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Abstract

This comprehensive review explores the transformative role of nanomaterials in advancing the frontier of hydrogen
energy, specifically in the realms of storage, production, and transport. Focusing on key nanomaterials like metallic
nanoparticles, metal-organic frameworks, carbon nanotubes, and graphene, the article delves into their unique proper-
ties. It scrutinizes the application of nanomaterials in hydrogen storage, elucidating both challenges and advantages.
The review meticulously evaluates diverse strategies employed to overcome limitations in traditional storage methods
and highlights recent breakthroughs in nanomaterial-centric hydrogen storage. Additionally, the article investigates
the utilization of nanomaterials to enhance hydrogen production, emphasizing their role as efficient nanocatalysts in
boosting hydrogen fuel cell efficiency. It provides a comprehensive overview of various nanocatalysts and their potential
applications in fuel cells. The exploration extends to the realm of hydrogen transport and delivery, specifically in storage
tanks and pipelines, offering insights into the nanomaterials investigated for this purpose and recent advancements in the
field. In conclusion, the review underscores the immense potential of nanomaterials in propelling the hydrogen energy
frontier. It emphasizes the imperative for continued research aimed at optimizing the properties and performance of
existing nanomaterials while advocating for the development of novel nanomaterials with superior attributes for hydro-
gen storage, production, and transport. This article serves as a roadmap, shedding light on the pivotal role nanomaterials
can play in advancing the development of clean and sustainable hydrogen energy technologies.
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1 Introduction

Hydrogen energy has emerged as a promising and environmentally friendly alternative to traditional fossil fuels, owing
to its high energy density and clean combustion characteristics. The versatility of hydrogen production from sources
such as water, natural gas, and biomass establishes it as a sustainable energy solution (Fig. 1). However, the develop-
ment of hydrogen energy technologies faces significant challenges, particularly in the realms of efficient production,
storage, and transportation [1, 2]. To overcome these challenges, nanomaterials, characterized by dimensions on the
nanoscale (typically less than 100 nm), have become pivotal players in the field of hydrogen energy [3-8]. The unique
physical and chemical properties inherent in nanomaterials make them exceptionally well-suited for a diverse array of
applications. In this context, one of the key applications of nanomaterials in hydrogen energy is their role in hydrogen
storage. The inherent low density of hydrogen at standard temperature and pressure poses challenges for large-scale
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Fig. 1 Schematic figure for different mechanisms for hydrogen production, storage, and transportation

storage. However, nanomaterials exhibit a high surface area-to-volume ratio, enhancing their capacity for hydrogen
storage. Notable examples include metal-organic frameworks (MOFs), porous materials known for their substantial
hydrogen storage capacities due to expansive surface areas and hydrogen adsorption capabilities. Additionally, carbon
nanotubes and graphene have garnered attention for their potential in hydrogen storage [9].

Catalysis represents another crucial avenue for nanomaterials in hydrogen energy. Hydrogen fuel cells, integral to the
electrochemical conversion of hydrogen into electricity, necessitate catalysts to expedite reactions. Nanomaterials, with
their elevated surface areas and distinctive electronic properties, serve as effective catalysts. While platinum nanoparticles
have demonstrated efficacy in hydrogen fuel cells, their cost and limited availability impede large-scale applications.
Consequently, researchers explore alternative nanomaterials, such as iron, nickel, and cobalt nanoparticles, as potential
catalysts for hydrogen fuel cells [10, 12]. Beyond storage and catalysis, nanomaterials are actively investigated for their
role in hydrogen transport and delivery. Notably, nanomaterials are employed in improving the structural strength and
durability of hydrogen storage tanks and pipelines. Composite materials incorporating carbon nanotubes and graphene
exhibit promising results in enhancing hydrogen storage and transport, addressing challenges such as hydrogen embrit-
tlement [13]. Furthermore, nanomaterials contribute to the development of highly sensitive and selective hydrogen
sensors, mitigating the challenges associated with detecting the colorless and odorless nature of hydrogen gas [14, 15].
While the utilization of nanomaterials in hydrogen energy holds significant promise [16-19], overcoming challenges in
scalability, cost-effectiveness, and environmentally sustainable manufacturing processes remains imperative for realizing
their full potential [20]. Despite these challenges, the burgeoning field of nanomaterials in hydrogen energy, as depicted
in Fig. 2, offers unprecedented opportunities for innovation and impact. Researchers worldwide are actively engaged in
developing novel applications to enhance the efficiency, sustainability, and practicality of hydrogen energy technolo-
gies. Through continued research and development, nanomaterials stand poised to play a pivotal role in ushering in a
clean and sustainable hydrogen energy future.

2 Importance of the review article

2.1 Comprehensive analysis of nanomaterial applications in hydrogen energy

This review article holds paramount importance in offering a thorough and contemporary examination of the pivotal role
played by nanomaterials in advancing the domain of hydrogen energy. In an era marked by a global shift towards sustain-
able and clean energy sources, the development of hydrogen energy technologies assumes increasing significance. The

distinctive properties of nanomaterials present unparalleled opportunities to enhance the efficiency, sustainability, and
practicality of these technologies. Researchers, engineers, and policymakers engaged in the field of hydrogen energy
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Fig.2 Nanomaterials in hydrogen energy [1]

will find this review article to be an invaluable resource. It delves into the current state of research on nanomaterials for
hydrogen energy applications, providing a nuanced understanding of ongoing developments and shedding light on
prospective directions and challenges. By underscoring the potential of nanomaterials in the realm of hydrogen energy,
this review article serves as a catalyst for stimulating further research and innovation within the field.

2.2 Potential impact on clean and sustainable hydrogen energy technologies

The significance of this review article extends to its potential impact on the landscape of clean and sustainable hydrogen
energy technologies. As the global pursuit of eco-friendly energy solutions intensifies, nanomaterials emerge as critical
contributors to achieving these goals. By elucidating the multifaceted applications of nanomaterials in hydrogen energy,
this review article serves as a guiding beacon for future research initiatives and innovation. Moreover, this comprehensive
review is poised to influence the formulation of policies and funding strategies. Policymakers can draw insights from
the nuanced analysis provided herein to support and propel the advancement of nanomaterials in hydrogen energy.
The review's role as an educational resource is equally significant, offering students and educators a clear and concise
overview of key concepts and applications in the burgeoning field of hydrogen energy. This accessibility makes it an
ideal introduction for those new to the topic, fostering a broader understanding of the potential of nanomaterials in
shaping the future of clean and sustainable energy. In summation, the pivotal importance of this review article lies in its
dual capacity to inform and inspire. In an era where the pursuit of sustainable and clean energy solutions is paramount,
nanomaterials may well emerge as indispensable tools, and this review article serves as a guiding force, shaping and
steering this crucial area of research.

3 Novelty of the review article
3.1 Unique focus on the intersection of nanomaterials and hydrogen energy

The novelty of this review article is underscored by its exclusive focus on the pivotal role of nanomaterials in advancing
the domain of hydrogen energy. While substantial research exists independently on nanomaterials and hydrogen energy,
this review article stands out by providing a distinctive and comprehensive examination of their intersection. One of
its primary contributions lies in its in-depth discussion of various types of nanomaterials, including but not limited to
carbon nanotubes, metal hydrides, and nanoporous materials. Each of these materials presents unique properties poised
to enhance the efficiency and practicality of hydrogen energy technologies.
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3.2 Exploration of diverse nanomaterial applications in hydrogen energy

A key novelty of this review article lies in its exploration of the diverse applications of nanomaterials in hydrogen
energy. It delves into crucial aspects such as hydrogen storage, production, and fuel cells, offering insights into the
current state of research on these applications. By providing a nuanced understanding of the challenges and oppor-
tunities for further development in these domains, the article contributes to bridging existing knowledge gaps.

3.3 Examination of environmental and economic implications

Another distinctive feature of this review article is its comprehensive examination of the potential environmental and
economic benefits stemming from the integration of nanomaterials into hydrogen energy technologies. By enhancing
efficiency and sustainability, nanomaterials hold the promise of reducing greenhouse gas emissions and playing a
pivotal role in climate change mitigation. Additionally, the article explores the potential economic opportunities that
may arise in sectors such as manufacturing and energy, emphasizing the broader impact on industry and commerce.

3.4 Building upon existing literature and proposing new insights

This review article builds upon existing literature by synthesizing information from both nanomaterials and hydrogen
energy fields. It goes beyond a mere compilation of knowledge, offering new insights and perspectives at the inter-
section of these diverse yet interconnected disciplines. By weaving together the disparate threads of nanomaterials
and hydrogen energy, the article provides a forward-looking examination that sets the stage for future research and
innovation.

In summary, the novelty of this review article resides in its ability to provide a unique and forward-thinking per-
spective, bringing together distinct fields and shedding light on opportunities and challenges at their intersection. By
accentuating the potential of nanomaterials in hydrogen energy, this article serves as a catalyst for inspiring further
research, innovation, and the development of informed policies and funding strategies.

4 Historical evolution of nanomaterials in hydrogen energy
4.1 Emergence of nanomaterials in hydrogen storage (1970s-2000s)

The intersection of nanomaterials with hydrogen energy represents a relatively recent but transformative develop-
ment [21]. In the early stages, dating back to the 1970s, researchers delved into the potential of metal hydrides for
hydrogen storage, laying the foundation for nanomaterial involvement [23]. Metal hydrides, capable of absorbing
and releasing hydrogen, initially faced challenges such as slow kinetics. The 1990s witnessed a pivotal shift as nano-
materials, including metal hydride nanoparticles, were explored to enhance hydrogen uptake and release rates,
leading to the emergence of a new generation of more efficient metal hydrides [27-29].

4.2 Catalyst innovation in fuel cells (1990s-early 2000s)

The 1990s marked a significant period for nanomaterials in the realm of fuel cells, devices converting hydrogen and
oxygen into electricity. Traditional catalysts, notably platinum, posed efficiency and durability challenges. Researchers
in the 1990s and early 2000s pioneered the exploration of nanomaterials, steering away from platinum, as alterna-
tive catalysts for fuel cells. This endeavor resulted in the development of nanomaterial-based catalysts with superior
efficiency and durability, thus enhancing overall fuel cell performance [33-36].

4.3 Nanomaterials in hydrogen production (early 2000s-2010s)

In the early 2000s, nanomaterials found a new avenue in hydrogen production, a critical aspect of hydrogen energy
viability. Efforts focused on improving the efficiency of methods like water electrolysis and steam methane reforming.
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Nanomaterials, including carbon nanotubes and metal nanoparticles, emerged as promising catalysts, contributing
to significant enhancements in efficiency and sustainability [39].

4.4 Continued growth and exploration (2010s-present)

The subsequent years witnessed continued growth and evolution in the relationship between nanomaterials and hydro-
gen energy. Researchers explored diverse nanomaterials and their applications, such as nanoporous materials for hydro-
gen storage and nanomaterial-based sensors for hydrogen detection [40]. Simultaneously, advancements in nanomaterial
synthesis and characterization techniques allowed for precise control, opening new possibilities for nanoscale material
manipulation [41, 42].

4.5 Key milestones and breakthroughs

Table 1 provides a comprehensive overview of key milestones and breakthroughs in the historical sequence of the rela-
tionship between nanomaterials and hydrogen energy from 2018 to 2022. Notable achievements include the pioneering
work on carbon nanotubes’hydrogen storage capacity in 1997, advancements in metal-organic frameworks (MOFs) for
hydrogen storage, and breakthroughs in using nanomaterials as photocatalysts for hydrogen production from water
under sunlight [48, 53, 54].

4.6 Future directions and challenges

As the historical sequence unfolds, the relationship between nanomaterials and hydrogen energy continues to grow.
The expanding applications and opportunities in various domains underscore the collaborative and innovative nature of
this evolving relationship. Despite the advancements, challenges persist, including optimizing nanomaterial synthesis,
ensuring practical applications, and addressing scalability issues. Ongoing research and development efforts aim to
overcome these challenges, paving the way for nanomaterials to play a crucial role in the global transition to a sustain-
able and clean energy future.

5 Overview of nanomaterial types
5.1 Metallic nanoparticles

e Definition and characteristics Metallic nanoparticles, composed of metals like gold, silver, platinum, and palladium,
exhibit unique characteristics due to their small size and high surface area-to-volume ratio. These properties include
high reactivity, catalytic activity, and distinctive optical features.

e Examples in hydrogen applications In the realm of hydrogen energy, metallic nanoparticles, particularly platinum nano-
particles, have been extensively researched as catalysts for various reactions. For instance, platinum nanoparticles
serve as catalysts in fuel cells due to their effectiveness in the oxygen reduction reaction. Ongoing research explores
alternatives like palladium and nickel nanoparticles to address cost and availability concerns [58, 59].

e Contribution to hydrogen storage and production The distinctive properties of metallic nanoparticles make them piv-
otal in hydrogen-related applications. Their high surface area and reactivity are harnessed for catalyzing reactions
essential to hydrogen production, storage, and fuel cell functionality. Despite the challenges posed by platinum'’s
cost and scarcity, exploration into alternative metallic nanoparticles showcases promising avenues for sustainable
hydrogen technologies.

5.2 Metal-organic frameworks (MOFs)

e Introduction and porous nature Metal-Organic Frameworks (MOFs) represent a class of porous materials comprising
metal ions or clusters connected by organic ligands. Their porous structure, tunable pore size, and versatile chemistry
make them attractive for applications such as gas storage, separation, and catalysis.

e Examples with high hydrogen storage capacities In the context of hydrogen energy, MOFs have garnered attention
for their potential as hydrogen storage materials. Researchers have successfully designed MOFs with high hydrogen
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storage capacities by carefully tuning the metal ions and ligands. This makes MOFs a promising candidate for fuel
cell vehicles.

e Addressing challenges in hydrogen storage While MOFs exhibit great potential, challenges such as low hydrogen uptake
and slow release rates must be addressed for them to become practical hydrogen storage materials. Ongoing research
aims to overcome these hurdles and unlock the full potential of MOFs in advancing hydrogen energy technologies.

5.3 Carbon nanotubes

e Definition and structure Carbon Nanotubes (CNTs) are cylindrical carbon structures with nanometer-scale diameters.
They possess exceptional mechanical, electrical, and thermal properties, making them attractive for various applica-
tions.

e [Exploration for hydrogen storage In the domain of hydrogen energy, CNTs have been studied both as catalysts for
hydrogen production and as components of hydrogen storage materials. Researchers have developed CNT-based
catalysts for processes like steam methane reforming, a common method for hydrogen production. Additionally, CNTs
have been incorporated into hydrogen storage materials, such as metal hydrides, to enhance their hydrogen uptake
and release kinetics [61, 62].

e Advantages and challenges The unique properties of CNTs contribute to their appeal, including high strength, excellent
electrical and thermal conductivity, and the ability to be functionalized for specific applications. However, challenges
exist, and ongoing research delves into addressing these challenges while harnessing the advantages of CNTs for
advancements in hydrogen energy.

5.4 Graphene

e Introduction and exceptional properties Graphene is a two-dimensional carbon material comprising a single layer of
carbon atoms arranged in a hexagonal lattice. Its exceptional properties, including high conductivity, mechanical
strength, and surface area, make it versatile for a wide range of applications.

e Applications in hydrogen technologies In the context of hydrogen energy, researchers have explored graphene’s poten-
tial as a catalyst for hydrogen production and as a component of hydrogen storage materials. Examples include
graphene-based catalysts for water splitting, a common method for hydrogen production from water. Additionally,
graphene has been integrated into hydrogen storage materials, such as MOFs, to enhance their hydrogen storage
capacities [54, 64].

e (Contributions to hydrogen storage advancements The exceptional properties of graphene contribute significantly to
advancements in hydrogen storage. Its high surface area, conductivity, and strength play a crucial role in improv-
ing the efficiency and practicality of hydrogen storage materials. Ongoing research explores diverse applications of
graphene in the field of hydrogen energy.

In addition to these four types of nanomaterials, various other types have been studied in the context of hydrogen energy.

For instance, nanoparticles of transition metal carbides, nitrides, and borides have been explored as alternative catalysts for
fuel cells. Nanoporous materials like zeolites and other metal-organic frameworks have been investigated as alternative

Table 2 Overview of different types of nanomaterials and their properties

Type of nanomaterial Properties

Metallic nanoparticles Small size (< 100 nm), high surface area to volume ratio, high reactivity, ability to tune surface properties and
chemistry, optical and electronic properties dependent on size and shape

Metal-organic frameworks Porous materials with high surface area and tunable pore size and chemistry, ability to adsorb and store gases,
high thermal and chemical stability, ability to be functionalized for specific applications

Carbon nanotubes Cylindrical structures made of carbon atoms, high strength and stiffness, excellent electrical and thermal
conductivity, high surface area, ability to be functionalized for specific applications, unique electronic and
mechanical properties dependent on size and chirality

Graphene Two-dimensional material made of a single layer of carbon atoms arranged in a hexagonal lattice, high surface
area, excellent electrical and thermal conductivity, high strength and stiffness, unique electronic properties
dependent on size and shape, ability to be functionalized for specific applications
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materials for hydrogen storage. Ongoing research continues to explore new types of nanomaterials and their applications in
hydrogen energy [65-68]. Table 2 provides an overview of metallic nanoparticles, metal-organic frameworks, carbon nano-
tubes, and graphene, including their properties such as size, surface area, reactivity, and unique electronic and mechanical
properties. Understanding these properties is important for developing new and innovative applications of nanomaterials
in various fields.

6 Hydrogen storage using nanomaterials
6.1 Carbon nanotubes

e Advantages for hydrogen storage Carbon nanotubes (CNTs) offer a high surface area conducive to hydrogen adsorption,
coupled with their lightweight and robust nature. Their capacity for functionalization further enhances their application
versatility.

o Challenges for hydrogen storage Despite these advantages, challenges include the intricate production process and han-
dling difficulties. CNTs exhibit limitations in storing hydrogen efficiently at ambient temperature and pressure.

6.2 Metal-organic frameworks (MOFs)

o Advantages for hydrogen storage MOFs, characterized by high porosity and surface area, present a promising avenue for
hydrogen storage. Their tunable pore size and chemistry enable precise customization, and they exhibit notable stability
and durability.

o Challenges for hydrogen storage Scaling up production poses a challenge, along with the energy-intensive and costly
synthesis and processing requirements. MOFs also face limitations in the range of temperature and pressure suitable for
hydrogen storage.

6.3 Graphene

e Advantages for hydrogen storage Graphene’s high surface area facilitates efficient hydrogen adsorption, complemented
by exceptional electrical and thermal conductivity. Its functionalization potential adds to its versatility in various applica-
tions.

o Challenges for hydrogen storage While graphene holds promise, challenges include its limited ability to store hydrogen at
ambient temperature and pressure. Large-scale production with consistent properties also remains a hurdle.

6.4 Metallic nanoparticles

e Advantages for hydrogen storage Metallic nanoparticles boast high reactivity and surface area, offering potential for room
temperature hydrogen storage. Their tunability for specific applications adds to their appeal.

o Challenges for hydrogen storage Challenges include limited stability and durability, difficulties in controlling particle size
and shape, and a propensity for particle agglomeration and sintering.

6.5 Advantages and challenges across nanomaterials

e Common advantages All nanomaterials share the advantage of a high surface area-to-volume ratio, facilitating efficient
hydrogen adsorption. The atomic-level tunability of nanomaterials enhances their hydrogen storage properties.

e Common challenges Stability under hydrogen storage conditions is a shared challenge, with nanomaterials being prone
to agglomeration or oxidation. Cost and scalability issues for practical applications, as well as the need for novel hydrogen
storage systems, pose additional challenges.

6.6 Overcoming challenges and realizing potential
e Addressing stability concerns Stability challenges, including agglomeration and oxidation, necessitate advanced mate-

rial engineering strategies. Research focused on stabilizing nanomaterials under varying temperature and pressure
conditions is vital.
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e Tackling cost and scalability issues Overcoming cost and scalability challenges involves refining production pro-
cesses and exploring innovative synthesis techniques. Collaboration between academia and industry can expedite
the development of cost-effective production methods.

e Developing practical hydrogen storage systems To make the most of nanomaterials for hydrogen storage, practical
systems must be devised. Specifically, for metal hydrides, research should aim at developing systems compatible
with the requirements of portable devices and vehicles.

In conclusion, nanomaterials possess the potential to redefine hydrogen storage and facilitate the widespread use
of hydrogen as a clean energy carrier. Each type of nanomaterial contributes uniquely to enhancing hydrogen stor-
age, with advantages such as high surface area and tunability. While challenges persist, ongoing research endeavors
to address stability concerns, optimize production processes, and devise practical hydrogen storage systems. As
advancements continue, nanomaterials stand poised to play a pivotal role in realizing the promise of hydrogen as a
sustainable energy solution. Table 3 provides an insightful overview of the applications of nanomaterials in hydrogen
storage, highlighting both their advantages and associated challenges. To offer a more comprehensive understand-
ing, let’s delve into each type of nanomaterial, elucidating their roles and incorporating examples to illustrate their
impact on hydrogen storage, production, and transportation.

Carbon nanotubes provide a high surface area for efficient hydrogen adsorption and offer a lightweight yet robust
structure. Challenges lie in their production difficulty, including synthesis and handling issues, and limitations in
storing hydrogen at ambient conditions. MOFs exhibit high porosity and surface area, tunable pore size and chem-
istry, and stability for effective long-term hydrogen storage. Scaling up production for practical applications poses
a challenge, and there are energy-intensive and cost-related issues in synthesis and processing. Graphene’s high
surface area and excellent conductivity facilitate efficient hydrogen adsorption. Challenges include limited ambient
storage capacity, difficulties in large-scale production, and ensuring consistent properties. Metallic nanoparticles
offer high reactivity, tunability for diverse applications, and the potential for room temperature hydrogen storage.
Limitations include potential stability issues over extended periods, challenges in controlling particle size and shape,
and a tendency for particle agglomeration.

7 Nanomaterials in hydrogen production
7.1 Nanocatalysts for hydrogen production

Hydrogen fuel cells stand as a beacon of promise for clean energy generation, operating with only water as a byproduct.
However, the efficiency and cost of hydrogen production pose challenges. Nanomaterials emerge as key players in sur-
mounting these challenges, particularly in enhancing the efficiency of hydrogen production. A pivotal application lies
in their role as catalysts for hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) [76].

7.2 Catalyst synthesis and effectiveness

Nanocatalysts, synthesized through methods like chemical reduction and solvothermal synthesis, offer advantages in
HER and OER due to their high surface area, reactivity, and tunable surface chemistry [77, 78]. Platinum (Pt) nanoparticles
are a prevalent choice, given their high activity for HER. Despite their efficacy, the expense and scarcity of Pt prompt
exploration into alternative Pt-based nanocatalysts. Alloys such as Pt-Ni and Pt—Co exhibit superior catalytic activity and
stability [79].

7.3 Diverse nanomaterials as catalysts
Beyond Pt-based nanocatalysts, other nanomaterials come into focus. Transition metal dichalcogenides (TMDs) like

molybdenum disulfide (Mo0S2) and carbon-based nanomaterials such as graphene and carbon nanotubes show promise
as catalysts for HER and OER, leveraging their high intrinsic activity, low overpotential, and tunable surface chemistry [80].
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7.4 Photocatalytic water splitting

Nanomaterials also play a crucial role in photocatalytic water splitting, converting solar energy into chemical energy
for hydrogen production. Metal oxides, sulfides, and nitrides, such as titanium dioxide (TiO2), showcase potential as
photocatalysts. Modified TiO2 nanomaterials, including nitrogen-doped variants, demonstrate improved photocatalytic
activity [81].

7.5 Enhancing hydrogen fuel cells

Nanomaterials contribute significantly to improving the efficiency of hydrogen fuel cells by enhancing the surface area
and reactivity of catalysts. Platinum, while common, faces challenges due to cost and limited supply. Strategies involve
protective coatings, catalyst structure optimization, and the incorporation of dopants to enhance stability and activity
[83].

7.6 Bimetallic nanomaterials and nanoscale engineering

Bimetallic nanomaterials, combining two metals alloyed together, present enhanced catalytic activity and stability com-
pared to monometallic counterparts. Platinum-nickel (Pt-Ni) and platinum-cobalt (Pt—Co) bimetallic catalysts demonstrate
improved performance in fuel cell applications [84]. Nanoscale engineering, exemplified by core-shell nanocatalysts,
where a core of one metal is enveloped by another or a non-metal like carbon or nitrogen, exhibits heightened activity,
stability, and resistance to impurities [85].

7.7 Nanomaterials beyond fuel cells

Nanomaterials extend theirimpact beyond fuel cells, contributing to the efficiency and sustainability of various hydrogen
production technologies like electrolysis and photocatalysis. For instance, titanium dioxide (TiO2) and zinc oxide (ZnO)
nanomaterials act as efficient photocatalysts for hydrogen production through water splitting. Their ability to absorb
light energy and drive chemical reactions positions them as potential alternatives to traditional photocatalysts [81, 86].

Table 4 provides a comprehensive overview of how nanomaterials enhance hydrogen production and fuel cell effi-
ciency. Noteworthy applications include carbon quantum dots and metal-organic frameworks for photocatalytic hydro-
gen production, and graphene, carbon nanotubes, and metallic nanoparticles for fortifying the durability and stability of
fuel cell components. Table 4, highlights how nanomaterials can be used to improve hydrogen production and increase
the efficiency of hydrogen fuel cells. Carbon quantum dots and metal-organic frameworks show promise for photocata-
lytic hydrogen production, while graphene, carbon nanotubes, and metallic nanoparticles have potential for improving
the durability and stability of fuel cell components. By utilizing the unique properties of nanomaterials, researchers can
develop more efficient and cost-effective hydrogen production and fuel cell technologies.

The utilization of nanomaterials in hydrogen energy applications signifies a rapidly advancing realm of research,
holding immense potential for sustainable energy technologies. Although challenges persist in improving efficiency,
durability, and scalability, ongoing research efforts promise a future where nanomaterials contribute significantly to the
realization of clean energy.

Overall, the use of nanomaterials in hydrogen energy applications represents a rapidly growing field of research
with significant potential for advancing the development of sustainable energy technologies. While there are still many
challenges to overcome in terms of improving the efficiency, durability, and scalability of nanomaterial-based hydrogen
energy systems, the ongoing research and development efforts in this field hold great promise for the future of clean
energy.
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8 Nanomaterials in hydrogen transport and delivery
8.1 Strengthening hydrogen storage tanks

Hydrogen transport and delivery, integral to the hydrogen energy infrastructure, confront the challenge of storing
and transporting gas at high pressures, necessitating heavy and bulky storage tanks and pipelines [87]. The explora-
tion of nanomaterials offers a transformative avenue for enhancing the efficiency and safety of these systems.

8.2 Nanomaterials for hydrogen storage tanks

Metal hydrides, compounds capable of absorbing and releasing hydrogen gas, present a promising direction for
improving hydrogen storage. Nanoscale metal hydrides, exemplified by magnesium hydride nanoparticles, exhibit
enhanced storage capacities and faster hydrogen uptake and release rates compared to bulk metal hydrides [88, 89].
Nanomaterials further contribute to safety by addressing hydrogen’s flammability concerns. Metal nanoparticles and
carbon nanotubes emerge as candidates for hydrogen sensors, providing early warnings of potential safety hazards
through their high sensitivity and selectivity to hydrogen gas [90].

8.3 Reinforcing hydrogen pipelines

Hydrogen pipelines face challenges such as embrittlement due to the diffusion of hydrogen molecules into pipeline
materials, causing cracking and damage. Nanomaterials, including graphene and carbon nanotubes, are under scru-
tiny as coatings for pipeline materials to enhance resistance to hydrogen embrittlement [91-94].

8.4 Sustainability enhancement

Nanomaterials contribute not only to efficiency and safety but also to the sustainability of hydrogen energy systems.
Utilizing nanomaterials for hydrogen production through renewable sources, such as solar and wind power, represents
a promising avenue. Nanomaterials like titanium dioxide and iron oxide act as photocatalysts for hydrogen production
through water splitting, leveraging their ability to absorb light energy and drive efficient chemical reactions [81, 86].

Table 5 provides a comprehensive overview of potential applications of nanomaterials in hydrogen transport and
delivery, specifically in hydrogen storage tanks and pipelines. Metal-organic frameworks and carbon nanotubes
exhibit promise for high-capacity hydrogen storage, while graphene demonstrates potential in improving hydrogen
adsorption and desorption kinetics. Metal nanoparticles and metal-organic frameworks hold potential for promot-
ing hydrogen dissociation and transport in pipelines, thus enhancing efficiency and reducing energy requirements.
Table 5, highlights the potential applications of nanomaterials in hydrogen transport and delivery, specifically in
hydrogen storage tanks and pipelines. Metal-organic frameworks and carbon nanotubes show promise for high-
capacity hydrogen storage in tanks, while graphene can improve hydrogen adsorption and desorption kinetics. Metal
nanoparticles and metal-organic frameworks have potential for promoting hydrogen dissociation and transportin
pipelines, improving efficiency and reducing energy requirements. By utilizing the unique properties of nanomateri-
als, researchers can develop more efficient and cost-effective hydrogen transport and delivery technologies.

This table provides an overview of how nanomaterials such as metal-organic frameworks, carbon nanotubes,
graphene, and metal nanoparticles can be used to improve hydrogen transport and delivery, specifically in hydrogen
storage tanks and pipelines. Understanding the potential advantages of these nanomaterials is crucial for developing
practical applications of hydrogen technologies that can support a transition towards a more sustainable energy
system. Overall, the use of nanomaterials in hydrogen transport and delivery represents a promising area of research
with significant potential for improving the efficiency, safety, and sustainability of hydrogen energy systems. While
there are still many challenges to overcome in terms of improving the scalability and practicality of nanomaterial-
based hydrogen storage and transport systems, the ongoing research and development efforts in this field hold
great promise for the future of clean energy.
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8.5 Future prospects and conclusion

The exploration of nanomaterials in hydrogen transport and delivery unfolds as a promising area of research with sub-
stantial potential to improve the efficiency, safety, and sustainability of hydrogen energy systems. Though challenges
remain in terms of scalability and practicality, ongoing research and development efforts in this field instill confidence
in a cleaner and more sustainable energy future.

9 Current state of research and future prospects
9.1 Recent advances in nanomaterial-based hydrogen technologies

The dynamic field of hydrogen energy and nanomaterials continuously witnesses breakthroughs and advancements.
Notably, recent years have seen substantial progress in leveraging nanomaterials for hydrogen storage, production, and
fuel cell efficiency. A particularly promising avenue is the application of metal-organic frameworks (MOFs) for hydrogen
storage. MOFs, characterized by a porous structure composed of metal ions and organic ligands, exhibit high-pressure,
low-temperature hydrogen adsorption capabilities. In 2020, Northwestern University researchers reported a novel MOF
surpassing current materials in hydrogen storage efficiency [95-100].

In fuel cell research, exploration extends beyond Fe—-N-C nanoparticles, encompassing other metal-based nanocata-
lysts like cobalt, nickel, and palladium. UCLA researchers, in 2019, introduced a cobalt-nickel nanocatalyst demonstrat-
ing superior performance compared to conventional platinum-based catalysts [101, 102]. Nanomaterials are also at
the forefront of hydrogen production innovation. A catalyst composed of molybdenum sulfide nanosheets, developed
in 2020 at the University of lllinois at Urbana-Champaign, efficiently splits water into hydrogen and oxygen, offering a
potential leap in cost-effective hydrogen production methods [103, 104].

Active research into nanomaterials for enhancing the safety and efficiency of hydrogen storage tanks and pipelines
is underway. The University of Central Florida’s development of a composite material, combining carbon nanotubes
and polyethylene, stands as a testament to ongoing efforts to bolster the strength and durability of hydrogen storage
tanks [91-94].

9.2 Future research directions and emerging trends

As we look to the future, numerous avenues beckon for further exploration in hydrogen energy and nanomaterials.
Advancements in hydrogen fuel cell efficiency remain a pivotal area of interest, with researchers striving to develop
new nanomaterials to enhance performance. Additionally, exploration into novel methods for hydrogen production and
storage is underway, encompassing the use of MOFs and other porous materials [105, 106].

Table 6 provides a succinct summary of the current state of research in hydrogen energy, recent developments, and
future prospects, categorically detailing the progress, recent breakthroughs, and anticipated trajectories in hydrogen
production, storage, transport, and applications.

In conclusion, the intersection of nanomaterials and hydrogen energy emerges as a promising frontier, holding sig-
nificant potential for enhancing the efficiency and sustainability of our energy systems. With ongoing research and
development, nanomaterials are poised to play a crucial role in revolutionizing the production, storage, and transport
of hydrogen in the years ahead.

10 Expected economic importance
10.1 Analysis of the potential economic impact of adopting nanomaterials in hydrogen technologies
Hydrogen energy, derived from renewable sources like wind and solar power, holds promise as a clean and sustainable

energy source. However, efficient methods for hydrogen production, storage, and transport are vital for widespread
adoption. Nanomaterials, with their unique properties, stand as catalysts for advancements in the hydrogen energy cycle.
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Their role in efficient catalysts for hydrogen production and high-capacity storage materials for fuel cells positions them
at the forefront of transformative change. The development and commercialization of nanomaterials for hydrogen appli-
cations necessitate substantial research and development investments. The economic benefits, however, are substantial.

According to Allied Market Research, the global hydrogen energy market is poised to reach $201.2 billion by 2028,
reflecting a 6.2% Compound Annual Growth Rate (CAGR) from 2021 to 2028. The escalating demand for clean and
sustainable energy propels this growth, indicating a shift toward hydrogen energy solutions [107]. The integration of
nanomaterials in advancing hydrogen energy has broader economic implications, spanning job creation and overall
economic growth. The development of new technologies typically requires a skilled workforce, and the burgeoning
hydrogen energy industry is expected to generate employment opportunities in research, development, manufactur-
ing, and related sectors.

10.2 Discussion on scalability, cost-effectiveness, and environmental sustainability

The economic benefits of nanomaterials in hydrogen energy extend beyond market growth. Job creation is a pivotal
facet, and estimates suggest that the hydrogen industry could generate up to 700,000 new jobs in the United States
alone by 2030. This encompasses roles in hydrogen production, transportation, storage, and fuel cell manufacturing,
fostering employment opportunities across the value chain.

Reduced emissions emerge as a significant economic benefit. Hydrogen, being a clean-burning fuel, produces only
water vapor and heat during combustion, presenting an environmentally attractive alternative to fossil fuels. By incorpo-
rating hydrogen into the energy mix, substantial reductions in greenhouse gas emissions can be achieved, contributing
to improved air quality and mitigating climate change.

Enhancing energy security is another economic boon. Hydrogen production can utilize various domestic resources,
including natural gas, coal, biomass, and water. This diversification minimizes dependence on fossil fuel imports, bolster-
ing energy security for countries with limited reserves or high import dependency.

Job creation within the hydrogen economy is forecasted to have a considerable impact. The industry’s growth is
anticipated to create employment opportunities across various sectors, from production to transportation and fuel
cell manufacturing. Estimates suggest that the hydrogen industry could generate up to 700,000 new jobs in the United
States alone by 2030.

Increased efficiency is a crucial economic advantage of hydrogen fuel cells. Compared to internal combustion engines,
hydrogen fuel cells exhibit higher efficiency, producing more power with less fuel. This heightened efficiency trans-
lates into cost savings and improved overall energy efficiency, further solidifying the economic viability of hydrogen
technologies.

Energy storage capabilities amplify the economic benefits. Hydrogen, when stored, serves as a backup power source
during peak demand or periods when renewable energy sources are unavailable. This contributes to grid stability and
reduces the reliance on expensive energy storage systems, offering economic advantages alongside enhanced reliability.

Cost reduction is a pivotal factor in the economic feasibility of hydrogen energy. As technology evolves for hydrogen
production, storage, and transportation, costs are expected to decrease. This anticipated reduction positions hydrogen
as a cost-effective alternative to fossil fuels in the long term, presenting economic advantages on a global scale.

In conclusion, the economic importance of incorporating nanomaterials in advancing hydrogen energy is multifaceted.
Beyond market growth, the potential for job creation, increased efficiency, enhanced energy security, and environmental
sustainability underscores the transformative impact of nanomaterials in shaping a sustainable and economically robust
energy future. Table 7, summarizing the expected economic benefits of hydrogen energy, including reduced emissions,
increased energy security, job creation, increased efficiency, energy storage, and reduced costs.

11 Conclusion

In conclusion, nanomaterials have tremendous potential for advancing the hydrogen energy frontier. Their unique
properties, such as high surface area, tunable surface chemistry, and high catalytic activity, make them attractive
candidates for various hydrogen-related applications, including hydrogen storage, production, and transport. One
of the main advantages of using nanomaterials in hydrogen-related applications is their ability to improve efficiency
and reduce costs. For example, using nanomaterials as catalysts in hydrogen fuel cells can reduce the amount of
expensive platinum required, making fuel cell technology more economically viable. Similarly, using nanomaterials
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Table 7 Expected Economic Benefits of Hydrogen Energy

Economic benefit Description

Reduced emissions  Hydrogen is a clean-burning fuel that produces only water vapor and heat when it is burned. This makes it an
attractive alternative to fossil fuels, which produce harmful emissions such as carbon dioxide, nitrogen oxides, and
particulate matter. By using hydrogen as an energy source, we can significantly reduce greenhouse gas emissions
and improve air quality

Energy security Hydrogen can be produced from a variety of domestic resources, including natural gas, coal, biomass, and water. This
means that countries that have limited fossil fuel reserves or are dependent on imports can use hydrogen as a way
to increase their energy security and reduce their dependence on foreign oil

Job creation The development of a hydrogen economy is expected to create new jobs in areas such as hydrogen production, trans-
portation, storage, and fuel cell manufacturing. According to some estimates, the hydrogen industry could create
up to 700,000 new jobs in the United States alone by 2030

Increased efficiency Hydrogen fuel cells are more efficient than internal combustion engines, meaning that they can produce more power
with less fuel. This can help to reduce the overall energy consumption of a system, resulting in cost savings and
improved energy efficiency

Energy storage Hydrogen can be stored for long periods of time and used as a backup power source during times of high demand or
when renewable energy sources are not available. This can help to stabilize the electricity grid and reduce the need
for expensive energy storage systems

Reduced costs As the technology for producing, storing, and transporting hydrogen improves, the cost of using hydrogen as an
energy source is expected to decrease. This could make hydrogen a more cost-effective alternative to fossil fuels in
the long term

for hydrogen storage can increase storage capacity while reducing the weight and volume of storage tanks, making it
easier and more cost-effective to transport and store hydrogen. Despite the many benefits of using nanomaterials in
hydrogen-related applications, several challenges still need to be overcome. For example, there is a need to develop
scalable and cost-effective methods for synthesizing and processing nanomaterials. There is also a need to improve
our understanding of the properties and behavior of nanomaterials at the nanoscale, as well as their interaction
with other materials and the environment. Future research directions in this field should focus on developing new
nanomaterials with enhanced properties and functionalities for hydrogen-related applications. For example, the
use of 2D materials, such as graphene and transition metal dichalcogenides, is a promising area of research that has
shown potential for improving the performance of hydrogen storage and production. In addition, the development
of nanomaterials that can withstand harsh operating conditions, such as high temperature and pressure, is also an
important area of research. Another important direction for future research is to develop methods for integrating
nanomaterials into practical hydrogen-related devices and systems. This includes the development of scalable and
cost-effective methods for producing nanomaterials, as well as the design and optimization of nanomaterial-based
devices and systems.

In conclusion, the use of nanomaterials for advancing the hydrogen energy frontier is an exciting and promising
area of research that has the potential to revolutionize the energy industry. While there are still many challenges to be
overcome, the development of new and improved nanomaterials for hydrogen-related applications offers tremendous
opportunities for improving efficiency, reducing costs, and creating a sustainable energy future.
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