
Akinyemi et al. Advances in Difference Equations         (2021) 2021:45 
https://doi.org/10.1186/s13662-020-03208-5

R E S E A R C H Open Access

Modified homotopy methods for
generalized fractional perturbed
Zakharov–Kuznetsov equation in dusty
plasma
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Abstract
We propose a new modification of homotopy perturbation method (HPM) called the
δ-homotopy perturbation transform method (δ-HPTM). This modification consists of
the Laplace transform method, HPM, and a control parameter δ. This control
convergence parameter δ in this new modification helps in adjusting and controlling
the convergence region of the series solution and overcome some limitations of HPM
and HPTM. The δ-HPTM and q-homotopy analysis transform method (q-HATM) are
considered to study the generalized time-fractional perturbed (3 + 1)-dimensional
Zakharov–Kuznetsov equation with Caputo fractional time derivative. This equation
describes nonlinear dust-ion-acoustic waves in the magnetized two-ion-temperature
dusty plasmas. The selection of an appropriate value of δ in δ-HPTM and the auxiliary
parameters n and � in q-HATM gives a guaranteed convergence of series solution, but
the difference between the two techniques is that the embedding parameter p in
δ-HPTM varies from zero to nonzero δ, whereas the embedding parameter q in
q-HATM varies from zero to 1

n ,n ≥ 1. We examine the effect of fractional order on the
considered problem and present the error estimate when compared with exact
solution. The outcomes reveal complete reliability and efficiency of the proposed
algorithm for solving various types of physical models arising in sciences and
engineering. Furthermore, we present the convergence and error analysis of the two
methods.

Keywords: Laplace transform; δ-homotopy transform perturbation method;
q-homotopy analysis transform method; Perturbed Zakharov–Kuznetsov equation

1 Introduction
The study of fractional partial differential equations (FPDEs) has enticed the interest of
many researchers in the field of applied sciences and engineering by virtue of its enormous
applications in electrodynamics, random walk, biotechnology, viscoelasticity, chaos the-
ory, signal and image processing, nanotechnology, and many other areas [1–20]. Also, es-
sential properties of fractional calculus were outlined by many researchers (see [21–24] for
detailed discussion). Nevertheless, solving FPDEs is generally more complex than the clas-
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sical type since their operators are defined through integrals. There are many techniques
proposed by many researchers to handle analytical and approximate solutions of nonlin-
ear FPDEs such as the residual power series method [25–28], iterative Shehu transform
method [29], Laplace decomposition method [30], q-homotopy analysis method [31–34],
Adomian decomposition method [35], fractional reduced differential transform method
[36, 37], variational iteration method [38, 39], homotopy analysis method [40], and other
methods [41–44].

The homotopy perturbation method (HPM) was developed by He [45–50] by combin-
ing the perturbation and standard homotopy for solving numerous physical problems. We
refer the reader to He’s works for a clear understanding of HPM, where further insights
can be found. Recently, an improved modification of HPM, called the parameterized ho-
motopy perturbation method (PHPM), was proposed in [51, 52]. Another formulation,
called the He–Laplace method, was proposed to obtain an exact closed approximate so-
lution of nonlinear models [53, 54]. The HPM and well-known Laplace transformation
method were combined to produce a highly effective technique, called the homotopy per-
turbation transform method (HPTM), for solving many nonlinear problems [55, 56]. It is
worth noting that the Laplace transform method alone in some cases is insufficient in han-
dling nonlinear problems because of the difficulties that may arise by the nonlinear terms.
In this present study, we propose a new modification of HPM, called the δ-homotopy
perturbation transform method (δ-HPTM), which consists of HPM, the Laplace trans-
form method, and a control parameter δ. Similarly to the control parameters n and � in
q-HATM, the control parameter δ in δ-HPTM also helps in adjusting and controlling the
convergence region of the series solutions and can overcome some limitations of HPM,
HPTM, and He–Laplace method. It is worth mentioning that the present modification (δ-
HPTM) requires neither polynomials like ADM nor Lagrange multipliers like VIM and
overcomes the limitations of these methods.

To elucidate the reliability and effectiveness of the proposed modification, we con-
sider the generalized time-fractional perturbed (3 + 1)-dimensional Zakharov–Kuznetsov
(gpZK) equation given by

Dγ
t W + β1W k ∂W

∂x
+ β2

∂3W
∂x3 + β3

(
∂3W
∂x ∂y2 +

∂3W
∂x ∂z2

)
+ ξ

∂5W
∂x5 = 0,

0 < γ ≤ 1, t > 0, (1)

where W represents the electrostatic potential, k is a positive number, γ is the fractional
order, ξ represents a smallness parameter, and the physical quantities β1,β2, and β3 are
constants. Zhen et al. [57] and Seadawy et al. [58, 59] have outlined these physical quanti-
ties. This equation is used to describe the nonlinear dust-ion-acoustic waves in the mag-
netized two-ion-temperature dusty plasmas [60, 61]. The study of ion-acoustic waves and
structures in dense quantum plasmas has attracted a lot of consideration in recent years.
The ZK equation comprises the nonlinear term W ∂W

∂x and third-order dispersion term
∂3W
∂x3 :

∂W
∂t

+ β1W
∂W
∂x

+ β2
∂3W
∂x3 + β3

(
∂3W
∂x ∂y2 +

∂3W
∂x ∂z2

)
. (2)
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Equation (2) is limited to the waves of small amplitudes only. The width of the soliton and
its velocity deviate from the predictions of this equation as the amplitude of the wave in-
creases. The pZK equation (1) with fractional order γ = 1 and k = 1 includes an of extra
fifth-order dispersion term ξ ∂5W

∂x5 was proposed to overcome this problem (see [57–59, 62],
for more detail). The proposed δ-HPTM and q-HATM are employed to compute numer-
ical solutions of Eq. (1). The two algorithms provide the solutions in a rapid convergent
series, which can lead the solutions to a closed form. To the author’s knowledge, the ap-
proximate solutions of the gpZK (1) was not addressed in the literature before.

The rest of the paper is structured as follows. Useful notations and definitions are pro-
vided in Sect. 2. The essential idea of the two methods with convergence and error analy-
sis are presented in Sect. 3. The applications of δ-HPTM and q-HATM on the generalized
time-fractional pZK equation are detailed in Sect. 4. Numerical comparison and discus-
sion are provided in Sect. 5. Lastly, Sect. 6 concludes the paper.

2 Preliminaries
This section contains some helpful notations and definitions.

Definition 1 Let ω ∈ R and m ∈ N. A function W is said to be in the space Cω if there
exists η ∈R, η > ω, and Z ∈ C[0,∞) such that W (t) = tηZ(t) t ∈R

+. Furthermore, W ∈C
m
ω

if W (m) ∈Cω [63].

Definition 2 The Riemann–Liouville (RL) fractional integral of order γ of a function
W (t) ∈ Cω,ω ≥ –1, is given as [23, 63–65]

Jγ W (t) =
1

	(γ )

∫ t

0
(t – ζ )γ –1W (ζ ) dζ , γ , t > 0, (3)

where J0W (t) = W (t), and 	 is the classical gamma function.

Definition 3 The fractional derivative of W (t) (denoted by Dγ W (t)) in the Caputo sense
for m – 1 < γ < m, m ∈N, is defined as [23, 65]

Dγ W (t) =

⎧⎨
⎩

W (m)(t), γ = m,

Jm–γ W (m)(t), m – 1 < γ < m,
(4)

where

Jm–γ W (γ )(t) =
1

	(m – γ )

∫ t

0
(t – ζ )m–γ –1W (γ )(ζ ) dζ , γ , t > 0, (5)

with the following properties:
a. Dγ (τ1W (t) + τ2V (t)) = τ1Dγ W (t) + τ2Dγ V (t), τ1, τ2 ∈ R,
b. Dγ Jγ W (t) = W (t),
c. JγDγ W (t) = W (t) –

∑m–1
j=0 W j

0(t) tj

j! .

Definition 4 The Laplace transform (denoted by L ) of a Riemann–Liouville fractional
integral (Jγ

t W (t)) and Caputo fractional derivative (Dγ
t W (t)) of a function W ∈ Cω(ω ≥
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–1) are given respectively as [21, 65]

L
[
Jγ
t W (t)

]
= s–γ L

[
W (t)

]
,

L
[
Dγ

t W (t)
]

= sγ L
[
W (t)

]
–

m–1∑
r=0

sγ –r–1W (r)(0+)
, m – 1 < γ ≤ m,

(6)

where s is a parameter.

3 Analysis of the proposed methods
Here we give the general idea of the δ-HPTM and q-HATM. We also present some con-
vergence and error analysis of the two methods. Consider the general nonlinear FPDE of
the form

Dγ
t W + M(W ) + N (W ) = �, m – 1 < γ ≤ m, (7)

with initial conditions

W (r)(x, y, z, 0) =
∂rW (x, y, z, 0)

∂tr = fr(x, y, z), r = 0, 1, 2, . . . , m – 1, (8)

where Dγ
t represents the Caputo fractional derivative, M and N denote, respectively,

the linear and nonlinear differential operators, W = W (x, y, z, t) specifies the unknown
function, and � = �(x, y, z, t) is the provided source term. Applying the Laplace transform
(denoted by L ) to both sides of Eq. (7), we have

sγ L [W ] –
m–1∑
r=0

sγ –r–1W r(x, y, z, 0) + L
[
M(W )

]
+ L

[
N (W )

]
= L [�]. (9)

Using the differentiation property of the Laplace transform with the initial conditions (8),
upon simplification and the inverse Laplace transform (denoted by L –1), we obtain

W = L –1

[
1
sγ

(m–1∑
r=0

sγ –r–1W (r)(x, y, z, 0) + L [�]

)]

– L –1
[

1
sγ

L
[
M(W ) + N (W )

]]
. (10)

3.1 The δ-homotopy perturbation transform method (δ-HPTM)
We employ the concept of HPM [45–50] to Eq. (10) as follows:

W =
∞∑

r=0

prWr . (11)

We decompose the nonlinear term as

N (W ) =
∞∑

r=0

prHr(W ), (12)
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where Hr(W ) are the He’s polynomials expressed in the form

Hr(W0, W1, . . . , Wr) =
1
r!

∂r

∂pr

[
N

( ∞∑
j=0

pjWj

)]
p=0

, r = 0, 1, 2, . . . . (13)

In view of δ-HPM [66], we derive the propose δ-HPTM as

∞∑
r=0

prWr = L –1

[
1
sγ

(m–1∑
r=0

sγ –r–1W (r)(x, y, z, 0) + L [�]

)]

– p
(

1 –
1
δ

)( ∞∑
r=0

prWr – W0

)

– p

{
L –1

[
1
sγ

L

[
M

( ∞∑
r=0

prWr

)
+

∞∑
r=0

prHr(W )

]]}
. (14)

By equating the identical power terms of p in Eq. (14), we generate the sequence of δ-
HPTM as

p(0) : W0 = L –1

[
1
sγ

(m–1∑
r=0

sγ –r–1W (r)(x, y, z, 0) + L [�]

)]
,

p(1) : W1 = –L –1
[

1
sγ

L
[
M(W0) + H0(W )

]]
,

p(2) : W2 = –
(

1 –
1
δ

)
W1 – L –1

[
1
sγ

L
[
M(W1) + H1(W )

]]
, (15)

...

p(r) : Wr = –
(

1 –
1
δ

)
Wr–1 – L –1

[
1
sγ

L
[
M(Wr–1) + Hr–1(W )

]]
, r = 2, 3, 4, . . . .

The solution of Eq. (7) is given as

W = lim
p→δ

∞∑
r=0

prWr =
∞∑

r=0

Wr(x, y, z, t; δ) =
∞∑

r=0

Wrδ
r . (16)

Remark 1 The particular case where δ = 1 is the standard HPTM [55, 56].

3.1.1 Convergence and error analysis
Theorem 1 Let W = W (x, y, z, t) be defined in a Banach space B [67]. Then the series so-
lution

∞∑
r=0

Wr(x, y, z, t; δ) =
∞∑

r=0

Wrδ
r (17)

is convergent for a prescribed value of δ if

‖Wr+1‖ ≤ 


|δ| ‖Wr‖, ∀W0 ∈ B, (18)

where 0 < 
 < |δ|.
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Proof Let W0 = W0 ∈ B. Define the sequence of partial sums {Sr} of Eq. (16) as

S0 = W0,

S1 = W0 + W1δ,

S2 = W0 + W1δ + W2δ
2,

...

Sr = W0 + W1δ + W2δ
2 + W3δ

3 + · · · + Wrδ
r .

(19)

We need to show that {Sr}∞r=0 is a Cauchy sequence in the Banach space B. For δ 	= 0, we
have

‖Sr+1 – Sr‖ = ‖Wr+1‖ ≤ 


|δ| ‖Wr‖ ≤
(




|δ|
)2

‖Wr–1‖ ≤ · · · ≤
(




|δ|
)r+1

‖W0‖. (20)

For all r, k ∈N with r ≥ k, applying the triangle inequality, we obtain

‖Sr – Sk‖ =
∥∥(Sr – Sr–1) + (Sr–1 – Sr–2) + · · · + (Sk+1 – Sk)

∥∥
≤ ‖Sr – Sr–1‖ + ‖Sr–1 – Sr–2‖ + · · · + ‖Sk+1 – Sk‖

≤
(




|δ|
)r

‖W0‖ +
(




|δ|
)r–1

‖W0‖ + · · · +
(




|δ|
)k+1

‖W0‖

≤
(




|δ|
)k+1((




|δ|
)r–k–1

+
(




|δ|
)r–k–2

+ · · · +
(




|δ|
)

+ 1
)

‖W0‖

≤
(




|δ|
)k+1(1 – ( 


|δ| )
r–k

1 – 


|δ|

)
‖W0‖.

(21)

Since 0 < 
 < |δ| and δ 	= 0, we have 1 – ( 


|δ| )
r–k < 1. Then

‖Sr – Sk‖ ≤ ( 


|δ| )
k+1

1 – 


|δ|
‖W0‖. (22)

Since ‖W0‖ < ∞, we have

lim
r→∞‖Sr – Sk‖ = 0. (23)

Therefore {Sr}∞r=0 is a Cauchy sequence in the Banach space B, so the series solution
Eq. (16) converges. �

Theorem 2 If the truncated series
∑K

r=0 Wr(x, y, z, t; δ) =
∑K

r=0 Wrδ
r is employed as an ap-

proximate solution of Eq. (7), then the maximum absolute truncation error is estimated
as

∥∥∥∥∥W –
K∑

r=0

Wr(x, y, z, t; δ)

∥∥∥∥∥ ≤ ( 


|δ| )
K+1

1 – 


|δ|
‖W0‖. (24)
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Proof It follows from inequality (21) in Theorem 1. For M ≥ K , we have

‖SM – SK‖ ≤
(




|δ|
)K+1(1 – ( 


|δ| )
M–K

1 – 


|δ|

)
‖W0‖. (25)

For a prescribed value of δ 	= 0, SM → W as M → ∞, and 1 – ( 


|δ| )
M–K < 1 (since 0 < 


|δ| < 1).
Thus

∥∥∥∥∥W –
K∑

r=0

Wr(x, y, z, t; δ)

∥∥∥∥∥ ≤ ( 


|δ| )
K+1

1 – 


|δ|
‖W0‖, (26)

where W0 = W0. �

3.2 The q-homotopy analysis transform method (q-HATM)
To exemplify the idea of q-HATM [68–75], we construct the zeroth-order deformation
equation for 0 ≤ q ≤ 1

n , n ≥ 1, as

(1 – nq)L (φ – W0) = �qHN [φ], (27)

where φ = φ(x, y, z, t; q), and N [φ] from Eq. (9) is defined as

N [φ] = L [φ] –
1
sγ

m–1∑
r=0

sγ –r–1φ(r)(0+)
+

1
sγ

(
L

[
M(φ) + N (φ) – �

])
, (28)

where q indicates the embedded parameter, the nonzero � represents an auxiliary param-
eter, and H 	= 0 is an auxiliary function. From Eq. (27) with q = 0, 1

n we get

φ(x, y, z, t; 0) = W0, φ

(
x, y, z, t;

1
n

)
= W . (29)

As q rises from 0 to 1
n , the solutions φ ranges from the initial guess W0 to the solution W .

In case that W0, �, and H are all selected appropriately the solutions φ in Eq. (27) hold for
0 ≤ q ≤ 1

n . Hence application of Taylor series expansion [76] to φ gives

φ = W0 +
∞∑

r=1

Wrqr , (30)

where

Wr =
1
r!

∂rφ

∂qr

∣∣∣∣
q=0

. (31)

If we choose W0, �, and H adequately, then Eq. (30) converges at q = 1
n . From Eq. (29) we

obtain

W = W0 +
∞∑

r=1

Wr

(
1
n

)r

. (32)
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Differentiating Eq. (27) r times with respect to q, setting q = 0, and multiplying by 1
r! give

L
[
Wr – ϒ∗

r Wr–1
]

= �HRr( �Wr–1). (33)

The vector �Wr is expressed as

�Wr = {W0, W1, . . . , Wr}. (34)

Taking the inverse LT of Eq. (33), we obtain

Wr = ϒ∗
r Wr–1 + �L –1[HRr( �Wr–1)

]
, (35)

where

Rr( �Wr–1) = L [W ] –
(

1 –
ϒ∗

r
n

)(m–1∑
r=0

sγ –r–1W r(x, y, z, 0) +
1
sγ

L [�]

)

+
1
sγ

L
[
M(W ) + Hr–1

]
, (36)

and

ϒ∗
r =

⎧⎨
⎩

0 r ≤ 1,

n otherwise.
(37)

In Eq. (36), Hr denotes the homotopy polynomial defined as

Hr =
1
r!

∂rφ

∂qr

∣∣∣∣
q=0

, φ = φ0 + qφ1 + q2φ2 + q3φ3 + · · · . (38)

3.2.1 Convergence and error analysis
Here we present some helpful theorems with detailed proofs in [74, 75] for the purpose of
completeness.

Theorem 3 (Convergence theorem [74, 75]) Let B be a Banach space, and let F : B → B
be a nonlinear mapping. Suppose that

∥∥F(W ) – F(Ŵ )
∥∥ ≤ 
‖W – Ŵ‖, ∀W , Ŵ ∈ B, (39)

where 0 < 
 < 1. Then 
 has a fixed point in light of Banach’s fixed point theory [77]. Further-
more, for arbitrary choice of W0, Ŵ0 ∈ B, the sequence generated by the q-HATM converges
to a fixed point of 
, and

‖Wk – Wr‖ ≤ 
r

1 – 

‖W1 – W0‖, ∀W , Ŵ ∈ B. (40)

Theorem 4 ([75]) Suppose that the series solution defined in Eq. (32) converges to the solu-
tion W for prescribed values of n and � and that there is a real number 0 < � < 1 satisfying

‖Wj+1‖ ≤ �‖Wj‖, ∀j. (41)
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If the truncated series

W(K ) = W(K )(x, t; n;�) =
K∑

r=0

Wr

(
1
n

)r

(42)

is utilized as an approximation to the solution of problem (7), then the maximum absolute
truncated error is evaluated as

‖W – W(K )‖ ≤ �K+1

1 – �
‖W0‖. (43)

4 Application of the proposed methods
We have carefully chosen the generalized time-fractional perturbed (3 + 1)-dimensional
Zakharov–Kuznetsov (gpZK) equation and apply δ-HPTM and q-HATM to obtain ana-
lytical approximate solutions in the form of convergent series. Consider

Dγ
t W + β1W k ∂W

∂x
+ β2

∂3W
∂x3 + β3

(
∂3W
∂x ∂y2 +

∂3W
∂x ∂z2

)
+ ξ

∂5W
∂x5 = 0,

0 < γ ≤ 1, t > 0, (44)

with initial condition

W (x, y, z, 0) = f (x, y, z). (45)

Example 1 Consider Eq. (44) with k = 1 given as

Dγ
t W + β1W

∂W
∂x

+ β2
∂3W
∂x3 + β3

∂3W
∂x ∂y2 + β3

∂3W
∂x ∂z2 + ξ

∂5W
∂x5 = 0,

0 < γ ≤ 1, t > 0, (46)

with initial condition

W (x, y, z, 0) = e0 –
1680ξp4

β1(px + qy – (
√

– β2p2

β3
– q2)z + φ)4

, (47)

where e0, p, q, and φ are arbitrary constants. The exact solution for γ = 1 is given by

W (x, y, z, t) = e0 –
1680ξp4

β1(px + qy – (
√

– β2p2

β3
– q2)z – β1e0pt + φ)4

. (48)

δ-HPTM Solution:
Application of δ-HPTM to Eq. (44) with Eq. (45) gives

∞∑
r=0

prWr = L –1
[

1
s
(
W (x, y, z, 0)

)]
– p

(
1 –

1
δ

)( ∞∑
r=0

prWr – W0

)

– p

{
L –1

[
1
sγ

L

[(
β2

∂3

∂x3 + β3
∂3

∂x ∂y2 + β3
∂3

∂x ∂z2 (49)
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+ ξ
∂5

∂x5

) ∞∑
r=0

prWr + β1

∞∑
r=0

pr
r∑

i=0

Wi
∂Wr–i

∂x

]]}
.

By equating the identical power terms of p in Eq. (49) we generate the sequence of δ-
HPTM as

p(0) : W0 = W (x, y, z, 0),

p(1) : W1 = –L –1
[

1
sγ

L

[
β1W0

∂W0

∂x
+ β2

∂3W0

∂x3 + β3
∂3W0

∂x ∂y2 + β3
∂3W0

∂x ∂z2 + ξ
∂5W0

∂x5

]]
,

p(2) : W2 = –
(

1 –
1
δ

)
W1 – L –1

[
1
sγ

L

[
β1W0

∂W1

∂x
+ β1W1

∂W0

∂x

+ β2
∂3W1

∂x3 + β3
∂3W1

∂x ∂y2 + β3
∂3W1

∂x ∂z2 + ξ
∂5W1

∂x5

]]
, (50)

...

p(r) : Wr = –
(

1 –
1
δ

)
Wr–1 – L –1

[
1
sγ

L

[
β1

r–1∑
i=0

Wi
∂W(r–i–1)

∂x

+ β2
∂3Wr–1

∂x3 + β3
∂3Wr–1

∂x ∂y2 + β3
∂3Wr–1

∂x ∂z2 + ξ
∂5Wr–1

∂x5

]]
, r = 2, 3, 4, . . . .

Hence, using initial condition Eq. (45), we derive:

W0 = e0 –
1680ξp4

β1(px + qy ± (
√

– β2p2

β3
– q2)z + φ)4

,

W1 = –
6720β

5
2

3 ξe0p5tγ

	(γ + 1)(
√

β3(px + qy + φ) – (
√

–β2p2 – β3q2)z)5
,

W2 =
(

1
δ

– 1
)

W1 –
33,600β1β

3
3ξe2

0p6t2γ

	(2γ + 1)(
√

β3(px + qy + φ) – (
√

–β2p2 – β3q2)z)6
,

W3 =
(

1
δ

– 1
)

W2 –
33,600β1β

3
3ξe2

0p6

(
√

β3(px + qy + φ) – (
√

–β2p2 – β3q2)z)11

×
(

6
√

β3β1e0pt3γ (
√

β3(px + qy + φ) – (
√

–β2p2 – β3q2)z)4

	(3γ + 1)

+
(1 – δ)t2γ (

√
β3(px + qy + φ) – (

√
–β2p2 – β3q2)z)5

δ	(2γ + 1)

+
13,440β

5
2

3 ξp5t3γ

	(3γ + 1)
–

6720β
5
2

3 ξp5	(2γ + 1)t3γ

	(γ + 1)2	(3γ + 1)

)
.

Accordingly, we can obtain the remaining terms Wr , r = 4, 5, 6, . . . .
q-HATM Solution:
Implementing LT on Eq. (44) with Eq. (45), we obtain

L [W ] –
1
s
(
W (x, y, z, 0)

)
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+
1
sγ

L

[
β1W

∂W
∂x

+ β2
∂3W
∂x3 + β3

∂3W
∂x ∂y2 + β3

∂3W
∂x ∂z2 + ξ

∂5W
∂x5

]
= 0. (51)

The nonlinear operator N (φ), φ = φ(x, y, z, t; q), is given as

N (φ) = L [φ] –
1
s
(
W (x, y, z, 0)

)

+
1
sγ

L

[
β1φ

∂φ

∂x
+ β2

∂3φ

∂x3 + β3
∂3φ

∂x ∂y2 + β3
∂3φ

∂x ∂z2 + ξ
∂5φ

∂x5

]
. (52)

Referring to Eq. (33) with H = 1, the rth-order deformation equation is

L
[
Wr – ϒ∗

r Wr–1
]

= �Rr( �Wr–1), (53)

where

Rr( �Wr–1) = L [Wr–1] –
(

1 –
ϒ∗

r
n

)
1
s
{

W (x, y, z, 0)
}

+
1
sγ

L

[
β1

r–1∑
i=0

Wi
∂Wr–i–1

∂x
+ β2

∂3Wr–1

∂x3 + β3
∂3Wr–1

∂x ∂y2

+ β3
∂3Wr–1

∂x ∂z2 + ξ
∂5Wr–1

∂x5

]
. (54)

An application of the inverse LT to Eq. (53) yields

Wr = ϒ∗
r Wr–1 + �L –1[Rr( �Wr–1)

]
. (55)

Solving Eqs. (55) using (47) and (54) for r = 1, 2, 3, . . . , we get:

W0 = e0 –
1680ξp4

β1(px + qy ± (
√

– β2p2

β3
– q2)z + φ)4

,

W1 =
6720β

5
2

3 ξe0�p5tγ

	(γ + 1)(
√

β3(px + qy + φ) – (
√

–β2p2 – β3q2)z)5
,

W2 = (n + �)W1 –
33,600β1β

3
3ξe2

0�
2p6t2γ

	(2γ + 1)(
√

β3(px + qy + φ) – (
√

–β2p2 – β3q2)z)6
,

W3 = (n + �)W2 +
33,600β1β

3
3ξe2

0�
2p6

(
√

β3(px + qy + φ) – z
√

–β2p2 – β3q2)11

×
(

6
√

β3β1e0�pt3γ (
√

β3(px + qy + φ) – (
√

–β2p2 – β3q2)z)4

	(3γ + 1)

–
(n + �)t2γ (

√
β3(px + qy + φ) – (

√
–β2p2 – β3q2)z)5

	(2γ + 1)

+
13,440β

5
2

3 ξ�p5t3γ

	(3γ + 1)
–

6720β
5
2

3 ξ�p5	(2γ + 1)t3γ

	(γ + 1)2	(3γ + 1)

)
.

Accordingly, we can derive the remaining terms.
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Example 2 Consider Eq. (44) with k = 2 given as

Dγ
t W + β1W 2 ∂W

∂x
+ β2

∂3W
∂x3 + β3

∂3W
∂x ∂y2 + β3

∂3W
∂x ∂z2 + ξ

∂5W
∂x5 = 0,

0 < γ ≤ 1, t > 0, (56)

with initial condition

W (x, y, z, 0) = e0 +
6i

√
10

√
ξp2

√
β1(px + qy –

√
–i

√
10

√
β1

√
ξe0p2–β2p2–β3q2√
β3

z + φ)2
, (57)

where e0, p, q, and φ are arbitrary constants. The exact solution for γ = 1 is given by

W (x, y, z, t) = e0 +
6i

√
10

√
ξp2

√
β1(px + qy –

√
–i

√
10

√
β1

√
ξe0p2–β2p2–β3q2√
β3

z – β1e2
0pt + φ)2

. (58)

δ-HPTM Solution:
Application of δ-HPTM to Eq. (56) with Eq. (57) gives

∞∑
r=0

prWr = L –1
[

1
s
(
W (x, y, z, 0)

)]
– p

(
1 –

1
δ

)( ∞∑
r=0

prWr – W0

)

– p

{
L –1

[
1
sγ

L

[(
β2

∂3

∂x3 + β3
∂3

∂x ∂y2 + β3
∂3

∂x ∂z2 (59)

+ ξ
∂5

∂x5

) ∞∑
r=0

prWr + β1

∞∑
r=0

pr
r∑

i=0

i∑
j=0

WjWi–j
∂Wr–i

∂x

]]}
.

By equating the identical power terms of p in Eq. (59) we generate the sequence of δ-
HPTM:

p(0) : W0 = W (x, y, z, 0),

p(1) : W1 = –L –1
[

1
sγ

L

[
β1W 2

0
∂W0

∂x
+ β2

∂3W0

∂x3 + β3
∂3W0

∂x ∂y2 + β3
∂3W0

∂x ∂z2 + ξ
∂5W0

∂x5

]]
,

p(2) : W2 = –
(

1 –
1
δ

)
W1 – L –1

[
1
sγ

L

[
β1W0W0

∂W1

∂x
+ β1W0W1

∂W0

∂x

+ β1W1W0
∂W0

∂x
+ β2

∂3W1

∂x3 + β3
∂3W1

∂x ∂y2 + β3
∂3W1

∂x ∂z2 + ξ
∂5W1

∂x5

]]
, (60)

...

p(r) : Wr = –
(

1 –
1
δ

)
Wr–1 – L –1

[
1
sγ

L

[
β1

r–1∑
i=0

i∑
j=0

WjWi–j
∂W(r–i–1)

∂x

+ β2
∂3Wr–1

∂x3 + β3
∂3Wr–1

∂x ∂y2 + β3
∂3Wr–1

∂x ∂z2 + ξ
∂5Wr–1

∂x5

]]
, r = 2, 3, 4, . . . .
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Hence, using initial condition Eq. (57), we derive:

W0 = e0 +
6i

√
10

√
ξp2

√
β1(px + qy –

√
–i

√
10

√
β1

√
ξe0p2–β2p2–β3q2√
β3

z + φ)2
,

W1 =
12i

√
10

√
β1

√
ξe2

0p3tγ

	(γ + 1)(px + qy –
√

–β3q2+p2(–β2–i
√

10
√

β1
√

ξe0)√
β3

z + φ)3
,

W2 =
(

1
δ

– 1
)

W1 –
36i

√
10β

3
2

1
√

ξe4
0p4t2γ

	(2γ + 1)(px + qy –
√

–β3q2+p2(–β2–i
√

10
√

β1
√

ξe0)√
β3

z + φ)4
,

W3 =
(

1
δ

– 1
)

W2 –
36β

3
2

1
√

ξe4
0p4

(px + qy –
√

–β3q2+p2(–β2–i
√

10
√

β1
√

ξe0)√
β3

z + φ)9
,

×
( i

√
10(1 – δ)t2γ (px + qy –

√
–β3q2+p2(–β2–i

√
10

√
β1

√
ξe0)√

β3
z + φ)5

δ	(2γ + 1)

–
4i

√
10β1e2

0pt3γ (px + qy –
√

–β3q2+p2(–β2–i
√

10
√

β1
√

ξe0)√
β3

z + φ)4

	(3γ + 1)

+
240

√
β1

√
ξe0p3	(2γ + 1)t3γ (px + qy –

√
–β3q2+p2(–β2–i

√
10

√
β1

√
ξe0)√

β3
z + φ)2

	(γ + 1)2	(3γ + 1)

–
480

√
β1

√
ξe0p3t3γ (px + qy –

√
–β3q2+p2(–β2–i

√
10

√
β1

√
ξe0)√

β3
z + φ)2

	(3γ + 1)

+
1920i

√
10ξp5	(2γ + 1)t3γ

	(γ + 1)2	(3γ + 1)
–

3840i
√

10ξp5t3γ

	(3γ + 1)

)
.

Following this procedure, we can obtain the remaining terms.
q-HATM Solution:
Implementing LT on Eq. (56) with Eq. (57), we obtain

L [W ] –
1
s
(
W (x, y, z, 0)

)

+
1
sγ

L

[
β1W 2 ∂W

∂x
+ β2

∂3W
∂x3 + β3

∂3W
∂x ∂y2 + β3

∂3W
∂x ∂z2 + ξ

∂5W
∂x5

]
= 0. (61)

The nonlinear operator N (φ), φ = φ(x, y, z, t; q), is presented as

N (φ) = L [φ] –
1
s
(
W (x, y, z, 0)

)

+
1
sγ

L

[
β1φ

2 ∂φ

∂x
+ β2

∂3φ

∂x3 + β3
∂3φ

∂x ∂y2 + β3
∂3φ

∂x ∂z2 + ξ
∂5φ

∂x5

]
. (62)

Referring to Eq. (55), we have

Rr( �Wr–1) = L [Wr–1] –
(

1 –
ϒ∗

r
n

)
1
s
{

W (x, y, z, 0)
}
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+
1
sγ

L

[
β1

r–1∑
i=0

i∑
j=0

WjWi–j
∂Wr–i–1

∂x

+ β2
∂3Wr–1

∂x3 + β3
∂3Wr–1

∂x ∂y2 + β3
∂3Wr–1

∂x ∂z2 + ξ
∂5Wr–1

∂x5

]
, (63)

where

Wr = ϒ∗
r Wr–1 + �L –1[Rr( �Wr–1)

]
. (64)

Solving Eqs. (64) using (57) and (63) for r = 1, 2, 3, . . . , we achieve the following:

W0 = e0 +
6i

√
10

√
ξp2

√
β1(px + qy –

√
–i

√
10

√
β1

√
ξe0p2–β2p2–β3q2√
β3

z + φ)2
,

W1 = –
12i

√
10

√
β1

√
ξe2

0�p3tγ

	(γ + 1)(px + qy –
√

–β3q2+p2(–β2–i
√

10
√

β1
√

ξe0)√
β3

z + φ)3
,

W2 = (n + �)W1 +
36i

√
10β3/2

1
√

ξe4
0�

2p4t2γ

	(2γ + 1)(px + qy –
√

–β3q2+p2(–β2–i
√

10
√

β1
√

ξe0)√
β3

z + φ)4
,

W3 = (n + �)W2 +
36β

3
2

1
√

ξe4
0�

2p4

(px + qy –
√

–β3q2+p2(–β2–i
√

10
√

β1
√

ξe0)√
β3

z + φ)9

×
{ i

√
10(n + �)t2γ (px + qy –

√
–β3q2+p2(–β2–i

√
10

√
β1

√
ξe0)√

β3
z + φ)5

	(2γ + 1)

–
4i

√
10β1e2

0�pt3γ (px + qy –
√

–β3q2+p2(–β2–i
√

10
√

β1
√

ξe0)√
β3

z + φ)4

	(3γ + 1)

+
240

√
β1

√
ξe0]�p3	(2γ + 1)t3γ (px + qy –

√
–β3q2+p2(–β2–i

√
10

√
β1

√
ξe0)√

β3
z + φ)2

	(γ + 1)2	(3γ + 1)

–
480

√
β1

√
ξe0�p3t3γ (px + qy –

√
–β3q2+p2(–β2–i

√
10

√
β1

√
ξe0)√

β3
z + φ)2

	(3γ + 1)

+
1920i

√
10ξhp5	(2γ + 1)t3γ

	(γ + 1)2	(3γ + 1)
–

3840i
√

10ξ�p5t3γ

	(3γ + 1)

}
.

Accordingly, we can derive the remaining terms.

Example 3 Consider Eq. (44) with k = 4 given as

Dγ
t W + β1W 4 ∂W

∂x
+ β2

∂3W
∂x3 + β3

∂3W
∂x ∂y2 + β3

∂3W
∂x ∂z2 + ξ

∂5W
∂x5 = 0,

0 < γ ≤ 1, t > 0, (65)
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with initial condition

W (x, y, z, 0) =
2 3

4 4√–15 4√ξp
4√β1

tan

(
px + qy –

√
–20ξp4 – β2p2 – β3q2

√
β3

z
)

, (66)

where p and q are arbitrary constants. The exact solution for γ = 1 is given by

W (x, y, z, t) =
2 3

4 4√–15 4√ξp
4√β1

tan

(
px + qy –

√
–20ξp4 – β2p2 – β3q2

√
β3

z + 24ξp5t
)

. (67)

δ-HPTM Solution
Application of δ-HPTM to Eq. (65) with Eq. (66) gives

∞∑
r=0

prWr = L –1
[

1
s
(
W (x, y, z, 0)

)]
– p

(
1 –

1
δ

)( ∞∑
r=0

prWr – W0

)

– p

{
L –1

[
1
sγ

L

[(
β2

∂3

∂x3 + β3
∂3

∂x ∂y2 + β3
∂3

∂x ∂z2 + ξ
∂5

∂x5

)
(68)

×
∞∑

r=0

prWr + β1

∞∑
r=0

pr
r∑

i=0

i∑
j=0

j∑
k=0

k∑
l=0

WlWk–lWj–kWi–j
∂Wr–i

∂x

]]}
.

By equating the identical power terms of p in Eq. (68) we generate the sequence of δ-
HPTM:

p(0) : W0 = W (x, y, z, 0),

p(1) : W1 = –L –1
[

1
sγ

L

[
β1W 2

0
∂W0

∂x
+ β2

∂3W0

∂x3 + β3
∂3W0

∂x ∂y2 + β3
∂3W0

∂x ∂z2 + ξ
∂5W0

∂x5

]]
,

p(2) : W2 = –
(

1 –
1
δ

)
W1 – L –1

[
1
sγ

L

[
β1W0W0

∂W1

∂x
+ β1W0W1

∂W0

∂x

+ β1W1W0
∂W0

∂x
+ β2

∂3W1

∂x3 + β3
∂3W1

∂x ∂y2 + β3
∂3W1

∂x ∂z2 + ξ
∂5W1

∂x5

]]
, (69)

...

p(r) : Wr = –
(

1 –
1
δ

)
Wr–1

– L –1

[
1
sγ

L

[
β1

r–1∑
i=0

i∑
j=0

j∑
k=0

k∑
l=0

WlWk–lWj–kWi–j
∂W(r–i–1)

∂x

+ β2
∂3Wr–1

∂x3 + β3
∂3Wr–1

∂x ∂y2 + β3
∂3Wr–1

∂x ∂z2 + ξ
∂5Wr–1

∂x5

]]
, r = 2, 3, 4, . . . .

Hence, using initial condition Eq. (66), we derive:

W0 =
(2 3

4 4√–15 4√ξp)
4√β1

tan

(
px + qy –

√
–20ξp4 – β2p2 – β3q2

√
β3

z
)

,
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W1 =
24 4√–15ξ

5
4 2 3

4 p6tγ

4√β1	(γ + 1)
sec2

(
px + qy –

√
–20ξp4 – β2p2 – β3q2

√
β3

z
)

,

W2 =
(

1
δ

– 1
)

W1 +
1152 4√–1523/4ξ 9/4p11t2γ

4√β1	(2γ + 1)

×
{

tan

(
px + qy –

√
–20ξp4 – β2p2 – β3q2

√
β3

z
)

× sec2
(

px + qy –
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)}

,

W3 =
(

1
δ

– 1
)

W2 –
36 4√–152 3

4 ξ
9
4 p11t2γ

4√β1δ	(γ + 1)2	(2γ + 1)	(3γ + 1)

× sec8
(

px + qy –
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)

×
{

16	(γ + 1)2
[

2(δ – 1)	(3γ + 1) sin

(
px + qy –

√
–20ξp4 – β2p2 – β3q2

√
β3

z
)

× cos5
(

px + qy –
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)

+ 3δξp5	(2γ + 1)tγ

(
–569 cos

(
2px + 2qy –

2
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)

+ 80 cos

(
4px + 4qy –

4
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)

+ cos

(
6px + 6qy –

6
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)

+ 472
)]

+ 3840δξp5	(2γ + 1)2tγ sin2
(

px + qy –
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)

×
(

2 cos

(
2px + 2qy –

2
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)

– 5
)}

.

By following this procedure we can obtain other terms.
q-HATM Solution:
Implementing LT on Eq. (65) with Eq. (66), we obtain

L [W ] –
1
s
(
W (x, y, z, 0)

)

+
1
sγ

L

[
β1W 4 ∂W

∂x
+ β2

∂3W
∂x3 + β3

∂3W
∂x ∂y2 + β3

∂3W
∂x ∂z2 + ξ

∂5W
∂x5

]
= 0. (70)

The nonlinear operator N (φ), φ = φ(x, y, z, t; q), is given as

N (φ) = L [φ] –
1
s
(
W (x, y, z, 0)

)

+
1
sγ

L

[
β1φ

4 ∂φ

∂x
+ β2

∂3φ

∂x3 + β3
∂3φ

∂x ∂y2 + β3
∂3φ

∂x ∂z2 + ξ
∂5φ

∂x5

]
. (71)
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Referring to Eq. (55), we have

Rr( �Wr–1) = L [Wr–1] –
(

1 –
ϒ∗

r
n

)
1
s
{

W (x, y, z, 0)
}

+
1
sγ

L

[
β1

r–1∑
i=0

i∑
j=0

j∑
k=0

k∑
l=0

WlWk–lWj–kWi–j
∂W(r–i–1)

∂x
(72)

+ β2
∂3Wr–1

∂x3 + β3
∂3Wr–1

∂x ∂y2 + β3
∂3Wr–1

∂x ∂z2 + ξ
∂5Wr–1

∂x5

]
,

where

Wr = ϒ∗
r Wr–1 + �L –1[Rr( �Wr–1)

]
. (73)

Solving Eqs. (73) using (66) and (72) for r = 1, 2, 3, . . . , we get:

W0 =
(2 3

4 4√–15 4√ξp)
4√β1

tan

(
px + qy –

√
–20ξp4 – β2p2 – β3q2

√
β3

z
)

,

W1 = –
24 4√–1523/4ξ

5
4 �p6tγ sec2(px + qy – z

√
–20ξp4–β2p2–β3q2√

β3
)

4√β1	(γ + 1)
,

W2 = (n + �)W1 +
1152 4√–152 3

4 ξ
9
4 �2p11t2γ

4√β1	(2γ + 1)

×
{

tan

(
px + qy –

√
–20ξp4 – β2p2 – β3q2

√
β3

z
)

× sec2
(

px + qy –
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)}

,

W3 = (n + �)W2 +
36 4√–152 3

4 ξ
9
4 �2p11t2γ

4√β1	(γ + 1)2	(2γ + 1)	(3γ + 1)

× sec8
(

px + qy –
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)

×
{

16	(γ + 1)2
[

2	(3γ + 1)(n + �) sin

(
px + qy –

√
–20ξp4 – β2p2 – β3q2

√
β3

z
)

× cos5
(

px + qy –
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)

+ 3ξ�p5	(2γ + 1)tγ

(
–569 cos

(
2px + 2qy –

2
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)

+ 80 cos

(
4px + 4qy –

4
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)

+ cos

(
6px + 6qy –

6
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)

+ 472
)]

+ 3840ξ�p5	(2γ + 1)2tγ sin2
(

px + qy –
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)
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Figure 1 The plots of the real part of δ-HPTM, q-HATM, and exact solution for Example 1

×
(

2 cos

(
2px + 2qy –

2
√

–20ξp4 – β2p2 – β3q2
√

β3
z
)

– 5
)}

.

Respectively, we can derive the remaining terms.

5 Numerical comparison
In this section, the δ-HPTM and q-HATM formulations are tested upon the generalized
perturbed (3 + 1)-dimensional Zakharov–Kuznetsov (gpZK) equation with Caputo frac-
tional derivative. The δ-HPTM solution is presented as

W(3)(x, y, z, t; δ) =
3∑

r=0

Wrδ
r , (74)

and the q-HATM solution is presented as

W(3)(x, t; n;�) = W0 +
3∑

r=1

Wr

(
1
n

)r

. (75)

We observe that setting δ = 1
n in Eq. (74) yields

W(3)

(
x, y, z, t;

1
n

)
=

3∑
r=0

Wr

(
1
n

)r

, (76)

which is the solution of q-HATM. Thus we can conclude that this present modification (δ-
HPTM) is more reliable and general. In Figs. 1–6, we present the response of the obtained
solutions by the proposed methods with regard to the real and imaginary parts in terms
of 2D and 3D plots. The 2D and 3D plots show the graphical comparison of the four-
term approximation solutions obtain by δ-HPTM and q-HATM and their exact solutions.
The 2D plots also present the effect and behavior of the distinct fractional orders on the
solution profile. In addition, Figs. 1–4 exhibit different shapes of the exact and approximate
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Figure 2 The plots of the imaginary part of δ-HPTM, q-HATM, and exact solution for Example 1

Figure 3 The plots of the real part of δ-HPTM, q-HATM, and exact solution for Example 2

soliton-like solutions, whereas Figs. 5, 6 represent the periodic wave solutions of the gpZK
equation. The dynamics of the solution profile can obviously be noted and justify why
gpZK should be examined to understand the effects in real-life applications.

The selection of the auxiliary parameters δ in δ-HPTM and � in q-HATM are very cru-
cial to guarantee fast convergence of the series solutions. For this reason, in Figs. 7–9, we
have provided the so-called δ-curves and �-curves of the two proposed methods, which
serve as a guide in our optimal selection of values in the present analysis. The horizon-
tal line test is employed to attain the intervals containing optimal values. The compar-
ative study for the case γ = 1 of the real and imaginary parts of the results obtained by
δ-HPTM, q-HATM, and the exact solution as the benchmark are considered in Tables 1–
6. From these tables and plots we can observe that the solutions obtained by the proposed
methods are very accurate and in agreement with their respective exact solutions.
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Figure 4 The plots of the imaginary part of δ-HPTM, q-HATM, and exact solution for Example 2

Figure 5 The plots of the real parts of δ-HPTM, q-HATM, and exact solution for Example 3

Remark 2 The parameter values used for Figs. 1–9 are as follows:
• Figs. 1 and 2: β1 = 1,β2 = 2,β3 = 0.1, y = z = 2, ξ = 0.1, e0 = 3, p = q = 0.5, φ = 1, n = 1,

δ = 1, � = –1, and t = 0.1.
• Figs. 3 and 4: β1 = 1,β2 = 2,β3 = 0.1, y = z = 2, ξ = 0.1, e0 = 1, p = q = 0.8,φ = 1, n = 1,

δ = 1,� = –1, and t = 0.1.
• Figs. 5 and 6: β1 = 1,β2 = 2,β3 = 10, y = z = 2, ξ = 1, e0 = 3, p = q = 0.3, n = 1, δ = 1,
� = –1, and t = 0.5.

• Fig. 7: β1 = 1,β2 = 2,β3 = 0.1, ξ = 0.1, e0 = 3, p = 0.5, q = 0.5,φ = 1, z = y = 2, n = 1, x = 1,
and t = 0.01.

• Fig. 8: β1 = 1,β2 = 2,β3 = 0.1, ξ = 0.1, e0 = 1, p = 0.8, q = 0.8,φ = 1, z = y = 2, n = 1, x = 1,
and t = 0.01.
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Figure 6 The plots of the imaginary parts of δ-HPTM, q-HATM, and exact solution for Example 3

Figure 7 The curves plots of the real and imaginary parts of δ-HPTM and q-HATM solutions for Example 1

• Fig. 9: β1 = 1,β2 = 2,β3 = 10, ξ = 1, e0 = 3, p = 0.3, q = 0.3, z = y = 2, n = 1, x = 1, and
t = 0.5.
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Figure 8 The curves plots of the real and imaginary parts of δ-HPTM and q-HATM solutions for Example 2

Figure 9 The curves plots of the real and imaginary parts of δ-HPTM and q-HATM solutions for Example 3
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Table 1 The comparative study of Re [W(3)] solutions of δ-HPTM, q-HATM, and exact solution for
Example 1 at β1 = 1,β2 = 2,β3 = 0.1, y = 2, z = 2,ξ = 0.1, e0 = 3,p = 0.5,q = 0.5,φ = 1, and t = 0.01

x Exact δ-HPTM (δ = 1) q-HPTM (n = 1,� = 1)

Approx Absolute error Approx Absolute error

–15 3.0037055813 3.0037055813 2.007727× 10–12 3.0037055813 2.007727× 10–12

–10 3.00796331114 3.0079633111 1.639577× 10–12 3.0079633111 1.639577× 10–12

–5 2.9790685680 2.9790685680 5.847900× 10–11 2.9790685680 5.847900× 10–11

0 3.0010839974 3.0010839974 4.721068× 10–11 3.0010839974 4.721068× 10–11

5 3.0062055680 3.0062055680 6.424195× 10–12 3.0062055680 6.424195× 10–12

10 3.0014721223 3.0014721223 5.728751× 10–14 3.0014721223 5.728751× 10–14

15 3.0001939705 3.0001939705 1.092459× 10–13 3.0001939705 1.092459× 10–13

Table 2 The comparative study of Im [W(3)] solutions of δ-HPTM, q-HATM, and exact solution for
Example 1 at β1 = 1,β2 = 2,β3 = 0.1, y = 2, z = 2,ξ = 0.1, e0 = 3,p = 0.5,q = 0.5,φ = 1, and t = 0.01

x Exact δ-HPTM (δ = 1) q-HPTM (n = 1,� = 1)

Approx Absolute error Approx Absolute error

–15 0.0014301059 0.0014301059 1.789911× 10–12 0.0014301059 1.789911× 10–12

–10 –0.0084303978 –0.0084303979 2.285488× 10–11 –0.0084303979 2.285488× 10–11

–5 –0.0100504513 –0.0100504513 6.996747× 10–11 –0.0100504513 6.996747× 10–11

0 0.0168457860 0.0168457860 6.948674× 10–12 0.0168457860 6.948674× 10–12

5 0.0002672659 0.0002672659 4.853362× 10–13 0.0002672659 4.853362× 10–13

10 –0.0015748494 –0.0015748494 7.746273× 10–13 –0.0015748494 7.746273× 10–13

15 –0.0008303837 –0.0008303837 5.348478× 10–14 –0.0008303837 5.348478× 10–14

Table 3 The comparative study of Re [W(3)] solutions of δ-HPTM, q-HATM, and exact solution for
Example 2 at β1 = 1,β2 = 2,β3 = 0.1, y = 2, z = 2,ξ = 0.1, e0 = 1,p = 0.8,q = 0.8,φ = 1, and t = 0.01

x Exact δ-HPTM (δ = 1) q-HPTM (n = 1,� = 1)

Approx Absolute error Approx Absolute error

–15 0.9801926018 0.9801926018 5.551115× 10–15 0.9801926018 5.551115× 10–15

–10 0.9642322805 0.9642322805 6.294965× 10–14 0.9642322805 6.294965× 10–14

–5 0.9591394126 0.9591394126 1.930678× 10–13 0.9591394126 1.930678× 10–13

0 1.0156139368 1.0156139368 2.708944× 10–13 1.0156139368 2.708944× 10–13

5 1.0435482789 1.0435482789 4.729550× 10–14 1.0435482789 4.729550× 10–14

10 1.0279075447 1.0279075447 2.753353× 10–14 1.0279075447 2.753353× 10–14

15 1.0150065850 1.0150065850 2.220446× 10–16 1.0150065850 2.220446× 10–16

Table 4 The comparative study of Im [W(3)] solutions of δ-HPTM, q-HATM, and exact solution for
Example 2 at β1 = 1,β2 = 2,β3 = 0.1, y = 2, z = 2,ξ = 0.1, e0 = 1,p = 0.8,q = 0.8,φ = 1, and t = 0.01

x Exact δ-HPTM (δ = 1) q-HPTM (n = 1,� = 1)

Approx Absolute error Approx Absolute error

–15 0.0079063274 0.0079063274 1.225582× 10–14 0.0079063274 1.225582× 10–14

–10 –0.0020455489 –0.0020455489 1.109139× 10–14 –0.0020455489 1.109139× 10–14

–5 –0.0410293761 –0.0410293761 1.890016× 10–13 –0.0410293761 1.890016× 10–13

0 –0.0649954753 –0.0649954753 3.137629× 10–13 –0.0649954753 3.137629× 10–13

5 –0.0193551372 –0.0193551372 1.423792× 10–13 –0.0193551372 1.423792× 10–13

10 0.0046715148 0.0046715148 1.504092× 10–14 0.0046715148 1.504092× 10–14

15 0.0084703527 0.0084703527 7.089815× 10–15 0.0084703527 7.089815× 10–15

6 Conclusion
In this paper, we proposed a new modification of the homotopy perturbation method
(HPM), called the δ-homotopy perturbation transform method (δ-HPTM), which consists
of HPM, the Laplace transform method, and a control parameter δ for solving integer- and
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Table 5 The comparative study of Re [W(3)] solutions of δ-HPTM, q-HATM, and exact solution for
Example 3 at β1 = 1,β2 = 2,β3 = 10, y = 2, z = 2,ξ = 1, e0 = 3,p = 0.3,q = 0.3,φ = 1, and t = 0.01

x Exact δ-HPTM (δ = 1) q-HPTM (n = 1,� = 1)

Approx Absolute error Approx Absolute error

–15 0.2924916343 0.2924916343 2.881029× 10–14 0.2924916343 2.881029× 10–14

–10 0.9093043357 0.9093043357 6.816769× 10–14 0.9093043357 6.816769× 10–14

–5 0.3436158983 0.3436158983 1.532108× 10–14 0.3436158983 1.532108× 10–14

0 0.7928167252 0.7928167252 3.141931× 10–14 0.7928167252 3.141931× 10–14

5 0.4400466777 0.4400466777 1.393330× 10–13 0.4400466777 1.393330× 10–13

10 0.6876241187 0.6876241187 1.110223× 10–14 0.6876241187 1.110223× 10–14

15 0.5904802556 0.5904802556 3.366196× 10–13 0.5904802556 3.366196× 10–13

Table 6 The comparative study of Im [W(3)] solutions of δ-HPTM, q-HATM, and exact solution for
Example 3 at β1 = 1,β2 = 2,β3 = 10, y = 2, z = 2,ξ = 1, e0 = 3,p = 0.3,q = 0.3, and t = 0.01

x Exact δ-HPTM (δ = 1) q-HPTM (n = 1,� = 1)

Approx Absolute error Approx Absolute error

–15 –0.9227631870 –0.9227631870 7.371881× 10–14 –0.9227631870 7.371881× 10–14

–10 –0.2891329576 –0.2891329576 3.064215× 10–14 –0.2891329576 3.064215× 10–14

–5 –1.0474742139 –1.0474742140 1.303402× 10–13 –1.0474742140 1.303402× 10–13

0 –0.2754234881 –0.2754234881 3.419487× 10–14 –0.2754234881 3.419487× 10–14

5 –1.1689377811 –1.1689377811 1.636469× 10–13 –1.1689377811 1.636469× 10–13

10 –0.2859219243 –0.2859219243 2.742251× 10–14 –0.2859219243 2.742251× 10–14

15 –1.2662691579 –1.2662691579 5.351275× 10–14 –1.2662691579 5.351275× 10–14

noninteger-order nonlinear problems. We effectively used the proposed method and q-
HATM to obtain analytical approximate solutions of the generalized fractional perturbed
(3 + 1)-dimensional Zakharov–Kuznetsov equation. This equation characterizes nonlin-
ear dust-ion-acoustic waves in the magnetized two-ion-temperature dusty plasmas. In
comparison to the control parameters n and h in q-HATM, the control parameter δ in
δ-HPTM also helps to adjust and control the convergence region of the series solutions
and can overcome some limitations of HPM, HPTM, and He–Laplace method. The two
methods present series solutions in the form of recurrence relation with high exactness
and minimal computations. In reality, we consider HPM, HAM, HPTM, PHPM, and He–
Laplace method as particular cases of δ-HPTM and more general when compared with
q-HATM (see Eq. (76)). Finally, δ-HPTM can be considered as a good refinement of the
existing numerical techniques and can be employed to study strongly nonlinear mathe-
matical models describing natural phenomena.
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