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Abstract Using Tsallis statistics and its relation with
Boltzmann entropy, the Tsallis entropy content of black holes
is achieved, a result in full agreement with a recent study
(Mejrhit and Ennadifi in Phys Lett B 794:24, 2019). In addi-
tion, employing Kaniadakis statistics and its relation with that
of Tsallis, the Kaniadakis entropy of black holes is obtained.
The Sharma-Mittal and Rényi entropy contents of black holes
are also addressed by employing their relations with Tsallis
entropy. Thereinafter, relying on the holographic dark energy
hypothesis and the obtained entropies, two new holographic
dark energy models are introduced and their implications on
the dynamics of a flat FRW universe are studied when there
is also a pressureless fluid in background. In our setup, the
apparent horizon is considered as the IR cutoff, and there is
not any mutual interaction between the cosmic fluids. The
results indicate that the obtained cosmological models have
(i) notable powers to describe the cosmic evolution from the
matter-dominated era to the current accelerating universe,
and (ii) suitable predictions for the universe age.

1 Introduction

Originally, Gibbs put forth that systems including long-range
interactions may not be extensive [1], a hypothesis which also
motivates people to propose various entropy definitions [2–
4]. Recently, such entropies have been employed to model
the cosmic evolution in various setups [5–9]. Generalized
entropies have also been employed to study black holes [10–
16] and also to build new holographic dark energy models
[17–19]. Additionally, it has been shown that such entropies
(i) can provide a theoretical basis for the MOND theory [20],
(ii) affect the Jeans mass [21], (iii) may be motivated by
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the quantum features of gravity [22,23], and even, (iv) may
describe inflation without considering inflaton [24].

Bekenstein entropy [25] (and therefore, the nature of
degrees of freedom of horizon [26,27]) is the cornerstone of
primary holographic dark energy hypothesis (PHDE) [28], a
promising approach to understand the origin of dark energy.
While apparent horizon is a proper causal boundary for cos-
mos meeting conservation and thermodynamics laws [30–
35], PHDE with apparent horizon as IR cutoff suffers from
some weaknesses [28,29]. On the other, three generalized
entropy based holographic dark energy models have been
proposed that can provide considerable descriptions for the
universe expansion even if apparent horizon is employed
as IR cutoff [17–19,36]. Therefore, the use of generalized
entropies may help us in finding more suitable models of
HDE.

Generalized entropies should obey fundamental laws such
as zero law of thermodynamics and some pioneering argu-
ments on the zeroth law compatibility of them can be found
in Refs. [37–44]. Recently, some cosmological and gravi-
tational consequences of Kaniadakis statistics [6,45], as a
generalized entropy measure [2–4], have been studied. Here,
motivated by the above arguments, we are going to (i) cal-
culate the entropy of black holes in the various well-known
generalized entropy formalisms, and (ii) study their ability in
describing the current accelerated universe by building their
corresponding holographic dark energy models in the unit of
kB = G = c = h̄ = 1.

In the next section, after addressing relation between
Tsallis and Boltzmann entropies, Tsallis entropy of black
holes is derived, a result compatible with that of Ref. [46].
In addition, having introduced Kaniadakis entropy and its
relation with Tsallis entropy, we also compute the Kani-
adakis entropy of black hole in the next section. Focusing
on the relations between Tsallis entropy and Sharma-Mittal
and Rényi entropies [18,19], the Sharma-Mittal and Rényi
entropy contents of black holes are other issues which will

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-8307-x&domain=pdf
http://orcid.org/0000-0003-0941-8422
http://orcid.org/0000-0001-7029-134X
http://orcid.org/0000-0003-1196-9493
mailto:hn.moradpour@maragheh.ac.ir
mailto:ah.ziaie@maragheh.ac.ir
mailto:mkzangeneh@scu.ac.ir


732 Page 2 of 7 Eur. Phys. J. C (2020) 80 :732

also be addressed in the second section. The Kaniadakis holo-
graphic dark energy (KHDE) shall be introduced in Sect. 3,
where some of its cosmological consequences are also inves-
tigated. The ability of obtained Tsallis entropy in describing
dark energy as the vacuum energy, through constructing the
corresponding HDE model, is also studied in Sect. 4. The
universe age is finally addressed in the fifth section. In the
last section, some concluding remarks have been collected.

2 Tsallis and Kaniadakis entropies of black holes

Working in the unit kB = 1, both the Shannon and Gibbs
entropies of a distribution with W states lead to the same
expression

S = −
W∑

i=1

Pi ln(Pi ), (1)

while Pi denotes the probability of occupying the i th state,
for the classical systems. The quantum mechanical version
of this entropy, the so-called Von-Neumann entropy, is also
presented as

S = −Tr
[
ρ ln(ρ)

]
. (2)

The use of Eq. (2) for classical systems goes indeed back
to the Boltzmann’s proposal where ρ is the state density in
phase space [47].

Applying Eq. (2) to a purely gravitational system, the so-
called Bekenstein entropy (≡ SBH = A

4 ) is obtainable [25].
Since the degrees of freedom are distributed on horizon with-
out any specific priority with respect to one another, one may
assume that, at least based on our knowledge [26,27], Pi is
equal for all of them allowing us in writing Pi = 1

W . In this
manner, both of the above relations lead to the Boltzmann
entropy (S = ln(W )), and hence, we have [9,45]

SBH = A

4
= ln(W ) → W = exp

(
A

4

)
, (3)

for the horizon entropy, and consequently W (A).
The Tsallis entropy, as a single-free parameter generalized

entropy, is defined as [4]

STQ = 1

1 − Q

W∑

i=1

(
PQ
i − Pi

)
= W 1−Q − 1

1 − Q
, (4)

where Q, named Tsallis or non-extensive parameter, is an
unknown free parameter (STQ → S for Q → 1), and the
last line is valid only for probability distributions meeting
the Pi = 1

W condition. The Q parameter may also be arisen
from the quantum features of gravity [22,45]. Now, using
Eq. (3) and the last line of Eq. (4), and defining δ = 1 − Q,
one can easily find

STQ = 1

1 − Q

[
exp

(
(1 − Q)SBH

) − 1
]

=
2 exp

(
δSBH

2

)

δ
sinh

(
δSBH

2

)
. (5)

In the loop quantum gravity scenario, by applying Tsallis
entropy definition to black holes, it is obtained that [46]

STQ = 1

1 − Q

[
exp

(
(1 − Q) ln(2)

γ π
√

3
SBH

)
− 1

]
, (6)

satisfying the STQ → SBH expectation whenever Q → 1 and

γ = ln(2)

π
√

3
[46]. Therefore, in order to preserve the STQ →

SBH expectation at the Q → 1 limit, we consider γ = ln(2)

π
√

3
,

and accordingly, Eqs. (6) and (5) become the same.
The Kaniadakis entropy (κ-entropy), as another single-

free parameter generalized entropy, is also defined as [2,3]

Sκ = −
W∑

i=1

P1+κ
i − P1−κ

i

2κ

= 1

2

(∑W
i=1(P

1−κ
i − Pi )

κ
+

∑W
i=1(P

1+κ
i − Pi )

−κ

)
, (7)

where κ is an unknown parameter, and the Boltzmann-Gibbs
entropy is recovered at the κ → 0 limit [2,3]. Comparing
Eqs. (7) and (4) with each other, one can easily obtain

Sκ = ST1+κ + ST1−κ

2
. (8)

Moreover, by assuming Pi = 1
W , Eq. (7) helps us in getting

[2,3]

Sκ = W κ − W−κ

2κ
, (9)

combined with Eq. (3) to reach at

Sκ = 1

κ
sinh

(
κSBH ). (10)

Indeed, putting Eq. (6) or Eq. (5) in Eq. (8), one can again
reach this result, the Kaniadakis entropy of a black hole.

Now, as a brief study, let us investigate the Sharma-
Mittal and Rényi entropy contents of a black hole with Tsal-
lis entropy (5). Since Sharma-Mittal (SSM ) and Rényi (S)
entropies can be expressed as the functions of Tsallis entropy
as [18,19]

SSM = 1

R

(
(1 + (1 − Q)ST )

R
1−Q − 1

)
,

S = 1

1 − Q
ln (1 + (1 − Q)ST ) , (11)
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respectively, in which R is an unknown parameter [18,19], a
straightforward calculation leads to

SSM = 1

R

[
exp (RSBH ) − 1

]
,

S = SBH , (12)

where we assumed γ = ln(2)

π
√

3
, otherwise ln(2)

γ π
√

3
SBH would

emerge in results instead of SBH . The obtained SSM and S
are mathematically equal to Tsallis entropy (5) and Beken-
stein entropy, respectively, meaning that they can not tell us
anything more than what Tsallis entropy (5) and Bekenstein
entropy give us in constructing HDE models. Hence, we only
focus on Eqs. (10) and (5) to address two new HDE models.

3 KHDE

Bearing the Kaniadakis entropy content of a black hole in
mind (10), since the HDE hypothesis claims that if vac-
uum energy handles the current accelerated universe, then
its amount stored in a box with size L3 should not exceed the
energy of its same size black hole [28], one can reach

�4 ≡ ρκ
� ∝ Sκ

L4 , (13)

for the vacuum energy ρκ
�. Now, considering the apparent

horizon of flat FRW universe as the IR cutoff(
i.e.L = 1

H ⇒ A = 4π
H2

)
, we find

ρκ
� = 3C2H4

8πκ
sinh

(πκ

H2

)
, (14)

where C2 is an unknown constant as usual [28]. Now, it is
apparent that whenever κ → 0, we have ρκ

� → 3C2H2

8π
,

the well-known Bekenstein entropy-based HDE (i.e. PHDE)
[28]. In the absence of a mutual interaction between the cos-
mic sectors, including a pressureless fluid with energy den-
sity ρm and the dark energy candidate with energy density
ρκ

� and pressure p�, the energy-momentum conservation law
and Friedmann equations take the forms

ρ̇m + 3Hρm = 0,

pκ
� = −

(
ρ̇κ

�

3H
+ ρκ

�

)
, (15)

and

H2 = 8π

3
(ρm + ρκ

�),

H2 + 2

3
Ḣ = −8π

3

(
pκ
�

)
, (16)

Fig. 1 The behavior of deceleration parameter for C2 = 0.3025,
�0

m = 0.315 (the current value of �m ), and H0 = 67.9 [48]

respectively, where dot denotes derivative with respect to
time. Deceleration parameter q is also obtainable as

q = −1 − Ḣ

H2 = 1

2

⎛

⎝1 + 3ωκ
�

�m
�κ

�
+ 1

⎞

⎠ , (17)

in which

�κ
� ≡ ρκ

�

ρc
= C2H2

κ
sinh

(πκ

H2

)
,

�m ≡ ρm

ρc
, ωκ

� ≡ pκ
�

ρκ
�

, ρc = 3H2

8π
. (18)

Evolution of q versus redshift z has been plotted in Fig. 1,
which clearly shows that, depending on the values of C2

and κ , a desired behavior is getable. These values can also
affect the value of transition redshift ztr at which q = 0 and
universe changes its acceleration phase.

wκ
� is also depicted as a function of q only for κ = 690

in Fig. 2, because the curves corresponding to other values
of κ , used in plotting Fig. 1, are so close to this curve. As it
is apparent, KHDE behaves as a pressureless fluid for high
redshift limits

(
whenq = 1

2

)
and mimics a cosmological con-

stant (≡ wκ
� → −1) when z → −1 for which q → −1 and

ρm → 0.
In fact, by decreasing z, KHDE starts to control the uni-

verse expansion rate and approaches its maximum (1) when
z → −1 or equally q → −1. At high redshift limits, the
energy density of matter density begins to become dominant
and matter dominated era is begun to be covered i.e. we have

q → 1
2 and

�κ
�

�m
→ 0. In order to have a better look, we plot-

ted q
(

�m
�κ

�

)
in Fig. 3. As it is apparent, the ratio �m

�κ
�

increases

as a function of z, and the matter dominated era
(
q = 1

2

)
shall

be recovered at high redshift limit in full agreement with what
one observes in previous figures. At the transition point, we
have q = 0 leading to
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Fig. 2 The behavior of wκ
� against deceleration parameter for C2 =

0.3025, �0
m = 0.315, H0 = 67.9 and κ = 690

Fig. 3 The behavior of deceleration parameter against the ratio
�m/�κ

� for C2 = 0.3025, �0
m = 0.315, H0 = 67.9. We have

�m/�κ
� ≈ 0.95 at ztr ≈ 0.570 for gray curve and �m/�κ

� ≈ 2.01 at
ztr ≈ 0.997 for black dashed curve

�m

�κ
�

= − 1 − 3ωκ
�, (19)

which states that �m
�κ

�
> 0 only if ω� < − 1

3 . For example, for

�CDM model, we have �m
�κ

�
= 2. In Fig. 3, a variety of the

Fig. 4 The behavior of deceleration parameter for D2 = 0.3136,
�0

m = 0.315 (the current value of �m ), and H0 = 67.9

�m
�κ

�
ratio is obtainable, depending on the values of C2 and κ

parameters.

4 New Tsallis Holographic dark energy

Following the above recipe led to Eqs. (13) and (14) and
also by using Tsallis entropy (5) instead of Kaniadakis
entropy, one reaches the new Tsallis Holographic dark energy
(NTHDE) as

ρT
� ∝ STQ

L4 ⇒ ρT
� =

(
3T 2

8π

) STQ
L4 , (20)

in which T 2 is an unknown constant as usual [28]. Now, let
us define a new constant D2 = πT 2 and consider apparent
horizon as the IR cutoff (L = 1

H ). Simple calculations lead
to

ρT
� = 2D2ρc

X
exp

(
X

2

)
sinh

(
X

2

)
, (21)

where X = δπ
H2 . In this manner, Eqs. (15)–(18) are still valid

if we apply the below changes to them

ρκ
� ⇒ ρT

�, pκ
� ⇒ pT�, ωκ

� ⇒ ωT
� ≡ pT�

ρT
�

,

�κ
� ⇒ �T

� ≡ ρT
�

ρc
= 2D2

X
exp

(
X

2

)
sinh

(
X

2

)
. (22)

In Figs. 4, 5, deceleration parameter is plotted against red-
shift and ratio �m

�T
�

, respectively, indicating that this ratio

increases as a function of z and matter dominated era is
achievable by increasing redshift. The same as KHDE,
NTHDE behaves as pressureless source when q = 1

2 and
mimics cosmological constant (wT

� = −1) for q → −1. We
also plotted wT

� against q only for δ = 947, because of the
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Fig. 5 The behavior of deceleration parameter against the ratio
�m/�T

� for D2 = 0.3136, �0
m = 0.315, and H0 = 67.9

Fig. 6 The behavior of wT
� against deceleration parameter for D2 =

0.3136, �0
m = 0.315, H0 = 67.9 and δ = 947

proximity of the curves corresponding on other values of δ

to each other, a property also seen in the case of KHDE.

5 The Universe age

In order to find the predictions of the above models for the
universe age, one can write

t =
∫

dtdH

dH
=

∫
dH

Ḣ
= − 1

4π

∫
dH

3H2

8π
+ p�

, (23)

where p� denotes the pressure of the introduced HDE mod-
els, i.e. KHDE and NTHDE. As it is apparent from the behav-
ior of KHDE and NTHDE, when −1 ≤ z, we have 0 <

ρ� < ρc and also −1 ≤ w� ≤ 0 ⇒ −p� = −w�ρ� ≤ ρ�

in which w� = wκ
�,wT

�. In this regard, one may estimate
Eq. (23) as

tub ≈ −2

3(1 + w���)z=0

∫
dH

H2 = 2

3H0
(1 + w���)−1

z=0.

(24)

Indeed, for the models, the corresponding pressure approaches
zero at high redshift limit and takes negative values by
decreasing z. It means that the 1

3H2
8π

+p�

term always increases

during the cosmic evolution. Therefore, in order to reach the
above primary estimation, we replaced this term with its cur-
rent value (i.e. (1 + w���)z=0) and pull it outside the inte-
gral. By doing so, an upper bound, depending on the values
of model parameters, for the age of current universe (tub) can
be achieved. The same approximation has also been used in
order to guess the universe age in other models [17,36].

Now, let us consider KHDE, for which, depending on the
values of κ used to plot the curves, we have − 0.925 <

wκ
�(z = 0) < − 0.74 when C2 = 0.3025. In this man-

ner, one finds that the upper bound of the universe age is

in the range of
(

2
3H0

<
)

1.35
H0

< tκub < 1.82
H0

. For the sec-

ond case, one reaches − 0.93 < wT
�(z = 0) < − 0.76

and hence, 1.39
H0

< t Tub < 1.84
H0

as the allowed range for
the upper bound of the universe age when δ lies within the
range employed to plot the corresponding curves in previ-
ous section and D2 = 0.3136. Since we used �0

m = 0.315
in order to plot the diagrams in our investigation, we have
�0

� = 1 − �0
m = 0.685 for the current value of density

parameter of dark energy candidate in the models. In both
models, the obtained upper bound of the universe age also
increases as the current value of state parameter decreases.

On the other hand, during the cosmic evolution, p� ≤ 0
and its maximum value (zero) is achieved at high redshift
limit. Therefore, at each point H , we have 1

3H2
8π

≤ 1
3H2
8π

+p�

meaning that if one estimates 1
3H2
8π

+p�

with 1
3H2
8π

, then Eq. (23)

gives

tlb ≈ −2

3

∫
dH

H2 = 2

3H0
< − 1

4π

∫
dH

3H2

8π
+ p�

, (25)
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indeed, a lower bound on the universe age in the models.
In summary, as the predictions of models about the universe
age lie within the range tlb < t < tub. Although the lower
bound tlb is common in the models, the value of tub for
each case is different, it depends on the values of the mod-
els parameters and for the parameters values addressed in
the previous sections, it is greater than the Hubble time tH(

i.e.tH = 1
H0

< tub
)

.

It seems that although the age of HD140283 (tHD) is very
close to the Hubble time, due to the accuracy of current mea-
surements, it is still defensible in the framework of the Planck
data which predicts a universe younger than 1

H0
[48,49]. In

fact, the Planck estimation of the universe age (tp) is some-
thing about 0.95

H0
[48]. Therefore, tlb < tp ∼ tH ≈ tHD < tub

meaning that, depending on the values of the models param-
eters, the models can be free of the age problem.

6 Concluding remarks

Relying on relation between Tsallis and Boltzmann entropies
and assuming that all degrees of freedom of horizon have
same probability, we could obtain the Tsallis entropy of
black holes, a result fully compatible with that of Ref. [46].
Thereafter, using the Kaniadakis statistics and its relation
with Tsallis statistics, we got the Kaniadakis entropy con-
tent of black holes. The Sharma-Mittal and Rényi entropy
contents of black holes have also been calculated and we
saw that Rényi entropy leads to Bekenstein entropy. On the
other hand, although Sharma-Mittal entropy is a two free
parameters entropy measure [4], we found out that its final
estimation of black hole entropy is mathematically similar to
that of Tsallis entropy.

Next, applying the HDE hypothesis to the obtained Kani-
adakis entropy, a new HDE model (KHDE) is derived. Our
study shows that KHDE can model the current accelerated
universe and furthermore, suitable transition from the matter
dominated era to the current era is achievable by choosing
proper values for the model parameters including C2 and κ .
We also used the Tsallis entropy (5) to construct a new Tsallis
HDE model, in short NTHDE, and studied its cosmological
outcomes. It has been found out that its general behavior is
relatively like that of KHDE, and depending on the values of
δ and D2, different transition redshifts are achievable.

Finally, we addressed the models estimations of allowed
ranges for the universe age, and found out that the age
problem can be avoided in these models, depending on
the values of the models parameters including (κ , C2) for
KHDE, and (δ, D2) for the second one. The validity of

1
3H2
8π

≤ 1
3H2
8π

+p�

= (1+w���)−1

3H2
8π

≤ (1+w���)−1
z=0

3H2
8π

, due to the

facts that (i) Ḣ , p� < 0, and (ii) −p� < ρ� < ρc during

the cosmic evolution, was the backbone of our estimations
of the universe age.
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