
Eur. Phys. J. C (2021) 81:290
https://doi.org/10.1140/epjc/s10052-021-09056-1

Regular Article - Theoretical Physics

Analytical representation for amplitudes and differential cross
section of pp elastic scattering at 13 TeV

E. Ferreira1,a , A.K. Kohara2,b , T. Kodama1,3,c

1 Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, Rio de Janeiro, RJ 21945-970, Brazil
2 Departamento de Engenharia Química, Centro de Tecnologia da Indústria Química e Têxtil, SENAI CETIQT, Rio de Janeiro, RJ 20961-020,

Brazil
3 Instituto de Física, Universidade Federal Fluminense, Niterói, RJ 24210-346, Brazil

Received: 1 December 2020 / Accepted: 15 March 2021 / Published online: 7 April 2021
© The Author(s) 2021

Abstract With analytical representation for the pp scat-
tering amplitudes introduced and tested at lower energies,
a description of high precision is given of the dσ/dt data
at

√
s = 13 TeV for all values of the momentum transfer,

with explicit identification of the real and imaginary parts. In
both t and b coordinates the amplitudes have terms identified
as of non-perturbative and perturbative nature, with distinc-
tion of their influences in forward and large |t | ranges and
in central and peripheral regions respectively. In the forward
range, the role of the Coulomb-nuclear interference phase
is investigated. The energy dependence of the parameters of
the amplitudes are reviewed and updated, revealing a possi-
ble emergence of a peculiar behavior of elastic and inelastic
profiles in b-space for central collisions, which seems to be
enhanced quickly at higher energies. Some other models are
also briefly discussed in comparison, including the above
mentioned behavior in b-space.

1 Introduction

Totem Collaboration in LHC has produced two sets of data
data on elastic pp scattering at

√
s=13 TeV in separate pub-

lications [1–3], covering the following |t | ranges

– Set I – |t | = [0.000879−0.201041] GeV2, with N = 138
points [1] ;

– Set II – |t | = [0.0384 − 3.82873] GeV2, with N = 290
points [2].

a e-mail: erasmo@if.ufrj.br (corresponding author)
b e-mail: anderson.kendi@gmail.com
c e-mail: kodama.takeshi@gmail.com

With respect to systematic errors, the two sets of measure-
ment are presented with very different features: errors of
about 5% for I and less than 1% (except for the first 11 points)
for Set II. The situation, illustrated in Fig. 1, influences the
analysis of the data. The very large systematic errors in Set
I indicates the necessity of special care on its use for the
determination of the forward scattering structure.

There are 56 points of small |t | in Set I, up to |t | =
0.037335 GeV2, where Set II starts, and thus there is a basis
of 56 + 290 = 346 data points to perform a global description
of the 13 TeV data. We also build a combined file merging the
points of the common range, with a total of 138 + 290 = 428
points that are used in an overall test.

The data of Set I have been studied [4] with forms of ampli-
tudes restricted to small |t | values. The treatment of this range
requires detailed account of the Coulomb-nuclear interfer-
ence, and it was shown that the model-independent determi-
nation of the amplitude in these representations is unreliable
with the present data alone, due to the small value of the ρ

parameter and to the assumption of a model for the treatment
of the Coulomb-nuclear interference phase that needs to be
tested at such high energies. In the forward direction the real
part contributes to only about 1% of the observed dσ/dt , and
it is necessary to have a well-inspired extraction of the imag-
inary part, requiring data of very regular behaviour, to allow
the determination of the properties of the real part, such as
the ρ parameter and the amplitude slope.

Putting all information together, we achieve a unified treat-
ment of 428 data points, identifying analytically the real
and imaginary parts (with 4 parameters each) of the com-
plex elastic amplitude, with remarkable values χ2 = 1.567
with statistical and systematic errors added in quadrature and
χ2 = 5.186 calculated with statistical errors only. Every-
where in the present text χ2 is a short for χ2/d.o. f.. The
graphical representation of this result is shown in Fig. 2. The
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Fig. 1 Systematic errors in data Set I [1] and Set II [2]. In the |t |
range with superposition (0.038400 ≤ |t | ≤ 0.201041) it seems that
in general the data in Set II may be considered as more reliable (1%
systematic errors), except for the first 11 points. Set I has 5% systematic
error bars

present treatment is similar to previous work that was very
effective at lower energies 1.8–1.96 TeV of Fermilab [5] and
7–8 TeV of LHC [6,7].

The large |t | range of Set II is coupled sensibly with
the (energy independent) tail of perturbative three-gluon
exchange observed at

√
s = 27.4 GeV [8], with 39 points

in the range 5.5 ≤ |t | ≤ 14.2 GeV2. The first identifica-
tion of the energy independence of the dσ/dt behaviour for
large |t | in pp elastic scattering was made in the compari-
son of data at

√
s = 19.6 and 27.4 GeV [9]. The theoreti-

cal explanation for the 1/|t |8 behaviour of dσ/dt for large
|t | in terms of the real three-gluon exchange amplitude was
given by Donnachie and Landshoff [10,11]. The universal-
ity is demonstrated for energies below

√
s = 62.5 GeV in

Fermilab and CERN/ISR measurements [12,13] (see figures
in these two papers), showing smooth connection between
the range of small and mid-|t | combining perturbative and
nonperturbative terms and the range of large |t | of FNAL
[8] measurements dominated by three-gluon exchange. The
role of the real amplitude in the large |t | sector of pp elastic
scattering is then confirmed.

The transition range from 2 to 5 GeV2 gives informa-
tion on the magnitude and sign of the real part of the
hadronic amplitude, that is dominant for large |t |. Unfor-
tunately the LHC pp measurements at 7 and 8 TeV [6,7] are
restricted to |t | less than 2 GeV2, and the connection between
mid and large |t | regions remained in the non-quantitative
level, although there is clear indication, as shown in Fig. 6
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Fig. 2 Analytical representation of all data points of Totem measure-
ments at 13 TeV [1,2], using 4 adjusted parameters [5–7,12] for each
of the real and imaginary parts. The total of 428 data points is described
with χ2 = 1.567 (statistical and systematic errors added in quadrature)
and χ2 = 5.186 (statistical errors only). Details are given in Sects. 2
and 3

of the 7 TeV paper [6], where the data at 52.8 GeV and
7 TeV are exhibited. At 13 TeV the measurements reach
almost |t | = 4 GeV2, allowing investigation in an impor-
tant extended range. Using the same representation described
above, with a proper connection between the 13 TeV and the
17.4 GeV data, we obtain an analytical form embracing 467
(= 428+39) data points, with χ2 = 1.731 and χ2 = 5.042
using total errors (combined statistical and systematic) and
pure statistical errors respectively.

The present work uses the amplitudes introduced in previ-
ous papers [5–7], expressed in both t and b coordinates, with
explicit forms for the real and imaginary amplitudes: the dis-
entanglement of the two parts is essential for the description
of the dynamics of the process. The superposition of non-
perturbative and perturbative terms in both real and imagi-
nary parts produces remarkable structure in the elastic dif-
ferential cross section that faithfully reproduces the data. In
the following this framework is referred to as KFK model.

In Sect. 2 we review the construction of the amplitudes
in the KFK model, inspired on the early applications of the
Stochastic Vacuum Model (SVM) to high-energy elastic scat-
tering. The b and t space coordinates are analytically related,
with terms representing perturbative and non-perturbative
dynamics.

In Sect. 3 we apply the KFK amplitudes to describe in
detail the forward, mid and large |t | ranges, obtaining a
unique solution valid with high precision for all |t |, as shown
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in Fig. 2. Separate attention is given to an extension of the rep-
resentation to the range of high |t | measured at 27.4 GeV [8]
and also to the small |t | range of Set I re-examining the role
of the Coulomb-nuclear interference phase [4]. In Sect. 4,
the properties of the amplitudes in |t |- and b- coordinates are
described and discussed in separate subsections. In Sect. 5
we insert the results of the present analysis at 13 TeV in the
previous study of energy dependence of the KFK framework,
updating description and predictions. There, we report a new
behaviour of the profile functions in b-space in the domain
of central collisions, which seems to be enhanced quickly
at high energies. This observation was not possible without
the present 13 TeV data. Section 6 compares our description
with other models and Sect. 7 presents remarks and critical
evaluation.

2 KFK model: analytical representation of the
amplitudes

The Stochastic Vacuum Model (SVM) is based on the func-
tional integral approach [14] to high energy scattering that
relates high energy scattering with nontrivial properties of
QCD vacuum [15,16]. The central element is the gauge
invariant Wegner–Wilson loop, and physical quantities are
obtained from the vacuum expectation values of the corre-
lations of two loops, defined in terms of coordinates in the
transverse collision plane. Assuming dominance of Gaussian
fluctuations in the field strengths, the calculation becomes
fully analytical. Observables are written in terms of physical
quantities: the value of the gluon condensate,that determines
the strength of this non-perturbative dynamics, and the cor-
relation length, that is the parameter of the loop-loop correla-
tion function that sets the scale for the geometric dependence
in b-space. These quantities have values fixed by hadronic
properties and by lattice calculations [20,21]. With analytic
continuation from Euclidean to Minkowski space [22] gauge-
invariant dipole-dipole scattering is constructed.

The amplitude of non-perturbative hadron–hadron scat-
tering in the eikonal approximation is factorized with the
product of the correlation of loops (representing elastic scat-
tering of two colour dipoles) and the factor with the dipole
contents in the light-cone wave functions of the colliding
hadrons [17–19]. The overlap of the loop-loop correlation
with the hadronic wave-functions of finite size leads to struc-
ture of profile function where the basic correlation parameter
becomes spread, appearing with effective value that depends
on the hadronic sizes and, in case of scattering amplitudes,
can also be modified by the collision energy. These effec-
tive representations of the correlations proper of the QCD
vacuum are not expected to be very different from the static
lattice determination.

Besides hadron–hadron scattering, the concept of the
loop-loop correlation was also applied to the non-perturbative
exclusive photo- and electroproduction of vector mesons
[19,23,24].

The KFK model writes analytical forms for the pp and
pp̄ elastic scattering amplitudes in t and b spaces, based
on previous experience with the Stochastic Vacuum Model
(SVM) [17], using a scale (correlation) length parameter and
the asymptotic (large b) behaviour of the profile function as
guiding ingredients.

KFK model introduced non-perturbative and perturbative
contributions [12,13], later assumed as necessary long and
short range terms in the loop-loop correlation [19]. The effec-
tive gluon mass introduced to control the infrared range in
the perturbative correlator enters in the overlap product with
the proton dipole content and appears in the profile function
in KFK through a simple Gaussian term as in Eq. (1).

The T-matrix element in SVM is purely imaginary, and
with missing real part dσ/dt cannot be calculated in the full
|t | range. KFK introduces a real part that is a mirror image
of the imaginary amplitude. The real part is dominant for
large |t |, and has crucial role in the dip-bump region of pp
elastic scattering around 0.4–0.5 GeV2 where the imaginary
part passes through zero. The sophisticated dip-bump struc-
ture in dσ/dt requires delicate property of the real part valid
in this range. Both parts must have perturbative and non-
perturbative terms, and must have zeros, signs and magni-
tudes following theoretical principles and reproducing obser-
vations [12,13]. The zero in the real part at small |t | predicted
by a theorem by Martin [25], is confirmed with the LHC data
[26]. while the imaginary part has a zero responsible for the
dip-bump structure in dσ/dt .

The analytical forms proposed for the non-perturbative
terms of the amplitudes are inspired in the behaviour of the
profile function for large b found in the calculation with
SVM [12,17], with a combined exponential-Yukawa depen-
dence. The Fourier transforms to t-space present features that
can effectively represent the data for all |t |. As b is not an
observable quantity, the construction is tested in |t | space,
and parameters are fixed by experiments. Accurate descrip-
tion of the data is obtained with four parameters in each part
of the complex amplitude.

The disentanglement of the two parts of the complex
amplitude is not at all trivial. The connection with the three-
gluon exchange contribution helps in the identification of the
sign and magnitude of the real part, and an additional term for
perturbative three-gluon exchange is introduced separately.

The KFK model has been investigated at several ener-
gies, and the energy dependence of the parameters comes
out smooth, with simple parametrization [5–7].

123



290 Page 4 of 21 Eur. Phys. J. C (2021) 81 :290

2.1 Impact parameter representation

The amplitudes in the Stochastic Vacuum Model [17] are
originally constructed through b-space profile functions,
that give insight for geometric aspects of the collision,
playing role in the eikonal representation, where unitarity
constraints have interesting formulation. The dimensionless
(s, b) amplitudes of the pure nuclear interaction are written
in the form

˜TK (s, b) = αK

2βK
e−b2/4βK + λK ˜ψK (s, b), (1)

with a Gaussian term meant to be of perturbative nature and
a characteristic non-perturbative shape function

˜ψK (s, b) = 2eγK−
√

γ 2
K+b2/a2

a2
√

γ 2
K + b2/a2

[

1 − e
γK−

√

γ 2
K+b2/a2

]

. (2)

The label K = R, I indicates either the real or the imaginary
part of the complex amplitude.

The quantity a, called correlation length, represents prop-
erties of the QCD vacuum, where it sets the scale for the
loop-loop correlation, with determination in static (Euclidean
space) lattice calculation [20] as 0.25–0.30 fm. After ana-
lytic continuation to Minkowski space and overlap with the
hadronic wave functions, the non-perturbative scale appears
in profile functions of hadron–hadron scattering, with effec-
tive value modified inside this range. In the present work for
pp scattering at 13 TeV we find the value

a2 = 2.1468 ± 0.0001 GeV−2 = (0.2891 ± 0.0002 fm)2.

(3)

The parameters αK (s), βK (s), λK (s) with units in GeV−2

and γK (s) dimensionless are functions of the energy. They
are determined for

√
s = 13 TeV with high precision in

Sect. 3, leading to explicit analytical expressions for the
imaginary and real amplitudes. The Gaussian form of the
first term in Eq. (1) corresponds to the perturbative part of the
loop-loop correlation introduced in developments of SVM,
following results suggested by lattice calculations. The sec-
ond term, referred to as shape function, corresponds to con-
tributions from non-perturbative loop-loop correlation func-
tion. It is zero at b = 0, ˜ψK (s, b = 0) = 0, and is normalized
as

1

2π

∫

d2b ψ̃K (b, s) = 1. (4)

Equation (1) represents a parametrized formulation of the
profile function based on the SVM proposal. The perturbative
and non-perturbative terms of the amplitudes are dominant
for small and large b respectively. For large b, correspond-
ing to peripheral collisions, the amplitudes fall down with a

exponential-Yukawa-like tail,

∼ 1

b
e−b/b0 , (5)

that reflects the correlations of loops at large distances. This
asymptotic behaviour inspired the construction of the shape
function ˜ψK (s, b) for Eq. (1).

2.2 t-Space representation

In the classical limit the variable b is connected with the
impact parameter, but it is not directly observable, and the
treatment of data is made in (s, t) space. One advantage of
the shape function in KFK is that there is explicit analytic
Fourier transformation for the amplitudes in Eqs. (1, 2), so
that the scattering properties can be studied directly in both
frameworks.

In our normalization the elastic differential cross section
is written

dσ(s, t)

dt
= (h̄c)2[T 2

I (s, t) + T 2
R(s, t)]

= dσ I (s, t)

dt
+ dσ R(s, t)

dt
, (6)

with TR(s, t) and TI (s, t) in GeV−2 units, and

(h̄c)2 = 0.389379 mb GeV2.

The complete amplitudes, contain the nuclear and the
Coulomb parts as

TR(s, t) = T N
R (s, t) + √

πFC (t) cos(α�), (7)

and

TI (s, t) = T N
I (s, t) + √

πFC (t) sin(α�), (8)

where α is the fine-structure constant, �(s, t) is the interfer-
ence phase (CNI) and FC (t) is related with the proton form
factor

FC (t) = (−/+)
2α

|t | F2
proton(t), (9)

for the pp/pp̄ collisions. The proton form factor is taken as

Fproton(t) = [t0/(t0 + |t |)]2, (10)

where t0 = 0.71 GeV2.
We recall the new measurements of the proton radius [27]

and changes in the proton form factor [28]. These changes
in the electromagnetic and hadronic structure of the proton
may become important for the analysis of forward elastic
scattering, when their quality improves. As it has been proved
[4], this is not the case at the present, and we use the quantities
as written above.

The expressions T N
R (s, t) and T N

I (s, t) represent the
nuclear amplitudes for the terms written in Eq. (1). The non-
perturbative shape functions in t-space obtained by Fourier
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transforms are written

ψK (γK (s), t)

= 2 eγK

[

e−γK

√
1+a2|t |

√

1 + a2|t | − eγK
e−γK

√
4+a2|t |

√

4 + a2|t |

]

, (11)

with the property

ψK (γK (s), t = 0) = 1. (12)

Use is made of the integration formula

∫ ∞

0
J0(βu)

e−ρ
√

γ 2+u2

√

γ 2 + u2
u du = e−γ

√
ρ2+β2

√

ρ2 + β2
. (13)

In addition to the Fourier transform of the perturbative part
in Eq. (1) we introduce in the real part a term Rggg (t) repre-
senting the perturbative three-gluon exchange [10–12] that
appears in the large |t | region, and the complete nuclear
amplitudes are then written

T N
K (s, t) → T N

K (s, t)

= αK (s)e−βK (s)|t | + λK (s)ψK (γK (s), t)

+δK ,R Rggg (t) , K = R, I, (14)

with K = R, I , and where the Kronecker delta symbol δK ,R

is introduced so that Rggg (t) contributes only to the real part.
Equations (11, 14) constitute the KFK model for the pp and
pp̄ elastic amplitudes in t space.

The limits of the amplitudes for small |t | give the total
cross section σ (optical theorem), the ratio ρ of the real to
imaginary amplitudes and the slopes BR,I at t = 0 through

σ(s) = (h̄c)2 4
√

π T N
I (s, t = 0)

= 4
√

π (h̄c)2 [αI (s) + λI (s)]
= 2.7606 [αI (s) + λI (s)] mb, (15)

ρ(s) = T N
R (s, t = 0)

T N
I (s, t = 0)

= αR(s) + λR(s)

αI (s) + λI (s)
(16)

and

BK (s) = 2

T N
K (s, t)

dT N
K (s, t)

dt

∣

∣

∣

t=0
= 2

αK (s) + λK (s)

×
[

αK (s)βK (s) + 1

8
λK (s)a2 (6γK (s) + 7)

]

.

(17)

The tail term Rggg (t), producing a universal (not energy
dependent) |t |−8 form for large |t | in dσ/dt was studied in
the analysis of the experiments at CERN-ISR, CERN-SPS
[12], 1.8 TeV [7] and 7 TeV [5]. To restrict this contribution
to the large |t | region, we create a connection factor, writing

Rggg(t) ≡ ±d1

t4 [1 − e−d2(t2−d0)][1 − e−x|t |]d3, (18)

where the last two factors cut-off this term smoothly in the
domain from 2 to 5.5 GeV2, and the signs ± refer to the
pp and pp̄ amplitudes respectively. The detailed form of the
factor in Eq. (18) must be adequate for the description of
the data for |t | values in the transition range connecting the
experimental points [8] at

√
s = 27.4 GeV. In Sect. 3, the

proposed parameters are

d0 = 9 GeV4, d1 = 0.563 ± 0.008 GeV6,

d2 = 0.16 ± 0.01 GeV−4, d3 = 48, x = 1 GeV−2. (19)

The peculiar form of Eq. (18) is explained in Sect. 3.1.

3 Description of the 13 TeV data

In this section we obtain the representation of the data of
Totem experiment at 13 TeV through the t-space amplitudes
of the KFK model written in Eqs. (11, 14, 18). Plots in Fig. 3
show separately forward, mid and full |t | ranges of the data
of Sets I and II, described by a unique solution, with the
parameters given in Table 1. Table 2 gives statistical quanti-
ties for different ranges of the data, obtained with the same
unique solution. Values of χ2 are given for calculations with
statistical errors and for total errors combining statistical and
systematic errors in quadrature. We also inform the χ2 value
for a combined set of the first 56 points of Set I with the
290 points of Set II (total 346 points), avoiding the super-
position of ranges. In the last line of Table 2 we inform the
χ2 result for a set of 467 points joining the 27.4 GeV data
[8], using the real amplitude that includes the Rggg term of
3-gluon exchange as in Eqs. (14, 18), while keeping fixed the
parameters of Table 1. The connection of the data of these
different energies is illustrated in Sect. 3.1. In Sect. 3.2 we
present specific results of an analysis for the forward data of
Set I.

Observable quantities and positions of the zeros are given
in Table 3.

3.1 Connection with measurements at
√
s = 27.4 GeV

The elastic scattering data for |t | larger than 5 GeV2 have
been shown to be independent of the energy in a large range
of

√
s from 20 GeV to 7 TeV [5,8,9,12]. The experiment

at
√
s = 27.4 GeV with 39 data points covering the wide

|t | range from 5.5 to 14.2 GeV2 [8], provides important ref-
erence for the study of pp at large scattering angles. The
property is demonstrated for energies below

√
s = 62.5 GeV

in Fermilab and CERN/ISR measurements [12] (see Figures
2, 3 and 10 in this paper), showing a smooth connection
between the mid-|t | range containing perturbative and non-
perturbative terms and the range of large |t | dominated by
perturbative three-gluon exchange.
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Fig. 3 Representation in the KFK model of separate |t | ranges of Sets
I and II of Totem measurements at 13 TeV, with unique analytical form
and parameter values given in Table 1. c Shows in dashed line the dis-
placement due to the inclusion of the Rggg(t) term in the amplitude. In
Fig. 5 we show how this term implies the connection with the data of

large |t | at
√
s = 27.4 GeV. In the small- and mid-|t | ranges of plots a

and b the influence of the tail term is not relevant in the plots. In plot
d for small |t | we show lines for calculations with Coulomb-nuclear
interference phase φ included in the usual form (dashed line), and with
phase put as zero (solid line); numbers are given in Table 4

Table 1 Parameters of the amplitudes in the KFK model determined
with the 428 points of Totem measurements at 13 TeV. The QCD quan-
tity related to correlation function is a2 = 2.1468 ± 0.0001 GeV−2 =
(1.4652 GeV−1 ± 0.0002)2 = (0.2891 ± 0.0002 fm)2, where a is
called correlation length. The quantities γI and γR characteristic of the

non-perturbative shape functions in Eq. (11) are dimensionless, while
αK , βK and λK have units GeV−2. The index K means I, R. To have
all quantities with same dimensions GeV−2, we can use ηK = γK a2

instead of γK , as in Sect. 5

Imaginary amplitude Real amplitude

αI ( GeV−2) βI ( GeV−2) λI ( GeV−2) γI αR ( GeV−2) βR ( GeV−2) λR ( GeV−2) γR

15.701 ± 0.001 4.323 ± 0.001 24.709 ± 0.002 7.819 ± 0.0005 0.2922 ± 0.0005 1.540 ± 0.003 4.472 ± 0.003 7.503 ± 0.006
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The universality in the energy and the |t | dependence
of form 1/|t |8 in dσ/dt have been interpreted by Don-
nachie and Landshoff [10,11] as determined by the process
of exchange of three gluons. This contribution is represented
by the quantity Rggg(|t |) introduced in Eq. (14), receiving
a cut-off factor written in Eq. (18) designed to restrict the
1/|t |8 behaviour. The three-gluon contribution occurs in the
|t | range where the imaginary part is negligible, and the per-
turbative term αR exp(−βR |t |) is dominant. The transition
from 2 to 5 GeV2 is precious to inform features (signs, mag-
nitudes) of terms of the real scattering amplitude in the large
|t | region. These features are described in Sect. 4.

As an example, the structure of the real amplitude leads
to the argument that the difference in the dip regions of pp
and pp̄ scattering at 53 GeV [29] is due to the difference
in the signs of the three-gluon contributions in pp and pp̄
scattering, and not necessarily to the presence of an odderon
element [12], unless it is meant that three-gluon exchange is
the modern QCD name for odderon [30,31].

At high energies, there is not sufficient experimental infor-
mation for the investigation of the elastic amplitudes at high
|t |. LHC measurements at 7 and 8 TeV [6,7] are restricted
to less than |t | = 2 GeV2, and the connection between mid
and large |t | regions remains in the level of clear indication,
as shown in Fig. 6 of the 7 TeV paper [6], where the data for
52.8 GeV [32,33] and 7 TeV are exhibited together.

At 13 TeV the data are more extended in |t |, reaching
nearly 4 GeV2, allowing investigation of properties of the
amplitudes in the connection with FNAL data [8]. Then we
first choose the parameters for the Rggg(t) function, that is
shown Fig. 4, together with the corresponding cross section
in the range of the transition. In Fig. 5 we show the matching
of the Totem 13 TeV and ISR 52.806 GeV measurements
[32,33] with the data of FNAL measurements [8] at

√
s =

27.4 GeV.
Some points of high |t | of the Totem measurements show a

marked decrease in the values of dσ/dt , with large statistical
error bars, from 45 to 60%. These points deviate meaning-
fully from the proposed solution, and particularly they seem
not to accept easily the suggestion of connectivity with the
three-gluon tail. These are only few points of poor statis-
tics, but visually they have important influence, as shown
in Figs. 4 and 5. In our description, this range of dσ/dt is
dominated by the perturbative term in the real amplitude, and
serves as important test of the proposed disentanglement. In
Sect. 4 we show that the real part of the KFK amplitude is
positive for large |t |, and then the superposition with the also
positive three-gluon term should be constructive. If the real
part were negative, a dip could be formed. In the analysis of
the 1.8/1.96 GeV Fermilab [5] pp̄ data we predicted that such
dip would appear for large |t | (the three gluon term is nega-
tive in pp̄ ), but unfortunately the measurements do not reach
large enough |t |, and the prediction is not tested. Here in pp at

13 TeV, we do not have simple explanation for the decrease
of dσ/dt in the points of largest |t |. A connection function
producing the visual shape would not be natural. This ques-
tion obviously leads to the suggestion that the measurements
in the large |t | range should receive more attention.

Table 2 shows that the 24 points of with highest |t | in Set II
are described in our unique solution with comparatively large
χ2 values of about 10. This is a local feature, as these points
have low influence in the χ2 value for the 428 points. For a
local investigation, we observe that this range is dominated
by the perturbative real part, so that only the parameters αR

and βR require attention. Thus, with αR = 0.476±0.022 and
βR = 1.771±0.025 we obtain χ2 = 2.210 and χ2 = 2.484,
respectively using total and only statistical errors. This pre-
dicted local improvement in χ2 changing only two selected
parameters is consequence of the separation of the perturba-
tive and non-perturbative terms in the analytical form.

3.2 Specific representation of amplitudes for the 138 points
of Set I

As a side information (since the main concern of the present
work is with the unique global solution for all ranges), in
Table 4 we show the χ2 results for the 138 points of Set I
with freedom given to the λI and λR parameters, maintain-
ing all other quantities as written and used in Tables 1 and 2.
Only the non-perturbative magnitudes λI and λR are investi-
gated in this alternative examination because these terms are
dominant in the imaginary and real amplitudes for small |t |,
as shown in Sect. 4. Comparison is made of solutions with
and without inclusion of the Coulomb-nuclear interference
phase φ. The results in Table 4 may be compared with val-
ues obtained with simplified forms of amplitudes restricted
to the forward scattering range [4], namely with product of
exponential and linear factors as

TK (t) = TK (0) e(B0
K /2)t (1 − μK t), K = I, R. (20)

We again stress that the parametersσ ,ρ and slopes are model-
dependent quantities, related to specific analytical forms of
the amplitudes. The only experimental measurements are the
values of dσ/dt at angular positions defined by values of
|t |. In particular, for the value of ρ, it has been shown [4]
that the presently available data at small |t | does not allow
a conclusion about its value. Besides the insufficiency of
regular data in the very forward region, the theoretical basis
for the Coulomb-nuclear interference phase is uncertain.

We remark that both imaginary and real parts have zeros,
so that, besides exponential slopes at least linear factors in the
amplitudes are essential to represent the forward data realis-
tically as in Eq. (20). In KFK the factorization of the logarith-
mic derivative with a slope as in Eq. (17) leaves a remainder
that has a zero, but not a linear zero (actually the remaining
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Table 4 Values of parameters λI and λR and of χ2 (with statistical
errors only) obtained specifically for the 138 points of Set I, with all
other quantities (αK , βK , γK ) kept as given in Table 1 and used in
Table 2. We here give the values for fitting with Coulomb interference
phase φ put as zero, and for phase calculated as described before [4].
The χ2 values may be compared with χ2 = 1.455 (with CNI phase
zero) given in Table 2 and χ2 = 2.144 with CNI phase calculated with

proton form factor. We recall that in the detailed analysis of forward
data studying the influence of the CNI phase [4], reported values are
σ = 111.84 mb, ρ = 0.125 for φ = 0, and σ = 111.84 mb, ρ = 0.097
for φ 
= 0. The position Z (1)

R of the first real zero (Martin’s Zero) is also
given, since it occurs in the forward range and is important theoretical
reference

CNI phase φ λI ( GeV−2) λR ( GeV−2) χ2 σ (mb) ρ BI ( GeV−2) BR ( GeV−2) Z (1)
R ( GeV2)

Zero 24.772 ± 0.010 4.382 ± 0.115 1.126 111.73 ± 0.03 0.116 ± 0.001 21.06 26.37 0.201

φ(t) 24.836 ± 0.010 3.403 ± 0.130 1.121 111.91 ± 0.03 0.092 ± 0.001 21.08 25.96 0.213

factor has zero of higher order in a Taylor expansion), so
that BI and BR in Eq. (17) correspond to the effective slope
that includes the effect of a linear factor in the forward ampli-
tude. The effective slope in Eq. (20) comparable to Eq. (17) is
Beff
K = B0

K −2μK . It is also interesting to compare the value

of the first real zero Z (1)
R of the KFK model in Table 3 with the

values obtained [4] with Eq. (20). With μR = −3.84 GeV−2,
the zero at |t | = −t = −1/μR = 0.26 GeV2 may be com-
pared with ZR = 0.20 GeV2 in Table 3.

4 Imaginary and real parts of the scattering amplitude

The analysis presented in Sect. 3 leads to a proposal for
the disentanglement of the real and imaginary parts, that is
obtained directly from the data. In this section we discuss the
properties of the amplitudes and their terms, in both t and b
coordinates.

4.1 Amplitudes in t-space

Figure 6 shows the amplitudes, detailing small and large |t |
ranges. Similarly to lower energies, the imaginary and real
parts have one and two zeros respectively. In the plot for
large |t |, the contribution of the the Rggg tail term is also
shown, appearing as a deviation in the real amplitude visible
for |t | ≥ 3 GeV2.

The separate perturbative and nonperturbative parts of the
imaginary and real amplitudes are shown in Fig. 7. The quan-
tities. TI (pert) = αI e−βI |t | and TI (nonpert) = λIψI (γI , t)
are strong and with opposite signs in the dip-bump region,
with a cancellation at ZI = 0.46 GeV2, causing the dip. The
existence of these two terms in TI is most important for the
construction of the representation. The cancellation leaves
room for the influence of the real amplitude that modulates
the shape of the dip-bump structure. TR (nonpert) dominates
(in magnitude) over TR (pert) in the dip-bump region, but
if falls to zero more rapidly, while the perturbative real part
lasts longer in |t |. For |t | larger than ∼ 3 GeV2 only the per-

turbative real part TR (pert)(t) remains active, with positive
sign.

As a general view, we observe that forward scattering
emphasizes non-perturbative dynamics, while large |t | scat-
tering is dominated by perturbative terms in the real ampli-
tude. The real part becomes negligible for |t | = 0, as ρ

decreases with the energy.
The magnitudes of all terms in the amplitudes vary enor-

mously from the bump to the region |t | = 3–4 GeV2 reached
by the present data. The structure in the large |t | range that
we try to access through the connection with the three-gluon
exchange is important for the construction of a global picture
for pp elastic scattering. This construction is confirmed by
other models, as illustrated in Fig. 14.

4.2 Amplitudes in b-space

The b-space dimensionless amplitudes ˜TI (b) and ˜TR(b) of
Eqs. (1, 2) are shown in Fig. 8a, b, where we observe that
there are no zeros. In general ˜TI (b) is about 10 times larger
than ˜TR(b), and it is impressive that the Fourier transforms of
both have importance in the structure of the observed dσ/dt ,
with a dominance of the real part for large |t |. The function
˜TI (b) is monotonically decreasing in b, while ˜TR(b) has a
maximum at b = 4.339 GeV−1 with numerical value 0.131.
At b = 0 we have

˜TI (b = 0) = αI /2βI = 1.81598 = √
π + 0.04353

that is slightly larger than
√

π = 1.7725 and

˜TR(b = 0) = αR/2βR = 0.09487.

At

b = broot = 1.47393 GeV−1

we have

˜TI (broot) = √
π = 1.7725 and ˜TR(broot) = 0.10009.

As seen in Fig. 8, the non-perturbative terms ˜TK (nonpert) =
λK ˜ψK (b), K = I, R, dominate the amplitudes for large
b, while ˜TI (nonpert) dominates over TI (t) in the forward
peak, where non-perturbative and perturbative magnitudes
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λKψK (γK , t), (with K = I, R), andTR(perttail) = TR(pert)+Rggg(t).
It is important to observe that λI /αI ≈ 25/15 and λR/αR ≈ 15, so that
the forward direction is dominated by the non-perturbative term, par-

ticularly so in the real amplitude (thus the evaluation of the ρ parameter
is mainly a non-perturbative affair). After the bump, TI (pert) is negli-
gible compared to TI (nonpert), which becomes negligible compared to
TR(pert) for |t | ≥ 3 GeV2. For large |t |, only TR(pert) (or TR(perttail)
) survives
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are in the ratio λI /αI ∼ 25/15, with a ratio ∼ 25/9 in the
contributions to the total cross section. It is remarkable that
forward elastic scattering is mainly a peripheral process of
non-perturbative nature.

In terms of the ˜TK (s, b) amplitudes, the elastic, total and
inelastic cross sections are written respectively

σel(s) = (h̄c)2

π

∫

d2b |˜T (s, b)|2 ≡
∫

d2b
dσ̃el(s, b)

d2b
,

(21)

σ(s) = 2√
π

(h̄c)2
∫

d2b ˜TI (s, b) ≡
∫

d2b
dσ̃tot(s, b)

d2b
,

(22)

and

σinel = σ − σel = (h̄c)2
∫

d2b
(

2√
π

˜TI (s, b) − 1

π
|˜T (s, b)|2

)

≡
∫

d2b
dσ̃inel(s, b)

d2b
. (23)

The values of the integrated cross sections are σel = 31.096
mb, σ = 111.557 mb, σinel = 80.461 mb, with ratio
σel/σ = 0.28. The differential cross sections in b-space
shown in Fig. 8c give a hint of the proton hadronic inter-
action structure in the transverse collision plane with smooth
monotonous b-dependence.

Unitarity imposes that σel ≤ σ . With a classical point
of view, a hypothesis that the inequality is valid for all b is
written

˜TI (s, b)2 + ˜TR(s, b)2 ≤ 2
√

π ˜TI (s, b), ∀ s, b (24)

or

˜TR(s, b)2 + (˜TI (s, b) − √
π)2 ≤ π, ∀ s, b. (25)

This relation, called b-space unitarity, is satisfied by our
amplitudes.

The eikonal function χ (s, b) for a given s is introduced
through

i
√

π (1 − eiχ(b)) ≡ ˜T (b) = ˜TR(b) + i˜TI (b), (26)

with

χ(b) = χR(b) + iχI (b). (27)

Separating real and imaginary parts

1 − cos χR e−χI = 1√
π

˜TI (b) (28)

and

sin χR e−χI = 1√
π

˜TR(b) (29)

we obtain

χI (b) = −1

2
log

[

1

π

(

˜TR(b)2 + (˜TI (b) − √
π)2

)

]

. (30)

so that the b-unitarity condition in Eq. (25) reads simply

χI (s, b) ≥ 0, ∀s, b. (31)

With monotonic behavior of the scattering amplitudes, our
solutions are restricted to the branch where χR ≥ 0. We
need special care to write the expression for χR , because it
enters the second quadrant for small b. At the point b =
broot where ˜TI (broot) = √

π , cos χR becomes zero, and it is
negative between b = 0 and b = broot. To have continuity,
avoiding that a calculator produces a positive value in the
fourth quadrant, we must write the function arctan with two
arguments. In the form used by the Wolfram Mathematica
software, we write

χR(b) = arctan[(√π − ˜TI (b)), ˜TR(b)]
= π

2
− arctan[˜TR(b),

√
π − ˜TI (b)]. (32)

In terms of the eikonal function, we have

dσ̃el(s, b)

d2b
= 1 − 2 cos χR e−χI + e−2χI , (33)

dσ̃ (s, b)

d2b
= 2

(

1 − cos χR e−χI
)

, (34)

dσ̃inel(s, b)

d2b
= 1 − e−2χI . (35)

These expressions are plotted in Fig. 8, and the explicit repre-
sentation for cos χR and the expression in Eq. (30) for χI (b)
are plotted in Fig. 9.

The function χI (b) is not monotonically decreasing, start-
ing with χI (0) = 2.83208, and presenting a maximum at
bmax = 1.2700 GeV−1 with value χ(bmax) = 2.8818. This
property is not observed in our previous analyses at lower
energies

√
s ≤ 7 TeV, where χI is always monotonically

decreasing function in b. To detail this peculiar behaviour,
and illustrate the effect of the real part, we point out that from
Eqs. (28, 29) together with Eq. (31) we have

0 ≤ χI (b) ≤ −1

2
log

(

˜TR(b)2

π

)

≡ bound(b). (36)

The expression bound(b) is plotted in dotted line in Fig. 9a.
At b = broot = 1.47393 GeV−1, where ˜TI (b) − √

π =
0, χI (b) touches bound(b). Everywhere else, the inequal-
ity holds. This happens even at the maximum bmax of
χI (b), where bound(bmax) = 2.8895 is slightly larger than
χI (bmax)=2.8818.

It is interesting that the differential inelastic cross section
dσ̃inel/d2b in Fig. 8c is almost fully saturated (� 1) in the
central collision region up to b < 4 GeV−1 ≈ 0.8 fm. This
can be seen also from the behavior of χI (b) in Fig. 9, where
for b < 4, it is χI > 1.5 so that exp

(−2χI

) ≤ 0.05. In the
classical picture, from the central to approximately the half
overlap impact parameter, the pp system behaves as com-
pletely absorptive, leading to particle production channels.
We note, however, that this does not mean that the elastic
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Fig. 8 a, b Amplitudes in b-space. The quantities labelled in the fig-
ures are ˜TK (pert) = (αK /2βK )e−b2/4βK , ˜TK (nonpert) = λK ˜ψK (b),
with ˜ψK (b) given in Eq. (2), and ˜TK = ˜TK (pert)+˜TK (nonpert). Notice
the difference in the scales of the plots of ˜TI and ˜TR . The perturbative

terms dominate the central region of b ≤ 2 GeV−1 ∼ 0.4 fm while
the non-perturbative terms are strongly dominating for large b. In c the
plots of differential cross sections of Eqs. (21, 22, 23) give hints about
the structure of the interaction as observed in the transverse collision
plane

differential cross section dσ̃el/d2b is null, due to the wave
nature of the scattering. The diffractive wave as the reflection
of inelastic scattering contributes to the elastic channel with
almost the same magnitude as the inelastic one inelastic one
even for the extreme case of a black disk.

On the other hand, at this energy, we note that the elastic
scattering profile at b = 0 is rather large, exceeding the
inelastic profile, which was never observed in our previous
analyses. Furthermore, we also observe for the first time,
a small decrease the inelastic profile near b = 0 (almost
invisible in Fig. 8, as direct reflection of the behavior of χI

shown in Fig. 9). We will return to this point later.

As claimed in previous studies, in the very peripheral col-
lisions (at this energy, b ≥ 8 GeV−1 � 1.6 fm), contribu-
tions from elastic processes become negligible and inelastic
processes are dominant.

Physically speaking, this part can be associated to diffrac-
tive particle production mechanism. In b-space, this consti-
tutes a rather diffused surface structure with a long tail in
dσ̃inel/d2b. We may associate such processes (forward scat-
tering) with those from the excitation of the vacuum through
the non-perturbative processes. In [7] we argue that the exis-
tence of such a long tail in dσ̃inel/d2b and vanishingly small
values of dσ̃el/d2b for large b, say > 9 GeV−1, can be con-
sidered as responsible for the ratio, σ̃inel/σ̃ being significantly
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Fig. 9 Eikonal quantities. a The quantity bound(b) =
−(1/2) log(T 2

R/π) shown with dotted line participates in the
constraint of Eq. (36); b χR(b) is in the second quadrant for

small b, with χR(0) = 2.0010 , and cos χR(0) = −0.4170; at
b = broot = 1.4739 GeV−1, we have χR(broot) = π/2 and
cos χR(broot) = 0

larger than that of a black-disk limit, namely 1/2. There,
assuming the geometric scaling property for dσ̃inel/d2b, we
extrapolated this ratio to 13 TeV, predicting the value

(σ̃inel/σ̃ )extrapolation = 0.7428,

while the present analysis gives

(σ̃inel/σ̃ )Totem = 0.7212,

which is 3% smaller, but yet definitely far from the black disk
limit.

5 Energy dependence

The KFK model represented by Eqs. (1, 2), or alternatively
Eq. (14) in |t | space, has been used in the description ofdσ/dt
data at several energies, and its properties and predictions in
both |t | andb spaces were studied also for cosmic ray showers
[34].

Data of pp elastic scattering covering regularly from small
to large |t | are available in the ISR range (up to 63 GeV), and
at 7 and 13 TeV in LHC Totem measurements. The com-
prehensive analysis of all dσ/dt data then available (up to√
s = 7 TeV) was made [7] with a study of the energy depen-

dence of the KFK parameters, including predictions for 13
and 14 TeV.

The 13 TeV data are more precise and cover wider |t |
range than the 7 TeV data, allowing realistic determination
of the amplitudes in KFK model. This is the purpose and the
achievement of the present work. The results obtained lead

to revision and extension of the previous analysis, and the
updated revision is presented in this section.

We stress that KFK provides a framework that is particu-
larly important for a study of the real part, that is elusive in
the forward region, becoming influent at mid |t | and dom-
inant after about 3 GeV2. Due to the small value of ρ, the
interplay of the electromagnetic and real part of the nuclear
amplitude is very delicate. A detailed analysis of the forward
data at 8 TeV [35], accounting for the role of the real part of
the hadronic amplitude in the CNI contribution, has demon-
strated the importance of the hadronic model in the deter-
mination of the forward scattering parameters, leading to the
values ρ = 0.12±0.03 and σ = 102.9±2.3. Particularly the
ρ value, small compared to 0.14 of COMPETE preference,
anticipated the tendency that was later confirmed in measure-
ments at 13 TeV. The ρ value at 8 TeV affects the revision of
parameters presented in this section, particularly leading to
ρ = 0.115±0.001 at 7 TeV, with very good χ2. The decisive
influence of the hadronic amplitudes in the study of the phase
in the Coulomb-Nuclear Interference, with consequences in
the evaluation of ρ and σ , was also demonstrated at 13 TeV
[4].

Table 5 shows the optimal values of the model parameters
for

√
s = 52.806 GeV, chosen as representative of the ISR

range, together with the results of 7 TeV and 13 TeV. The
table introduces an alternative notation, defining quantities
ηK through

ηK = γK a
2 (37)
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Table 5 Parameters of the amplitudes in the KFK model determined at
the energies 52.806 GeV, 7 TeV and 13 TeV. For uniformity, the table
uses the alternative parameters ηK = a2γK with units GeV−2 instead

of the dimensionless γK . Notice values of a2 for different energies.
For 0.0528 TeV the data reaches |t | = 10 GeV2 and the three-gluon
exchange term is included

√
s

TeV
a2

GeV−2
N χ2 σ (mb) ρ αI

GeV−2
βI
GeV−2

λI
GeV−2

ηI
GeV−2

αR
GeV−2

βR
GeV−2

λR
GeV−2

ηR
GeV−2

0.0528 1.39 97 0.9251 42.54 0.078 5.958 2.348 9.451 10.5778 0.0710 1.144 1.131 11.794

7 2.00 165 0.2957 98.75 0.115 13.730 4.100 22.040 16.3000 0.2572 1.405 3.856 15.576

13 2.1468 428 1.567 111.56 0.118 15.701 4.323 24.709 16.7858 0.2922 1.540 4.472 16.107

that have the same GeV−2 units as the other six quantities
αK , βK , λK , used instead of the dimensionless γK used in
the text and in previous work.

Using the forms ηK instead of γK , the non-perturbative
shape functions are written

˜ψK (s, b) = 2e

(

ηK −
√

η2
K +b2a2

)

/a2

√

η2
K + b2a2

⎡

⎣1 − e

(

ηK −
√

η2
K +b2a2

)

/a2
⎤

⎦ .

(38)

Consequently, in t-space the shape function obtained by
Fourier Transform is written

ψK (γK (s), t)

= 2 eηK /a2

⎡

⎣

e−(ηK /a2)
√

1+a2|t |
√

1 + a2|t |
− eηK /a2 e−(ηK /a2)

√
4+a2|t |

√

4 + a2|t |

⎤

⎦ .

(39)

Using these sets of values, we updated the energy dependence
of the KFK parameter values [7] as

αI = 8.97889 + 1.87838 log
√
s + 0.289432 log2 √

s

(40)

βI = 3.40059 + 0.35881 log
√
s + 0.000315 log2 √

s

(41)

λI = 15.22340 + 2.88969 log
√
s + 0.3152 log2 √

s

(42)

αR = 0.16377 + 0.04144 log
√
s + 0.003365 log2 √

s

(43)

βR = 1.13041 + 0.083146 log
√
s + 0.029841 log2 √

s

(44)

λR = 2.31722 + 0.63662 log
√
s + 0.079324 log2 √

s

(45)

ηI = 13.79950 + 1.13219 log
√
s + 0.012510 log2 √

s

(46)

ηR = 13.98229 + 0.78910 log
√
s + 0.015369 log

√
s

(47)
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Fig. 10 Energy dependence of the KFK parameters, obtained by direct
analysis of dσ/dt data at ISR energies, and at LHC energies 7 and
13 TeV. The dots mark the values of the parameters at reference values
52.8 GeV, 7 TeV and 13 TeV, as given in Table 5

with
√
s in TeV and units GeV−2 for all quantities. These

forms as functions of the energy are shown in Fig. 10.
In the table we notice that the correlation length squared

a2, serving as scale for the gluon correlations in the trans-
verse collision plane for the nonperturbative term, has regu-
lar energy dependence, staying close to the value obtained in
static lattice calculation. The KFK amplitudes for dσ/dt are
sensitive to these values, and a representation appropriate for
interpolation is

a2 = 1.64036 + 0.145122 log
√
s + 0.0204 log2 √

s GeV−2. (48)

The total cross section reads

σ = 2.7606(αI + λI )

= 66.8129 + 13.1627 log
√
s + 1.6691 log2 √

s mb,

(49)
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Fig. 11 Energy dependence of the slopes of the real and imaginary
amplitudes

and we recall that ρ = (αR + λR)/(αI + λI ) is given by
Eq. (16).

The slopes of the amplitudes, shown in Fig. 11, can be
represented by simple forms

BI = 17.270 + 1.457 log
√
s + 0.006 log2 √

s

BR = 22.457 + 1.356 log
√
s + 0.070 log2 √

s (50)

with units GeV−2. The structure of the forward amplitude
with different slopes BI and BR is crucial in the analysis of
the CNI range for determination of σ and ρ. The stronger real
slope BR indicates the presence of the close zero predicted
by Martin’s theorem.

It is interesting to observe the energy dependence of prop-
erties of the amplitudes in b-space [7,34]. Figure 9 shows that
at 13 TeV the elastic differential cross section at b = 0 is
larger than the inelastic quantity, while at lower energies the
inverse is true. According to our description, the ratio elas-
tic/inelastic at b = 0 increases with the energy, with values
0.56, 0.90, 1.06 for 52.8 GeV, 7 TeV and 13 TeV respectively.
The energy dependences are determined with dσ/dt data that
have a wide coverage in t and permit to obtain the parameter
values with excellent precision for each given energy up to
13 TeV. However, the forms have limited local validity, like
Taylor expansions in log

√
s up to second order, and are not

adequate for extrapolation to very high energies. Neverthe-
less, it is tempting to compare the predictions resulting from
the present analysis to, for example, a cosmic ray energy
scale, as

√
s = 50 TeV.

The above mentioned ratio elastic/inelastic at b = 0
increases as high as 1.56, while Eq. (49) predicts σ = 143.85

mb at 50 TeV, that is consistent with the estimated values of
sigma(pA) data [34]. Values of some derived quantities are
shown in Table 6.

Figure 12 shows the elastic, inelastic and total differential
cross sections in b-space for 13 and 50 TeV. In view of the
study of properties of the terms of the amplitudes in Sect. 4.2
we learn that this increase of the elastic cross section at b = 0
is mainly due to the perturbative terms. However, we must
remark that the range around b = 0 is reduced in the bdb
integration, and that the inelastic cross section dominates
for larger b, so that the integrated inelastic is larger than the
integrated elastic at all energies. The ratios are given in Table
6.

In Fig. 12 we observe that the inelastic differential cross
section is never saturated (namely it is always smaller than
1, with the eikonal χI larger than zero), while the elastic and
total quantities are strongly enhanced in the region close to
b = 0. For very central collisions, with the impact parameter
smaller than the nucleon geometric size, inelastic processes at
50 TeV are visibly suppressed compared to the 13 TeV case.
To be more precise, such suppressions of inelastic profile near
b = 0 already started in the 13 TeV data, although not being
quite visible in the figure. However from the behavior of χI

in Fig. 9 near b = 0, together with Eq. (35), it is clear that
the inelastic profile has a minimum at b = 0. as mentioned in
the previous section. The ratio elastic/inelastic cross sections
at b = 0 increases fast because the elastic part increases and
simultaneously the inelastic part decreases. For much higher
energies, this tendency is more enhanced.

The concept of the impact parameter b is classical and can-
not be associated with a real physical observable in micro-
scopic systems. Nevertheless, the present results suggest an
image that, at ultra high energies, the two colliding protons
tend to behave as two thin, inter-penetrable hard disks so that
the process becomes elastic scattering dominant, decreasing
the inelastic channel. This seems to occur in the b-domain
corresponding to the proton radius (b < Rproton ≈ 0.85 fm).
Such image may require the existence of some non-causal
transverse correlation between the whole colliding protons,
for example similar to the exclusion principle. It will be
interesting to compare the elastic differential cross section
for small b in pp and pp̄ collisions. If no such enhancement
appears in pp̄, a simple idea of exclusion principle may be
compatible, although sometimes the differences of scattering
amplitudes in pp and pp̄ are considered as signal of odderon
existence. For larger b our model indicates that the cloud of
vacuum fluctuations around the proton dominates the pro-
cess, contributing to the inelastic (particle production) chan-
nels.

These considerations show that precise data on the scat-
tering amplitude for different values of

√
s and with wide

|t | range are necessary for the understanding of the structure
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Table 6 Quantities derived from the energy dependence expressed by
the interpolation equations (47). The quantities ZI , Z (1)

R and Z (2)
R are

the locations (|t | values) of the zeros of the imaginary and real ampli-
tudes, that are important in the dip-bump structure. The integrated cross
sections do not show tendency for black disk collision

√
s (TeV) ZI ( GeV2 ) Z (1)

R ( GeV2) Z (2)
R ( GeV2) ρ σtot (mb) σel (mb) σinel (mb) σel/σinel σel/σtot |t |dip ( GeV2) hdip (mb/ GeV2)

7 0.479 0.209 1.144 0.115 98.75 25.37 73.38 0.346 0.257 0.487 0.012

13 0.460 0.200 1.180 0.118 111.56 31.10 80.46 0.386 0.279 0.470 0.026

20 0.453 0.195 1.218 0.120 121.22 35.56 85.66 0.415 0.293 0.460 0.032

50 0.428 0.183 1.345 0.123 143.85 47.59 96.26 0.494 0.331 0.442 0.051

Fig. 12 Differential cross sections in b-space at energies 13 and
50 TeV. At b = 0 the ratio of differential cross sections elastic/inelastic
increases from 1.06 at 13 TeV to 1.56 at 50 TeV. As the energy increases,
the interaction at the center of the proton becomes increasingly elastic.
On the other hand, the integrated cross section is dominantly inelastic,
as its range is more extended and the value is favored by the b factor in
the integration. For more clarity, the figure is repeated in log scale

of proton and of the surrounding QCD field in the collision
region.

6 Other models

The present paper is mainly dedicated to the analysis of the |t |
dependence of pp elastic scattering measured at 13 TeV, char-
acterized by unique statistical quality and wide |t | coverage.
These data brought surprises and opportunities for theoreti-
cal models. Several well established frameworks revised their
assumptions and results. The response of the proton in the
scattering process may change because Lorentz contraction
puts the partons closer, and correlations (and even exclusion
principle) act differently as energy increases.

In the present work KFK model gives high precision repre-
sentation for all data with identification of the real and imag-
inary amplitudes, and shows χ2 values for separate ranges
with a unique solution, both with statistical and with com-
bined statistical and systematic errors. Although consistent
and detailed, the significance of the results depends on the
analytical forms used, and it is important to compare our cal-
culations with the results obtained in different frameworks,
trying to learn about the meaning of each one.

Comprehensive and competent reviews are available, dis-
cussing several aspects of pp elastic scattering, in both s and
t variables [36,37]. In this section we mention some specific
calculations that deal with aspects related with the present
work.

6.1 Pomeron models

Models based on Regge formalism are traditional in studies
of hadronic scattering, giving connection between the s and
t variables in forward scattering for many hadronic systems
in terms of kinematical forms called Regge trajectories.

To describe the observed curvature in the diffractive peak
of pp scattering, the main Pomeron trajectories must become
non-linear, and modulated forms with adjustable parameters
are proposed. To extend the use of Regge models up to the
dip, the hadronic amplitude must have a zero, and terms of
negative sign must be included in the framework. Thus the
contribution of the exchange of two Pomerons [38,39] is
introduced, with formalism and parameters adjusted to locate
the dips and estimate their heights. We are not aware that this
has been achieved with good accuracy, but the conclusion of
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these two papers is that at 13 TeV there is not evidence for
an Odderon contribution in this framework. In an alternative
approach [40], without two-pomeron exchanges, Pomeron
and Odderon terms are added on equal foot, both with double
poles and independent parameters. The very forward CNI
range is not treated, but the description of the dip/bump region
at 13 TeV is satisfactory (χ2 value for this specific range is
not informed), up to |t | ≈ 2.0 GeV2.

We emphasize that in this Regge framework, as also in
some other models, the data for large |t | (say |t | ≥ 2.5 GeV2)
range are not properly represented. This is evidence of the
absence of knowledge of the transition from soft to hard
dynamics, possibly with perturbative three-gluon exchange
influencing the tail region and shows the need for more mea-
surements.

Corresponding to these two approaches, namely two-
pomeron exchange (also multi-pomeron exchanges) and
added odderon exchange, the additional terms with negative
sign leading to dip and bump, are accounted for equivalently
in the non-perturbative shape functions of KFK, that guaran-
tee these properties of the amplitudes.

A more recent work [41] explores the Regge framework,
introducing the traditional soft Pomeron with nonlinear tra-
jectory and the hard Pomeron with stronger slope. These
quantities are added in an eikonal approximation. The param-
eters adjusted to include the 13 TeV data allow a good repre-
sentation of the pp data for 7 TeV and 13 TeV, particularly for
large |t |, and the authors inform that the hard Pomeron pole is
crucial in this aspect. No Odderon presence is claimed here.
The |t | space amplitudes of in this calculation are similar the
KFK amplitudes.

Broilo, Luna and Menon [42] studied the energy depen-
dence of σ(s) and ρ(s) including the 13 TeV data in the sta-
tistical analysis of all data from

√
s = 5 GeV reported by the

Particle Data Group (PDG), investigating comparatively the
contributions of powers and/or logarithms in the Pomeron
exchange terms [42]. The conclusion favors the choice of
the parametrization with log s and log2 s in σ(s), excluding
power forms. At 13 TeV the parametrization leads to σ(s)
= 107.2 mb, that disagrees with the calculations based on
dσ/dt , whereas leads to ρ = 0.1185 that agrees with KFK
value for zero Coulomb interference phase.

Unfortunately, the determination of the |t | = 0 quanti-
ties such as σ(s) and ρ(s) based purely on the bare data of
PDG is not secure, because this inclusive data basis has not
been not submitted to a selection and evaluation of consis-
tency and quality [43]. Values of σ and ρ are not quantities
directly measured, but rather are model dependent calcula-
tions, requiring identification of the imaginary and real parts
of the amplitude, and in many cases the dσ/dt measurements
are not sufficient in range and quality for these calculations.

6.2 Martin’s formula for the real part

With basis on general principles of quantum field theory,
Martin obtained a formula [44] connecting the real and imag-
inary parts of the complex amplitude of pp/pp̄ elastic scatter-
ing. In principle the relation was established under restrictive
conditions, as proximity of the asymptotic Froissart bound
and limitation to the very forward range. The formula, that
refers to the even component of crossing symmetry, includes
also a scaling property incorporating energy dependence in
the relation. The scaling property connecting s and t has been
explored in several instances [45–47], describing properties
of the real and imaginary amplitudes in the forward range.

Without considering Martin’s formula as a theorem with
strict constraints, the relation was considered as a sugges-
tion [48] for properties of the real part of the full |t | range
data of Fermilab and ISR experiments in the energy range√
s = 19.4–62.5 GeV. The imaginary and real parts are fit-

ted together, using a total of 12 parameters for each energy,
with representations for real and imaginary parts connected
by the formula. The numerical study includes also the 39
points of Faissler et al. measurements [8] at 27.4 GeV, con-
sidered as universally valid for the energy range investigated.
The original Martin’s real-part formula [44] was used with-
out the full scaling property, namely it is applied separately
for each energy investigated, with determination of the best
parameters at each energy. The fittings of the ISR data show
imaginary part with one zero and real parts with two zeros,
just as we obtain in KFK model.

The equation to be used is

TR(s, t) = TR(s, 0)

TI (s, 0)

d

dt

[

t TI (s, t)
]

. (51)

Obviously TR(s, 0)/TI (s, 0) = ρ, but this quantity is not
predicted by the formula, that specifically predicts the |t |
dependence of the ratio TR(s, t)/TR(s, 0) once the imaginary
part TI (s, t) is given.

To reproduce this study with the 13 TeV data testing the
KFK model, we do not fit freely the imaginary and real parts,
but rather take TI (t) as known and obtain a prediction for the
real part by Martin’s formula. We then write

TMartin
R (t)

TMartin
R (0)

= d

dt

[

t
TI (t)

TI (0)

]

(52)

where TI (t) is the KFK proposal treated in Sect. 3. In Fig. 13
we show KFK real amplitude normalized to one at the origin,
namely we plot TR(|t |)/TR(0) from KFK (solid line) and
TMartin
R (t)/TMartin

R (0) from Martin’s formula in Eq. (52), with
the given imaginary ratio TI (t)/TI (0). The important point
for the KFK model is the confirmation of the properties of the
amplitudes: one zero for TI (s, t) and two zeros for TR(s, t),
with the real part dominant over the imaginary part after the
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Fig. 13 Martin’s Real Part Formula. a |t | dependence of the real part
of elastic amplitude calculated with Martin’s Formula TMartin

R (t) using
the imaginary part TI (t) of KFK model, compared with TR(t), both nor-
malized to 1 at |t | = 0; b large |t | behaviour of TR(|t |) and TI (|t |) of

KFK calculation compared with the prediction TMartin
R (|t |) from Mar-

tin’s Formula using same TI (|t |); the real amplitudes are positive in
both cases, with magnitudes dominant (slightly in the case of Martin’s
Formula) over the negative imaginary part

bump. The comparative plots in Fig. 13 show that differences
in positions and shapes.

6.3 BSW and Selyugin’s HEGS models

The model proposed by Bourrely, Soffer and Wu (called
BSW model) [49] gives explicitly the full s, t dependence
of the elastic amplitudes and is appropriate for the compari-
son with the calculations in KFK. The structure of the pp and
pp̄ interactions studied by Selyugin [50–52], based on the
analysis of different sets of Parton Distribution Functions
and introducing t-dependence in the Generalized Parton Dis-
tributions, called HEGS model by the author, gives good
representation of dσ/dt data for large energy range, pre-
dicting the LHC experiment at 13 TeV. Figure 14 shows the
dependences of the amplitudes predicted by these two mod-
els for 13 and 14 TeV several years before the experiments.
The similarity of both BSW and HEGS models with present
KFK calculations in the forms of the amplitudes reinforces
the expectation of the present work, that aims at a realistic
identification of the terms of the complex elastic amplitude.

6.4 Models on the space structure of the proton

Recently, Csörgo, Pasechnik and Ster [53,54] introduced the
statistical analysis of Lévy imaging method to extract the
information of the colliding proton structure in a model-
independent way and quantify its inelasticity profile in b
space, obtaining dσinel/db as function of b. Comparing
the results for different energies, they claim that a possi-

ble emergence of the “proton hollowness” (or equivalently
“black-ring”) effect at 13 TeV. Note that their inelastic pro-
file function dσinel/db is practically identical with our results
shown in Fig. 12. The claimed “hollowness” is also found
in our dσinel/db, although its location and intensity are
smaller. In terms of their parameters H = exp(−2χI (0))

and h = H − exp(−2χI (bpeak)), where bpeak is the position
where χI becomes maximum, we have

bpeak � 0.24 fm, H � 0.00346, h � 0.00033,

compared to the corresponding values in [53,54]

bpeak � 0.4 fm, H � 0.0085, h � 0.0058.

As shown in Fig. 12, our analysis predicts that at 50 TeV this
“hollowness” becomes much more enhanced.

Similar conjecture of the existence of a layer-structure in
the proton, revealed in pp scattering at high energies, based on
the observation that there is a range of nearly linear behaviour
in dσ/dt , is discussed by Dremin [55] (and references therein
for related work). In contrast to the above mentioned [53,54]
approach, this work deals with the elastic profile. The author
claims that the enhancement of elastic component for large
|t | indicates a hard internal layer in the proton structure. This
observation also qualitatively agrees with our results, where
the elastic profile at 13 TeV shows a significant enhancement
near b = 0. As mentioned before, our prediction for 50 GeV
shows much more clearly the “hard core” structure of the
elastic profile function for central collisions. Unfortunately,
a direct quantitative comparison of this work [55] with our
result is not available.
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6.5 Phillips–Barger potential model

A paper by Gonçalves and Silva [56] uses the formula for the
complex amplitude based on the Phillips–Barger potential
model [47,57]

APB(t) = i

[

1

(1 − t/t0)4

√
Ae(Bt/2) + eiφ

√
CeDt/2

]

(53)

to parametrize dσ/dt at several energies for the full |t | range.
With six free parameters, the 13 TeV data (398 points) are
fitted with χ2 = 6.30 with statistical errors only. This value
looks similar to our value 5.186 for 428 points in Table 2. The
real part in the amplitude in Eq. (53) has a pure exponential
form, without zero, and is very small in magnitude for all |t |,
with a value at the origin ρ = 0.02. We understand the the
treatment of the real part in the framework of this model is
not simple [47].

In most models the range of transition from |t | ≈
2.5 GeV2 to the perturbative tail stays somewhat outside their
treatments, indicating need of special investigation of this
region, and also of more precise measurements.

7 Final comments

Elastic scattering is described by one single complex func-
tion depending on two kinetic variables and it is natural to
expect that investigations may lead to explicit and hope-
fully realistic (compatible with data and with any model

independent information) expressions for both parts of this
function, as is attempted in the present work. Besides the
|t | amplitudes extracted from data in direct analytical form,
the impact parameter representation is also explicitly given
together with their eikonal representation, so that unitarity
can be studied and controlled, in addition to providing phys-
ically intuitive images. We believe that the regularity in the
energy dependence previously studied [7] and reviewed in
Sect. 5 adds reliability to our proposal.

Characteristic features of the disentanglement of the
amplitudes here proposed are the two zeros of the real part,
and the single zero of the imaginary part, and this structure
is reproduced by different models and frameworks, as men-
tioned in Sect. 6. Interesting support in this respect comes
from the qualitative agreement of the real part in KFK with
the prediction from Martin’s Real Part Formula shown in
Fig. 13, with the zeros and the dominant positive real part
for large |t |. Since very precise representation of the data is
obtained in this work, the results suggest bridges between
experiments and amplitudes that may serve as reference for
other models.

The interplay of the imaginary and real amplitudes at mid
values of |t | is responsible for the dip-bump structure of the
differential cross section. For large |t | the perturbative term
of the real part is dominant, while at small |t | the imaginary
non-perturbative term is stronger, occupying about 75 % of
the cross section.

The Yukawa-like behaviour for large b of the profile func-
tion derived from the loop-loop interaction in the Stochastic
Vacuum Model, that is incorporated in the input amplitudes
of KFK, is present in treatments of the pp interaction through
Wilson loop correlation functions.

In the present analysis, we also studied the possible energy
dependence of the model parameters and updated the earlier
version [7]. One new finding is that at b = 0, the elastic scat-
tering profile, dσ/dbelas increases with the incident energy
very quickly beyond 13 TeV, whereas the inelastic profile
decreases. These properties are also reported in [55] and
[53,54], respectively. The dominance of elastic process at
b = 0 with quick energy variation predicted here, together
with the increasing suppression (“hollowness”) of inelastic
channel, certainly introduces a new clue for the role of proton
structure in very high energy collisions. Intuitively speaking,
at very high energies, the central collision of proton-proton
behaves as under a hard-core elastic potential scattering, with
hard-core repulsion due to Pauli’s exclusion principle. If so,
naturally we expect that such behavior will not appear simi-
larly in pp̄ scattering.

Finally we remark that in KFK model, the parameters
of the real and imaginary parts of the elastic amplitude are
treated independently. We refer exclusively to the −t > 0
half-plane, so that we cannot guarantee that final amplitude
is analytic when s and t are extended to the complex domain.
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This concern would impose further constraints, particularly
in extrapolation to higher energies.

Questions of analyticity and crossing symmetry, with
explicit inclusion of energy dependence, as in frameworks
exploring scaling properties [46], require further study.
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