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Abstract We study production of gravitational waves
(GWs) in strongly supercooled cosmological phase transi-
tions in gauge theories. We extract from two-bubble lat-
tice simulations the scaling of the GW source, and use it
in many-bubble simulations in the thin-wall limit to esti-
mate the resulting GW spectrum. We find that in presence
of the gauge field the GW source decays with bubble radius
as ∝ R−3 after collisions. This leads to a GW spectrum that
follows �GW ∝ ω2.3 at low frequencies and �GW ∝ ω−2.9

at high frequencies, marking a significant deviation from the
popular envelope approximation.

1 Introduction

We are currently witnessing the dawn of a new era in astro-
physics and cosmology, started by the LIGO/Virgo observa-
tions of gravitational waves (GWs) from black hole mergers
[1,2]. Many experiments are planned to further explore GWs
in a broad frequency range in the coming decades [3–10]. In
addition to transient GW signals, such as those from black
hole mergers, these experiments are able to probe stochas-
tic GW backgrounds. In fact, recent results from NANOGrav
pulsar timing observations [11] may already indicate the first
observation of a stochastic GW background [12–21].

Observations of stochastic GW backgrounds could allow
us a glimpse of the very early Universe as many high-energy
processes are predicted to be potential sources of such back-
grounds. In this paper we will focus on cosmological first-
order phase transitions, which are one example of such a
source [22]. Many beyond Standard Model scenarios predict
first-order phase transitions and a significant amount of work
has already been put into the possibility of exploring them
through GWs [23–71].
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In a first-order phase transition the Universe starts in a
metastable false vacuum. The transition proceeds via nucle-
ation and subsequent expansion of bubbles of the true vac-
uum [72–74]. Eventually these bubbles collide and convert
the whole Hubble volume into the new phase. In this process
GWs are sourced by the bubble collisions [75–80] and plasma
motions generated by the interactions of the plasma with the
bubble walls [81–87]. In strongly supercooled transitions the
former source dominates [77,88].

For the calculation of the GWs from colliding vacuum
bubbles the equations of motion of the fields sourcing GWs
need to be solved, requiring, in principle, 3D lattice sim-
ulations [76,79,89]. These simulations are computationally
very expensive as very large simulation volumes are needed
in order to simulate multiple bubbles, and very dense lattices
to resolve the thinning bubble walls. Therefore, it is practical
to develop approximations that provide a realistic description
of the phase transition dynamics and an accurate estimate
of the resulting GW spectrum, but are computationally less
expensive than full 3D lattice simulations.

For a long time the envelope approximation, introduced
in Ref. [75] and studied further in Refs. [90–92], has been
used to estimate the GW spectrum sourced by the bubble
collisions. In this approximation the collided parts of the
bubble walls are completely neglected and the GW spec-
trum is calculated in the thin-wall limit. Improved modeling
was developed in Refs. [93–96] as an attempt to model the
behaviour of the plasma after the transition. Following a sim-
ilar approach in Ref. [80] we developed a new estimate for the
GW spectrum from bubble collisions by accounting for the
scaling of the GW source after the collisions. Our estimate
lead to a spectrum significantly different from the envelope
approximation.

In this paper we consider a class of realistic models where
bubble collisions can give the dominant contribution to the
GW production. Furthermore, we describe breaking of a
gauge U(1) symmetry, and study with lattice simulations the
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Fig. 1 The strength of the transition α, and the dimensionless parameters λ̃ and g̃ (see Eq. (A5)) as a function of the gauge coupling g. Different
curves correspond to different values of v. The dashed curve in the right panel shows T = 0 limit of g̃

evolution of the scalar and gauge fields in two-bubble col-
lisions. We find that the gradients in the complex phase of
the scalar field are quickly damped after the collision by the
gauge field. As a result, in gauge theories the GW source
after the collision scales similarly to the case of just a real
scalar, and the resulting GW spectrum follows ∝ ω2.3 at low
frequencies with a ∝ ω−2.9 fall above the peak.

2 Phase transition

In order for the bubble collisions to give the dominant GW
source, the phase transition has to be strongly supercooled
[77,88]. Such strong supercooling is not typically realized in
models with a polynomial scalar potential [77,85]. Instead,
in models featuring classical scale invariance [27,36,38,40,
44,50,52,60,61,97–105] the transition can be so strongly
supercooled that the interactions of the bubble wall with the
plasma can be neglected [77,88]. Many such models also
include a gauge U(1) symmetry under which the scalar field
is charged, and the dominant contribution on the effective
potential arises from the gauge field loops. The phase tran-
sition in these models is therefore similar to that in classi-
cally conformal scalar electrodynamics, which we choose as
a benchmark model.

Scalar electrodynamics is described by the gauge U(1)
symmetric Lagrangian

L = −1

4
(Fμν)

2 + |Dμφ|2 − V (|φ|) , (1)

where Fμν = ∂μAν − ∂ν Aμ and Dμ = ∂μ + igAμ are the
electromagnetic field strength tensor and the gauge covari-
ant derivative. In classically conformal models the tree-level
scalar potential is quartic, V (|φ|) = λ|φ|/4. A non-trivial
minimum is revealed when the radiative corrections are taken
into account [106], and finite temperature effects induce
a potential energy barrier between the symmetric and the
symmetry-breaking minima. The one-loop effective poten-

tial of classically conformal scalar electrodynamics is

V (|φ|) = g2

2
T 2|φ|2 + 3g4

4π2 |φ|4
[

ln
|φ|2
v2 − 1

2

]
, (2)

where T denotes temperature of the plasma and v the vacuum
expectation value of |φ| at T = 0.

The symmetric and broken vacua are degenerate at a crit-
ical temperature T = Tc. The bubble nucleation temperature
Tn < Tc is defined as the temperature at which the probabil-
ity of nucleating at least one bubble in a horizon volume in
a Hubble time approaches unity [74]. In the left of Fig. 1 we
show the parameter α ≡ 
V (T = 0)/ρrad(T ), that charac-
terizes the strength of the transition, as a function of g for
different values of v. We assume that only vacuum and radia-
tion energy densities, 
V (T = 0) and ρrad(T ), contribute to
the expansion rate, and approximate the effective number of
relativistic degrees of freedom by its Standard Model value
[107]. If α > 1 the transition finishes only after a vacuum
energy dominated period. By strong supercooling we refer
to α � 1.

For the following analysis we define dimensionless
parameters g̃ and λ̃ as

g̃ = gv2

√

V

, λ̃ = g2v2T 2

2
V
, (3)

such that λ̃ determines the shape of the scalar potential and
g̃ the strength of the coupling between the gauge field and
the scalar field. In the middle and right panels of Fig. 1 we
show these parameters at T = Tn . For strongly supercooled
transitions g̃2 ≈ 8π/(3g2) and λ̃2 ≈ 60/(g∗(Tn)α).

3 Gravitational wave source

Next we study two-bubble collisions in order to find how
the GW source scales after the collision. The total energy
spectrum in a direction k̂ at an angular frequency ω = |�k| of
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Fig. 2 Evolution of the GW source in collision of two bubbles averaged over simulations with different initial complex phase differences. The
collision happens at t = tc. Solid curves correspond to different values of g̃ and the dashed curve to 
ϕ = 0. The dotted lines show ∝ t−2 and
∝ t−3 power-laws

the GWs emitted in the phase transition is given by [108]

dE

d�kdω
= 2Gω2i j,lm(k̂)T ∗

i j (
�k)Tlm(�k) , (4)

where i j,lm is the transverse-traceless projection tensor. As
i j,lmδi j = 0, the part of the stress energy tensor that is pro-
portional to the metric tensor gμν does not contribute to for-
mation of GWs. We therefore define Tμν as (see Appendix A
for an explicit form)

Tμν ≡
(

∂L
∂(∂μφ)

∂νφ + c.c

)
+ ∂L

∂(∂μAα)
∂ν Aα . (5)

The evolution of the system is governed by the equations of
motion, given in the Lorentz gauge (∂μAμ = 0)1 by

�Aμ = ig(φ∗∂μφ − φ∂μφ∗) − 2g2Aμ|φ|2 ,

�φ + dV

dφ∗ = −i2gAμ∂μφ + g2A2φ ,
(6)

which we solve on a lattice starting from a configuration
where Aμ = 02 and two O(4) symmetric scalar field bubbles3

have nucleated simultaneously with their centers lying on z-
axis (see Appendix A for details of the lattice simulation).
Then, along the collision axis only the zz component of Ti j
is non-zero,

Tzz = 2|∂zφ| − (∂z At − ∂t Az)∂z At

− igAz(φ
∗∂zφ − φ∂zφ

∗) .
(7)

The bubble nucleation breaks the U(1) symmetry inside
the bubble, as the complex phase of the scalar field, which

1 Our results are independent of the gauge choice because Tμν is gauge
invariant.
2 The thermal mass ∝ g2T 2A2 stabilises the initial configuration with-
out significantly affecting subsequent dynamics.
3 The late evolution of the bubbles does not depend on whether the
initial bubbles are O(3) or O(4) symmetric [78].

we denote by ϕ (i.e. φ = |φ|eiϕ), takes a value in the range
0 ≤ ϕ < 2π .4 Eventually, as the bubbles expand, they will
collide with bubbles containing different complex phases.
Therefore, to get the average scaling of the GW source, we
average Tzz over simulations with different initial complex
phase differences.

Our lattice simulations show that a Tzz deviates from zero
in a very narrow region around the bubble wall and this fea-
ture continues propagating almost at the speed of light after
the collision. In Fig. 2 we show by the solid curves the scaling
of the maximal Tzz as a function of time, which much after
nucleation is obtained roughly at z = ±d/2 ∓ t , where d
denotes the distance between the bubble centers. Two impor-
tant remarks are in order: First, we see that the steep drop
after the collision becomes shorter as λ̃ decreases. This can
be traced to false vacuum trapping (field bouncing back to the
false vacuum in the collision region) which becomes increas-
ingly likely for larger values of λ̃.5 Second, the larger g̃ is, the
closer the behaviour of the GW source is to the case where
the complex phases inside the colliding bubbles are equal,

ϕ = 0. Moreover, the smaller λ̃ is, the faster the scaling
reaches the 
ϕ = 0 case as a function of g̃. From Fig. 1 we
see that λ̃ is very small, λ̃ � 1, and g̃ is large, g̃ > 10, in
the region where supercooling is strong and the bubble colli-
sion signal can be the dominant contribution. As can be seen
from the right panel of Fig. 2 the scaling in this case quickly
reaches ∝ t−3 behaviour after the collision.6 Instead, for

4 As the gradients in the complex phase would increase the energy of
the bubble, in the lowest energy configuration, and therefore for the
nucleating bubbles, ϕ is constant.
5 In Ref. [80] we used larger values of λ̃ and found scaling resembling
the left panel of Fig. 2. Here we focus on λ̃ � 1 which is more relevant
for very strong transitions.
6 We have also checked that subsequent collisions do not change the
scaling.
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Table 1 Fitted values for the parametrization of the spectral shape (12)

100S̄ ω̄/β a b c

ξ = 2 3.1 ± 0.1 0.64 ± 0.01 1.00 ± 0.01 2.61 ± 0.06 1.5 ± 0.1

ξ = 3 3.2 ± 0.1 0.71 ± 0.01 2.25 ± 0.02 2.94 ± 0.02 3.5 ± 0.1

ξ = 4 3.3 ± 0.1 0.80 ± 0.01 2.78 ± 0.02 2.91 ± 0.02 3.9 ± 0.1

Env. 3.3 ± 0.1 1.38 ± 0.03 3.01 ± 0.01 0.94 ± 0.03 1.5 ± 0.1

example in the case of breaking of a global U(1) symmetry,
corresponding to g̃ = 0, ∝ t−2 scaling can be realized.

4 Gravitational wave spectrum

Next, following a similar approach as one would using the
envelope approximation, we perform many-bubble simula-
tions in the thin-wall limit. Whereas in the envelope approach
the collided parts of the walls are neglected, we instead use
the scaling obtained in the previous section.

We consider an exponential bubble nucleation rate per unit
volume, � ∝ eβt , and write the abundance of GWs produced
in bubble collisions in a logarithmic frequency interval as
[80]

�GW(ω) ≡ 1

Etot

dE

d ln ω
=

(
H

β

)2 (
α

1 + α

)2

S(ω) , (8)

where

S(ω)=
(

ω

β

)3 3β5

8πVs

∫
d�k

[
|C+(ω)|2 + |C×(ω)|2

]
(9)

gives the spectral shape of the GW background. The volume
over which �GW is averaged is denoted by Vs . The functions
C+,× are for k̂ = (0, 0, 1), in the thin-wall limit given by
(see Appendix B for the derivation)

C+,×(ω) ≈ 1

6π

∑
n

∫
tn

dt d�x sin2 θx g+,×(φx )

× R3
n f (Rn) e

iω(t−zn−Rn cos θx ) ,

(10)

where tn , zn and Rn = t − tn denote the nucleation time,
the z coordinate of the bubble nucleation center and the
radius of the bubble n. The functions g+,× are defined as
g+(φx ) = cos(2φx ) and g×(φx ) = sin(2φx ). The function
f (Rn) accounts for the scaling of the GW source,

f (Rn) = min
[
1,

(
Rn,c/Rn

)ξ+1
]

, (11)

following the results of our lattice simulations, which showed
that the maximum of Tzz scales as R−ξ

n after the collision.
The bubble radius at the collision moment, t = tc, is denoted
by Rn,c.

We calculate S by performing thin-wall simulations where
we nucleate bubbles according to the rate � ∝ eβt in a cubic

Fig. 3 The spectral shape of GWs (see Eq. (B13)) from vacuum bubble
collisions. The curves show broken power-law fits to the simulation
results for different decay-laws of the GW source after collisions and
in the envelope approximation. The solid curve is realised in the case
of breaking of a gauge U(1) symmetry. The corresponding parameters
of the fit, and their errors, are given in Table 1

box of size 12/β with periodic boundary conditions (see
Appendix B for the details of the thin-wall simulations). Our
results are calculated from 40 simulations. We parametrize
the results as a broken power-law,

Sfit(ω) = S̄ (a + b)c[
b

(
ω
ω̄

)−a/c + a
(

ω
ω̄

)b/c]c , (12)

where S̄ and ω̄ are the peak amplitude and angular frequency
of the spectrum, a, b > 0 are the low- and high-frequency
slopes of the spectrum respectively, and c determines the
width of the peak. We show the parameter values and their
errors resulting from fits to our simulation results in Table 1
for ξ = 2, 3, 4 and the envelope approximation,7 and illus-
trate these fits in Fig. 3. The spectrum today can be obtained
from Eq. (B13) by red-shifting [80,81]. At super-horizon
scales the spectrum scales as ω3 as the source is diluted by
the Hubble expansion [109,110].

For ξ = 3, corresponding to the case of breaking of a
gauge U(1) symmetry, the low- and high-frequency tails of

7 The envelope approximation [75] corresponds to f (Rn > Rn,c) = 0,
obtained in the limit ξ → ∞.
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the spectrum are ∝ ω2.3 and ∝ ω−2.9. Instead, for ξ = 2,
which can be realized for example in the case of breaking
of a global U(1) symmetry, they are ∝ ω1.0 and ∝ ω−2.6.
The spectrum peaks in both cases slightly below ω = β with
an amplitude S ≈ 0.03. We find that increasing ξ brings the
low-frequency power-law quickly closer to envelope result,
a = 3.0, as shown by the ξ = 4 case. The high-frequency
power-law instead seems to decrease very slowly for ξ > 3.8

Getting a high-frequency tail that agrees with the envelope
approximation, ∝ ω−0.9, requires an extremely rapid decay
of the GW source after the bubble collisions.

5 Conclusions

Vacuum bubble collisions give the dominant source of GWs
in a cosmological first-order phase transition if the transition
is sufficiently strongly supercooled. This can be realized in
classically conformal models. The simplest realistic exam-
ples of such involve breaking of a U(1) gauge symmetry.
Motivated by these observations, we have studied the forma-
tion of GWs in a first-order phase transition in classically
conformal scalar electrodynamics.

We have estimated the GW spectrum by first studying the
scaling of the GW source in two-bubble lattice simulations,
and then using that scaling in many-bubble simulations in
the thin-wall limit. We have found that the presence of the
gauge field brings the results close to the simple real scalar
case where the GW source decays with the bubble size as
∝ R−3. The resulting spectrum, shown by the green solid
curve in Fig. 3, follows �GW ∝ ω2.3 at low frequencies
and �GW ∝ ω−2.9 at high frequencies. By calculating the
transition temperature in classically conformal scalar elec-
trodynamics we have shown that this limit with λ̃ � 1 and
g̃ � 1 is realised in most of the parameter space of inter-
est where the bubble collision signal can give the dominant
contribution to the GW spectrum.

Ascertaining the shape of the signal is crucial as it could
shine light to the underlying particle physics model. Our
result shows that probing a signal that falls roughly as ω−3 at
high frequencies would point to a very strong phase transi-
tion. Sources associated to plasma dynamics, that dominate
GW production in weaker transitions, in general predict dif-
ferent high-frequency slopes [111]: ω−4 from sound waves
and ω−2/3 from turbulence. Moreover, compared to the enve-
lope approximation, our result indicates that observing the
bubble collisions signal in multiple GW detectors at differ-
ent frequencies will be less likely as the spectrum is narrower
than previously thought.

8 We have also calculated the spectrum for ξ = 5 in which case a =
2.96 and b = 2.85.

While our result should describe both real and gauged
scalar field transitions, we have explored also different energy
decay laws which could be realised in other models. Most
notably, Tzz ∝ R−2 could be realised in models where the
U(1) symmetry is global (i.e. g̃ = 0) or modified transition
dynamics allows g̃ � 1. In this case the resulting spectrum
follows �GW ∝ ω at low and �GW ∝ ω2.6 at high frequen-
cies. Moreover, we have shown that the envelope result is
unlikely to be able to describe realistic spectra especially at
high frequencies.
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Appendix A: Lattice simulation

We perform lattice simulations of two-bubble collisions,
starting from a configuration where Aμ = 0 and two O(4)
symmetric scalar field bubbles have nucleated simultane-
ously at (x, y, z) = (0, 0,±d/2). The radial profile of an
O(4) symmetric initial configuration is obtained as the solu-
tion of

∂2
r |φ| + 3

r
∂r |φ| = dV

d|φ| (A1)

with boundary conditions ∂r |φ| = 0 at r = 0 and |φ| → 0
at r → ∞. A system of two simultaneously nucleated O(4)
symmetric bubbles is conveniently described in coordinates
(s, z, ψ, θ) defined via tan θ = x/y, t = s cosh ψ and r =
s sinh ψ where r2 = x2 + y2. We consider the region t > r
as this is where the bubbles collide (see Ref. [78] for details).
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Fig. 4 Collision of two bubbles with initial complex phase difference

ϕ = π/2. The solid and dashed curves correspond to |φ′| = 0.1 and
|φ′| = 0.01, respectively. The color coding indicates in the left panel the

complex phase of the scalar field, in the middle panel the s component
of the gauge field and in the right panel the z component of the gauge
field

Fig. 5 Collision of two bubbles with values of 
ϕ and g̃ indicated
above the plots, and λ̃ = 0.04. For the 
ϕ = 0 case the value of g̃ is
irrelevant. The solid and dashed curves correspond to |φ′| = 0.1 and

|φ′| = 0.01, respectively, and the color coding indicates the value of
the zz component of the stress energy tensor

The d’Alembertian in these coordinates reads

�X = ∂2
s X + 2

s
∂s X − ∂2

z X . (A2)

For the lattice implementation, we write the equations of
motion of the scalar and gauge fields in dimensionless vari-
ables, φ′ = φ/v, A′ = A/v, x ′μ = √


V xμ/v, as

�′A′
s,z = g̃

(
φ′
I ∂

′
s,zφ

′
R − φ′

R∂ ′
s,zφ

′
I
) − g̃2A′

s,z
(
φ′
R

2 + φ′
I

2)
,

�′φ′
R + dV ′

dφ′
R

= 2g̃
(
A′
s∂

′
sφ

′
I − A′

z∂
′
zφ

′
I
) + g̃2(

A′
s

2 − A′
z

2)
φ′
R ,

�′φ′
I + dV ′

dφ′
I

= −2g̃
(
A′
s∂

′
sφ

′
R − A′

z∂
′
zφ

′
R
) + g̃2(

A′
s

2 − A′
z

2)
φ′
I ,

(A3)

where φR and φI are the real and imaginary parts of φ,
defined such that φ = (φR + iφI )/

√
2. The dimensionless

scalar potential V ′ = V/
V , where 
V denotes the vacuum
energy difference between the symmetric and broken vacua

at temperature T , can be written as

V ′(φ′) = λ̃|φ′|2+|φ′|4
[
(λ̃+2) ln |φ′|2−(λ̃+1)

]
. (A4)

Here we have defined dimensionless parameters g̃ and λ̃ as

g̃ = gv2

√

V

, λ̃ = g2v2T 2

2
V
. (A5)

We solve the equations of motion (A3) numerically on a
diamond-shaped sz lattice as in Ref. [112]. To ascertain the
numerical stability of the simulation, we have checked that
the gauge condition, ∂μAμ = 0 remains satisfied through-
out the simulation. We have also performed the simulations
with different lattice spacings finding that the results are
unchanged unless the grid is much less dense than what we
use in the following results (δs′ = δz′ = 0.005).

In Fig. 4 we show the result from a simulation with
λ̃ = 0.04, g̃ = 10, initial bubble separation d ′ = 20 (in
the dimensionless units) and initial complex phase differ-
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ence 
ϕ = π/2. The left panel shows the evolution of the
complex phase of the scalar field. As can be seen from the
equations of motion (A3), gradients in ϕ source the gauge
field. Therefore, it is expected that the gauge field deviates
from zero where the gradients in ϕ are large. We see this in
the middle and right panels of Fig. 4, which show the gauge
field components As and Az : A sharp feature in the gauge
field propagates roughly at the speed of light after collision.

In Fig. 5 we show the zz component of the stress-energy
tensor,

T ′
zz = (∂ ′

zφ
′
R)2 + (∂ ′

zφ
′
I )

2 − ∂ ′
z A

′
s

(
∂ ′
z A

′
s − ∂ ′

s A
′
z

)
+g̃ A′

z(φ
′
I ∂

′
zφ

′
R − φ′

R∂ ′
zφ

′
I ) , (A6)

by the color coding for three different two-bubble collisions.
In the left panel g̃ = 0, and in the right panel the complex
phase of the scalar field inside the colliding bubbles is the
same, 
ϕ = 0. In these cases only the scalar field gradients
contribute to T ′

zz , and the result agrees with the ones shown in
Ref. [80]: If there is a complex phase difference between the
colliding bubbles, the scalar field gradients propagate much
longer after the collision than in the case where the complex
phases are equal. The middle panel of Fig. 5 shows the case
where the complex phases are different and g̃ > 0. We see
that the result in that case roughly matches with the 
ϕ = 0
case. This can be understood as decay of the gradients in the
complex phase of the scalar field to gauge fields.

The second crucial piece of information we get from Fig. 5
is that the gradients are well localised in space not only as the
walls accelerate and become thinner but also after the time
of the collision. In fact the spatial localisation of gradients
becomes even more narrow as bubbles grow bigger before
colliding. In a realistic transition the bubbles would grow
many orders of magnitude in size before colliding which
means it is well justified to assume the thickness of the walls
and gradients after the collision is negligible compared to
size of the colliding bubbles. This is the well known thin-
wall approximation we will utilise in Appendix B.

Appendix B: Thin-wall simulation

Next we generalize the treatment of Ref. [80] to the case
where the stress-energy tensor is not given solely by the scalar
field gradients after the bubble collisions. The Fourier trans-
form of the stress-energy tensor is given by

Ti j (�k) = 1

2π

∫
dt d3x eiωt−i �k·�x Ti j (�x) . (B1)

By breaking the spatial integral into regions around each
bubble nucleation center and taking �k = (0, 0, ω), we get

Ti j (�k)= 1

2π

∑
n

∫
tn

dt d�x e
iω(t−zn−Rn cos θx )

∫
dr r2Ti j (r) ,

(B2)

where tn denotes the nucleation time of the bubble n, zn the
z coordinate of the bubble nucleation center, and Rn = t− tn
the bubble radius at time t > tn . It is convenient to write
Ti j (r) in a coordinate system where the z axis points to the
radial direction, ẑ = r̂ . The coordinate transformation of
Ti j (r) is

Ti j (r) = Ti ′ j ′(r)
∂xi ′

∂xi

∂x j ′

∂x j
. (B3)

If only zz component of is non zero, we get∫
dr r2 Ti j (r) = x̂i x̂ j

∫
dr r2Tzz(r) . (B4)

In the thin-wall limit we approximate

∫
dr r2Tzz(r) ≈ LR2

n max
[
Tzz(Rn)

] ≡ 
V

3
R3
n f (Rn) , (B5)

where L denotes the bubble wall width.
Before the wall element in the solid angle d� collides

with another bubble Tzz is given solely by the scalar field
gradients, Tzz = |∂zφ|2. By energy conservation∫

dr r2 |∂zφ|2 = 
V

3
R3
n , (B6)

where Rn,c denotes the bubble radius at the time of the col-
lision. Therefore, before the collision

f (Rn ≤ Rn,c) = 1 . (B7)

From the definition of f and using f (Rn = Rn,c) = 1 we
get that the wall width at the collision moment is

Lc = 
V

3 max
[
Tzz(Rn,c)

] Rn,c . (B8)

Before the collision the bubble wall gets thinner as the
Lorentz factor of the bubble wall increases, but after the col-
lision the wall element moves roughly at a constant velocity
as no more energy is injected into it. Therefore we assume
that after the collision the wall thickness L remains constant,
L = Lc. We can then write the f (Rn) function after the
collision as

f (Rn > Rn,c) = 3Lc max
[
Tzz(Rn)

]
Rn
V

= Rn,c

Rn

max
[
Tzz(Rn)

]
max

[
Tzz(Rn,c)

] . (B9)

Since Ti j (�k) is symmetric, we can write the transverse-
traceless projection for k̂ = (0, 0, 1) as

2i j,lmT
∗
i j (

�k)Tlm(�k)=
V 2
(
|C+(ω)|2 + |C×(ω)|2

)
.(B10)

123
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The functions C+ ≡ T11 − T22 and C× ≡ 2T12 are given by

C+,×(ω) ≈ 1

6π

∑
n

∫
tn

dt d�x sin2 θx g+,×(φx )

×R3
n f (Rn) e

iω(t−zn−Rn cos θx ), (B11)

where g+(φx ) = cos(2φx ) and g×(φx ) = sin(2φx ).
The total energy spectrum in a direction k̂ at an angular

frequency ω = |�k| of the GWs emitted in the phase transition
is given by [108]

dE

d�kdω
= 2Gω2i j,lm(k̂)T ∗

i j (
�k)Tlm(�k) . (B12)

Using Eq. (B10) and the definition α ≡ 
V/ρrad we write
the abundance of GWs produced in bubble collisions in a
logarithmic frequency interval as

�GW(ω) ≡ 1

Etot

dE

d ln ω
=

(
H

β

)2 (
α

1 + α

)2

S(ω) , (B13)

where Etot = Vs(ρrad + 
V ) and

S(ω) =
(

ω

β

)3 3β5

8πVs

∫
d�k

[
|C+(ω)|2 + |C×(ω)|2

]
(B14)

gives the spectral shape of the GW background. Here Vs
denotes the volume over which �GW(ω) is averaged. We
consider exponential bubble nucleation rate, � ∝ eβt , which
implies that

∫
d�k[|C+(ω)|2 + |C×(ω)|2] ∝ Vs/β5.

We simulate the phase transition by nucleating bubbles
according to the exponential bubble nucleation rate inside a
cubic box with periodic boundary conditions. Following the
thin-wall approximation, we simulate the bubbles as spher-
ical shells. We discretise the bubble surfaces and find the
time when each of these bubble wall elements collides with
another bubble wall by bisection method. The correspond-
ing radius is denoted by Rn = Rn,c. Once we know Rn,c for
each bubble wall element of each bubble in the simulation,
we integrate the functions C+,×(ω) for a given value of ω.
We note that if f (R) is a (broken) power-law the temporal
integral can be performed analytically. The spectral func-
tion S(ω) is then simply obtained by integrating over the k̂
directions. In practice, since our simulation box is cubic, the
integral over k̂ directions is done by summing over 6 direc-
tions, corresponding to the normal vectors of the faces of the
cube, with equal weights 2π/3. Finally, to reduce the errors,
we calculate the final result by averaging the spectrum over
many simulations with different randomly generated bubble
nucleation histories.
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