim(ClassList1[l], ClassList2[J])

4. Extract the candidate list of SimMatrix: CandidateList

5. Calculate the Histogram Extreme Ranges of CandidatelList: ExtRanges

6. Add the Average of Candidatelist into LexicalPerClassFeatures (1 feature)
7. Add ExtRanges into LexicalPerClassFeatures (2 features)

8. Return LexicalPerClassFeatures (total 3 features)

Hosam et al. Journal of Engineering and Applied Science

Table 2 The structural counts extracted from each file separately

Structural count

Description

Number of classes
Number of interfaces
Number of subclasses
Number of functions
Number of loops
Number of conditionals

Number of function calls

Number of class fields

Number of variable declarations

Number of assignment statements

Number of comments

Number of string literals

Total number of classes, including the nested

Total number of interfaces, including the nested

Total number of derived classes

Total number of function definitions

Total number of loops: for, while, do-while, or for-each
Total number of conditional statements:

if statements, switch cases, or ternary operators

Total number of function calls
“C1.add(C2).add(C3);"increments this count by 2.
Total number of class fields

“float X = 0, Y;"increments this count by 2.

Total number of variable declarations

Note: Class fields are excluded from this count.

Total number of assignment statements

Note: The assignments in declaration lines are included.
Total number of comments

Total number of string literals

“System.out.printin(“out”);"also increments it by 1.

Modified original features

In the modified original features, we propose a modified version of the original features
of Ganguly et al. [8] which measure the similarity of the code, the structure, and the
style. The original features consist of eight features: (i) one lexical feature which com-
pares the character 3-grams of the two files, (ii) six structural features extracted from
two similarity matrices for function signatures (one matrix for the data types and the
other for the identifiers), and (iii) one stylistic feature which represents how similar the
writing style of the two files is. In the modified original features, we modified only the
structural features (which means that the lexical feature and the stylistic feature are not
modified).

Unlike the original features that extract the structural features from all the cells of the
two similarity matrices, the features are extracted from the candidates of each matrix. In
candidates, as explained before, we discard the misleading matrix cells and choose only
the most informative cells.

The structural features of the original features were the minimum, maximum, and
average of each matrix. Instead of using the minimum and maximum, the two histo-
gram extreme ranges of the candidates of each matrix are used. Therefore, the structural
features of the modified original features are the two histogram extreme ranges and the
average of the candidates of each matrix (total of six structural features).

Finally, we noticed that including the main function in the similarity matrices of func-
tion signatures could be misleading because the function signature of the main func-
tions is the same in Java, so their similarity cell will be always one (which makes the
maximum feature of the original features equal to one in nearly all the instances, hence,
meaningless).

To sum up, the modified original features include eight features: (i) the same one
lexical feature [8], (ii) six structural features for the histogram extreme ranges and the

Page 8 of 18

Hosam et al. Journal of Engineering and Applied Science

Table 3 The target and description of the proposed feature sets

(2022) 69:102

Feature set

Target

Count Description

Structural histogram features

Summarizing the function pro-
totype similarity matrices using
histograms (instead of the min,,
max., and avg.).

8

There are 2 similarity matrices (one
for types and the other for identi-
fiers). Each matrix has 4 features
representing the normalized count

of the 4 histogram partitions of
similarity values.

Lexical per-class features Comparing each class pairinthe 3
two programs lexically by the

cosine similarity of their character
3-grams. Note: The candidates and
extreme ranges of the similarity

matrix are used.

There is 1 feature for the average of
the candidate list extracted from the
class similarity matrix, and 2 features
for the two histogram extreme
ranges of the candidate list

The 12 counts extracted from

each program: classes, interfaces,
subclasses, functions, loops, con-
ditionals, function calls, class fields,
variable declarations, assignments,
comments, string literals. For each 2
counts, the similarity feature is the
minimum count over the maximum
count.

Structural counting features Comparing the two programs 12
based on some counting features
representing the program struc-

ture such as number of classes,

functions, and loops.

The 6 structural features are: 2 for
the histogram extreme ranges and
1 for the candidates' average for the
2 similarity matrices. The same 1
lexical feature and 1 stylistic feature
of Ganguly et al. [8] are used.

Modified original features Proposing a modified version 8
of Ganguly et al. [8] structural
features using candidates and
histogram extreme ranges of

similarity matrices.

Table 4 The number of files and pairs of SOCO-TRAIN

Number of files Number of pairs Number of plagiarized pairs

259 33411 84

average of the candidates for the two similarity matrices, and (iii) the same one stylistic
feature [8]. Table 3 lists the four proposed feature sets, with the target and description of
each of them.

Results and discussion

In this section, first, the used dataset and performance measures are presented. Then,
we present the performed experiments and discuss their results compared to the two
used baseline approaches. Finally, the performed time analysis and dataset analysis and
remarks are discussed.

SOCO-14 dataset

SOCO-14 [22] is a dataset used for detecting monolingual plagiarism. You can get the
dataset by contacting its authors [22]. The Java files of the dataset are targeted in this
paper. SOCO-14 consists of two sets: the training set (SOCO-TRAIN) and the test set
(SOCO-TEST). SOCO-TRAIN contains 259 Java files (from 000.java to 258.java). The
total number of file pairs is: 33K pairs, and the number of the plagiarized pairs is 84 as
shown in Table 4.

Page 9 of 18

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102 Page 10 of 18

SOCO-TEST is divided into 6 categories: A1, A2, B1, B2, C1, and C2. The files of the
same category solve the same Google Code Jam contest problem [10]. The A1l category
solves a simple problem, and the difficulty increases till reaching C2. The total number of
files in SOCO-TEST is 12K files. A10041 and A22867 files were corrupted and removed.
The detailed sizes of SOCO-TEST are shown in Table 5. It is worth noting that the total
number of pairs (i.e., 17.9M) includes only the pairs of the same category.

The ground truth file of SOCO-TRAIN contains 84 lines; one line for each plagiarized
pair. Each line is space-separated (e.g., the line “003.java 004.java” means that 003.java
and 004.java are plagiarized). The ground truth file of SOCO-TEST contains 221 lines.
The plagiarized pairs of all SOCO-TEST categories exist in one ground truth file, but
there are no lines containing pairs of different categories (e.g., “A10000 A20000”).

Performance measures

The performance measures used are Precession, Recall, and F-Measure of detecting the
plagiarized pairs (the positive class). Precision measures the percentage of the correctly
predicted positive with respect to all positive predictions. Recall measures the percent-
age of the correctly predicted positive with respect to all the positive examples in the
dataset. F-Measure combines both precision and recall in one measure. Equations 4, 5,
and 6 show how to calculate them. We used the same evaluation script (Python script)
that was used in SOCO-14’s task [22] to evaluate its participating systems.

Count (CorrectlyPredictedAsPlagiarized)
Count (AllPredictedAsPlagiarized) (4)

Precision =

Count(CorrectlyPredictedAsPlagiarized)

Recall =
eca Count (AllPlagiarizedInGroundTruth) (5)

2 x Precision * Recall
F_Measure = — (6)
Precision + Recall

Experimental settings
The proposed approach of Ganguly et al. [8] is time efficient and scalable because it
consists of two stages: (i) the first stage (i.e., the information retrieval or IR stage) is a

Table 5 The number of files and pairs of SOCO-TEST after removing corrupted files

Category Number of files Number of pairs Number of
plagiarized
pairs

Al 3240 5,247,180 54

A2 3092 4,778,686 46

B1 3268 5338278 73

B2 2266 2,566,245 34

C1 124 7626 0

@) 88 3828 14

SUM 12,078 17,941,843 221

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102 Page 11 0f 18

Table 6 The used parameters’values of the “init.properties”file [23]

Parameter Description Value

field True if the per-field representation is used True

toptermquery True if top “num_g_terms”terms (not all terms) are considered for each field after sort- True
ing terms by TFIDF score

num_g_terms The number of top terms for each field if “toptermquery”is true 20

lambda The weight (from 0 to 1) of TF with respect to IDF 04

minShingleSize The minimum size of the word ngrams of terms (Note: the unigrams are included by 2
default)

maxShingleSize The maximum size of the word ngrams of terms 3

num_wanted For each query document, the top “num_wanted” hit documents (that are sorted by 20

relevance score) are included in the output file.

Table 7 The used parameters’values of our feature extraction code

NGram NPartition Low High

3 4 0.3 0.7

time-efficient unsupervised stage that is used to prune the number of file pairs to com-
pare, and (ii) the second stage (i.e., the classification stage) is a binary classification stage
that decides whether each file pair outputted from the first stage is plagiarized. We used
the same IR Stage and focused on modifying the classification stage by using different
features sets and evaluating their effectiveness.

The code of the IR Stage is publicly available [23] by Ganguly et al. [8], and we re-
implemented the code of the classification stage from scratch. Regarding the IR stage,
Lucene (Version 4.6.0) [24] is used for indexing, and Java Parser (Version 1.0.10) [25]
is used for parsing Java source codes. Regarding the classification stage, the Weka tool
(Version 3.8) [26] is used for classification, and random forest is used with ten iterations.

The classifier is trained using all file pairs of the SOCO-TRAIN dataset (33.4K
instances). SOCO-TRAIN is only used in training the classifier, and any other remain-
ing work is made on the files of SOCO-TEST. In the IR stage, we first indexed all the files
of the SOCO-TEST dataset (12K files), then used each document of it again to query
the index individually and output the hit documents. After running the IR stage, all the
lines of the output file which contains the potential plagiarized pairs are entered into the
trained classifier of the second stage to classify it.

Regarding the IR stage [8], each document (source file) is represented by a set of fields
(e.g., class names, method calls, values of string literals). Each field consists of multiple
terms (e.g., the class names’ field of a file containing four classes could have the terms:
C1, C2, C3, and C4). Then, this representation is stored for each document in a per-field
index. Querying the per-field index compares the values of the same field together, so it
does not compare, for example, class names with string literals. The available code of the
IR Stage uses a configuration file called “init.properties” [23]. The final parameter values
we used for this file and a short description of them are presented in Table 6.

Regarding the classification stage, the parameters used in our feature extraction code
are shown in Table 7. NGram is the number of the character n-grams used in the feature

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102 Page 12 0of 18

sets. NPartition is the number of partitions of the structural histogram features. Low
and high are the low and high similarity thresholds of histogram extreme ranges.

Experimental results

Two baselines are used to compare our results with:

+ Baseline I (i.e., JPlag tool [5]): which converts each file into a token string then uses
the Greedy String Tiling (GST) algorithm to get the similarity between token string
pairs. Most of the related work uses it for comparison. It is also worth noting that the
JPlag’s results reported in this paper are the results that were reported in SOCO-14
[22].

+ Baseline II (i.e., Ganguly et al. [8]): which is summarized in Section 3.3. It is chosen
as a baseline for its scalability and good results. It is also worth noting that the results
of baseline II written in our paper are the results we got using the parameters’ values
mentioned in Table 6 for the IR stage and using our implementation of the classifica-
tion stage.

We performed seven experiments. The feature sets used in each experiment with the
total number of features are shown in Table 8. It is worth noting that baseline II includes
only the original features of Ganguly et al. [8] summarized in Section 2.4; however, all
our experiments (except ModOriginal and ModOriginal-MainRmv experiments) include
the original features in addition to our proposed feature sets to evaluate how the added
feature sets improve the results of baseline II.

The results of applying the entire pipeline (i.e., the IR stage and the classification stage)
are shown in Table 9. It is worth noting that all our experiments have results better than
baseline I. In addition, the recall of all our experiments is high (more than 96% in all
experiments except the StructCounts and Hist4+StructCounts experiments whose
recall is 90%).

Regarding the Hist4 experiment, adding the structural histogram features to the
original features increased the precision of baseline II (that includes only the original
features) by + 2.6% with nearly the same recall, and this improved the F-measure by
+ 1.8%. This means that representing similarity matrices by the histogram features is

Table 8 The feature sets used in each performed experiment with the total number of features

Experiment Description of features Number
of
features

Hist4 Original features (8) + structural histogram features (8) 16

PerClass Original features (8) + lexical per-class features (3) 11

Hist44-PerClass Original features (8) + structural histogram features (8) + lexical 19

per-class features (3)
StructCounts Original features (8) + structural counting features (12) 20
Hist4+StructCounts Original features (8) + structural histogram features (8) + struc- 28

tural counting features (12)
ModOriginal Modified original features with main included (8)
ModOriginal-MainRmv Modified original features with main excluded (8)

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102 Page 13 0f 18

Table 9 The precision, recall, and F-measure results of the performed experiments

Experiment Precision Recall F-measure
Baseline I: JPlag [5] 54.2% 29.3% 38.0%
Baseline Il: Ganguly et al. [8] 61.2% 97.7% 75.3%
Hist4 63.8% 97.3% 77.1%
PerClass 54.6% 99.1% 70.4%
Hist4+PerClass 66.3% 98.6% 79.3%
StructCounts 59.2% 90.5% 71.6%
Hist44-StructCounts 62.8% 90.0% 74.0%
ModOriginal 61.2% 96.4% 74.9%
ModOriginal-MainRmv 57.1% 96.4% 71.7%

promising and reflects the similarities better than only the minimum, maximum, and
average.

Regarding the PerClass experiment, adding the lexical per-class features increased the
recall by +1.4% compared to baseline II to reach 99.1%; however, the precision decreased
significantly by — 6.6% which leads to less F-measure than baseline II. This improvement
is because of incorporating the lexical similarity of each class pair in the two programs
and considering only the best candidates of the similarity matrix.

In the Hist4+-PerClass experiment, both the structural histogram features and the lex-
ical per-class features were added to the original features. The Hist4+PerClass experi-
ment improved both the precision and recall not only of baseline II but also Hist4;
hence, the Hist4+PerClass experiment has the best results we got so far. It increased the
F-measure of baseline II [8] by 4 4%. It also increased the F-measure of Hist4 by + 2.2%
(by increasing the recall by + 1.3% and the precision by + 2.5%).

Regarding the StructCounts experiment, adding the structural counting features to the
original features was unexpectedly not beneficial (StructCounts was less in precision by
— 2% and recall by — 7.2 which leads to — 3.7% difference in F-measure compared to
baseline II).

In the Histd+StructCounts experiment, both the structural histogram fea-
tures and the structural counting features were added to the original features. The
Hist4+StructCounts experiment improves the results of StructCounts (precision and
F-measure are increased by + 3.6% and + 2.4% respectively) but still less than baseline
IL.

We may be surprised that adding the structural counting features yields worse results,
although they reflect the code structure. One probable reason for that is, as it was men-
tioned before in Section 3.1, that the files of each category in SOCO-TEST solve the
same problem, and this may produce similar structural counts (i.e., a similar number
of classes, functions, etc.). That could be one of the reasons why adding the structural
counting features for SOCO-TEST dataset did not improve the results (i.e., they are not
distinguishing features for this particular dataset).

Regarding the ModOriginal experiment, the modified original features (which more
reasonably modify the original structural features) were used instead of the original
features. The F-measure of the modified original features (i.e., the ModOriginal experi-
ment) is nearly the same as the original features (i.e., baseline II), but the proposed

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102 Page 14 of 18

modifications are more reasonable. It is worth noting that the ModOriginal experiment
includes the main functions in the built similarity matrices.

On the other hand, the ModOriginal-MainRmv experiment removed the main func-
tions from the similarity matrices of function signatures because the Java main functions
are identical in the function signature. The results unexpectedly show that removing the
main functions yields less precision and F-measure than not removing them (i.e., — 4.1%
and — 3.2% respectively); however, removing the main functions signatures still make
more sense.

In summary, the feature set that yields the best results reached so far is the features of
the Hist4+PerClass experiment, which include 19 features:

+ The eight original features [8]
+ The eight structural histogram features of 4 partitions
+ The three lexical per-class features

The Hist4+PerClass experiment increases the F-measure of baseline II by +4%. Conse-
quently, Hist4+PerClass turns out to be our experiment of choice.

Time analysis

The time analysis for the classification stage of Hist4+PerClass experiment compared to
the time of baseline II [8] (the best of our two baselines in results) is shown in Table 10.
We performed three runs for each experiment and calculated the average elapsed time.
The used processor is Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz 2.60 GHz, and the
RAM is 8.00 GB.

The classification stage of Hist4+PerClass takes 23 min to classify 70K pairs (i.e.,
0.02 s per pair). Hist4+PerClass takes elapsed time more than of baseline II because
Hist4+PerClass extracts 11 features more than baseline II, and this increases the
F-measure by 4%. In general, the elapsed time in the proposed Hist4+PerClass experi-
ment is efficient because it does not involve any complex representation for code
structure.

Dataset analysis

We performed three analyses on the used dataset (SOCO-14 [22]). Regarding the first
analysis, when we extracted the false positive pairs of Hist4+PerClass experiment (111
pairs) to analyze why our system misclassifies them, we discovered that 74 out of the

Table 10 The elapsed time of the classification stage of our best-proposed experiment
(Hist4+PerClass) compared to baseline Il

Experiment Number of features Number of pairs Elapsed
time of
classification

Baseline II [8] 8 69,987 74467 s
=1241 min
Hist44-PerClass 19 69,987 1395335

=23.26 min

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102 Page 15 of 18

100.0%
95.0%
90.0%

85.0%
80.0%
75.0%
70.0%
65.0%
60.0%

Baseline 11 [2] Hist4 Hist4+PerClass

B Before Re-annotation M After Re-annotation
Fig. 4 The F-measure before and after the dataset re-annotation

Table 11 The results before and after the dataset re-annotation

Experiment Precision Recall F-measure

Before After Before After Before After
Baseline II [8] 61.2% 79.0% 97.7% 94.6% 75.3% 86.1%
Hist4 63.8% 82.2% 97.3% 93.9% 77.1% 87.7%
Hist4+PerClass 66.3% 88.8% 98.6% 99.0% 79.3% 93.6%

111 false positive pairs are true positives (correctly predicted by our system but wrongly
labeled in SOCO-14 [22]). We could not perform this re-annotation on all the dataset
pairs because the dataset is very large and contains 12K files. We make the list of the
re-annotated pairs (the 111 pairs) publicly available as a justification of no bias in re-
annotation [27].

To make sure that we are not favoring our approach in this re-annotation, we calcu-
lated the F-measure of baseline II in addition to our best two experiments before and
after the re-annotated dataset as shown in Fig. 4. The F-measure of baseline II itself is
increased by 10.8% after using the re-annotated dataset. In addition, Hist4+PerClass
improves the F-measure of baseline II by 7.5% using the re-annotated dataset, and the
F-measure of Hist4+PerClass reaches 93.6%. The detailed results including the precision
and the recall are shown in Table 11.

It is worth mentioning again that while high similarity does not necessarily correlate
with plagiarism, the main target of the source code plagiarism tools in general is to fil-
ter all pairs (numerous pairs, quadratic) and extract only the highly similar pairs (either
similar lexically, semantically, etc.), and still a manual evaluation of the extracted pairs
and an investigation with the involved students are needed to report plagiarism. That is
why re-annotating the dataset pairs for correcting the ground truth labels of the similar
pairs is essential.

The second performed dataset analysis is about duplicate files. As stated in SOCO-14
[22], each category of the test set solves a problem different from the other categories.
This intuitively means that it does not fit to find duplicate files between different cat-
egories. However, when we searched for the verbatim-copy files that belong to different

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102 Page 16 of 18

categories, we found that 4600 pairs are duplicates while belonging to different catego-
ries. This means that there are 4600 file pairs (that belong to different categories) that are
considered negative in the dataset if we combine all categories, but these pairs are posi-
tive (e.g., A10000 with A20000, B10197 with B20148). Hence, as a conclusion, combining
all categories and considering the pairs of different categories as negative is not accurate.

The third and final analysis we performed on the SOCO-14 dataset [22] is on the num-
ber of classes in the test set. We calculated the number of files for each number of classes
as shown in Table 12. We found that more than 90% of the files of the test set contain at
most one class. Consequently, we can conclude that if the detection approach strongly
depends on the number of classes, the SOCO-14 dataset is not the best dataset to show
the approach effectiveness because its majority of files contain only one class.

Conclusions

Source code plagiarism is considered a major ethical problem that affects the learn-
ing process negatively. This urges the need to detect it and apply a strict penalty to the
involved students. This paper introduces four feature sets for detecting source code pla-
giarism: (i) structural histogram features which propose a more indicative way to sum-
marize similarity matrices using a histogram of similarity values, (ii) lexical per-class
features which represent the lexical similarity between the class pairs of the two files by
building a lexical per-class similarity matrix and summarizing it to a set of descriptive
features, (iii) structural counting features which extract twelve counting features repre-
senting the code structure (e.g., number of classes, functions), and (iv) modified original
features which modify the feature set of Ganguly et al. [8] by using the candidates and
the extreme ranges.

The feature sets of the best results are the structural histogram features and the lexical
per-class features combined (i.e., a 4% F-measure increase compared to Ganguly et al.
[8]), and their time for classification is efficient (23 min for classifying 70K pairs). More-
over, we provided a partial dataset re-annotation that yields an F-measure 7.5% more
than Ganguly et al. [8], and an F-measure of 93.6% is achieved. The modified original
features are shown to be more reasonable while maintaining nearly the same F-measure.
After dataset analysis, we found that there are duplicate files between its different cat-
egories, and SOCO-14 [22] is not recommended if the approach depends on numerous
classes. Our future work is to use different structure-based feature sets such as abstract
syntax trees, dependency graphs, etc. In addition, we will perform further experiments
on the information retrieval stage of Ganguly et al. [8] (e.g., adding more fields, trying
different parameter values).

Table 12 The number of classes’analysis on SOCO-TEST [22]

Number of classes Number of
files of SOCO-
TEST

Any number of classes (all files) 12,078

Less than or equal to one 10,970

Equal two 854

Greater than or equal three 254

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102 Page 17 of 18

Abbreviations

SOCO-14 SOurce COde re-use dataset

SOCO-TRAIN The TRAINing set of SOurce COde re-use dataset
SOCO-TEST ~ The TEST set of SOurce COde re-use dataset

IR Information retrieval

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/544147-022-00155-8.

Additional file 1. It is our partial re-annotation of 111 pairs of SOCO-14 dataset. URL of the same file [27]: https://cutt.
ly/NQO6CtK.

Acknowledgements
Not applicable.

Authors’ contributions

EH is the corresponding author that made all the technical work (the implementation) and the major contributor in
writing the manuscript. MH, AA, and MF are the supervisors who discussed and suggested different ideas with EH. All
authors read and approved the final manuscript.

Funding
This study had no funding from any resource.

Availability of data and materials
Itis the URL of our partial re-annotation of 111 program pairs of SOCO-14 dataset. Re-annotation URL [27]: https://cutt.
ly/NQO6ctK

Declarations

Competing interests
No explicit competing interests other than that our affiliation is Faculty of Engineering at Cairo University.

Received: 5 February 2022 Accepted: 18 October 2022
Published online: 08 November 2022

References

1. BaerN, Zeidman R (2012) Measuring whitespace pattern sequences as an indication of plagiarism. Journal of Soft-
ware Engineering and Applications 5(4):249-254

2. Shay |, Baer N, Zeidman R (2010) Measuring whitespace patterns as an indication of plagiarism. In Proceedings of
Annual ADFSL Conference on Digital Forensics, Security and Law, St. Paul, pp. 63-72

3. Faidhi JA Robinson SK (1987) An empirical approach for detecting program similarity and plagiarism within a
university programming environment. Computers and Education 11(1):11-19

4. Karnalim O (2016) Detecting source code plagiarism on introductory programming course assignments using a
bytecode approach. In Proceedings of 2016 International Conference on Information & Communication Technology
and Systems (ICTS), IEEE, pp 63-68

5. Prechelt L, Malpoh! G, Philippsen M et al (2002) Finding plagiarisms among a set of programs with jplag. Journal of
Universal Computer Science 8(11):1016-1038

6. LiuC, Chen C Han J,Yu PS (2006) Gplag: detection of software plagiarism by program dependence graph analysis.
In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD'06), Philadelphia, USA, pp. 872-881

7. Sulistiani L, Karnalim O (2019) Es-plag: Efficient and sensitive source code plagiarism detection tool for academic
environment. Computer Applications in Engineering Education 27(1):166-182

8. Ganguly D, Jones GJ, Ramirez-De-La-Cruz A, Ramirez-De-La-Rosa G, Villatoro-Tello E (2018) Retrieving and classifying
instances of source code plagiarism. Information Retrieval Journal 21(1):1-23

9. Ullah F,Wang J, Farhan M, Habib M, Khalid S (2021) Software plagiarism detection in multiprogramming languages
using machine learning approach. Concurrency andComputation: Practice and Experience 33(4):e5000

10. Ramirez-de-la Cruz A, Ramirez-de-la Rosa G, Sanchez-Sanchez C, Jimenez-Salazar H (2014) On the importance of
lexicon, structure and style for identifying source code plagiarism. In Proceedings of the Forum for Information
Retrieval Evaluation (FIRE'14). ACM Press, New York, pp. 31-38

11. Moussiades L, Vakali A (2005) Pdetect: a clustering approach for detecting plagiarism in source code datasets. The
Computer J 48(6):651-661

12. Karnalim O (2021) Source code plagiarism detection with low-level structural representation and information
retrieval. International Journal of Computers and Applications 43(6):566-576

13. Jadalla A, Elnagar A (2008) Pde4java: Plagiarism detection engine for java source code: a clustering approach. Inter-
national Journal of Business Intelligence and Data Mining 3(2):121-135

14. Rabbani FS, Karnalim O (2017) Detecting source code plagiarism on. net programming languages using low-level
representation and adaptive local alignment. Journal of Information and Organizational Sciences 41(1):105-123

https://doi.org/10.1186/s44147-022-00155-8
https://cutt.ly/NQO6ctK
https://cutt.ly/NQO6ctK
https://cutt.ly/NQO6ctK
https://cutt.ly/NQO6ctK

Hosam et al. Journal of Engineering and Applied Science (2022) 69:102 Page 18 of 18

15. FuD, XuY,YuH,Yang B (2017) Wastk: a weighted abstract syntax tree kernel method for source code plagiarism
detection. Scientific Programming, pp. 1-8

16. Duracik M, Hrkut P, Krsak E, Toth S (2020) Abstract syntax tree based source code antiplagiarism system for large
projects set. [EEE Access, 8:175347-175359

17. Song HJ, Park SB, Park SY (2015) Computation of program source code similarity by composition of parse tree and
call graph. Mathematical Problems in Engineering, pp. 1-12

18. Chae DK, Ha J, Kim SW, Kang B, Im EG (2013) Software plagiarism detection: a graph-based approach. In Proceed-
ings of the 22nd ACM international conference on Information and Knowledge Management, ACM, pp. 1577-1580

19. Ullmann JR (1976) An algorithm for subgraph isomorphism. Journal of the ACM (JACM) 23(1):31-42

20. Ullmann JR (2011) Bit-vector algorithms for binary constraint satisfaction and subgraph isomorphism. Journal of
Experimental Algorithmics (JEA) 15:1-1

21. Collins M, Duffy N (2002) Convolution kernels for natural language. Advances in Neural Information Processing
Systems. MIT Press, Cambridge, 14:625-632

22. Flores E, Rosso P, Moreno L, Villatoro-Tello E (2014) On the detection of source code re-use. In Proceedings of the
Forum for Information Retrieval Evaluation, Association for Computing Machinery, New York, NY, USA, FIRE 14, pp.
21-30

23. Ganguly D (2014) Yasocs. https://github.com/gdebasis/YASOCS. Accessed 5 Feb 2022

24. Lucene version 4.6.0. https://archive.apache.org/dist/lucene/solr/4.6.0/. Accessed 28 Sep 2022

25. Java parser version 1.0.10. https://jar-download.com/artifacts/com.google.code javaparser/javaparser/1.0.10/
source-code. Accessed 28 Sep 2022

26. Weka tool (version 3.8). https://weka.informer.com/3.8/. Accessed 28 Sep 2022

27. Hosam E (2020) Soco re-annotation. https://cutt.ly/NQO6¢tK. Accessed 5 Feb 2022

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://github.com/gdebasis/YASOCS
https://archive.apache.org/dist/lucene/solr/4.6.0/
https://jar-download.com/artifacts/com.google.code.javaparser/javaparser/1.0.10/source-code
https://jar-download.com/artifacts/com.google.code.javaparser/javaparser/1.0.10/source-code
https://weka.informer.com/3.8/
https://cutt.ly/NQO6ctK

	Classification feature sets for source code plagiarism detection in Java
	Abstract
	Introduction
	Methods
	Structural histogram features
	Lexical per-class features
	Lexical per-class similarity matrix
	Candidates of a similarity matrix
	Histogram extreme ranges
	Extracting the lexical per-class features

	Structural counting features
	Modified original features

	Results and discussion
	SOCO-14 dataset
	Performance measures
	Experimental settings
	Experimental results
	Time analysis
	Dataset analysis

	Conclusions
	Acknowledgements
	References

