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Abstract Parton labeling methods are widely used when
reconstructing collider events with top quarks or other
massive particles. State-of-the-art techniques are based on
machine learning and require training data with events that
have been matched using simulations with truth information.
In nature, there is no unique matching between partons and
final state objects due to the properties of the strong force
and due to acceptance effects. We propose a new approach
to parton labeling that circumvents these challenges by recy-
cling regression models. The final state objects that are most
relevant for a regression model to predict the properties of a
particular top quark are assigned to said parent particle with-
out having any parton-matched training data. This approach
is demonstrated using simulated events with top quarks and
outperforms the widely-used χ2 method.

1 Introduction

A common task in collider event reconstruction is assigning
final state objects to a branch of the hypothesized reaction
that generated the event. For example, hard-scatter events
with outgoing quarks and gluons produce jets that can be
associated with their initiating partons. When there are many
outgoing particles from the hard-scatter reaction, this is a
complex combinatorial challenge. Events with multiple top
quarks naturally result in such final states, since nearly all
top quarks decay to a b-quark and a W boson, which sub-
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sequently decays to two quarks or leptons. A key challenge
in many measurements and searches involving top quarks is
the assignment of reconstructed objects with one of the top
quark decay products. Classically, this assignment has used
χ2 or related methods that enumerate all possibilities and
pick the one which is most consistent with having two on-
shell W boson and top quark intermediaries. The difficulty
with these methods is that they do not take into account all
available information and are computationally expensive.

A number of modern machine learning (ML) methods
have been proposed to address these challenges. These tech-
niques range from Boosted Decision Trees [1–3] and exist-
ing neural networks [4,5] to custom, permutation invariant
deep learning methods [6–9]. In all cases, object identifica-
tion can make use of a variety of lepton-, jet- and event-level
properties that were inaccessible with χ2 or likelihood meth-
ods [10]. This is possible because the ML approaches are
trained on simulations, so whatever information is available
and well-modeled (within uncertainty) can be used for object
labeling.

Despite the success of these ML methods, they all share a
common fundamental challenge with classical approaches.
In particular, they all require matched objects for train-
ing. This may be problematic for two reasons (see e.g.
Fig. 1). First, there is no unique match between a hard-
scatter quark/gluon and a jet. A single quark/gluon can
fragment into multiple jets, and a single jet can be com-
posed of hadrons with energy flow originating from multi-
ple quarks/gluons. This is particularly acute for top quarks,
which carry color charge and thus must be color-connected
to another quark/gluon in the event. The extent of the overlap
also depends on the jet clustering algorithm - jets with a larger
catchment area [11] are more likely to be due to the merger
of multiple parton showers. Second, even if a parent object
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Fig. 1 Simulated all-hadronic t t̄ events. In the Ncolors → ∞ limit,
hadrons can be uniquely associated as W boson descendants. Top: num-
ber of jets with at least 10% of their energy from the W+. Bottom: of
these jets, the fraction of their energy from the W+. Jets are clustered
using the anti-kt [11] algorithm with R = 0.4

like a top quark could be uniquely associated with a set of
decay products, acceptance effects will obscure the associa-
tion. In particular, the finite geometric and energy acceptance
of detectors results in missed final state objects.

Our philosophy is to circumvent the issues caused by
object-parton matching by directly regressing onto the tar-
get particle properties. In Ref. [12], we designed the Covari-
ant Particle Transformer (CPT), a partially Lorentz covari-
ant point cloud transformer, to learn the four-vectors of top
quarks given reconstructed jets, leptons, photons, and miss-
ing energy. In this paper, we show how one can reuse such a
regression method to perform parton labeling. We explore
two possibilities, one based on the attention mechanism
within the CPT and one based on the gradient of predicted
four-vectors with respect to the inputs. The latter approach is
compatible with any regression-based top quark reconstruc-
tion method, even if it does not involve neural network atten-
tion. While we still advocate for regression in cases where
the underlying top quark properties are needed, parton label-
ing is still widely used for determining these properties and
no matter what approach is used, parton labels can be useful
for diagnostic purposes.

This paper is organized as follows. Section 2 briefly
reviews the CPT technique and then introduces our two
approaches to extracting parton labels from the regression
model. Numerical results are presented in Sect. 4 using a
dataset that is briefly introduced in Sect. 3. The paper ends
with conclusions and outlook in Sect. 5.

2 Methods

Our goal is to take final states with n top quarks that decay
hadronically and assign jets to one of these quarks. In princi-

ple, one could simultaneously predict n and assign jets, but in
practice, there is often a particular number of target quarks;
if not, one could first run a multi-class classification proce-
dure. We also restrict our approach to assigning three jets to
each top quark. Both ML-based approaches described below
could be modified to assign fewer or more jets by placing
thresholds on the Jacobean values (Sect. 2.2) or the attention
weights (Sect. 2.3), but we leave this to future work.

2.1 Covariant particle transformer

The Covariant Particle Transformer (CPT) is a Transformer-
based [13] neural network tailored for collider physics
applications and has demonstrated superior performance
in predicting top quarks’ kinematics compared to classical
approaches [12]. CPT takes as inputs the 4-vectors and par-
ticle identifications of all observed final state objects (jets,
lepton, photons, etc.) and outputs predicted 4-vectors of a
pre-specified number of top quarks. Compared to the stan-
dard transformer architecture, CPT is designed to respect
important symmetries in collider physics: it is permutation
invariant under reordering of the inputs and partially Lorentz
covariant, meaning if we apply a longitudinal boost and/or
a transverse rotation to all the inputs, CPT’s outputs will be
boosted and/or rotated accordingly, respecting Lorentz sym-
metry.

In each layer of the network, CPT additively updates the
feature vector of every object fi (could be an input or output)
with � fi defined as a function of all the feature vectors { fk} :

� fi =
∑

k

αikϕ( fk), (1)

where ϕ is a learned linear transformation and {αik} are posi-
tive attention weights, which are themselves non-linear func-
tions of { fk}, such that

∑
k αik = 1 for each i. The output

feature vectors are eventually transformed to the predicted
4-vectors of the top quarks. If i is an output index and k
is an input index, then intuitively αik measures the impor-
tance of the information in k for predicting the properties
of i. The above procedure is named the covariant attention
mechanism, which modifies the standard attention mecha-
nism in a transformer to ensure partial Lorentz covariance.
To capture complex correlations between the inputs and out-
puts, CPT uses L = 6 covariant attention layers and H = 4
attention heads per layer to decode the top quark 4-vectors,
where each attention head performs separate learned updates
according to Eq. (1) for added flexibility. We refer readers to
the original CPT paper for a more comprehensive review of
the architecture and implementation.
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2.2 Gradient-based labeling

The idea of the gradient-based method is to assign a jet to
a particular top quark if changes to the jet properties result
in significant changes to the top quark properties. If the top
quarks were produced independently of each other and of
other radiation within the event, then only the jets they pro-
duce should be relevant for reconstructing their properties.
In reality, this is not the case because top quarks and other
objects are correlated through momentum conservation and
other physics effects.

Strictly speaking, the term ‘gradient’ applies to the case
of one-dimensional quantities (e.g. top quark pT ), but for
regression methods that predict multiple top quark properties,
a more accurate name would be ‘Jacobian-based’. For sim-
plicity, we will henceforth always call this method ‘gradient-
based’.

The gradient-based labeling scheme is compatible with
any regression model (not just the CPT from Sect. 2.1) and
is based on the following quantity:

�ik =
∥∥∥∥

(
∂ fi,pT
∂ jk,pT

,
∂ fi,y
∂ jk,y

,
∂ fi,φ
∂ jk,φ

)∥∥∥∥ , (2)

where fi,x is the predicted x ∈ {pT , y, φ} of top quark i and
jk,x is the observed x of jet k. Since fi is a neural network,
we can compute the derivatives in Eq. (2) using the same
automatic differentiation (e.g. back propagation) that is used
when training the network in the first place. We assign jet
k to top quark i if �ik is one of the top three values across
all k. The same jet could be assigned to multiple top quarks.
Equation (2) is not the unique combination of elements from
the Jacobian and it could be that other combinations could
be more effective. We found that using the derivatives with
respect to pT , y, and φ was only slightly better than pT alone.
More complex schemes that weight the different entries sep-
arately are also possible.

When f is a CPT, then �ik is a partial Lorentz scalar
and so the labeling is invariant under longitudinal boosts and
rotations in the transverse plane.

2.3 Attention-based labeling

In each covariant attention layer and attention head in CPT,
the attention weight αik can be interpreted as a measure of
the importance of input k for predicting the properties of
top i, locally in the network. By averaging αik over all lay-
ers and attention heads, we obtain a measure of the overall
importance of input k to top i :

ᾱik = 1

LH

∑

�,h

α�h
ik , (3)

where α�h
ik is the attention weight between top i and input k

in the hth attention head in the �th layer. Similar to gradient-
based labeling, we assign the jet with index k to top quark i
if ᾱik is one of the top three values across all jets.

Due to the design of CPT, all attention weights are par-
tial Lorentz scalars and ᾱik is again a partial Lorentz scalar,
implying the labeling is invariant under longitudinal boosts
and rotations in the transverse plane.

2.4 χ2-based labeling

The baseline parton labeling scheme that we use is a widely
applied χ2 method. In particular, in events with at least two
b-jets, the assignment of jets to top quarks is based on the
combination that minimized the following χ2:

χ2 = (mb1 j1 j2 − mt )
2

σ 2
mbj j

+ (mb2 j3 j4 − mt )
2

σ 2
mbj j

+ (m j1 j2 − mW )2

σ 2
m j j

+ (m j3 j4 − mW )2

σ 2
m j j

, (4)

where mt and mW are the top quark and W boson masses,
respectively, and σmbj j and σm j j are the resolutions of truth-
matched top and W events, respectively. Events without six
jets, two of which are b-tagged, are not reconstructable with
the χ2 method. It may be possible to recover some of the
non-reconstructable cases using other approaches for the b-
jets (e.g. taking the highest energy jet(s)), so we check that
our results hold in cases where events have two b-jets.

3 Dataset

For numerical studies, we use the same dataset as in Ref. [12],
which is briefly summarized below. Top quark pair produc-
tion in association with a Higgs boson1 in proton–proton
collisions is generated with Madgraph@NLO 2.3.7 [14] at
next-to-leading order (NLO) in Quantum Chromodynamics
(QCD). The decays of the top quarks are simulated with Mad-
Spin [15] and then the rest of the particle-level generation is
created with Pythia 8.235 [16]. While this dataset does not
emulate detector effects, the salient features of the problem
are already present at particle level. Jets are clusterd using
the anti-kt [17] algorithm with R = 0.4 as implemented in
FastJet 3.3.2 [18,19].

1 The Higgs boson decays to photons and is largely ignored and irrel-
evant for jet labeling. We use this sample because it was the main one
used in Ref. [12], although it was also shown that the performance is
similar in other top quark final states.
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Fig. 2 The fraction of truth-matched tops that have exactly the same
labels from the truth matching and from the indicated reconstruction
method. Note that these truth labels are not unique, but this is a standard
metric. Top: all events that pass the preselection. Bottom: only events
with at least two b-jets. Random corresponds to events with at least six
jets and from these, two sets of three are randomly selected

Jets are required to have |y| ≤ 2.5 and pT ≥ 25 GeV.
Jets that are �R matched2 to b-quarks at the parton level
are labeled as b-jets; this label is removed randomly for
30% of the b-jets, to mimic the inefficiency of a realistic
b-tagging [20,21]. We further apply a preselection on the
testing set of Nbjet > 0 and Njet ≥ 3 to mimic realistic data
analysis requirements.

When we need to refer to classical truth labels, we will
call top quarks that have all three decay products as ‘truth-
matched’ when each of the three quark decay products is
within �R < 0.4 of exactly one jet.

4 Results

First, we consider standard, non-unique metrics for evaluat-
ing performance. In particular, truth-matched top quarks are
compared with each reconstruction method to see the fraction
of the time that all three jets are the same. As noted earlier, the
truth match labels are not unique, but this is a standard metric
for quantifying performance. Figure 2 shows the frequency
of an exact match for each method and for different jet multi-

2 �R is defined as
√

�y2 + �φ2, where �y is the difference of two
particles in pseudorapidity and �φ is the difference in azimuthal angle.

plicities. The matching generally is harder the more jets there
are in the event because there are more combinations and the
truth label fidelity also degrades (see Fig. 1).

Overall, the attention-based approach outperforms the
other two methods across all configurations, often by a
large margin (10% or more). Inclusively, the gradient-based
method outperforms the classical χ2 assignment, but the two
approaches are comparable after requiring two b-jets. Across
all events and inclusively across jet multiplicities, the χ2

approach has a poor matching frequency (about 10%) in part
because it requires two b-jets and at least six distinct jets.
In contrast, the attention- and gradient-based methods are
still effective when there are fewer jets. The numbers for the
attention-based and χ2-based approaches are similar to the
ones found by Spa- Net [6], although there are a number of
differences in the setup that prohibit a precise comparison.

The next question is to study events in which there is no
truth-match. Such events are not even part of the training for
other ML-based labeling schemes, but our methods are still
able to assign parton labels in these cases. One way to see
if the assigned jets in such events are sensible is to examine
their trijet invariant mass. Figure 3 presents histograms of
this map inclusively and for events without a truth match.
There are roughly twice as many entries for the attention- and
gradient-based histograms in the top plot of Fig. 3 because of
events where there is no truth match. All five histograms in
the figure look similar, with a peak near the top quark mass of
about 175 GeV [22]. The peak sharpest for the truth-matched
events and is slightly sharper for the attention-based method
than the gradient-based method. This may be expected from
Fig. 2, which indicates that the attention-based approach has
a higher fidelity of picking the ‘correct’ jets.

Our last investigation is if the trijet kinematic properties
in unmatched events are close to the truth top quarks. One
reasonable definition of a ‘good match’ would be that the
reconstructed top properties are close to the truth properties,
which does not require assigning quark identities to the jets.
Since our methods are derived from a top quark property
regressor, we would expect that the trijet properties align
well with the truth top quark properties, but it is important to
check. Figure 4 provides confirmation for the top quark pT
and y.

5 Conclusions and outlook

Parton labeling continues to be an important task in col-
lider event reconstruction even though such labels are not
unique. We have proposed a set of tools based on regres-
sion methods that are able to assign parton labels without
also needing unphysical parton matching for training. Our
approaches are competitive even though they are not trained
using trijet information and are much more flexible than other
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Fig. 3 The invariant mass of jets labeled as originating from the same
top quark in all events (top) and in events without a truth match (bottom).
Random corresponds to events with at least six jets and from these, two
sets of three are randomly selected

Fig. 4 Scatter plots between the true top quark properties (y-axis) and
the trijet kinematic properties (x-axis) for the pT (top) and y (bottom).
None of these events have a truth match. Versions with random jets are
presented in Fig. 5

Fig. 5 Scatter plots between the true top quark properties (y-axis) and
the trijet kinematic properties (x-axis) for the pT (top) and y (bottom)
using three randomly selected jets for each top candidate. None of these
events have a truth match

approaches, since we are able to accommodate events with
fewer jets than expected from the lowest order decay Feyn-
man diagrams. While our techniques are compatible with
many regression approaches, the CPT model studies here is
particularly useful because it is permutation invariant and
partially Lorentz covariant. The corresponding labels inherit
some of these properties.

There are a number of possible ways to further improve
these approaches, including how to best combine the atten-
tion weights or Jacobian elements to assign parton labels. It
may also be possible to combine approaches in the future,
where a simpler model can be trained using the label infor-
mation from a regression model.

Software

The code for this project is built on the one from Ref. [12].
Updated software that produces also the gradients and makes
the figures in this paper can be found at https://github.com/
hep-lbdl/Covariant-Particle-Transformer.
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