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Abstract Self-gravitating horizonless ultra-compact
objects that possess light rings have attracted the attention of
physicists and mathematicians in recent years. In the present
compact paper we raise the following physically interest-
ing question: Is there a lower bound on the global compact-
ness parameters C ≡ maxr {2m(r)/r} of spherically sym-
metric ultra-compact objects? Using the non-linearly cou-
pled Einstein-matter field equations we explicitly prove that
spatially regular ultra-compact objects with monotonically
decreasing density functions (or monotonically decreasing
radial pressure functions) are characterized by the lower
bound C ≥ 1/3 on their dimensionless compactness param-
eters.

1 Introduction

One of the most important predictions of the Einstein field
equations is the existence of light rings in curved space-
times of compact astrophysical objects [1–7]. In particular,
as explicitly proved in [8], spherically symmetric black-hole
spacetimes have at least one closed null circular geodesic
whose radius rγ is larger than the horizon radius rH of the
central black hole. A generalization of this theorem to non-
spherically symmetric black-hole spacetimes has been pre-
sented in the physically important work [9].

Intriguingly, it is well established in the physics literature
(see [10–19] and references therein) that horizonless ultra-
compact objects, which describe spatially regular configura-
tions of self-gravitating matter fields, may also possess closed
light rings. The dimensionless compactness parameters [20]
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C ≡ maxr

{
2m(r)

r

}
(1)

of horizonless ultra-compact objects are characterized by the
inequalityC < 1 [herem(r) is the mass of the self-gravitating
matter fields which is contained within a sphere of radius
r ]. The relation (1) implies that horizonless ultra-compact
objects are less compact than black holes [21].

Interestingly, it has been proved that in some situations
the compactness parameters of ultra-compact objects can
be bounded from below. In particular, it has been explicitly
proved in [10] that the compactness parameters of horizon-
less self-gravitating objects whose matter fields are charac-
terized by a non-negative energy–momentum trace (T ≥ 0
[22,23]) are bounded from below by the relation

C ≥ 2

3
for ultra-compact objects with T ≥ 0. (2)

In addition, the compactness parameters of isotropic ultra-
compact objects that possess closed light rings are bounded
from below by the relation [19,24,25]

C ≥ 1

2
for isotropic ultra-compact objects. (3)

Following [26] (see also references therein), in the present
compact paper we shall consider generic (that is, not neces-
sarily isotropic) self-gravitating matter configurations which
are characterized by monotonically decreasing energy densi-
ties or monotonically decreasing radial pressures. In particu-
lar, using analytical techniques we shall reveal the existence
of a previously unknown lower bound on the dimensionless
compactness parameters of these horizonless ultra-compact
objects [27].

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-025-13866-y&domain=pdf
http://orcid.org/0000-0002-8272-8315
mailto:shaharhod@gmail.com


  131 Page 2 of 4 Eur. Phys. J. C           (2025) 85:131 

2 Description of the system

We consider horizonless curved spacetimes of spatially regu-
lar ultra-compact objects that possess null circular geodesics.
The line element that characterizes the spherically symmetric
spacetime can be expressed, using the Schwarzschild space-
time coordinates {t, r, θ, φ}, in the form [28–33]

ds2 = −e−2δμdt2 + μ−1dr2 + r2(dθ2 + sin2 θdφ2), (4)

where μ = μ(r) and δ = δ(r).
The dimensionless metric function μ(r) of spatially reg-

ular asymptotically flat spacetimes is characterized by the
boundary conditions [28,29]

μ(r → 0) → 1 (5)

and

μ(r → ∞) → 1. (6)

For spatially regular asymptotically flat spacetimes the metric
function δ(r) is characterized by the boundary conditions
[28,29]

δ(r → 0) < ∞ (7)

and

δ(r → ∞) → 0. (8)

The Einstein-matter field equations Gμ
ν = 8πTμ

ν of the
spherically symmetric curved spacetime (4) can be expressed
in the form of two non-linearly coupled differential equations
[28–33],

dμ

dr
= −8πrρ + 1 − μ

r
(9)

and

dδ

dr
= −4πr(ρ + p)

μ
, (10)

where the radially dependent matter parameters {ρ(r), p(r),
pT(r)} [22]

ρ ≡ −T t
t , p ≡ T r

r , pT ≡ T θ
θ = T φ

φ (11)

are respectively the energy density, the radial pressure, and
the tangential pressure [34] of the self-gravitating fields.
We shall assume that the matter fields respect the dominant

energy condition which implies the pressure-density relation
[28,29]

0 ≤ |p|, |pT| ≤ ρ. (12)

3 Lower bound on the compactness parameters of
ultra-compact objects with monotonically decreasing
energy densities (or monotonically decreasing radial
pressures)

In the present section we shall explicitly prove, using the
Einstein-matter field equations, that the dimensionless com-
pactness parameters [see Eq. (1)] of spatially regular hori-
zonless ultra-compact objects whose radially dependent den-
sity functions (or radially dependent pressure functions) are
monotonically decreasing are bounded from below. (See the
excellent review [26] and references therein for interesting
star models that are characterized by this monotonicity prop-
erty).

We first note that, as explicitly proved in [35], the null cir-
cular geodesics of the spherically symmetric curved space-
time (4) are characterized by the functional relation

N (r = rγ ) = 0, (13)

where the dimensionless function N (r) is given by the pres-
sure dependent expression

N (r) ≡ 3μ − 1 − 8πr2 p. (14)

Taking cognizance of the Einstein equation (9) one obtains
the functional relation

μ(r) = 1 − 2m(r)

r
(15)

for the dimensionless metric function, where the gravitational
mass m(r) which is contained within a sphere of radius r is
given by the integral relation

m(r) =
∫ r

0
4πx2ρ(x)dx . (16)

For ultra-compact objects whose density functions are
monotonically decreasing,

dρ

dr
≤ 0, (17)

one can use the integral relation (16) in order to derive the
lower bound
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m(rγ ) =
∫ rγ

0
4πx2ρ(x)dx ≥ ρ(rγ ) ·

∫ rγ

0

4πx2dx = ρ(rγ ) · 4π

3
r3
γ (18)

on the gravitational mass which is contained within the radius
of the light ring. Using the dominant energy condition (12)
one obtains from (18) the relation

m(rγ ) ≥ p(rγ ) · 4π

3
r3
γ . (19)

Likewise, for ultra-compact objects whose radial pressure
functions are monotonically decreasing,

dp

dr
≤ 0, (20)

one can use the integral relation (16) and the dominant energy
condition (12) in order to derive the lower bound

m(rγ ) =
∫ rγ

0
4πx2ρ(x)dx ≥

∫ rγ

0
4πx2 p(x)dx ≥ p(rγ )

·
∫ rγ

0
4πx2dx = p(rγ ) · 4π

3
r3
γ . (21)

From Eqs. (19) and (21) one deduces the dimensionless
inequality

m(rγ )

rγ
≥ 4π

3
p(rγ )r2

γ . (22)

Taking cognizance of Eqs. (13), (14), (15), and (22) one
obtains the relation

0 = 3μ(rγ ) − 1 − 8πr2
γ p(rγ ) = 2 − 6m(rγ )

rγ

−8πr2
γ p(rγ ) ≤ 2 − 16πr2

γ p(rγ ) (23)

which yields the characteristic inequality

8πr2
γ p(rγ ) ≤ 1 (24)

at the radial location of the light ring.
Substituting the analytically derived relation (24) into Eqs.

(13) and (14) one finds the dimensionless inequality

μ(rγ ) ≤ 2

3
(25)

for the metric function, which yields the mass-radius lower
bound [see Eq. (15)]

m(rγ )

rγ
≥ 1

6
(26)

at the radial location of the light ring.

4 Summary and discussion

Horizonless spacetimes of spatially regular self-gravitating
matter configurations may share some physically interesting
properties with curved black-hole spacetimes. In particular,
despite the fact that the characteristic compactness parame-
ters of horizonless ultra-compact objects are smaller than the
corresponding compactness parameter CBH = 1 that charac-
terizes spherically symmetric black holes [21], horizonless
compact objects may possess light rings on which massless
particles can perform closed circular motions (see [10–19]
and references therein).

In the present compact paper we have quantified the mean-
ing of the term ‘ultra-compact’ which is used in the physics
literature to describe self-gravitating horizonless matter con-
figurations that possess null circular geodesics. In particular,
we have addressed the following physically interesting ques-
tion: How compact are self-gravitating ultra-compact objects
with closed light rings?

The main analytical results derived in this paper and their
physical implications are as follows:

(1) Using analytical techniques we have explicitly proved
that the compactness parameters of horizonless ultra-compact
objects whose matter fields are characterized by monotoni-
cally decreasing energy densities or monotonically decreas-
ing radial pressures (see [26] and references therein for phys-
ically interesting models of compact objects that are char-
acterized by this monotonicity property) are bounded from
below by the dimensionless relation [see Eqs. (1) and (26)]

C ≥ 1

3
. (27)

(2) It is worth emphasizing the fact that, as opposed to the
bound (3) whose validity is restricted to the case of isotropic
ultra-compact objects [19], the newly derived dimensionless
lower bound (27) on the compactness parameters of ultra-
compact objects is valid for all spatially regular horizon-
less matter configurations (not necessarily isotropic) with
light rings that are characterized by monotonically decreas-
ing energy densities or monotonically decreasing radial pres-
sure functions.

(3) It is physically interesting to note that the analytically
derived lower bounds (3) and (27) on the compactness param-
eters of ultra-compact objects imply that if a neutron star with
the typical compactness value C ∼ 0.4 [36] has light rings
then it must be characterized by non-isotropic internal pres-
sures.
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