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Abstract Most black hole solutions are characterized with
asymptotically flat, or asymptotically (anti) de-Sitter behav-
iors, but some black holes with unusual asymptotics have also
been constructed, which is believed to provide remarkable
insights into our understanding of the nature of gravity. In this
paper, focusing on a rotating black hole with unusual asymp-
totics in Einstein–Maxwell-dilaton (EMD) theory, we inno-
vatively analyze the photons’ trajectories around this black
hole background, showing that the unusual asymptotics has
significant influences on the photons’ trajectories. We expect
that our analysis could give more insights in the scenario of
black holes’ shadow and image.

1 Introduction

At present, string theory and loop quantum gravity appear
as two most promising candidates to unify gravity with the
other fundamental interactions in nature [1–3]. However, due
to technical difficulties and conceptual ambiguities, the prob-
lem of reconciling quantum theory and general relativity
remains open. A complete quantum gravity by one common
representation still fascinates the theoretical physics commu-
nities. Nevertheless, as the predictions of general relativity,
black holes provide natural laboratories for testing different
approaches and shedding new light on quantum gravity in the
strong field regime. Benefiting from the advances in obser-
vational techniques, the more we learn about black holes, the
closer we get to a comprehensive theory of quantum gravity.

Over the past few decades, searching the black hole con-
figurations in string and supergravity theory has attracted
the attention of many physicists, see [4–18] and many other
important references. Especially, dilaton black holes have
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always been a major focus of these investigations, which
arise in the low-energy string theory and couple in a nontrivial
way to other fields such as gauge fields. Einstein–Maxwell-
dilaton (EMD) gravity, where the dilaton is non-minimally
coupled to the Maxwell field, then provides a natural theo-
retical model to investigate the effects of the dilaton on the
properties of the black hole spacetime [7,19–49].

Especially, Poletti and Wiltshire derived the global prop-
erties of static spherically symmetric solutions to the EMD
system in the presence of a Liouville-type dilaton potential,
showing that with the exception of a pure cosmological con-
stant ‘potential’, no asymptotically flat, asymptotically de
Sitter (dS) or asymptotically anti-de Sitter (AdS) solutions
exist in these models [23]. Chan et al. then presented a new
class of such black hole solutions in n ≥ 4-dim EMD grav-
ity [24]. Some exact topological black hole solutions in the
EMD theory with a Liouville-type dilaton potential were
generalized by Cai et al. in Ref. [26], also see Ref. [33].
For the case of rotating black holes, Clément and Leygnac
generated two classes of rotating dyonic black hole solu-
tions with a specialized dilaton coupling parameter α2 = 3
from the non-asymptotically flat magnetostatic or electro-
static black holes in Ref. [30]. With one or two Liouville-
type dilaton potential(s) in an arbitrary dimension, Cai and
Wang looked for and analyzed in details some (static, elec-
trically or magnetically charged) exact solutions of EMD
gravity, showing that some of these neither asymptotically
flat nor AdS/dS solutions have higher dimensional origins
which have well-behaved asymptotics [31]. New 5-dim, non-
asymptotically flat black holes with rotation in one plane
were derived by Yazadjiev as a limiting case of new rotat-
ing, non-asymptotically flat black ring solutions in a 5-dim
EMD theory arising from a six-dimensional Kaluza–Klein
theory [32]. Later, Fabris and Marques exploited the method
of gravitational anomaly to compute the temperature of non-
asymptotically flat dilatonic black holes [50], and the thermo-
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dynamics in the canonical and grand canonical ensembles of
a class of non-asymptotically flat black holes of the 4D EMD
theory with spherical symmetry were analysed in Ref. [51].

Although such black hole solutions are not as physically
well-established as asymptotically flat or AdS/dS solutions,
there are still sufficient motivations to conduct detailed inves-
tigation and discussion on them as the suggestions in previ-
ously mentioned references. On the one hand, it has shown
that the methods originally developed for asymptotically
flat or AdS/dS black holes, such as the quasi-local energy
approach and gravitational anomaly, could be applied to com-
pute the mass, angular momentum or Hawking radiation of
nonasymptotically flat rotating black holes [30,50], see also
Ref. [52] where Zhang et al. checked the mass bound conjec-
ture in de Sitter space with the topological de Sitter solution
and its dilatonic deformation, which provides the evidence in
favor of the conjecture. On the other hand, it has been widely
believed that any consistent theory of quantum gravity should
be holographic [53,54]. Indeed, string theory has beautifully
demonstrated holography [55–59]. As the low-energy lim-
its of string theory, holography for EMD theories, including
solutions with unusual asymptotic behaviors, have also been
set up and investigated in different literature [60–79] and the
references therein.

In this article, we will examine the appearance of the
dark silhouette of the slowly rotating EMD black holes with
unusual asymptotic behaviors, which still deserves an in-
depth investigation. Since the publications of the observa-
tions of the Event Horizon Telescope (EHT) on the shadow
of the supermassive black holes M87* and SgrA* [80,81],
there have been numerous articles investigating the nature of
the shadows of various types of black holes, wormholes, or
black branes, which we cannot catalog all here. For EMD the-
ory, Maki and Shiraishi examined the motion of test particles
with arbitrary mass, electric charges and dilatonic charges
around a static, spherically-symmetric charged dilaton black
[82]; The light paths of normal and phantom EMD black
holes were determined analytically by the Weierstrass ellip-
tic functions in Ref. [83]; Amarilla and Eiroa studied the
shadow produced by a spinning Kaluza–Klein black hole in
EMD theory [84]; In Ref. [85], the shadow cast by EMD-
Axion black hole and naked singularity were studied, while
the geodesic motion of test particles and light in the EMD-
Axion spacetime was studied by Flathmann and Grunau [86];
The timelike and null geodesics around the static and the
rotating (Kerr-Sen dilaton-axion) dilaton black holes were
considered and analytically solved in terms of Weierstrass
elliptic functions in Ref. [87]; The shadow images of charged
wormholes in EMD theory were constructed in Ref. [88]; The
light deflection of EM(anti-)D black holes, using the opti-
cal geometry and the Gauss–Bonnet theorem, was studied in
Ref. [89], together with the deflection of light by a class of
asymptotically flat phantom wormholes; The accretion pro-

cess in thin disks around static charged and slowly rotat-
ing charged dilaton black holes, using the Novikov–Thorne
model, was investigated in Ref. [90]; For more investiga-
tions, see [91–95]. However, most of these works are focus-
ing on static spherically symmetric, stationary axisymmetric
spacetimes or spacetimes with well-behaved asymptotic, or
slowly rotating cases generated from the modified Newman–
Janis algorithm. Therefore, there is a need for an extended
study of the geodesic properties of spacetimes with unusual
asymptotic [96].

Meanwhile, on the more theoretical side, the photon
spheres play a crucial role when one images Einstein rings
of black holes in AdS spacetimes or reflects the AdS bound-
ary with the quasinormal modes, which have recently gained
significant attentions [97–106]. Investigations on the null
geodesic and photon sphere of slowly rotating EMD black
holes with unusual asymptotic could thus uncover a little
piece of the new territory to the gauge/gravity correspon-
dence, especially when we have the possibilities to experi-
mentally observe the light path in the framework of analogue
gravity [107,108].

This paper is organized as follows. In Sect. 2, we start by a
briefly introduction to the slowly rotating Einstein–Maxwell-
dilaton black holes. In Sect. 3, by solving the geodesic equa-
tion, we study the trajectories of photon on the equatorial
plane and on a spherical surface, respectively. Conclusions
and discussions are offered in Sect. 4.

2 Einstein–Maxwell-dilaton theory

Following Refs. [36,37,43,45], the action integral for a 4-
dimensional gravity with dilaton and linear Maxwell fields
can be written in the form

S = 1

16π

∫
M

d4x
√−g

×
(
R − 2∇μ�∇μ� − V (�) − e−2α�FμνF

μν
)

− 1

8π

∫
∂M

d3x
√−γΘ(γ ), (1)

where R, �, α are the scalar curvature, the dilaton field
and the dilaton-electromagnetic coupling parameter, respec-
tively. V (�) denotes the potential which depends on the dila-
ton field and Fμν = ∂μAν − ∂ν Aμ is the electromagnetic
filed tensor where Aμ is a component of the electromagnetic
potential. The second term in the action (1) corresponds to
Gibbons-Hawking boundary term. ∂M denotes the bound-
ary of the manifoldM . γμν is the induced metric on ∂M and
Θ is the trace of the extrinsic curvature tensor Θμν on ∂M .
Varying the action with respect to the gravitational field gμν ,
the dilaton field � and the electromagnetic potential Aμ, one
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will obtain the field equations in the following forms:

Rμν = gμν

2

(
V (�) − e−2α�Fρσ F

ρσ
)

+2∂μ�∂ν� + 2e−2α�Fμσ F
σ
ν ; (2)

∇μ∇μ� = 1

4

∂V

∂�
− α

2
e−2α�Fρσ F

ρσ ; (3)

∇μ

(
e−2α�Fμν

)
= 0. (4)

The above field equations admits a slowly rotating black hole
if some conditions are satisfied:

Aϕ = aqh(r) sin2 θ; (5)

V (�) = Λ0e
λ̃0� + Λeλ̃�, (6)

and h(r) is a function to be defined. The metric is then given
by

ds2 = −W (r)dt2 + dr2

W (r)
− 2a f (r) sin2 θdtdφ

+r2R2(r)
(

dθ2 + sin2 θdφ2
)

, (7)

where

W (r) = −mr2γ−1 + (1 + α2)

(1 − α2)

( r
b

)2γ

−Λ(1 + α2)2

2(3 − α2)

r2(1−γ )

b−2γ
+ q2(1 + α2)

r2γ−2

b2γ
; (8)

f (r) = mb2γ r2γ−1 + Λ

2

(1 + α2)2

(3 − α2)

r2(1−γ )

b−2γ

−q2(1 + α2)
r2γ−2

b2γ
; (9)

�(r) = α

(1 + α2)
ln

(
b

r

)
; (10)

R(r) = eα�; (11)

h(r) = r−1. (12)

The parametersm, q, a are relating to the black hole’s mass,
charge and the angular momentum, respectively. Especially,
the black hole’s physical mass M can be represented by

M = 2b2γ ω2

16π(1 + α2)
m, (13)

where ω2 is the surface area of a 2-dimensional unit hyper-
sphere. For other parameters, one could take them in the
following form:

Λ0 = 2α2

b2(α2 − 1)
; (14)

λ̃0 = 2

α
; (15)

λ̃ = 2α; (16)

γ = α2

1 + α2 . (17)

b is an integration constant that can be set to be unity, while Λ

is treated as an effective cosmological constant that appears
due to the dilaton potential (6). In the limit α → 0 one will
recover the metric functions for a (n+1)-dimensional slowly
rotating charged Kerr–AdS black hole [35,38] while α = 1
corresponds to the low-energy limit of string theory. In this
article we will focus on the weak coupling α = 0.1.

3 Null geodesic

3.1 Null geodesics on the equatorial plane

As an example, in this section we will investigate the geodesic
structure of photons in a slowly rotating EMD spacetime (7).
The Lagrangian is written as

L = 1

2

(
gtt ṫ

2 + grr ṙ
2 + 2gtφ ṫ φ̇ + gφφφ̇2 + gθθ θ̇

2
)

, (18)

where the dot represents the derivative with respect to an
affine parameter λ. Then two Killing vectors related to the
time and azimuth angle translation invariance of the space-
time provide two conserved quantities, the energy E and the
angular momentum Lφ of the photon:

∂L

∂ ṫ
= gtt ṫ + gtφφ̇ ≡ −E,

∂L

∂φ̇
= gφφφ̇ + gtφ ṫ ≡ Lφ. (19)

To proceed, one usually needs the third quantity, namely
the Carter constant to separate the Euler–Lagrange differen-
tial equations for geodesic motion [109]. However, the Jacobi
action is inseparable in the present spacetime. To see this, we
define the action as

S = −1

2
μ2λ − Et + Lφφ + S̃(r, θ), (20)

with

∂S

∂λ
= 1

2
gi j

∂S

∂xi
∂S

∂x j
, (21)

one will have

(
∂ S̃

∂θ

)2

+ L2
φ csc2 θ + r2R2(r)W (r)

(
∂ S̃

∂r

)2

=
(
aLφ f (r) − Er2R2(r)

)2

a2 f 2(r) sin2 θ + r2R2(r)W (r)
, (22)

which shows the indivisibility. Indeed, the metric (7) is a
Petrov type I spacetime, and violates the so-called Levi-
Civita theorem [110–112].
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We now focus on the equatorial plane with θ = π/2. In
such case, the geodesic equations for photons are given by

ṙ2 =
W (r)

(
E2r2R2(r) − 2aELφ f (r) − L2

φW (r)
)

a2 f 2(r) + r2R2(r)W (r)
,

ṫ = Er2R2(r) − aLφ f (r)

a2 f 2(r) + r2R2(r)W (r)
,

φ̇ = aE f (r) + LφW (r)

a2 f 2(r) + r2R2(r)W (r)
. (23)

By eliminating the affine parameter, the relation between
r and φ is written as

(
dr

dφ

)2

+ W (r)
(
2aB f (r) − r2R2(r) + B2W (r)

)
(a f (r) + BW (r))2

×
(
a2 f 2(r) + r2R2(r)W (r)

)
= 0, (24)

where B ≡ Lφ/E is the impact parameter. By setting a con-
stant radial motion in (23), the effective potential is defined
as

Vef f (r) = W (r)Lφ

−a f (r) ± √
a2 f 2(r) + r2R2(r)W (r)

, (25)

where “+” for prograde motion and “−” for retrograde
motion, respectively.

Figure 1 shows the behavior of the effective potential
as a function of r for Λ = −1, −5 and −10, respec-
tively. Other parameters have been specifically chosen as
b = 1, a = 0.1,m = 1, q = 0.1, α = 0.1, considering
the slowly rotating case and weak coupling. The values of
these parameters should be restricted to guarantee the exis-
tence of black hole horizon, i.e.,W (r) should have at least one

Fig. 1 The effective potential as a function of r for different Λ with
b = 1, a = 0.1,m = 1, q = 0.1, α = 0.1. The horizontal lines show
Vef f (r → ∞) for each Λ. The solid black line stands for Vef f (r) with
vanishing Λ

solution.1 As a comparison, the solid black line describes the
behavior of the effective potential when Λ is zero but other
parameters remain unchanged. Unsurprisingly, the nonzero
Λ leads to a finite Vef f at r → ∞, while Vef f (r → ∞) = 0
for Λ = 0.

The existence of circular geodesics require E = Vef f (rph)
and V ′

e f f (rph) = 0, where rph is the radius of the photon
sphere. With the previous chosen parameters and the numer-
ical method, we plot the number of photon orbits around the
black hole n = �φ/2π and trajectories of photons as a func-
tion of the impact parameter B for the slowly rotating EMD
black holes with parameter Λ = −10,Λ = −1 and Λ = 0
in Fig. 2, where �φ is the deflection angle of photons on the
equatorial plane. It should be noted that in our numerical cal-
culation, the light source is located at a very distant position,
which can be approximated as being infinity. Following the
definitions in Ref. [113] the photons are classified into three
classes according to n: the first class is defined as n ≤ 3/4,
where the deflection angle of the photons is less than 3π/2.
The second class with 3/4 < n ≤ 5/4, where light rays
deflect with angles 3π/2 < �φ ≤ 5π/2. The final class is
that the light rays deflect with n > 5/4.

One can tell that due to the unusual asymptotics, the tra-
jectories of photons diffuse when the impact parameter B
increases. Especially, for the larger absolute value of Λ, the
diffusion is more obvious. This effect actually shows the
inhomogeneity of the spacetime. Meanwhile, to make sure
the square is positive, B is bounded by (24). This restriction
could be used to understand the repulsive curves shown in the
third column of Fig. 2. Indeed, for large enough r , the crit-
ical condition dr/dφ = 0 for (24) could be approximately
expressed as

r ζ
min = ζ

[
BΛ(1 + α2)2(2a − B) + 2α2 − 6

]
4B2(3 − α2)

, (26)

where ζ = −2 + 4γ . rmin is actually the closest point to
the black hole for each photon trajectory in the third class.
Since ζ < 0 this equation will finally give us fixed Bmax

relating to nonzero Λ, i.e., for nonzero Λ, the value of B
cannot be arbitrarily large, and this Bmax decreases as Λ

decreases, see the first row of Fig. 2. For Λ = 0, (26)
is simply r ζ

min = −ζ/(2B2). With this in hand, by trans-
forming (r, φ) into the Cartesian coordinates (x, y) we can
always find a “straight line” y = −kx + C where k > 0 and
C = r(φ = π/2). This will also lead us a specified Bcrit for
each nonzero Λ such that for B < Bcrit the trajectories bend-
ing towards the black hole while for Bcrit < B < Bmax the
trajectories bending away from the black hole. For the case
Λ = 0 there does not exist such a Bcrit , see Appendix A for

1 Actually for the parameters we have chosen, W (r) = 0 has two
solutions r+ > r− > 0. However, we only consider the photon orbits
with radius larger than r+.
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Fig. 2 The number of photon orbits n (top panel) and trajectories of
photons (bottom panel) as a function of the impact parameter B for the
slowly rotating EMD black holes with Λ = 0 (left column), Λ = −1
(middle column) and Λ = −10 (right column). The black lines, gold

lines, and red lines correspond to (n < 3/4), (3/4 < n < 5/4), and
(n > 5/4), respectively. The black disk and the dashed curves denote
the event horizon and photon sphere

more calculations. This analytical treatment gives the ratio-
nality of the diffusion effect and even the repulsive trajec-
tories, but the physics behind these phenomena still deserve
deeper study. Furthermore, this analysis also elucidates the
reductions of the widths of B for the second and third class
photons with a greater absolute value of Λ, which is consis-
tent with the trajectories of photons in the second tier.

Another point arises from the relation between B and a,
see Eq. (24) and Fig. 3. For B > a, no singularities exist in
Eq. (24) and the path of photons can fall into the horizon.
For B < a, the paths have two branches. One will fall into
the horizon and the other one will nonphysically “bounces
off”. In particular, for Λ = 0, the situation occurs only for
B < 0, regardless of the values of a. In Fig. 4, we plot the
photon paths for positive and negative impact parameter B
with Λ = −1 as an example. As expected, the paths are
different for B with same absolute value but different sign,
which is understandable due to the drag effect of the rotating
black hole.

3.2 Null geodesics on the spherical orbits

We now consider the null geodesics on the spherical orbits
which are special cases of photon surface [114,115]. Since
the black hole is assumed to rotate slowly, performing a
perturbative expansion of a is reasonable. Discarding the
limitation of θ = π/2, and utilizing the Hamilton–Jacobi
techniques, the geodesic equations governing the motion of

Fig. 3 A contour-plot of the condition a f (r) + BW (r) = 0 for a =
0.1 (red dotdashed), a = 0.3 (green dashed), a = 0.5 (solid black),
respectively. The horizontal lines show the corresponded a and we set
Λ = −1. The curves are similar for Λ = −10

lightlike particles are given by

ṫ = Er2R2(r) − aLz f (r)

r2R2(r)W (r)
,

φ̇ = aE f (r) + Lz csc2 θW (r)

r2R2(r)W (r)
,
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Fig. 4 The photon paths for positive (dashed lines) and negative (solid
lines) B, respectively. The effective cosmological constant Λ = −1.
B = ±0.1,±1.77,±2

r2R2(r)ṙ2 = E2r2R2(r) − 2aELz f (r) − W (r)C ,

= R(r),

r4R4(r)θ̇2 =
(
C − L2

z csc2 θ
)

= Θ(θ), (27)

where C is the Carter constant and we use Lz for the angular
momentum corresponding to the symmetry axis with differ-
ent θ . Note for the equatorial plane, θ̇ = 0, so C = L2

z .
Substituting the Carter constant in the third equation, one
will recover Eq. (23) with small a. The spherical orbits will
require

R(r) = 0,
dR(r)

dr
= 0, (28)

which generates two equations:

C

E2 = r R(r)
(
r R(r) f ′(r) − 2 f (r)

(
R(r) + r R′(r)

))
W (r) f ′(r) − f (r)W ′(r)

,

Lz

E
= r R(r)

(
2W (r)

(
R(r) + r R′(r)

) − r R(r)W ′(r)
)

2a (W (r) f ′(r) − f (r)W ′(r))
.

(29)

Then one can define the effective inclination angle i as

cos i = Lz√
L2
z + C

. (30)

The radius of polar orbits can be calculated by setting Lz =
0, i.e., cos i = 0. While for the equatorial plane, one has
C = L2

z so cos i = ±1/
√

2. By eliminating E in Eq. (29),

one can obtain the following equation:

M1r
2+M2r+M3+M4r

−1 + M5r
−2 +

2∑
n=0

Nnr
ζ−n = 0,

(31)

where ζ = −2 +4γ , and the detailed expressions of M ,N
are given in Appendix B. Thus the radii of generic spherical
photon orbits are provided by the positive real roots of this
equation.

Finding the analytical solutions to Eq. (31) is a difficult
task. But one can analytically solve the ordinary differential
equations of θ and φ for each root of (31). With the definition
Z (λ) = csc θ , the forth equation in (27) can be rewritten as

(
Z ′(λ)

)2 = −ξZ 2(λ) + (ξ + η)Z 4(λ) − ηZ 6(λ), (32)

with

ξ = vL2
z

(1 − v)r4R4(r)
, η = L2

z

r4R4(r)
, (33)

where v ≡ sin2 i ∈ [1/2, 1]. Note that here r is the root of
(31). The solution to Eq. (32) is

Z (λ) =
√

ξ

√
sec [√ξ(λ − cθ )]2

√
ξ + η tan [√ξ(λ − cθ )]2

, (34)

where cθ is a constant determined by initial conditions. If we
set the initial conditions as csc θ0 = μ, then

cθ = ± 1√
ξ

arcsec

(
μ√
ξ

√
(η − ξ)ξ

ημ2 − ξ

)
. (35)

Due to the oscillations of θ about equatorial plan, one can
choose either + or −. The differential equation of φ can be
recast into

φ′(λ) = δ + ζZ 2(λ), (36)

with the solution

φ(λ) = cφ +
∫ λ

1

(
δ + ζZ 2(y)

)
dy (37)

and

δ = aE f (r)

r2R2(r)W (r)
, ζ = Lz

r2R2(r)
. (38)

cφ is also determined by the initial conditions, and by setting
φ0 = 0 one will have

cφ = δ + ζ√
η

arctan

[√
η tan [√ξ(1 + cθ )]√

ξ

]

− ζ√
η

arctan

[√
η tan (

√
ξcθ )√

ξ

]
. (39)
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Fig. 5 The effect of Λ on the period Tθ for v = 0.95 (top), 0.75
(middle), 0.55 (bottom), respectively

Without causing any confusion, we will set the start point at
equatorial plan so μ = 0, cθ = 0 for our numerical calcula-
tions.

Equation (34) expresses that the oscillation period of θ

around the equatorial plane is Tθ = 2π/
√

ξ . One can then
determine the effect of Λ on this period using Eq. (31),
which has been shown in Fig. 5. It is clear that the period Tθ

increases as the absolute value of Λ increasing. A diffusion-
like behavior also happens when we compare the period dif-
ference for v = 0.55 and 0.95 as |Λ| increasing, see Sect. 3.3
for more discussions. Especially, one can find a specified root
of (31) so θ and φ will have same period 2π .

Then we figure out the bound null geodesics on the spheri-
cal orbits for Λ = 0 (the top row), −1 (the middle row), −10
(the bottom row) with v = 0.75 and v = 0.55, showing in
Fig. 6. The differences among the plots in each row indicate
that the effect of unusual asymptotics is significant. We can
also tell that the drag effect reflects in the motions of pro-
grade and retrograde photons by comparing the trajectories
between the second and third columns.

3.3 Photon regions

The region accommodating the photon orbits that stay on
a sphere constitute the so-called photon region. Besides the
conditions (28), the photon region also needs the condition
Θ(θ) ≥ 0, which leads to

r R(r) f ′(r) − 2 f (r)
d(r R(r))

dr

≤ csc2 θ

(
2rW (r)R′(r) + 2W (r)R(r) − r R(r)W ′(r)

)2

4a2 (W (r) f ′(r) − f (r)W ′(r))
,

(40)

where the prime denotes a derivative to r . The stable or unsta-
ble spherical null geodesics in this region are determined by
the sign of R ′′(r). The condition R ′′(r) > 0 indicates that

the spherical null geodesics are unstable, while R ′′(r) < 0
indicates the stable spherical null geodesics. We consider
only the photon region outside the black hole horizon.

Figure 7 shows the photon regions for Λ = −1 and
−10. With smaller horizon radius, the photon region becomes
larger. In other words, a negative Λ with larger absolute value
will cause a larger photon region. This feature also explains
the behavior in Fig. 5. In fact, the spherical orbits are more
closer to black hole horizon for larger Λ, resulting in a shorter
period for zenith angle θ .

4 Closing remarks

In this article, we analytically and numerically studied the
null geodesics around a slowly rotating black hole with
unusual asymptotics in Einstein–Maxwell-dilaton gravity. In
order to disclose the effects of unusual asymptotic behaviors
on the trajectories of photons, we, as a first attempt, trace the
photons’ motions on the equatorial plane and on the spherical
surface, respectively.

Comparing to asymptotically flat spacetime, we found
some interesting features for the trajectories of photons on
the equatorial plane of the rotating black hole with unusual
asymptotics denoted by an effective cosmological constant
Λ. Firstly, the effective potential of the photons asymptoti-
cally approaches a finite constant depending on Λ, instead
of zero in the asymptotically flat case. Secondly, the unusual
asymptotics make the trajectories of photons diffuse and this
diffusion is more significant for the larger absolute value
of Λ, which corresponds to that the central shadow region
and the widths of B for the second class photons as well as
the third class photons all become smaller as the absolute
value of Λ increases. In addition, we observed the repul-
sive trajectories of the photon in the case with nonzero Λ, of
which we give the analytical understanding from the equation
of motion. We believe that the deeper physics behind these
novel features deserve further investigation, and the work in
this direction is in progress.

Then, we extended the study into spherical orbits by per-
forming a perturbative expansion on a so we can let θ be
free. We found that it is tough to analytically solve the com-
plete null geodesic equations, but we can fix the trajectories
in a spherical surface and analytically solve the equations for
θ and φ. So we managed to plot the bound trajectories of
photons on the spherical surface, where the prints of unusual
asymptotics are explicit. Finally, we figured out the photon
regions of this rotating black hole with unusual asymptotics.
Though the black hole with a negative Λ with larger abso-
lute value have smaller event horizon, it has a wider photon
region due to the diffusion of light rays.

The study of null geodesic and the trajectories of pho-
tons around a central black hole is the first step to explore
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Fig. 6 The bound null geodesics on the spherical orbits for Λ = 0
(top), Λ = −1 (middle) and Λ = −10 (bottom). For each row from
left to right v = 0.75, 0.55, 0.55, which will fix the radius of the
spherical orbits by Eq. (31) together with other chosen parameters

α = 0.1, a = 0.1,m = 1, q = 0.1, E = 0.2. Especially, the first
and second columns correspond to prograde motion, and the third col-
umn is retrograde motion, respectively

the black hole shadow and images. Our results have shown
the difference with those usual asymptotics black holes, so
the shadows related physics for the black hole with unusual
asymptotics in this scenario and beyond could be an interest-
ing direction. Moreover, the spacetime we consider here is
the low-energy limits of string theory – a popular quantum
gravity theory, and the trajectories of photons indeed shew
the inhomogeneity of the spacetime, which behave distin-

guishable from those in Einstein theory, so we hope that our
results could inspire more studies on the properties of quan-
tum gravity such as the nonsupersymmetry from black holes
with unusual asymptotics. Additionally, We also expect that
this direction somehow has potential connections with EHT
observations, such that the black hole with unusual asymp-
totics could become a good platform for testing quantum
gravity.
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Fig. 7 The photon region outside the horizon for Λ = −1 (orange)
and Λ = −10 (yellow). The red dashed line and black solid line denote
the horizons for Λ = −1 and Λ = −10, respectively. The blue circles
and dark diamonds signify the photon spheres on the equatorial plan
with Λ = −1 and Λ = −10, respectively
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Appendix A: Calculations for Bcri t

We can use one coordinate transformation, two equations and
three points to determine Bcrit .

– To proceed, we first transform the polar coordinate (r, φ)

into the Cartesian coordinate (x, y): x = r cos φ, y =
r sin φ. Therefore, if there really exist different types of
null geodesics with different deflections, there must be a
critical photon trajectory that can be represented in the
Cartesian coordinates as y = −kx + C. Then one will
have the relation

dy

dx
= x + r ′(φ) sin φ

−y + r ′(φ) cos φ
= −k. (A.1)

– Suppose the observer is located at So on the x-axis, and
the impact parameter of the critical trajectory is B, then
we have the first relation

B = −kSo + C, (A.2)

where So is taken to be finite but large enough in our
calculations.

– Consider φ = π/2, which corresponds to x = 0. Then
y = C = r(π/2). Using (A.1) and (24) one will get the
second relation:

k2C2 + W (C)
(
2aB f (C) − C2R2(C) + B2W (C)

)
(a f (C) + BW (C))2

×
(
a2 f 2(C) + C2R2(C)W (C)

)
= 0. (A.3)

The left-hand side of this relation should be positive to
make it true. So the polynomial in the first bracket needs
to be negative. As B is limited for nonzero Λ so C is also
finite.

– The condition r ′(φ) = 0 actually indicates the closet
point rmin to the black hole, leading us to the third rela-
tion:

2aB f (rmin) − r2
min R

2(rmin) + B2W (rmin) = 0. (A.4)

Then using (A.1) we can find the Cartesian coordinates
for this point, i.e.,

xmin = rmin cos φmin = kC

1 + k2 ,

ymin = rmin sin φmin = C

1 + k2 , (A.5)

which represents the fourth relation

rmin = C√
1 + k2

. (A.6)

Now we have four relations (A.2), (A.3), (A.4) and (A.6) for
four unknown parameters (B, k,C, rmin).
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However, for Λ = 0, as been discussed in Sect. 3.1, the
relation (A.4) will not provide an upper bound on B for large
enough r . In other words, B increases as r increases. This
feature violates the relation (A.3) as B could be arbitrarily
large, which indicates that the assumed straight line y =
−kx + C does not exist.

Appendix B: Coefficients

With the definition v = sin2 i , the coefficients of Eq.(31) are

M1 = −4v, (B.1)

M2 = 4a2m(v − 1)(1 + α2)Λ − 4mv(α2 − 3)

α2 + 1
, (B.2)

M3 = 16q2
(
a2(v − 1)(1 + α2)2Λ

α2 − 3
− v

)
− m2v(α2 − 3)2

(1 + α2)2 ,

(B.3)

M4 = −8mq2v(α2 − 3)

a + α2 , (B.4)

M5 = −16vq4, (B.5)

N0 = 4a2m2(v − 1)(α2 − 3)

1 − α2 , (B.6)

N1 = 8a2mq2(v − 1)(5 − α2)(1 + α2)

1 − α2 , (B.7)

N2 = 32a2q4(1 − v)(1 + α2)2

1 − α2 . (B.8)

References

1. C. Rovelli, Loop quantum gravity. Living Rev. Relativ. 11, 5
(2008). https://doi.org/10.12942/lrr-2008-5

2. D. Oriti (ed.), Approaches to Quantum Gravity: Toward a New
Understanding of Space, Time andMatter (Cambridge University
Press, Cambridge, 2009)

3. E. Kiritsis, String Theory in a Nutshell, 2nd edn. (Princeton Uni-
versity Press, Princeton, 2019)

4. R.C. Myers, M.J. Perry, Black holes in higher dimensional
space-times. Ann. Phys. 172, 304 (1986). https://doi.org/10.1016/
0003-4916(86)90186-7

5. R. Myers, Superstring gravity and black holes. Nucl. Phys. B 289,
701 (1987). https://doi.org/10.1016/0550-3213(87)90402-0

6. C.G. Callan, R.C. Myers, M.J. Perry, Black holes in string the-
ory. Nucl. Phys. B 311, 673 (1989). https://doi.org/10.1016/
0550-3213(89)90172-7

7. D. Garfinkle, G.T. Horowitz, A. Strominger, Charged black holes
in string theory. Phys. Rev. D 43, 3140 (1991). https://doi.org/10.
1103/PhysRevD.43.3140

8. E. Witten, String theory and black holes. Phys. Rev. D 44, 314
(1991). https://doi.org/10.1103/PhysRevD.44.314

9. J.M. Maldacena, Black holes in string theory.
arXiv:hep-th/9607235

10. A. Strominger, C. Vafa, Microscopic origin of the Bekenstein–
Hawking entropy. Phys. Lett. B 379, 99 (1996). https://doi.org/
10.1016/0370-2693(96)00345-0

11. C.G. Callan, J.M. Maldacena, D-brane approach to black hole
quantum mechanics. Nucl. Phys. B 472, 591 (1996). https://doi.
org/10.1016/0550-3213(96)00225-8

12. J. Maldacena, L. Susskind, D-branes and fat black holes.
Nucl. Phys. B 475, 679 (1996). https://doi.org/10.1016/
0550-3213(96)00323-9

13. J.C. Breckenridge, R.C. Myers, A.W. Peet, C. Vafa, D-branes and
spinning black holes. Phys. Lett. B 391, 93 (1997). https://doi.
org/10.1016/S0370-2693(96)01460-8

14. R. Emparan, G.T. Horowitz, R.C. Myers, Black holes radiate
mainly on the brane. Phys. Rev. Lett. 85, 499 (2000). https://
doi.org/10.1103/PhysRevLett.85.499

15. T. Mohaupt, Black holes in supergravity and string theory.
Class. Quantum Gravity 17, 3429 (2000). https://doi.org/10.1088/
0264-9381/17/17/303

16. K. Maeda, M. Nozawa, Black hole solutions in string theory.
Prog. Theor. Phys. Suppl. 189, 310 (2011). https://doi.org/10.
1143/PTPS.189.310

17. C.S. Shahbazi, Black holes in supergravity with applications to
string theory. arXiv:1307.3064

18. L. Pieri, Black holes in string theory. arXiv:1911.11670
19. G.W. Gibbons, K. Maeda, Black holes and membranes in higher-

dimensional theories with dilaton fields. Nucl. Phys. B 298, 741
(1988). https://doi.org/10.1016/0550-3213(88)90006-5

20. T. Koikawa, M. Yoshimura, Dilaton fields and event hori-
zon. Phys. Lett. B 189, 29 (1987). https://doi.org/10.1016/
0370-2693(87)91264-0

21. J.H. Horne, G.T. Horowitz, Rotating dilaton black holes. Phys.
Rev. D 46, 1340 (1992). https://doi.org/10.1103/PhysRevD.46.
1340

22. M. Rakhmanov, Dilaton black holes with electric charge. Phys.
Rev. D 50, 5155 (1994). https://doi.org/10.1103/PhysRevD.50.
5155

23. S.J. Poletti, D.L. Wiltshire, Global properties of static spherically
symmetric charged dilaton spacetimes with a Liouville potential.
Phys. Rev. D 50, 7260 (1994). https://doi.org/10.1103/PhysRevD.
50.7260

24. K.C.K. Chan, J.H. Horne, R.B. Mann, Charged dilaton black holes
with unusual asymptotics. Nucl. Phys. B 447, 441 (1995). https://
doi.org/10.1016/0550-3213(95)00205-7

25. M. Gürses, E. Sermutlu, Static spherically symmetric solutions
to Einstein–Maxwell dilaton field equations in D dimensions.
Class. Quantum Gravity 12, 2799 (1995). https://doi.org/10.1088/
0264-9381/12/11/011

26. R.-G. Cai, J.-Y. Ji, K.-S. Soh, Topological dilaton black holes.
Phys. Rev. D 57, 6547 (1998). https://doi.org/10.1103/PhysRevD.
57.6547

27. S. Yazadjiev, Exact Static solutions in four-dimensional Einstein–
Maxwell-dilaton gravity. Int. J. Mod. Phys. D 08, 635 (1999).
https://doi.org/10.1142/S0218271899000432

28. S.S. Yazadjiev, Exact static solutions in Einstein–Maxwell-
dilaton gravity with arbitrary dilaton coupling parameter.
arXiv:gr-qc/0101078

29. C.J. Gao, S.N. Zhang, Dilaton black holes in the de Sitter or anti-
de Sitter universe. Phys. Rev. D 70, 124019 (2004). https://doi.
org/10.1103/PhysRevD.70.124019

30. G. Clément, C. Leygnac, Non-asymptotically flat, non-AdS dila-
ton black holes. Phys. Rev. D 70, 084018 (2004). https://doi.org/
10.1103/PhysRevD.70.084018

31. R.-G. Cai, A. Wang, Nonasymptotically AdS/dS solutions and
their higher dimensional origins. Phys. Rev. D 70, 084042 (2004).
https://doi.org/10.1103/PhysRevD.70.084042

32. S.S. Yazadjiev, Rotating nonasymptotically flat black rings in
charged dilaton gravity. Phys. Rev. D 72, 104014 (2005). https://
doi.org/10.1103/PhysRevD.72.104014

123

https://doi.org/10.12942/lrr-2008-5
https://doi.org/10.1016/0003-4916(86)90186-7
https://doi.org/10.1016/0003-4916(86)90186-7
https://doi.org/10.1016/0550-3213(87)90402-0
https://doi.org/10.1016/0550-3213(89)90172-7
https://doi.org/10.1016/0550-3213(89)90172-7
https://doi.org/10.1103/PhysRevD.43.3140
https://doi.org/10.1103/PhysRevD.43.3140
https://doi.org/10.1103/PhysRevD.44.314
http://arxiv.org/abs/hep-th/9607235
https://doi.org/10.1016/0370-2693(96)00345-0
https://doi.org/10.1016/0370-2693(96)00345-0
https://doi.org/10.1016/0550-3213(96)00225-8
https://doi.org/10.1016/0550-3213(96)00225-8
https://doi.org/10.1016/0550-3213(96)00323-9
https://doi.org/10.1016/0550-3213(96)00323-9
https://doi.org/10.1016/S0370-2693(96)01460-8
https://doi.org/10.1016/S0370-2693(96)01460-8
https://doi.org/10.1103/PhysRevLett.85.499
https://doi.org/10.1103/PhysRevLett.85.499
https://doi.org/10.1088/0264-9381/17/17/303
https://doi.org/10.1088/0264-9381/17/17/303
https://doi.org/10.1143/PTPS.189.310
https://doi.org/10.1143/PTPS.189.310
http://arxiv.org/abs/1307.3064
http://arxiv.org/abs/1911.11670
https://doi.org/10.1016/0550-3213(88)90006-5
https://doi.org/10.1016/0370-2693(87)91264-0
https://doi.org/10.1016/0370-2693(87)91264-0
https://doi.org/10.1103/PhysRevD.46.1340
https://doi.org/10.1103/PhysRevD.46.1340
https://doi.org/10.1103/PhysRevD.50.5155
https://doi.org/10.1103/PhysRevD.50.5155
https://doi.org/10.1103/PhysRevD.50.7260
https://doi.org/10.1103/PhysRevD.50.7260
https://doi.org/10.1016/0550-3213(95)00205-7
https://doi.org/10.1016/0550-3213(95)00205-7
https://doi.org/10.1088/0264-9381/12/11/011
https://doi.org/10.1088/0264-9381/12/11/011
https://doi.org/10.1103/PhysRevD.57.6547
https://doi.org/10.1103/PhysRevD.57.6547
https://doi.org/10.1142/S0218271899000432
http://arxiv.org/abs/gr-qc/0101078
https://doi.org/10.1103/PhysRevD.70.124019
https://doi.org/10.1103/PhysRevD.70.124019
https://doi.org/10.1103/PhysRevD.70.084018
https://doi.org/10.1103/PhysRevD.70.084018
https://doi.org/10.1103/PhysRevD.70.084042
https://doi.org/10.1103/PhysRevD.72.104014
https://doi.org/10.1103/PhysRevD.72.104014


Eur. Phys. J. C (2024) 84 :271 Page 11 of 13 271

33. S.S. Yazadjiev, Non-asymptotically flat, non-DS/AdS dyonic
black holes in dilaton gravity. Class. Quantum Gravity 22, 3875
(2005). https://doi.org/10.1088/0264-9381/22/19/005

34. A. Sheykhi, M.H. Dehghani, N. Riazi, J. Pakravan, Thermody-
namics of rotating solutions in (n + 1)-dimensional Einstein–
Maxwell-dilaton gravity. Phys. Rev. D 74, 084016 (2006). https://
doi.org/10.1103/PhysRevD.74.084016

35. A.N. Aliev, Rotating black holes in higher dimensional Einstein–
Maxwell gravity. Phys. Rev. D 74, 024011 (2006). https://doi.org/
10.1103/PhysRevD.74.024011

36. T. Ghosh, S. SenGupta, Slowly rotating dilaton black hole in anti-
de Sitter spacetime. Phys. Rev. D 76, 087504 (2007). https://doi.
org/10.1103/PhysRevD.76.087504

37. A. Sheykhi, Rotating black holes in Einstein–Maxwell-dilaton
gravity. Phys. Rev. D 77, 104022 (2008). https://doi.org/10.1103/
PhysRevD.77.104022

38. A. Sheykhi, M. Allahverdizadeh, Higher dimensional slowly
rotating dilaton black holes in AdS spacetime. Phys. Rev. D 78,
064073 (2008). https://doi.org/10.1103/PhysRevD.78.064073

39. C. Charmousis, B. Goutéraux, J. Soda, Einstein–Maxwell-dilaton
theories with a Liouville potential. Phys. Rev. D 80, 024028
(2009). https://doi.org/10.1103/10.1103/PhysRevD.80.024028

40. A. Sheykhi, M. Allahverdizadeh, Higher dimensional charged
rotating dilaton black holes. Gen. Relativ. Gravit. 42, 367 (2010).
https://doi.org/10.1007/s10714-009-0854-2

41. C. Knoll, P. Nedkova, Charged rotating dilaton black holes with
Kaluza–Klein asymptotics. Phys. Rev. D 93, 064052 (2016).
https://doi.org/10.1103/PhysRevD.93.064052

42. H. Lü, P. Mao, J.-B. Wu, Asymptotic structure of Einstein–
Maxwell-dilaton theory and its five dimensional origin. J.
High Energy Phys. 2019, 5 (2019). https://doi.org/10.1007/
JHEP11(2019)005

43. M.M. Stetsko, Slowly rotating Einstein–Maxwell-dilaton black
hole and some aspects of its thermodynamics. Eur. Phys. J. C 79,
244 (2019). https://doi.org/10.1140/epjc/s10052-019-6738-z

44. Y. Younesizadeh, A.H. Ahmed, A.A. Ahmad, Y. Younesizadeh,
M. Ebrahimkhas, Modified BTZ black hole and some ther-
modynamical properties in dilaton/scalar gravity model. Eur.
Phys. J. Plus 135, 686 (2020). https://doi.org/10.1140/epjp/
s13360-020-00695-z

45. Y. Huang, H. Zhang, Quasibound states of charged dilatonic black
holes. Phys. Rev. D 103, 044062 (2021). https://doi.org/10.1103/
PhysRevD.103.044062

46. B.H. Fahim, M. Ghezelbash, New class of exact solutions to
Einstein–Maxwell-dilaton theory on four-dimensional Bianchi
type IX geometry. Eur. Phys. J. C 81, 587 (2021). https://doi.
org/10.1140/epjc/s10052-021-09395-z

47. Y. Younesizadeh, F. Younesizadeh, M.M. Qaemmaqami, Gravita-
tional lensing and shadow of charged black holes in the low-energy
limit of string theory. Eur. Phys. J. Plus 137, 76 (2022). https://
doi.org/10.1140/epjp/s13360-021-02290-2

48. M.G. Richarte, É.L. Martins, J.C. Fabris, Scattering and absorp-
tion of a scalar field impinging on a charged black hole in
the Einstein–Maxwell-dilaton theory. Phys. Rev. D 105, 064043
(2022). https://doi.org/10.1103/PhysRevD.105.064043

49. Q. Qi, Y. Meng, X.J. Wang, X.M. Kuang, Gravitational lens-
ing effects of black hole with conformally coupled scalar hair.
Eur. Phys. J. C 83(11), 1043 (2023). https://doi.org/10.1140/epjc/
s10052-023-12233-z

50. J.C. Fabris, G.T. Marques, Hawking radiation for non-
asymptotically flat dilatonic black holes using gravitational
anomaly. Eur. Phys. J. C 72, 2214 (2012). https://doi.org/10.1140/
epjc/s10052-012-2214-8

51. M.E. Rodrigues, G.T. Marques, Thermodynamics of a class of
non-asymptotically flat black holes in Einstein–Maxwell-dilaton

theory. Gen. Relativ. Gravit. 45, 1297 (2013). https://doi.org/10.
1007/s10714-013-1529-6

52. R.-G. Cai, Y.S. Myung, Y.-Z. Zhang, Check of the mass bound
conjecture in de Sitter space. Phys. Rev. D 65, 084019 (2002).
https://doi.org/10.1103/PhysRevD.65.084019

53. G. ’t Hooft, Dimensional reduction in quantum gravity.
arXiv:gr-qc/9310026

54. L. Susskind, The world as a hologram. J. Math. Phys. 36, 6377
(1995). https://doi.org/10.1063/1.531249

55. E. Witten, Anti de Sitter space and holography. Adv. Theor. Math.
Phys. 2, 253 (1998). https://doi.org/10.4310/ATMP.1998.v2.n2.
a2

56. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory cor-
relators from non-critical string theory. Phys. Lett. B 428, 105
(1998). https://doi.org/10.1016/S0370-2693(98)00377-3

57. L. Susskind, E. Witten, The holographic bound in anti-de Sitter
space. arXiv:hep-th/9805114

58. A.M. Polyakov, String theory and quark confinement. Nucl.
Phys. Proc. Suppl. 68, 1 (1998). https://doi.org/10.1016/
S0920-5632(98)00135-2

59. J. Maldacena, The large-N Limit of superconformal field theories
and supergravity. Int. J. Theor. Phys. 38, 1113 (1999). https://doi.
org/10.1023/A:1026654312961

60. I. Kanitscheider, K. Skenderis, M. Taylor, Precision holography
for non-conformal branes. J. High Energy Phys. 2008, 094 (2008).
https://doi.org/10.1088/1126-6708/2008/09/094

61. K. Goldstein, S. Kachru, S. Prakash, S.P. Trivedi, Holography of
charged dilaton black holes. J. High Energy Phys. 2010, 78 (2010).
https://doi.org/10.1007/JHEP08(2010)078

62. C.-M. Chen, D.-W. Pang, Holography of charged dilaton black
holes in general dimensions. J. High Energy Phys. 2010, 93
(2010). https://doi.org/10.1007/JHEP06(2010)093

63. S.S. Gubser, F.D. Rocha, Peculiar properties of a charged dilatonic
black hole in AdS5. Phys. Rev. D 81, 046001 (2010). https://doi.
org/10.1103/PhysRevD.81.046001

64. C. Charmousis, B. Goutéraux, B. Soo Kim, E. Kiritsis, R. Meyer,
Effective holographic theories for low-temperature condensed
matter systems. J. High Energy Phys. 2010, 151 (2010). https://
doi.org/10.1007/JHEP11(2010)151

65. O. DeWolfe, S.S. Gubser, C. Rosen, A holographic critical
point. Phys. Rev. D 83, 086005 (2011). https://doi.org/10.1103/
PhysRevD.83.086005

66. B.-H. Lee, S. Nam, D.-W. Pang, C. Park, Conductivity in an
anisotropic background. Phys. Rev. D 83, 066005 (2011). https://
doi.org/10.1103/PhysRevD.83.066005

67. B. Goutéraux, J. Smolic, M. Smolic, K. Skenderis, M. Taylor,
Holography for Einstein–Maxwell-dilaton theories from general-
ized dimensional reduction. J. High Energy Phys. 2012, 89 (2012).
https://doi.org/10.1007/JHEP01(2012)089

68. R.-G. Cai, S. He, D. Li, A hQCD model and its phase diagram in
Einstein–Maxwell-dilaton system. J. High Energy Phys. 2012, 33
(2012). https://doi.org/10.1007/JHEP03(2012)033

69. X.M. Kuang, B. Wang, J.P. Wu, Dynamical gap from hologra-
phy in the charged dilaton black hole. Class. Quantum Grav-
ity 30, 145011 (2013). https://doi.org/10.1088/0264-9381/30/14/
145011

70. T. Ghosh, S. SenGupta, Ads-CFT correspondence in dilaton cou-
pled n dimensional black holes. Astrophys. Space Sci. 357, 2
(2015). https://doi.org/10.1007/s10509-015-2317-4

71. C. Park, Holographic entanglement entropy in the nonconfor-
mal medium. Phys. Rev. D 91, 126003 (2015). https://doi.org/
10.1103/PhysRevD.91.126003

72. R. Rougemont, R. Critelli, J. Noronha-Hostler, J. Noronha, C.
Ratti, Dynamical versus equilibrium properties of the QCD phase
transition: a holographic perspective. Phys. Rev. D 96, 014032
(2017). https://doi.org/10.1103/PhysRevD.96.014032

123

https://doi.org/10.1088/0264-9381/22/19/005
https://doi.org/10.1103/PhysRevD.74.084016
https://doi.org/10.1103/PhysRevD.74.084016
https://doi.org/10.1103/PhysRevD.74.024011
https://doi.org/10.1103/PhysRevD.74.024011
https://doi.org/10.1103/PhysRevD.76.087504
https://doi.org/10.1103/PhysRevD.76.087504
https://doi.org/10.1103/PhysRevD.77.104022
https://doi.org/10.1103/PhysRevD.77.104022
https://doi.org/10.1103/PhysRevD.78.064073
https://doi.org/10.1103/10.1103/PhysRevD.80.024028
https://doi.org/10.1007/s10714-009-0854-2
https://doi.org/10.1103/PhysRevD.93.064052
https://doi.org/10.1007/JHEP11(2019)005
https://doi.org/10.1007/JHEP11(2019)005
https://doi.org/10.1140/epjc/s10052-019-6738-z
https://doi.org/10.1140/epjp/s13360-020-00695-z
https://doi.org/10.1140/epjp/s13360-020-00695-z
https://doi.org/10.1103/PhysRevD.103.044062
https://doi.org/10.1103/PhysRevD.103.044062
https://doi.org/10.1140/epjc/s10052-021-09395-z
https://doi.org/10.1140/epjc/s10052-021-09395-z
https://doi.org/10.1140/epjp/s13360-021-02290-2
https://doi.org/10.1140/epjp/s13360-021-02290-2
https://doi.org/10.1103/PhysRevD.105.064043
https://doi.org/10.1140/epjc/s10052-023-12233-z
https://doi.org/10.1140/epjc/s10052-023-12233-z
https://doi.org/10.1140/epjc/s10052-012-2214-8
https://doi.org/10.1140/epjc/s10052-012-2214-8
https://doi.org/10.1007/s10714-013-1529-6
https://doi.org/10.1007/s10714-013-1529-6
https://doi.org/10.1103/PhysRevD.65.084019
http://arxiv.org/abs/gr-qc/9310026
https://doi.org/10.1063/1.531249
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9805114
https://doi.org/10.1016/S0920-5632(98)00135-2
https://doi.org/10.1016/S0920-5632(98)00135-2
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1088/1126-6708/2008/09/094
https://doi.org/10.1007/JHEP08(2010)078
https://doi.org/10.1007/JHEP06(2010)093
https://doi.org/10.1103/PhysRevD.81.046001
https://doi.org/10.1103/PhysRevD.81.046001
https://doi.org/10.1007/JHEP11(2010)151
https://doi.org/10.1007/JHEP11(2010)151
https://doi.org/10.1103/PhysRevD.83.086005
https://doi.org/10.1103/PhysRevD.83.086005
https://doi.org/10.1103/PhysRevD.83.066005
https://doi.org/10.1103/PhysRevD.83.066005
https://doi.org/10.1007/JHEP01(2012)089
https://doi.org/10.1007/JHEP03(2012)033
https://doi.org/10.1088/0264-9381/30/14/145011
https://doi.org/10.1088/0264-9381/30/14/145011
https://doi.org/10.1007/s10509-015-2317-4
https://doi.org/10.1103/PhysRevD.91.126003
https://doi.org/10.1103/PhysRevD.91.126003
https://doi.org/10.1103/PhysRevD.96.014032


271 Page 12 of 13 Eur. Phys. J. C (2024) 84 :271

73. B. Swingle, Y. Wang, Holographic complexity of Einstein–
Maxwell-dilaton gravity. J. High Energy Phys. 2018, 106 (2018).
https://doi.org/10.1007/JHEP09(2018)106

74. K. Goto, H. Marrochio, R.C. Myers, L. Queimada, B.
Yoshida, Holographic complexity equals which action? J.
High Energy Phys. 2019, 160 (2019). https://doi.org/10.1007/
JHEP02(2019)160

75. S. Mahapatra, Interplay between the holographic QCD phase dia-
gram and mutual & N-partite information. J. High Energy Phys.
2019, 137 (2019). https://doi.org/10.1007/JHEP04(2019)137

76. P. Jain, S. Mahapatra, Mixed state entanglement measures as probe
for confinement. Phys. Rev. D 102, 126022 (2020). https://doi.org/
10.1103/PhysRevD.102.126022

77. A. Ballon-Bayona, H. Boschi-Filho, E.F. Capossoli, D.M.
Rodrigues, Criticality from Einstein–Maxwell-dilaton hologra-
phy at finite temperature and density. Phys. Rev. D 102, 126003
(2020). https://doi.org/10.1103/PhysRevD.102.126003

78. G. Fu, P. Liu, H. Gong, X.-M. Kuang, J.-P. Wu, Holographic infor-
mational properties for a specific Einstein–Maxwell-dilaton grav-
ity theory. Phys. Rev. D 104, 026016 (2021). https://doi.org/10.
1103/PhysRevD.104.026016

79. R. Rougemont, J. Grefa, M. Hippert, J. Noronha, J. Noronha-
Hostler, I. Portillo, C. Ratti, Hot QCD phase diagram from holo-
graphic Einstein–Maxwell-dilaton models. Prog. Part. Nucl. Phys.
135, 104093 (2024). https://doi.org/10.1016/j.ppnp.2023.104093

80. K. Akiyama et al. (The Event Horizon Telescope Collaboration),
First M87 event horizon telescope results. I. The shadow of the
supermassive black hole. ApJL 875, L1 (2019). https://doi.org/
10.3847/2041-8213/ab0ec7

81. K. Akiyama et al. (The Event Horizon Telescope Collaboration),
First Sagittarius A* event horizon telescope results. I. The shadow
of the supermassive black hole in the center of the Milky Way.
ApJL 930, L2 (2019). https://doi.org/10.3847/2041-8213/ac6674

82. T. Maki, K. Shiraishi, Motion of test particles around a charged
dilatonic black hole. Class. Quantum Gravity 11, 227 (1994).
https://doi.org/10.1088/0264-9381/11/1/022

83. M. Azreg-Aïnou, Light paths of normal and phantom Einstein–
Maxwell-dilaton black holes. Phys. Rev. D 87, 024012 (2013).
https://doi.org/10.1103/PhysRevD.87.024012

84. L. Amarilla, E.F. Eiroa, Shadow of a Kaluza–Klein rotating dila-
ton black hole. Phys. Rev. D 87, 044057 (2013). https://doi.org/
10.1103/PhysRevD.87.044057

85. S.-W. Wei, Y.-X. Liu, Observing the shadow of Einstein–
Maxwell-dilaton-axion black hole. J. Cosmol. Astropart. Phys.
2013, 063 (2013). https://doi.org/10.1088/1475-7516/2013/11/
063

86. K. Flathmann, S. Grunau, Analytic solutions of the geodesic
equation for Einstein–Maxwell-dilaton-axion black holes. Phys.
Rev. D 92, 104027 (2015). https://doi.org/10.1103/PhysRevD.92.
104027

87. S. Soroushfar, R. Saffari, E. Sahami, Geodesic equations in the
static and rotating dilaton black holes: analytical solutions and
applications. Phys. Rev. D 94, 024010 (2016). https://doi.org/10.
1103/PhysRevD.94.024010

88. M. Amir, A. Banerjee, S.D. Maharaj, Shadow of charged worm-
holes in Einstein–Maxwell-dilaton theory. Ann. Phys. 400, 198
(2019). https://doi.org/10.1016/j.aop.2018.11.004

89. A. Övgün, G. Gyulchev, K. Jusufi, Weak gravitational lensing by
phantom black holes and phantom wormholes using the Gauss–
Bonnet theorem. Ann. Phys. 406, 152 (2019). https://doi.org/10.
1016/j.aop.2019.04.007

90. M. Heydari-Fard, M. Heydari-Fard, H.R. Sepangi, Thin accretion
disks and charged rotating dilaton black holes. Eur. Phys. J. C 80,
351 (2020). https://doi.org/10.1140/epjc/s10052-020-7911-0

91. S. Kala, Saurabh, H. Nandan, P. Sharma, Deflection of light
and shadow cast by a dual-charged stringy black hole. Int.

J. Mod. Phys. A 35, 2050177 (2020). https://doi.org/10.1142/
S0217751X20501778

92. Y. Younesizadeh, F. Younesizadeh, M.M. Qaemmaqami, Gravita-
tional lensing and shadow of charged black holes in the low-energy
limit of string theory. Eur. Phys. J. Plus 137, 76 (2022). https://
doi.org/10.1140/epjp/s13360-021-02290-2

93. M. Heydari-Fard, M. Heydari-Fard, H.R. Sepangi, Null geodesics
and shadow of hairy black holes in Einstein–Maxwell-dilaton
gravity. Phys. Rev. D 105, 124009 (2022). https://doi.org/10.
1103/PhysRevD.105.124009

94. S. Vagnozzi, R. Roy, Y.-D. Tsai, L. Visinelli, M. Afrin, A. Allah-
yari, P. Bambhaniya, D. Dey, S.G. Ghosh, P.S. Joshi, K. Jusufi,
M. Khodadi, R.K. Walia, A. övgün, C. Bambi, Horizon-scale tests
of gravity theories and fundamental physics from the Event Hori-
zon Telescope image of Sagittarius A*. Class. Quantum Gravity
40, 165007 (2023). https://doi.org/10.1088/1361-6382/acd97b

95. J. Badía, E.F. Eiroa, Shadows of rotating Einstein–Maxwell-
dilaton black holes surrounded by a plasma. Phys. Rev. D 107,
124028 (2023). https://doi.org/10.1103/PhysRevD.107.124028

96. B. Toshmatov, O. Rahimov, B. Ahmedov, D. Malafarina, Motion
of spinning particles in non asymptotically flat spacetimes.
Eur. Phys. J. C 80, 675 (2020). https://doi.org/10.1140/epjc/
s10052-020-8254-6

97. K. Hashimoto, S. Kinoshita, K. Murata, Einstein rings in holog-
raphy. Phys. Rev. Lett. 123, 031602 (2019). https://doi.org/10.
1103/PhysRevLett.123.031602

98. K. Hashimoto, S. Kinoshita, K. Murata, Imaging black holes
through the AdS/CFT correspondence. Phys. Rev. D 101, 066018
(2020). https://doi.org/10.1103/PhysRevD.101.066018

99. J. Tsujimura, Y. Nambu, Null wave front and Ryu–Takayanagi
surface. Entropy 22, 1297 (2020). https://doi.org/10.3390/
e22111297

100. Y. Kaku, K. Murata, J. Tsujimura, Observing black holes through
superconductors. J. High Energy Phys. 2021, 138 (2021). https://
doi.org/10.1007/JHEP09(2021)138

101. Y. Liu, Q. Chen, X.-X. Zeng, H. Zhang, W. Zhang, Holographic
Einstein ring of a charged AdS black hole. J. High Energy Phys.
2022, 189 (2022). https://doi.org/10.1007/JHEP10(2022)189

102. S. Caron-Huot, Holographic cameras: an eye for the bulk. J.
High Energy Phys. 2023, 47 (2023). https://doi.org/10.1007/
JHEP03(2023)047

103. K. Hashimoto, D. Takeda, K. Tanaka, S. Yonezawa, Spacetime-
emergent ring toward tabletop quantum gravity experiments.
Phys. Rev. Res. 5, 023168 (2023). https://doi.org/10.1103/
PhysRevResearch.5.023168

104. X.-X. Zeng, K.-J. He, J. Pu, G. Li, Holographic Einstein rings of
a Gauss–Bonnet AdS black hole. arXiv:2302.03692

105. K. Hashimoto, K. Sugiura, K. Sugiyama, T. Yoda, Photon sphere
and quasinormal modes in AdS/CFT. arXiv:2307.00237

106. M. Riojas, H.-Y. Sun, The photon sphere and the AdS/CFT cor-
respondence. arXiv:2307.06415

107. C. Barceló, S. Liberati, M. Visser, Analogue gravity. Living Rev.
Relativ. 8, 12 (2005). https://doi.org/10.12942/lrr-2005-12

108. C. Sheng, H. Liu, Y. Wang, S.N. Zhu, D.A. Genov, Trapping light
by mimicking gravitational lensing. Nat. Photon 7, 902 (2013).
https://doi.org/10.1038/nphoton.2013.247

109. B. Carter, Global structure of the Kerr family of gravitational
fields. Phys. Rev. 174, 1559 (1968). https://doi.org/10.1103/
PhysRev.174.1559

110. T. Levi-Civita, Sulla integrazione della equazione di Hamilton–
Jacobi per separazione di variabili. Math. Ann. 59, 383–397
(1904). https://doi.org/10.1007/BF01445149

111. S. Benenti, M. Francaviglia, The theory of separability of the
Hamilton–Jacobi equation and its applications to general relativ-
ity, in General Relativity and Gravitation: One Hundred Years

123

https://doi.org/10.1007/JHEP09(2018)106
https://doi.org/10.1007/JHEP02(2019)160
https://doi.org/10.1007/JHEP02(2019)160
https://doi.org/10.1007/JHEP04(2019)137
https://doi.org/10.1103/PhysRevD.102.126022
https://doi.org/10.1103/PhysRevD.102.126022
https://doi.org/10.1103/PhysRevD.102.126003
https://doi.org/10.1103/PhysRevD.104.026016
https://doi.org/10.1103/PhysRevD.104.026016
https://doi.org/10.1016/j.ppnp.2023.104093
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ac6674
https://doi.org/10.1088/0264-9381/11/1/022
https://doi.org/10.1103/PhysRevD.87.024012
https://doi.org/10.1103/PhysRevD.87.044057
https://doi.org/10.1103/PhysRevD.87.044057
https://doi.org/10.1088/1475-7516/2013/11/063
https://doi.org/10.1088/1475-7516/2013/11/063
https://doi.org/10.1103/PhysRevD.92.104027
https://doi.org/10.1103/PhysRevD.92.104027
https://doi.org/10.1103/PhysRevD.94.024010
https://doi.org/10.1103/PhysRevD.94.024010
https://doi.org/10.1016/j.aop.2018.11.004
https://doi.org/10.1016/j.aop.2019.04.007
https://doi.org/10.1016/j.aop.2019.04.007
https://doi.org/10.1140/epjc/s10052-020-7911-0
https://doi.org/10.1142/S0217751X20501778
https://doi.org/10.1142/S0217751X20501778
https://doi.org/10.1140/epjp/s13360-021-02290-2
https://doi.org/10.1140/epjp/s13360-021-02290-2
https://doi.org/10.1103/PhysRevD.105.124009
https://doi.org/10.1103/PhysRevD.105.124009
https://doi.org/10.1088/1361-6382/acd97b
https://doi.org/10.1103/PhysRevD.107.124028
https://doi.org/10.1140/epjc/s10052-020-8254-6
https://doi.org/10.1140/epjc/s10052-020-8254-6
https://doi.org/10.1103/PhysRevLett.123.031602
https://doi.org/10.1103/PhysRevLett.123.031602
https://doi.org/10.1103/PhysRevD.101.066018
https://doi.org/10.3390/e22111297
https://doi.org/10.3390/e22111297
https://doi.org/10.1007/JHEP09(2021)138
https://doi.org/10.1007/JHEP09(2021)138
https://doi.org/10.1007/JHEP10(2022)189
https://doi.org/10.1007/JHEP03(2023)047
https://doi.org/10.1007/JHEP03(2023)047
https://doi.org/10.1103/PhysRevResearch.5.023168
https://doi.org/10.1103/PhysRevResearch.5.023168
http://arxiv.org/abs/2302.03692
http://arxiv.org/abs/2307.00237
http://arxiv.org/abs/2307.06415
https://doi.org/10.12942/lrr-2005-12
https://doi.org/10.1038/nphoton.2013.247
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1007/BF01445149


Eur. Phys. J. C (2024) 84 :271 Page 13 of 13 271

After the Birth of Albert Einstein, vol. 1, ed. by A. Held (Plenum
Press, New York, 1980)

112. M.O. Katanaev, Complete separation of variables in the geodesic
Hamilton–Jacobi equation. arXiv:2305.02222v2

113. S.E. Gralla, D.E. Holz, R.M. Wald, Black hole shadows, photon
rings, and lensing rings. Phys. Rev. D 100, 024018 (2019). https://
doi.org/10.1103/PhysRevD.100.024018

114. C.-M. Claudel, K.S. Virbhadra, G.F.R. Ellis, The geometry of
photon surfaces. J. Math. Phys. 42, 818 (2001). https://doi.org/
10.1063/1.1308507

115. G.W. Gibbons, C.M. Warnick, Aspherical photon and anti-photon
surfaces. Phys. Lett. B 763, 169 (2016). https://doi.org/10.1016/
j.physletb.2016.10.033

123

http://arxiv.org/abs/2305.02222v2
https://doi.org/10.1103/PhysRevD.100.024018
https://doi.org/10.1103/PhysRevD.100.024018
https://doi.org/10.1063/1.1308507
https://doi.org/10.1063/1.1308507
https://doi.org/10.1016/j.physletb.2016.10.033
https://doi.org/10.1016/j.physletb.2016.10.033

	Trajectories of photons around a rotating black hole with unusual asymptotics
	Abstract 
	1 Introduction
	2 Einstein–Maxwell-dilaton theory
	3 Null geodesic
	3.1 Null geodesics on the equatorial plane
	3.2 Null geodesics on the spherical orbits
	3.3 Photon regions

	4 Closing remarks
	Acknowledgements
	Appendix A: Calculations for Bcrit
	Appendix B: Coefficients
	References




