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Abstract 

Background Morphological analysis of intracranial pressure (ICP) pulse waveforms provides indirect information 
on cerebrospinal compliance, which might be reduced by space-occupying lesions but also by intracranial 
hypertension and aging. This study investigates the impact of age and mean ICP on the shape and amplitude of ICP 
pulse waveform in traumatic brain injury (TBI). Additionally, it explores the association between morphological 
parameters and mortality after TBI.

Methods ICP recordings from 183 TBI patients (median age: 50 (30, 61) years) from the CENTER-TBI database were 
retrospectively analyzed. ICP morphology was assessed using the artificial intelligence-based pulse shape index (PSI) 
and peak-to-peak amplitude of ICP pulse waveform (AmpICP). The impact of mean ICP, age, and their interaction 
on PSI and AmpICP were estimated using factorial ANOVA. To account for influence of disturbance in the intracranial 
volume on AmpICP and PSI, a multiple regression analysis was performed using age, mean ICP, and the Rotterdam 
CT score as explanatory variables. The associations of AmpICP and PSI with six-month mortality were assessed using 
the area under the ROC curve (AUC).

Results Age had a predominant influence on PSI (p < 0.01), accounting for 33.1% of its variance, while mean ICP 
explained 6.6% (p < 0.01). Conversely, mean ICP primarily affected AmpICP (p < 0.01), explaining 22.8% of its variance, 
with age contributing 8.0% (p < 0.01). A combined effect of age and mean ICP on AmpICP (p = 0.01) explained 
11.7% of its variance but did not influence PSI. After accounting for Rotterdam CT score, the results remained 
consistent, indicating that advanced age has the strongest impact on PSI (β = 0.342, p < 0.01) while elevated mean 
ICP has dominant influence on AmpICP (β = 0.522, p < 0.01). Both AmpICP and PSI were moderately associated 
with mortality (AUC: 0.76 and 0.71, respectively).

Conclusions AmpICP and PSI capture distinct aspects of cerebrospinal compliance. PSI appears to reflect age-
related stiffening of the cerebrovascular system, while AmpICP, influenced by mean ICP, indicates acute volume 
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Background
Cerebrospinal compliance refers to the ability of the cer-
ebrospinal system to accommodate rises in volume with-
out significant increases in intracranial pressure (ICP) 
[1]. When the pressure–volume reserve approaches a 
critical level, defined as switching from the linear to 
the  exponential shape of cerebrospinal pressure–vol-
ume curve [2], compliance drops sharply, and even small 
increases in volume can result in large increases in ICP. 
Age is an important factor that can modify this relation-
ship [3–7]. With aging, the brain undergoes structural 
changes: brain tissue becomes more rigid [8], cerebrospi-
nal fluid (CSF) absorption decreases [9], and cerebral ves-
sels stiffen, leading to more pronounced pulsatile arterial 
pressure [10, 11]. These changes can reduce cerebrospinal 
compliance. Therefore, monitoring of cerebrospinal com-
pliance in patients after traumatic brain injury (TBI) can 
be crucial, particularly in older individuals whose system 
may have already become less compliant and more sus-
ceptible to uncontrolled increases in ICP, elevating the 
risk of poor outcome [12, 13].

Historically, the intracranial volume–pressure relation-
ship was investigated by introducing a known volume 
perturbation to the system while recording ICP [1, 14]. 
Although informative, this method is impractical for 
routine clinical use and poses safety concerns. To obtain 
a more clinically useful method of compliance assess-
ment, several techniques based on analysis of the pres-
sure response to naturally occurring cardiac-induced 
volume changes, reflected in the ICP pulse waveform, 
have been proposed. An inherent drawback of this meth-
odology  is the fact that  cerebrospinal pulsatile volume 
load remains unknown, therefore compliance cannot be 
scaled in physical units (ml/mm Hg). Among the pro-
posed indices, the ICP pulse amplitude (AmpICP) is 
the most widely used metric [15–17], with large ampli-
tudes being associated with low compliance or increased 
cerebral arterial blood stroke volume [4, 5, 18, 19]. The 
relationship between AmpICP and mean ICP has been 
extensively studied, demonstrating its nonlinear nature 
[15, 20]. However, only a few studies have explored age-
related changes in AmpICP [4, 5]. These studies suggest 
that AmpICP increases with age, and that this relation-
ship is nonlinear.

Previous studies also suggest that the shape of the ICP 
pulse waveform may provide information on cerebrospi-
nal compliance [21–25]. Decreasing compliance is asso-
ciated with a progressive change in the pulse shape from 
a triphasic, saw-tooth pattern to a rounded or triangular 
wave with only one defined peak [26]. Recently, we intro-
duced an artificial intelligence-based measure called the 
pulse shape index (PSI) [27–30] which is independent of 
AmpICP and pulse duration and allows for continuous 
tracking of changes in ICP pulse morphology. Our stud-
ies showed that PSI is significantly higher in TBI patients 
with poor outcomes [30, 31], correlates with volumetric 
imbalance represented by the presence of midline shift 
and mass lesions [28] and is useful for early prediction 
of life-threatening ICP crises [32, 33]. However, the rela-
tionship between PSI and age in TBI has not yet been 
determined.

Despite studies suggesting a link between the features 
of the ICP pulse waveform and cerebrospinal compliance 
[5, 22, 23], it remains unclear whether the amplitude and 
shape of the ICP pulse waveform convey corresponding 
information and could be used interchangeably, or if they 
complement each other and should be studied jointly. 
Therefore, in this study, we aim to conduct a comprehen-
sive analysis of how age and mean ICP as well as their 
combination affect ICP pulse waveform-derived metrics, 
specifically AmpICP and PSI, in a large cohort of TBI 
patients. Additionally, we aim to examine the association 
of these morphological metrics with six-month mortality 
in TBI patients.

Materials and methods
Data acquisition
This study was conducted as a retrospective analysis of 
data collected in the high-resolution sub-study of the 
CENTER-TBI project (https:// www. center- tbi. eu/; Clini-
calTrials.gov identifier NCT02210221), with approval 
from the CENTER-TBI committee (Approval No. 359). 
The data were collected between 2015 and 2018 from 21 
participating European centers involved in the CENTER-
TBI project. All patients enrolled in the CENTER-TBI 
project were consistently treated according to the Brain 
Trauma Foundation guidelines, including recommenda-
tions for invasive ICP monitoring.

compensatory changes. Combined, they provide a more comprehensive assessment of cerebrospinal volume–
pressure compensation. Both morphological metrics are associated with mortality after TBI. As cerebrospinal 
compliance declines with age, older TBI patients become more susceptible to uncontrolled rises in ICP, which can 
worsen their outcome.

Keywords Cerebrospinal compliance, Traumatic brain injury, Intracranial pressure, Pulse waveform morphology, 
Aging
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ICP was measured using intraparenchymal strain gauge 
probes (Codman ICP MicroSensor, Codman & Shurtleff 
Inc., Raynham, MA, USA) or parenchymal fiber optic 
pressure sensors (Camino ICP Monitor, Integra Life Sci-
ences, Plainsboro, NJ, USA). The signal was recorded 
with sampling frequency of 100  Hz or higher using 
ICM + software (Cambridge Enterprise Ltd., Cambridge, 
UK) and/or Moberg CNS Monitor (Moberg Research 
Inc., Ambler, PA, USA). Data for the CENTER-TBI 
study were collected through Quesgen e-CRF (Quesgen 
Systems Inc., USA), hosted on the INCF platform and 
extracted via the INCF Neurobot tool (INCF, Sweden). 
Version CENTER Core 3.0 of the CENTER-TBI dataset 
was used in this study.

Ethical approval/Informed consent
The CENTER-TBI study (European Commission grant 
602150) was conducted in accordance with all relevant 
laws of the European Union if directly applicable or of 
direct effect and all relevant laws of the country where 
the recruiting sites were located, including but not lim-
ited to, the relevant privacy and data protection laws 
and regulations (the “Privacy Law”), the relevant laws 
and regulations on the use of human materials, and 
all relevant guidance relating to clinical studies from 
time to time in force including, but not limited to, the 
ICH Harmonised Tripartite Guideline for Good Clini-
cal Practice (CPMP/ICH/135/95) (“ICH GCP”) and 
the World Medical Association Declaration of Hel-
sinki entitled “Ethical Principles for Medical Research 

Involving Human Subjects.” Informed consent by the 
patients and/or the legal representative/next of kin was 
obtained, accordingly to the local legislations, for all 
patients recruited in the Core Dataset of CENTER-TBI 
and documented in the e-CRF. Ethical approval was 
obtained for each recruiting site from the appropriate 
local ethics committee, and the full list of approvals is 
available on the website: https:// www. center- tbi. eu/ 
proje ct/ ethic al- appro val.

Study population
The original dataset included 282 patients. The flowchart 
with selection criteria is presented in Fig.  1. Patients 
with ICP measured through external ventricular drains 
(EVDs) were excluded as the ICP pulse waveform 
could not be evaluated during CSF drainage periods. 
Additionally, patients who underwent decompressive 
craniectomy (DC) before ICP monitoring began were 
excluded due to alterations in the intracranial pressure–
volume relationship caused by the removal of a portion 
of the skull bone. If DC took place during the monitoring 
period, the ICP signal was analyzed up to the moment of 
surgery. To avoid bias, patients in terminal condition with 
mean ICP > 40  mm Hg, reflecting extreme intracranial 
hypertension, were excluded as their inclusion could have 
influenced the statistical analysis, potentially skewing the 
results and limiting their applicability to the broader TBI 
population. A detailed summary of the study population 
is presented in the Results section.

Fig. 1 Selection criteria for the final patient dataset included in the study. EVD—external ventricular drain, DC—decompressive craniectomy, ICP—
intracranial pressure, n—number of patients

https://www.center-tbi.eu/project/ethical-approval
https://www.center-tbi.eu/project/ethical-approval
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Computed tomography and outcome assessment
For each patient, the computed tomography (CT) scan 
performed directly prior to the start of monitoring was 
used for Rotterdam score assessment [34]. Follow-up 
status was assessed using the Glasgow Outcome Scale 
Extended (GOSE) score six months post-TBI. The 
patients were categorized based on their survival status 
into two groups: survivors or deceased, with the latter 
group identified based on in-hospital mortality records 
and GOSE score of 1 after six months.

Morphological assessment of intracranial pressure pulse 
waveform
Every patient was characterized by the  values of moni-
tored parameters: mean ICP, AmpICP, and PSI averaged 
from the first seven days of recording.

AmpICP was calculated from the artifact-free parts 
of ICP recordings as the difference between the highest 
(maximum peak) and the lowest value (minimum valley) 
of the ICP pulse waveform within non-overlapping 2-s 
windows.

PSI was calculated based on morphological 
classification of ICP pulses, conducted using a deep 
neural network model developed in our previous work 
[29]. This model identifies four types of pulse waveforms 
(see Fig.  2), class 1: normal waveform with dominant 
peak P1; class 2: potentially pathological waveform with 
increased prominence of peak P2, but P1 remaining 
higher than P3; class 3: likely pathological waveform 
with increased prominence of both P2 and P3; class 4: 
pathological rounded or triangular waveform with only 
one visible peak. Additionally, distorted waveforms or 
errors in pulse detection are marked by the model as 
artifacts to exclude invalid parts of the recording from 
further analysis. Prior to shape assessment, all pulses 
are normalized to a range of 0 to 1 to ensure they are 
independent of pulse amplitude and resampled to 
a uniform duration of 180 samples to eliminate the 
influence of heart rate variations.

Next, the classification results produced by the model 
(after removal of artefactual pulses) are used to calculate 
PSI in moving 5-min windows (window shift: 10  s) as 
the weighted sum of class numbers i and the fraction of 
pulses assigned to given class pi according to the follow-
ing formula:

As a result, PSI represents the average class num-
ber over a given period, enabling the capture of gradual 
changes in pulse shape on a continuous scale from 1 

(1)PSI =

4∑

i=1

i · pi

(indicating exclusively normal waveforms of class 1) to 4 
(indicating exclusively pathologically altered waveforms 
of class 4); see Fig. 2.

Statistical analysis
The normality of data distributions was tested using 
the Kolmogorov–Smirnov test. Factorial ANOVA was 
conducted to compare main effects of age (categorized 
into four levels: ≤ 30  years, (30–50] years, (50–61] 
years, and > 61  years) and mean ICP (categorized into 
four levels: ≤ 9  mm Hg, (9–12] mm Hg, (12–15] mm 
Hg, and > 15 mm Hg) as well as their interaction effects 
on either PSI or AmpICP. The threshold levels for 
categorization were selected based on the upwards-
rounded values of the lower, median, and upper quartiles 
of the variables age and mean ICP, respectively, to 
ensure comparable number of patients in each group. 
The F-statistic was calculated for each main effect and 
for the interaction between the factors. The F-statistic 
is a ratio that compares the variance explained by the 
factor(s) or their interaction (systematic variance) to the 
variance due to random error (unsystematic variance). 
ANOVA results were presented as follows: F(df effect, df 
error) = F-statistic, p-value, where df denotes degrees of 
freedom. The effect size was assessed by partial η2. Post-
hoc comparisons were performed using the Bonferroni 
test. Multiple regression analysis was performed to 
account for the influence of CT-based TBI classification 
on PSI or AmpICP with Rotterdam CT score, mean ICP, 
and age as explanatory (dummy) variables. The difference 
in the means of the analyzed parameters between 
patients who died and those who survived six months 
after TBI was assessed using the independent samples 
t-test. Logistic regression was applied to investigate 
the associations of AmpICP and PSI with six-month 
mortality. The model’s performance was evaluated using 
receiver operating characteristic (ROC) curves, with the 
area under the curve (AUC) serving as the evaluation 
metric. Data are presented as mean ± standard deviation 
(SD) unless indicated otherwise. The level of statistical 
significance was set at α = 0.05. Statistical analysis was 
performed using STATISTICA 13 (Tibco, Palo Alto, 
USA).

Results
Patient characteristics
Out of the full dataset of 282 patients, 183 were included 
in the analysis. 77% of the patients were men. The 
median age of the patients was 50  years, ranging from 
16 to 85 years. Median Glasgow Coma Scale (GCS) sum 
score at admission was 7 and 66% of patients had GCS 
scores between 3 and 8, indicating severe head injury. 
The median GCS motor score was 4, reflecting moderate 
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motor impairment, although the interquartile range 
(1–5) indicates variability in motor responses across 
patients. The median Rotterdam CT score was 3, and in 
39% of patients, the Rotterdam CT score was higher than 
3, suggesting moderate to severe intracranial injuries. CT 
data were unavailable for 34 patients. The ICU mortality 
rate was 9% (16 patients). Outcomes at six months were 
not available for 18 patients (10%). Among the 165 
patients with known outcomes, 135 patients (82%) were 
classified as survivors, while 30 patients (18%) had died. 
Detailed clinical characteristics of the patients along with 

averaged values of parameters derived from multimodal 
monitoring are presented in Table 1.

PSI vs mean ICP and age
Age and mean ICP effects on PSI were statistically 
significant (age: F(3, 167) = 25.107, p < 0.01, see Fig.  3a; 
mean ICP: F(3, 167) = 3.948, p < 0.01, see Fig.  3c). The 
main effects of age and mean ICP yielded effect sizes 
of 0.311 and 0.066, respectively, indicating that age 
explained 31.1% of the variance in PSI, while mean ICP 
explained only 6.6% of the variance. The interaction effect 

Fig. 2 Morphological analysis of intracranial pressure (ICP). a Schematic representation of the relationship between intracranial volume, ICP, 
and changes in ICP pulse amplitude and shape. b Interpretation of the ICP pulse shape index (PSI)
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was not significant (F(9, 167) = 0.800, p = 0.6), indicating 
that there was no combined effect for age and mean ICP 
on PSI. PSI gradually increased with age independent 
of mean ICP level (Fig.  3e). After accounting for the 
influence of disturbance in the intracranial volume 
(assessed by Rotterdam CT score), the results remained 
consistent, indicating that advanced age has the strongest 
influence on PSI (β = 0.342, p < 0.01)—see Additional 
file 1.

AmpICP vs mean ICP and age
The effect of mean ICP on AmpICP was statistically sig-
nificant (F(3, 167) = 16.40, p < 0.01, see Fig. 3d). Age also 
had a significant impact on AmpICP (F(3, 167) = 4.84, 
p < 0.01, see Fig. 3b). The main effect of mean ICP had an 
effect size of 0.228, explaining 22.8% of the variance in 
AmpICP, while the main effect of age had an effect size 
of 0.080, accounting for 8.0% of the variance. The inter-
action between mean ICP and age was significant (F(9, 
167) = 2.46, p = 0.01), with an effect size of 0.117, indicat-
ing that together they explained 11.7% of the variance in 
AmpICP (Fig. 3f ).

Post-hoc analysis revealed that at mean ICP level 
above 15  mm Hg, AmpICP was significantly higher 
than at lower levels of mean ICP (Fig. 3d) and gradually 
increased with age (Fig.  3f ). This gradual increase in 
AmpICP with age was not significant at lower levels of 
mean ICP. Additional correlation analysis performed for 
a subset of 44 patients with mean ICP higher than 15 mm 
Hg showed moderately strong association between 

AmpICP and age (r = 0.44, p < 0.01)— see Additional 
file  2. After accounting for the influence of disturbance 
in the intracranial volume (assessed by Rotterdam CT 
score), the results confirmed that elevated mean ICP has 
the strongest impact on AmpICP (β = 0.522, p < 0.01)—
see Additional file 1.

The number of patients in each subgroup, according 
to the defined thresholds, along with mean values and 
standard deviations of age and ICP are provided in the 
Supplementary Tables 3.1–3.3 included in the Additional 
file 3.

Associations of morphological indices with outcome
Outcome information was not available for 18 patients. 
Among the remaining 165 patients, 30 died six months 
after TBI. Patients who died had higher mean ICP than 
those who survived, but this difference was on the bor-
der of statistical significance (14.8 ± 7.8 vs 11.8 ± 4.9 [mm 
Hg], p = 0.05). Both AmpICP and PSI were also higher 
in patients who died (AmpICP: 11.7 ± 5.7 vs 7.6 ± 2.8 
[mm Hg], p < 0.01; PSI: 2.9 ± 0.6 vs 2.4 ± 0.7 [au], p < 0.01). 
Patients who died were older that those who survived 
(63 ± 15 vs 45 ± 18 [years], p < 0.01).

Both AmpICP and PSI independently showed 
significant associations with mortality six months after 
TBI: AmpICP had a good association (χ2(1) = 24.45, 
p < 0.01, AUC = 0.76), as did PSI (χ2(1) = 12.60, p < 0.01, 
AUC = 0.71). Age and mean ICP were also linked 
to mortality, with age showing a good association 
(χ2(1) = 25.88, p < 0.01, AUC = 0.77) and mean ICP 

Table 1 Summary characteristics of the patient cohort (total n = 183)

Data are presented as number of occurrences (n) and either as median [Q1, Q3] or as mean ± SD. Q1—first quartile, Q3—third quartile, SD—standard deviation, NA—
data not available, GCS—Glasgow Coma Scale, ICU—intensive care unit, GOSE—Glasgow Outcome Scale Extended, ICP—intracranial pressure, AmpICP—peak-to-
peak amplitude of ICP pulse waveform, PSI—pulse shape index, au—arbitrary units

Clinical characteristics
Parameter Value

Age [years] median [Q1, Q3] 50 [30, 61]

Sex n Male: 140, female: 43

GCS score median [Q1, Q3] 7 [4,10], NA: 10

GCS motor score median [Q1, Q3] 4 [1,5], NA: 4

Pupil reactivity n Bilaterally nonreactive: 27, unilaterally 
nonreactive: 17, bilaterally reactive: 128, 
NA: 11

Rotterdam CT score median [Q1, Q3] 3  [3,4], NA: 34

ICU mortality n Survived: 167, died: 16

Mortality after 6 months (GOSE score 1: deceased, 2–8: survived) n Survived:135, died: 30, NA: 18

Parameters derived from multimodal monitoring (presented as mean ± SD)

 Parameter Group-averaged value

 Mean ICP [mm Hg] 12.2 ± 5.5

 AmpICP [mm Hg] 8.0 ± 4.0

 PSI [au] 2.5 ± 0.7
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Fig. 3 The impact of age and mean ICP on morphological metrics. The figure shows main effects of age (upper panel), mean ICP (middle panel), 
and the interaction effect of age and mean ICP (bottom panel) on PSI (left column) and AmpICP (right column). In subplot e, a consistent increasing 
trend between age and PSI is visible regardless of mean ICP level. In subplot f, a gradual trend of rising AmpICP with age is visible at mean ICP level 
above 15 mm Hg. Only statistically significant differences between age groups at a given level of ICP and between ICP levels within the same age 
group were annotated for clarity of subplot f. Since the interaction effect of mean ICP and age on PSI was insignificant (sublot e), post-hoc analyses 
were not performed in those cases. The central points in the graphs represent the means, and the vertical bars denote standard error. * denotes 
 ppost-hoc < 0.01. ICP—intracranial pressure, AmpICP—peak-to-peak amplitude of ICP pulse waveform, PSI—pulse shape index, au—arbitrary units



Page 8 of 12Kasprowicz et al. Critical Care           (2025) 29:78 

showing a moderate association (χ2(1) = 6.41, p = 0.01; 
AUC = 0.63). A multivariate logistic model that included 
all four parameters (AmpICP, PSI, mean ICP, and age) 
found that only AmpICP and age were significantly 
associated with mortality (χ2(2) = 39.7, p < 0.01), 
achieving an AUC of 0.83. PSI and mean ICP were found 
to be redundant in this model.

Similar associations between ICP pulse waveform mor-
phology metrics and poor outcome, defined as GOSE ≤ 4 
assessed six months post-injury, were also observed 
(Additional file 4).

Discussion
In this study we assessed cerebrospinal volume–pressure 
compensatory reserve based on morphological analysis 
of ICP pulse waveform. This method relies on evaluation 
of the pressure response to volume changes occurring 
naturally during the cardiac cycle. As ICP is commonly 
measured during neurocritical care of TBI patients, this 
approach poses no additional risks to the patient. We 
found that age primarily influenced the shape of the ICP 
pulse waveform whereas mean ICP had a lesser effect 
on shape. On the other hand, AmpICP was primar-
ily affected by mean ICP with minimal influence of age. 
However, when analyzing the combined effects of both 
age and mean ICP, the impact of age on AmpICP became 
more pronounced when ICP was elevated.

The morphology of the ICP pulse waveform is governed 
by pulsatile cerebral arterial inflow, cerebral venous out-
flow, and the mechanoelastic properties of the cerebro-
spinal space [35, 36]. With aging, significant structural 
and functional remodelling occurs within the cerebrovas-
cular system, as brain tissue loses compressibility [8] and 
CSF circulation decreases [4, 9, 37]. Additionally, cerebral 
arteries become stiffer in older individuals, resulting in 
more pronounced pulsatile pressure [11]. These changes 
may collectively alter the morphology of ICP pulses and 
lead to an increase in PSI with age. While PSI increased 
further with rising ICP, the impact of rising ICP on wave-
form morphology was weak. Patients who died had sig-
nificantly higher PSI values, and altered shapes of ICP 
pulse waveforms were observed even at low ICP levels 
(see Additional file  4). Those patients were also older 
than those who survived.

A previous study showed no effect of age on AmpICP in 
young patients up to about 35 years old but a significant 
increase in AmpICP in older patients, particularly in 
those over 60 years old [5]. We found that the effect of 
age on AmpICP became more evident when ICP was 
elevated (above 15 mm Hg). This suggests that age should 
be considered when interpreting the amplitude–pressure 
relationship. In patients who did not survive, the increase 
in AmpICP with mean ICP was steeper, indicating that 

rising ICP results in a more pronounced increase in 
amplitude compared to patients who survived (see 
Additional file 4). Additionally, AmpICP was elevated in 
patients who died, regardless of age.

Our findings suggest that AmpICP and PSI capture dif-
ferent aspects of cerebrospinal pressure–volume com-
pensation. PSI is sensitive to age-related stiffening of the 
cerebrospinal system and can reflect gradual decline in 
compliance associated with aging. AmpICP, being mostly 
dependent on mean ICP, can indicate more acute changes 
in the cerebrospinal system’s ability to compensate for 
volume changes. Together, these two metrics may offer 
a more comprehensive assessment of cerebrospinal com-
pliance. Both PSI and AmpICP show a significant associ-
ation with six-month mortality following TBI. However, 
PSI, which incorporates age-related information, became 
redundant in a multivariate logistic model that already 
adjusts for age. Nevertheless, monitoring of both mor-
phological parameters during the patients’ stay in the 
ICU can be clinically valuable, as it enables continuous, 
real-time tracking of dynamic changes in compliance. 
This approach potentially enables early identification of 
patients at risk of uncontrolled ICP elevation, allowing 
for preventive interventions to be implemented before 
substantial clinical deterioration occurs.

Earlier studies have suggested that cerebrospinal com-
pliance may be reduced in elderly individuals [4, 5], 
potentially contributing to poorer outcomes observed 
in older patients following TBI. These studies primarily 
focused on indices describing AmpICP and their rela-
tionship with age, neglecting the influence of mean ICP 
levels. Only one study, which involved a limited sam-
ple of 30 TBI patients, conducted a combined analysis 
of mean ICP and age on cerebrospinal compliance [6]. 
However, in that study compliance assessment was per-
formed using the Spiegelberg brain compliance monitor 
in which volumetric changes were induced via a periodi-
cally expanding intraventricular balloon. Although the 
Spiegelberg monitor has been used in clinical studies [38, 
39], considerable technical issues with this methodology 
have been also reported [6, 40]. In contrast, in this study 
we focused solely on the analysis of high-resolution ICP 
recordings collected during ICU management of TBI 
patients.

Limitations
The morphological classification scale is an approxi-
mation that does not encompass all possible ICP pulse 
shapes but allows for comparison of the overall shape 
observed in different patients; on the other hand, 
AmpICP is highly variable, and reference values are not 
available for TBI. We analyzed metrics averaged over the 
first seven days of monitoring for each patient. While this 
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approach helps identify general associations, it does not 
account for critical events, such as prolonged intracranial 
hypertension. Incorporating additional analysis of ICP 
rises, for example through ICP dose calculations, could 
provide a more detailed understanding of the effects of 
AmpICP and PSI on patient outcomes. Moreover, we 
did not analyze the influence of either systemic arterial 
blood pressure (ABP) pulse waveform shape or anes-
thetic drugs, which can affect the amplitude and shape 
of ICP pulse waveforms and ultimately impact compli-
ance assessment (as indicated by additional analyses of 
the effects of mean ABP and its pulse amplitude on ICP 
pulse metrics; see Additional file  5). One limitation of 
the statistical analysis is the inherent dependence of ICP 
waveform morphology on absolute ICP levels. While 
stratifying data by ICP ranges minimizes this confound-
ing effect, some residual dependence may persist. How-
ever, we did not find multicollinearity between mean 
ICP, AmpICP, and PSI in the regression analysis, which 
suggests that the relationships between variables can be 
reliably interpreted. Next, we used thresholds tailored to 
our dataset instead of literature-based thresholds for age 
and mean ICP. While applying thresholds established in 
the literature might have increased the clinical applica-
bility of our findings, this approach was not feasible due 
to the small sample sizes in specific subgroups. Tailoring 
the thresholds to our dataset was necessary to ensure a 
statistically robust analysis and draw conclusions that are 
both valid and representative of our study population. 
An additional limitation of our study is the imbalanced 
nature of the dataset, particularly in the analysis of mor-
tality (18% mortality rate). Our primary objective was 
to explore associations between morphological metrics 
and clinical outcomes. Thus, we focused on the AUC as 
the primary performance metric to provide a robust and 
interpretable assessment of overall model performance. 
The values of additional metrics, such as sensitivity and 
specificity, can be found in Additional file 6.

Other ICP pulse-related indices, such as compensatory 
reserve index (RAP) [15], high frequency centroid [24], 
and higher harmonics centroid [25], were not studied 
along AmpICP and PSI as this would overload this study 
and make it far less comprehensible. Future research 
should aim to also include indices related to cerebro-
vascular reactivity for a detailed assessment of the rela-
tionship between aging-related changes in ICP pulse 
waveform and the cerebrovascular system.

Conclusions
We found that the shape of the ICP pulse waveform is 
primarily influenced by age, whereas pulse amplitude 
depends largely on mean ICP, suggesting that AmpICP 
and PSI capture different aspects of cerebrospinal 

compliance. PSI reflects age-related stiffening of the 
cerebrovascular system, while AmpICP, driven by mean 
ICP, highlights acute changes in volume compensation. 
Both metrics are associated with six-month mortality 
after TBI. The combined monitoring of AmpICP and 
PSI offers insights into the timing and progression 
of changes in the intracranial pressure–volume 
compensatory reserve, facilitating early identification of 
patients at risk of uncontrolled ICP elevation. This may 
allow for preventive interventions before significant 
clinical deterioration occurs and emphasizes proactive 
management over reactive threshold-based treatment for 
TBI patients.
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