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Abstract We estimate the gravitational wave spectra gen-
erated in strongly supercooled phase transitions by bubble
collisions and fluid motion. We derive analytically in the
thin-wall approximation the efficiency factor that determines
the share of the energy released in the transition between the
scalar field and the fluid. We perform numerical simulations
including the efficiency factor as a function of bubble radius
separately for all points on the bubble surfaces to take into
account their different collision times. We find that the effi-
ciency factor does not significantly change the gravitational
wave spectra and show that the result can be approximated
by multiplying the spectrum obtained without the efficiency
factor by its value at the radius Reff � 5/β, where β is the
approximate inverse duration of the transition. We also pro-
vide updated fits for the gravitational wave spectra produced
in strongly supercooled transitions from both bubble colli-
sions and fluid motion depending on the behaviour of the
sources after the collision.

1 Introduction

The first observations of gravitational waves (GWs) by
LIGO/Virgo signified the beginning of a new era in astro-
physics and cosmology. While up to now all observed events
were produced by compact object binaries [1–4], this new
messenger brings hope also for detection of primordial sig-
nals in the form of stochastic GW backgrounds. Given the
tremendous advancements in sensitivity that are expected
throughout a broad frequency spectrum with the upcoming
experiments [5–15], the prospects for probing the early Uni-
verse processes are great even though the compact object
binaries that will contribute to the stochastic GW background
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make the detection of its primordial components more diffi-
cult [16]. Interestingly, the recent pulsar timing observations
[17–20] feature a common spectrum-process which could
be an early indication of the upcoming first detection of a
stochastic GW background, potentially of primordial origin
[21–33].

Many high-energy processes, including phase transitions
[34,35], cosmic strings [36] and inflation [37], occurring in
the early Universe may generate a detectable stochastic GW
background. In this paper we focus on cosmological first-
order phase transitions featured in various particle physics
models. They are intensive processes where bubbles of the
new phase nucleate, expand and eventually convert the whole
Universe in the true vacuum phase [38]. Interactions between
the expanding bubble walls and the surrounding fluid cause
motion and inhomogeneities in the fluid, and both the colli-
sions of the bubble walls and the motion of fluid inhomo-
geneities source GWs [39,40]. The resulting GW spectra
from these components have been extensively studied with
numerical and semi-analytical methods (see e.g. [41–47] for
recent progress). These studies indicate that different sources
active during the transition can produce different GW spec-
tra.

In order to determine the GW spectrum generated in a
phase transition in a given particle physics model, we need to
estimate how much each of the GW sources contributes to the
final GW spectrum. The vacuum energy released in the tran-
sition is split between the gradient energy of the scalar field
bubble wall and motion in the fluid. How the total released
energy is split depends on the strength of the interactions
between the wall and the particles in the fluid, and on the
strength of the transition.

In strongly supercooled phase transitions it is possible that
the interactions of the bubble wall with fluid do not stop the
wall from accelerating before it collides with other bubbles.
In this case most of the released energy is in the bubble walls
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and the bubble collisions give the dominant contribution to
the GW spectrum. This can happen in particular in quasi-
conformal models [48–61]. If the interactions instead are
sufficiently strong, the bubble wall reaches a terminal veloc-
ity before the collisions and majority of the released energy
goes into fluid motion. This is the typical case in extensions
of the Standard Model featuring polynomial scalar potentials
[62–72].

In this paper we derive analytically an efficiency factor
that determines how large is the contribution from each of
the GW sources. We perform numerical simulations of the
phase transition, describing both of the GW sources, bubble
walls and fluid motion, in the thin-wall limit, to show how the
efficiency factor affects the final GW spectrum. Moreover,
we derive analytically the probability density function for
the radius at which a given point on the surface of a bubble
collides with another bubble and verify the results against our
numerical simulations. Finally we also provide updated fits
to the spectral shapes of the GW signals that can be produced
by all sources active in very strong phase transitions.

2 Energy budget

We estimate how the energy released in the bubble expan-
sion is shared between the scalar field gradients and the fluid
motion in strongly supercooled phase transitions by studying
the bubble expansion under the influence of pressure terms
caused by the interactions of the wall with the ambient fluid.
We perform the computation consistently in the thin-wall
limit, which gives a good description of the system if the bub-
ble reaches ultra-relativistic velocities. The following anal-
ysis improves earlier approximations used in the literature
[58,71,73].

In the thin-wall limit the energy carried by the bubble
walls can be modeled using a simple analytical prescription.
This assumes that the bubble walls are spherical shells with
a certain surface energy density and the interactions of the
walls with the ambient fluid are local. In this limit, neglecting
the expansion of the Universe,1 the evolution of the bubble
radius R can be described by the equation of motion [74]

R̈ + 2

R
(1 − Ṙ2) = �P(Ṙ)

σ
(1 − Ṙ2)3/2 (1)

that arises from energy conservation of the coupled system
of fluid and the scalar field bubble. Here �P(Ṙ) denotes
the pressure difference across the bubble wall and σ is the

1 The assumption of neglecting the expansion of the Universe is in the
end related to the nucleation rate of bubbles, and it is valid if the bubble
radius at collision moment is much smaller than the Hubble radius,
〈Rc〉 � 1/H , which translates to the requirement that β/H � 1 (see
Sect. 3).

surface tension of the wall. The latter is defined through the
scalar potential V as [38]

σ ≡
∫ ϕc

0
dϕ

√
2V (ϕ), (2)

where ϕc > 0 denotes the field value at which the potential
energy is the same as in the false vacuum that lies at the
origin, V (ϕc) = V (0).

In terms of the Lorentz factor of the bubble wall, γ =
1/

√
1 − Ṙ2, the equation of motion (1) is given by

dγ

dR
+ 2γ

R
= �P(γ )

σ
. (3)

The bubble nucleates at rest, γ = 1, dγ /dR = 0, with an ini-
tial radius R0. By Eq. (3) we can relate the wall tension to the
initial radius as R0 = 2σ/�P0, where �P0 ≡ �P(γ = 1).
For a constant pressure difference, �P = �P0, the solution
of the equation of motion is

γ = 2R

3R0
+ R2

0

3R2 . (4)

The total pressure difference across the bubble wall,
accounting for 1 → 1 scatterings and 1 → N splittings
at the bubble wall, is given by

�P(γ ) = �V − �P1→1 − �P1→N (γ ), (5)

where �V denotes the potential energy difference between
the minima. The pressure arising from 1 → 1 scatterings
quickly reaches a constant value in the relativistic limit [74,
75]. Subsequently, the γ dependence of the total pressure
difference arises only from �P1→N , for which we consider
two forms. The first one, suggested in [76–78] is linear in
the Lorentz factor �P1→N = �̃P1→Nγ , and the second
one, suggested in [79,80], is quadratic in the Lorentz factor,
�P1→N = �̃P1→Nγ 2 In both cases �̃P1→N is a constant.

By plugging �P(γ ) into (3), we can easily solve γ as a
function of R. When �P1→N � �V −�P1→1 the solution
can be approximated by Eq. (4). Assuming in addition that
R � R0, the Lorentz factor grows linearly with the radius,
γ ≈ 2R/(3R0). Eventually, as the bubble wall accelerates, γ
becomes large enough for the 1 → N splittings to be impor-
tant, �P1→N ∼ �V −�P1→1, after which it asymptotically
reaches the value

γeq ≡
[
�V − �P1→1

�̃P1→N

] 1
c

, (6)

where c = 1, 2 depending on the scaling of the 1 → N
pressure, �P1→N ∝ γ c. The change from the linear growth
to asymptotically constant behaviour occurs when the radius
reaches

Req ≈ 3

2
R0γeq. (7)
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Fig. 1 The Lorentz factor of the bubble wall (left panel) and the effi-
ciency factor κ (right panel) as a function of the bubble radius R for
γeq = 10, 100, 103, 104 from light to dark. The solid black curves
show the case �P1→N ∝ γ and the orange dashed curves the case

�P1→N ∝ γ 2. In the left panel the vertical dashed lines indicate the
values of Req/R0. The colored curves show the full solution of the
equation of motion (3), while the black dashed curves correspond to the
approximations (8) and (10)

The solution γ (R), in the limit γeq � 1, can be approximated
by a simple broken power-law

γ (R) = γeq

[
1 +

(
Req

R

)c ]−1/c

. (8)

In Fig. 1 we show the full solution γ (R) for different values
of γeq for both �P1→N ∝ γ (solid) and �P1→N ∝ γ 2

(dashed) together with the above approximation shown by
the dotted black curves. In both cases the transition from
linear growth, γ ∝ R to the constant value γ ≈ γeq is quite
fast, and the difference between the two cases is small. The
main effect of the scaling of �P1→N is that it changes γeq

and Req.
We define the efficiency factor κ as the fraction of the total

released energy within a unit solid angle that goes into the
bubble wall energy,

κ(R) = 3(γ R2 − R2
0)σ

(R3 − R3
0)�V

. (9)

The rest of the released energy, 1 − κ(R), goes into fluid
motion. This is a good approximation for strongly super-
cooled transitions. In weaker transitions one also needs to
keep in mind that some of the energy going into the fluid
will be lost on its heating which will reduce the overall GW
signal from the fluid motion [71,81].

Using the approximation (8), we can express the efficiency
factor as

κ(R) ≈ K Req

R

γ (R)

γeq
, (10)

where

K ≡
[
1 − α∞

α

] [
1 − 1

γ c
eq

]
(11)

is a constant,K < 1. The parameters α and α∞ are defined by
scaling with the radiation energy density ρR as α = �V/ρR

and α∞ = �P1→1/ρR (see [71] for more details). Typically

for strongly supercooled transitions K ≈ 1. As shown in the
right panel of Fig. 1, the efficiency factor remains constant
at R � Req and decreases as κ ∝ 1/R at R � Req. In
the same way as for γ (R), the difference between the cases
�P1→N ∝ γ and �P1→N ∝ γ 2 is small.

3 Bubble nucleation and collisions

Soon after the bubble has nucleated, we can neglect its initial
radius, and, if the friction terms are sufficiently small (γeq �
1), we can approximate that the bubble radius grows as R =
t − tn , where tn denotes the nucleation time of the bubble.
Moreover, assuming that the bubbles are much smaller than
the Hubble horizon, we can neglect the expansion of the
Universe. The expected number of bubbles reaching a given
point is then given by

N (t) = 4π

3

∫ t

−∞
dt ′(t − t ′)3�(t ′), (12)

where �(t) denotes the bubble nucleation rate per unit time
and volume, and the probability that the given point still is
in the false vacuum at time t is

P(t) = e−N (t). (13)

Let us consider a bubble nucleation rate �(t) = CeA(t).
Around the time t∗ when the transition proceeds, we can
expand A(t) to get �(t) = CeA(t∗)+β(t−t∗) = �0eβt , where
β ≡ d ln �/dt |t=t∗ and �0 ≡ CeA(t∗)−βt∗ . As the transition is
not an instantaneous process, the choice of t∗ includes some
ambiguity. It is convenient to choose t∗ by requiring that
P(t∗) = 1/e, which gives �0 = β4/(8π), and N (t) = eβt .

Next, let us consider a point on the surface of a bubble that
nucleated at time tn . If the point is still in the false vacuum
when the radius of the bubble is R, then it has stayed in
the false vacuum for the whole time 0 ≤ t − tn < R. The
probability for this is P(tn + R). So, the probability that a
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Fig. 2 Probability distribution function of bubble radius at collision.
The red dashed curve shows the analytical result (15). The black curve
and the gray band show the mean and the variance of the result from
our numerical simulations of bubble nucleation

bubble nucleated within time tn < t < tn + dtn in a volume
V , and that a point on its surface is still in the false vacuum
at radius R, is given by dtn V �(tn)P(tn + R). By integrating
this over the nucleation time tn we get the probability density
function for the radius at which a bubble surface element
collides with the surface of another bubble,

p(Rc) ∝
∫

dtn �(tn)P(tn + Rc), (14)

which we normalize to unity,
∫

dRc p(Rc) = 1. For the
exponential bubble nucleation rate, �(t) ∝ eβt , this gives
(independently of the prefactor �0)2

p(Rc) = βe−βRc . (15)

The above result provides a good cross-check for the
numerical simulations that we will use for the GW computa-
tion. In Fig. 2 the solid curve and the gray band indicate the
mean and variance of the Rc distribution obtained from 90
simulations with simulation volume (16/β)3 and each of the
simulation including at least 70 bubbles. In these simulations
we nucleate thin-wall bubbles according to the exponential
rate inside a cubic box with periodic boundary conditions,
evolve them according to R = t − tn , discretise the bubble
surfaces, and find the radius at which each of the points on
the bubble surface collide with a wall of another bubble using
the cosine rule. We label the bubbles with index j and denote
the position vectors of the bubble centers by �x j . Consider a
point defined by the angles θ and φ on the surface of the
bubble j = j ′. The radius at which that point collides with
a surface of another bubble is given by

Rc = min
j �= j ′

[
d2
j − �t2

j

2(d j cos θ j − �t j )

]
, (16)

2 This agrees with the distribution on the bubble lifetime derived in
Ref. [41]. Our result can be generalized to wall velocities vw < 1
simply by dividing Rc by vw in the exponent.

where the minimum is taken over all bubbles, d2
j ≡ |�x j −

�x j ′ |2 is the distance between the bubble nucleation centers,
�t j ≡ tn, j − tn, j ′ is the time between their nucleation, and
θ j is the angle between the vector �x j − �x j ′ and the vector
corresponding to the angles θ and φ. As shown in Fig. 2, the
simulation result agrees well with the analytical result (15).

A widely used approximation for the bubble radius upon
collision comes from the bubble number density nbubbles =∫

dtn�(tn)P(tn) which leads to R∗ = n−1/3
bubbles = (8π)1/3/β.

From p(Rc) we can calculate moments of the bubble radius
when a bubble surface element collides with the surface of
another bubble, 〈Rn

c 〉 = ∫
dRc Rn

c p(Rc). For the exponential
bubble nucleation rate this gives

〈Rn
c 〉 = n!β−n . (17)

Given that the released energy scales with the radius to the
third power, this leads to a different estimate of the aver-
age bubble radius 〈R3

c 〉1/3 = 61/3/β more appropriate for
computation of the GW spectrum.

4 Gravitational waves

The energy released in the bubble expansion is divided
between the bubble wall and the fluid shell that follows right
behind the wall. Both the bubble walls and the fluid shells
source GWs. We model these sources in the thin-wall limit
and calculate the GW spectrum accounting for the efficiency
factor κ(R) for the bubble collisions and 1 − κ(R) for the
fluid motion. The modeling of the fluid motion in the thin-
wall limit is based on the assumption that the released energy
going to fluid motion is strongly localized in a thin shell.
Before collision this fluid shell is right behind the bubble
wall and after the collision it propagates to the same direction
as before the collision,however , depending on how strong
the interaction are between the fluid and the scalar field, it’s
velocity can slow down to the speed of sound.

We calculate the GW spectrum as e.g. in Refs. [43,44]
assuming that, as in the previous section, the bubble nucle-
ation follows exponential rate per unit volume, � ∝ eβt .
Each of the contributions (l = bubbles, fluid) to the resulting
energy spectrum of GWs can be expressed as

�GW,l( f ) =
[
H

β

]2 [
α

1 + α

]2

Sl( f ), (18)

where

Sl( f ) =
(

2π f

β

)3 3β5

2Vs

∫
d�k

4π

[
|Cl,+( f )|2 + |Cl,×( f )|2

]

(19)

encodes the spectral shape of the signal. The integral is over
the wavevector �k directions, and the integrand is ∝ Vs/β5
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if the volume Vs over which we average the GW energy
spectrum is sufficiently big.

Using the thin-wall limit, the functions Cl,+ and Cl,× in
the direction k̂ = (0, 0, 1), can be expressed as

Cl,+,×( f ) ≈ 1

6π

∑
j

∫
tn, j

dt d� sin2 θ g+,×(φ)

×R3
j fl(R j ) e

i2π f (t−z j−R j cos θ). (20)

The sum runs over all the bubbles nucleated in the volume Vs ,
tn, j is the time of nucleation of the bubble j , z j is the z coordi-
nate of its center, and R j = vl(t−tn, j ), where vl is the bubble
wall/fluid shell velocity, denotes the radius of the bubble/fluid
shell j at time t . For the bubble walls we use vbubbles = 1
both before and after the collision, whereas for the fluid shells
we use vfluid = 1 before the collision and after the collision
we consider two cases: vfluid = 1 and vfluid = cs = 1/

√
3.

The former is appropriate for very strong transitions [82],
whereas the latter is realized for weaker transitions [45]. The
functions g+,× read g+(φ) = cos(2φ) and g×(φ) = sin(2φ).

The function fl(R) encodes the scaling of the GW source
[44]. For the bubble collisions contribution, we follow the
results of lattice simulations [43,44], which showed that the
maximum of the stress-energy tensor scales as Trr ∝ R−ξ

after the collision. The power ξ in general depends on the
underlying particle physics model. In particular, it was shown
in [43] that breaking of a global symmetry corresponds to
ξ = 2 while in [44] it was shown that in models where
the phase transition breaks a gauge symmetry correspond to
ξ = 3. Accounting also for the efficiency factor κ , the fl
function for bubble collisions is given by

fbubbles(R) =
⎧⎨
⎩

κ(R), R ≤ Rc,

κ(Rc)
[
Rc
R

]ξ+1
, R > Rc,

(21)

where Rc denotes the bubble radius at the moment of colli-
sion, t = tc. In contrast with Refs. [43,44], where Rc was
determined numerically by the bisection method, we find Rc

using Eq. (16).
Also for the fluid motion we assume that the maximum

of the stress-energy tensor scales as R−ξ after the collision.
The function fl for fluid motion then reads

ffluid(R) =
⎧⎨
⎩

1 − κ(R), R ≤ Rc,

[1 − κ(Rc)]
[
Rc
R

]ξ+1
, R > Rc.

(22)

In the perfect fluid description, that assumes the fluid to
remain in local equilibrium at all times, the transverse-
traceless part of the stress energy tensor of the fluid reads
Ti j = γ 2viv jw, where �v is the fluid velocity and w is its
enthalpy density. By the interactions of the fluid with the wall,
an overdense fluid shell with radial velocity vr > 0 builds up
around the bubble wall. If the wall reaches a terminal veloc-

Fig. 3 Time evolution of the perfect fluid stress energy tensor (solid
lines) together with the r−3 scaling for comparison (dashed line). The
red profile is the initial condition just after the bubble collision tc and
darker colours show the profile at later times. The parameters for this
example profile are α = 20 and γw = 50 corresponding to a very strong
transition such that the velocity of the profile remains nearly constant
and only very slowly changes to the speed of sound

ity, the fluid shell settles into a self-similar profile [81]. We
expect that this shell continues to propagate after the bubble
wall collides with the wall of another bubble without chang-
ing its shape significantly in the collision. This behaviour
was first observed for weaker transitions, α < O(0.1), in lat-
tice simulations [83,84]. For our case of very strong transi-
tions, α ≥ O(10), we used a simplified simulation involving
only the fluid and assuming extra symmetry of the system to
retain only one spatial dimension as in [45].3 We begun with
simulating collisions of two planar shells and verified that
they are not significantly modified and instead simply propa-
gate onward. We next simulated the evolution of spherically
symmetric fluid shells after the collision. Figure 3 shows an
illustrative example of our results. We find that the maxi-
mum of the rr component of the stress energy tensor scales
as Trr ∝ R−3. This matches to the same scaling found in [45]
for weak transitions and motivates us to consider ξ = 3 for
the scaling of the fluid related GW source. For comparison,
we consider also ξ = 2 which corresponds to the bulk flow
model [86].

In principle, after the GW generation through relativistic
fluid shells finishes, one would expect to enter the period
of sound waves [41,83,84,87] and perhaps also turbulence
[88–91]. However, in the very strong transitions, that are our
primary interest, we expect that the fluid will remain in the
relativistic shells for a long time after the transition (at least
until the shell radius has grown by O(1) factor). The energy
carried by the inhomogeneities has then significantly diluted
once the sound wave and turbulence periods begin and, there-

3 We use the integration scheme devised in [85] in order to reduce
the numerical diffusion. The parameters used in the simulations are
�x = 10−4Rc for the step in radius and a tenth of that in time. We
also verified reducing the step sizes by an order of magnitude does not
modify the results.
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Fig. 4 Fitted GW spectral
shape sourced by bubble walls
and fluid motion assuming
different scalings of the source
after the collisions, Trr ∝ R−ξ ,
and different velocities of the
fluid shell after the collision.
The solid curves show the
results obtained by directly
including the factor κ(R) to the
simulation and the dashed
curves the result obtained by
scaling the result obtained
without it factor by κ(Reff )

fore, we expect the main contribution on the GW spectrum
in very strong transitions to arise from the relativistic fluid
shells or the scalar field bubbles themselves. Thus, in the
present analysis we neglect the periods of sound waves and
turbulence.

For certain simple forms of the fl function the time inte-
gral in Eq. (20) can be done analytically, which makes the
simulation significantly faster. In particular, it can be done
analytically if fl is a broken power-law with integer powers.
We consider the form (10) for the efficiency factor κ with
c = 1. Strictly speaking our results then hold for the case
that �P1→N ∝ γ . However, since the difference in κ(R)

for c = 1 and c = 2 is very small, our results give a good
approximation also of the case �P1→N ∝ γ 2. The pres-
sure �P1→N mainly just determines the asymptotic radius
Req through Eqs. (7) and (6). In our simulations Req is an

input parameter, and we perform the numerical simulations
for several values of Req. We also assume that K ≈ 1, which
typically holds for strongly supercooled transitions, so that

κ(R) ≈ 1

1 + R/Req
. (23)

5 Results

We perform 90 simulations with simulation volume (16/β)3,
each including at least 70 bubbles, for a range of Req values
including both signals due to bubble walls and the surround-
ing fluid in each of the cases described in the previous section.
From the simulations we compute the spectral shape func-
tion (19). In each case we fit the data combined from the 90
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simulations with a broken power-law spectrum of the form

Sfit( f ) = A (a + b)c[
b
(

f
f p

)- ac + a
(

f
f p

)b
c
]c , (24)

where a, b > 0 determine the low and high frequency power-
law tails of the spectrum, c > 0 the width of the transi-
tion between these power-laws, while f p and A the peak
frequency and amplitude of the spectrum respectively. The
resulting GW spectra are shown in Fig. 4 with the solid
curves. The color coding indicates different values of Req.

For the solid curves in Fig. 4 the efficiency factor is directly
included in the simulation as in Eqs. (21) and (22). A com-
monly used approximation for the effect of the efficiency fac-
tor on the GW spectrum is to multiply the spectra obtained for
bubble collisions and fluid motion without any efficiency fac-
tor by κ(Reff)

2 and by (1−κ(Reff))
2, respectively. To check

this, we have computed the amplitude of the GW spectrum in
each case relative to the Req case that gives the largest ampli-
tude and fitted Reff . The data points and resulting fits for all
cases are shown in Fig. 5 and the corresponding fitted values
of Reff in the last line of Table 1. We find that the effect of
the efficiency factor is almost independent of the behaviour
of the GW source after the collisions. In all cases our results
give Reff � 5/β, showing that the often used approximation
with Reff = (8π)1/3/β ≈ 2.9/β slightly underestimates
Reff . Moreover, the results of applying the fitted efficiency
factor are shown in Fig. 4 by the dashed curves. For these
curves we have used the mean values given in Table 1 that
are obtained by averaging over the fits with different equi-
librium radius, except for the amplitude for which we use
the strongest signal for each source. We see that the dashed
curves agree very well with the fully numerical results shown
by the solid curves. This shows that the efficiency factor does
not change the shape of the GW spectrum but gives only an
overall suppression factor.

To summarize, we have shown that for very strong transi-
tions, α � α∞, the GW spectrum from bubble collisions and
from fluid motion, accounting for the distribution of energy
between these sources, is given by

�GW( f ) =
[
H

β

]2[
κ(Reff) α

1 + α

]2 A (a + b)c[
b
(

f
f p

)- ac + a
(

f
f p

)b
c
]c ,

(25)

where the efficiency factor is given by Eq. (23). The fitted
values of the parameters A, a, b, c, f p and Reff are given in
Table 1. For weaker transitions, α � α∞, also the prefactor
K, given in Eq. (11), needs to be accounted for, as well as the
suppression arising from heating of the fluid around the bub-
ble wall [81]. In the limit of large wall velocity appropriate

Fig. 5 The blue and red points with error bars show the amplitude of
the GW spectrum from bubble collisions and from fluid motion, respec-
tively, relative to the Req value that gives the largest amplitude. The blue
and red curves show κbubbles and κfluid, respectively. The parameters read
ξ = 3 and vfluid = 1 for both solid lines and the points of corresponding
colour. Dashed and dotted lines and their corresponding points show the
remaining cases (ξ = 2 and vfluid = cs ) which as we see largely overlap
with the previous two

for strong transitions this reduction takes a simple form [71]

κfluid = αeff

α

αeff

0.73 + 0.083
√

αeff + αeff
, (26)

where αeff = [1 − κ(Reff)]α.
The GW spectrum today can be obtained from (25) by

accounting for the scaling of the amplitude and frequency
with the scale factor [43]:4

�GW,0 = 1.67×10−5

h2

[
100

g∗

]1
3

�GW( f ),

f p,0 = h∗
[
f p
β

] [
β

H

]
, (27)

where h denotes the dimensionless Hubble constant, h =
0.674 [93], and h∗ the inverse Hubble time at the transition
redshifted to its value today

h∗ = 1.65 × 10−5 Hz

[
T∗

100 GeV

] [ g∗
100

] 1
6
. (28)

Here T∗ denotes the temperature after the transition (includ-
ing reheating) and g∗ the effective number of relativistic
degrees of freedom at that temperature. At scales larger than
the horizon scale at the time of the transition the source is not
coherent and, consequently, in standard radiation domination
the slope of the spectrum changes to �GW ∝ f 3 for f < h∗
[94,95].5

4 Here for simplicity while red-shifting we assumed radiation dom-
inated expansion from the transition time up to the matter-radiation
equality. For a review of alternative scenarios and their impact on the
spectra see Ref. [92].
5 The low frequency slope is also changed by possible modifications
of the expansion rate [96–98] although the only scenario in which the

123



109 Page 8 of 10 Eur. Phys. J. C (2023) 83 :109

Table 1 Fitted values for the parametrization of the spectral shape (24) and fitted value of βReff in Eq. (23). The corresponding spectra are shown
in Fig. 5

Bubbles Fluid

Envelope Trr ∝ R−2 Trr ∝ R−3 Trr ∝ R−2 Trr ∝ R−3

vfluid = 1 vfluid = cs vfluid = 1 vfluid = cs

100 A 3.78 ± 0.04 5.93 ± 0.05 5.13 ± 0.05 5.94 ± 0.02 3.36 ± 0.01 5.14 ± 0.04 3.64 ± 0.02

a 3.08 ± 0.04 1.03 ± 0.04 2.41 ± 0.10 1.03 ± 0.05 1.00 ± 0.05 2.36 ± 0.09 2.02 ± 0.08

b 0.98 ± 0.05 1.84 ± 0.17 2.42 ± 0.11 1.87 ± 0.18 1.39 ± 0.15 2.36 ± 0.09 1.38 ± 0.06

c 1.91 ± 0.29 1.45 ± 0.34 4.08 ± 0.77 1.39 ± 0.38 0.71 ± 0.26 3.69 ± 0.48 1.48 ± 0.32

2π f p/β 1.33 ± 0.19 0.64 ± 0.09 0.77 ± 0.12 0.57 ± 0.04 0.44 ± 0.04 0.66 ± 0.04 0.44 ± 0.04

βReff 4.10 ± 0.31 5.07 ± 0.51 4.81 ± 0.45 5.66 ± 0.51 5.71 ± 0.52 5.34 ± 0.49 5.47 ± 0.50

6 Conclusions

In this paper we have revisited the energy budget of strong
first-order phase transitions to verify its impact on the pro-
duced gravitational wave spectra. We have gone beyond the
current state-of-art by including the efficiency as a function of
radius of the bubble accounting for the collision time of each
point on the bubble surface. We have utilised numerical sim-
ulations randomly nucleating bubbles in a three dimensional
box with periodic boundaries and used these to compute the
GW spectra. This has allowed us to confirm that a simplified
treatment of simply scaling entire spectra with an efficiency
factor computed at some characteristic radius is accurate
as the spectral shapes do not change due to the efficiency
factor significantly. We did, however, find that in order to
accurately describe the results the characteristic radius used
in the simplified calculation should be around Reff ≈ 5/β

rather than the usually employed average bubble separation

R∗ = (8π)
1
3 /β ≈ 2.9/β.

In each simulation we have also took into account the
scaling of the GW sources after the collision in order to pro-
vide new fits for the resulting spectra from strongly super-
cooled transitions. The results are shown in Table 1 and,
starting from strongest transitions, include bubble collision
spectra for both Trr ∝ R−3, appropriate for gauge symmetry
breaking, and Trr ∝ R−2, appropriate for global symme-
try breaking. Going towards slightly weaker transitions, we
have provided the spectrum generated by fluid motion with
the scaling Trr ∝ R−3 and assuming the fluid remains in the
form of relativistic shocks vfluid = 1 after the transition. For
transitions which are not extremely strong, we have show
results closer to the sound wave picture in which the velocity
of the fluid quickly relaxes to the speed of sound vfluid = cs ,
again assuming the scaling Trr ∝ R−3. Finally, for illus-
tration, we also provide fluid spectra assuming the scaling
Trr ∝ R−2.

signal is not diminished is when the modification in question is itself
caused by the transition for instance through slow decay of the scalar
field leading to a period of matter domination [58].

Taking into account that for very relativistic walls the fluid
profiles are extremely peaked, we have thus show that the
final GW spectrum will be indistinguishable from an even
stronger transition where bubble collisions would be the main
source. Only for weaker transitions where the hydrodynam-
ical effects change the propagation speed of the fluid shells,
the spectrum diverges from the spectrum arising from bubble
collisions.
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