
Eur. Phys. J. C (2020) 80:292
https://doi.org/10.1140/epjc/s10052-020-7837-6

Regular Article - Theoretical Physics

Gauge dependences of higher-order corrections to NMSSM Higgs
boson masses and the charged Higgs Decay H± → W±hi

Thi Nhung Dao1,a, Lukas Fritz2,3,b, Marcel Krause3,c, Margarete Mühlleitner3,d, Shruti Patel3,4,e

1 Institute For Interdisciplinary Research in Science and Education, ICISE, Quy Nhon 590000, Vietnam
2 Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
3 Institute for Theoretical Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
4 Institute for Nuclear Physics, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany

Received: 4 December 2019 / Accepted: 12 March 2020 / Published online: 31 March 2020
© The Author(s) 2020

Abstract In this paper we compute the electroweak correc-
tions to the charged Higgs boson decay into a W boson and a
neutral Higgs boson in the CP-conserving NMSSM. We cal-
culate the process in a general Rξ gauge and investigate the
dependence of the loop-corrected decay width on the gauge
parameter ξ . The gauge dependence arises from the mixing
of different loop orders. Phenomenology requires the inclu-
sion of mass and mixing corrections to the external Higgs
bosons in order to match the experimentally measured mass
values. As a result, we move away from a strict one-loop
calculation and consequently mix orders in perturbation the-
ory. Moreover, determination of the loop-corrected masses
in an iterative procedure also results in the mixing of dif-
ferent loop orders. Gauge dependence then arises from the
mismatch with tree-level Goldstone boson couplings that are
applied in the loop calculation, and from the gauge depen-
dence of the loop-corrected masses themselves. We find that
the gauge dependence is significant.

1 Introduction

The discovery of the Higgs boson by the LHC experiments
ATLAS and CMS [1,2] structurally completed the Standard
Model (SM). Subsequent measurements revealed a very SM-
like behavior of the Higgs boson. Due to open questions that
cannot be answered within the SM, however, theories beyond
the SM are considered, many of which contain extended
Higgs sectors. So far, no direct signs of New Physics have
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been observed. This moves the Higgs sector itself into the
focus of searches for indirect manifestations beyond the SM.
Due to the very SM-like nature of the Higgs boson, sophis-
ticated experimental techniques together with precise the-
oretical predictions are required for these investigations to
be successful. In particular, higher-order (HO) corrections
to the Higgs boson observables, their production cross sec-
tions, decay widths, and branching ratios have to be taken
into account.

A clear manifestation of extended Higgs sectors would be
the discovery of a charged Higgs boson that is not present
in the SM. Charged Higgs bosons appear e.g. in the next-
to-minimal supersymmetric extension of the SM (NMSSM)
[3–14] which is the model that we consider in this work. More
specifically, we work in the framework of the scale-invariant
CP-conserving NMSSM. The main decay channels of the
charged Higgs boson are those into fermionic final states, but
also decays into a Higgs and gauge boson final state, or into
electroweakinos can become numerically important depend-
ing on the specific parameter values. In this paper, we com-
pute the electroweak corrections to the decay of the charged
Higgs boson into aW boson and a light CP-even Higgs boson.
We restrict ourselves to pure on-shell decays. The aim of this
paper is not only to quantify the relative importance of the
electroweak corrections, but in particular we also highlight
problems with respect to gauge dependences that occur in
the computation of the HO corrections. In a gauge theory
gauge-breaking effects do not appear when the computation
is restricted to a fixed order, here the one-loop level. This
changes, however, when different loop orders are mixed, see
e.g. also the discussions in [15–24]. We encounter such a
mixing when we include loop corrections to the mass of the
involved external Higgs boson. Since the tree-level upper
bound of the SM-like Higgs boson is below the observed
125.09 GeV [25], loop corrections have to be included to
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shift its mass to the measured value. This introduces a mis-
match between the loop-corrected mass of the external neu-
tral Higgs boson and its corresponding tree-level mass, which
is used in the propagators of the internal lines and in the
tree-level Higgs–Goldstone boson couplings that occur in the
computation of the one-loop amplitude.1 While the latter can
be cured by an appropriate change of the Higgs–Goldstone
boson coupling as we will outline below (see also [18,19,21–
23] for a discussion), the former cannot be cured by intro-
ducing loop-corrected masses for the internal lines since it
will break UV finiteness. Furthermore, we encounter addi-
tional gauge dependences due to the gauge dependence of the
loop-corrected Higgs boson masses and their loop-corrected
mixing matrix. The loop-corrected Higgs boson masses are
defined through the complex poles of the propagator matrix
which are evaluated by using an iterative method. While this
method gives precise values of the complex poles, it mixes
the contributions of different orders of perturbation theory
and therefore introduces a dependence on the gauge param-
eter. The loop-corrected mixing matrix is used to resum the
large corrections that stem from the mixing between differ-
ent neutral Higgs bosons so that the loop corrections remain
small and the higher-order predictions are reliable. In addi-
tion, the loop-corrected mixing matrix ensures the on-shell
property of the external Higgs boson. This mixing matrix
is, however, gauge dependent by definition. With the loop
corrections to the light Higgs boson masses and the mix-
ing matrix being substantial also the gauge dependence turns
out to be significant and much more important than in the
minimal supersymmetric extension of the SM (MSSM) as
discussed in this work. The purpose of the present paper is
to quantify this effect and to investigate different approxima-
tions with respect to their gauge dependences.

The outline of the paper is as follows. In Sect. 2 we intro-
duce the Higgs sector of the NMSSM at tree level and at
higher orders, and set our notation. In Sect. 3 we describe
our computation of the electroweak one-loop corrections
to the charged Higgs decay into a gauge plus Higgs boson
final state. In particular we present the decay width at strict
one-loop order. We follow up with a general discussion of
gauge dependences encountered in the decay before pre-
senting improved effective decay widths that include higher-
order-corrected external Higgs states in different approxi-
mations. In the numerical results of Sect. 4 we analyze the
gauge dependence of the loop-corrected masses themselves
and subsequently the decay amplitudes and decay widths.
We analyze the latter two with respect to their gauge depen-
dences by including various approximations in the treatment
of the loop-corrected external Higgs states. We also compare

1 Note that tree-level masses and tree-level couplings have to be used in
the one-loop diagrams in order to ensure the cancelation of ultraviolet
(UV) divergences.

the results with the the size of the gauge dependences in the
MSSM limit. We conclude with a small discussion of the
relative size of the electroweak corrections as a function of
the relevant NMSSM parameters. In Sect. 5 we summarize
our results.

2 Higgs sector of the NMSSM

In this paper, we calculate within the NMSSM the one-loop
corrections to the decays of the charged Higgs boson into
a W± boson and a neutral CP-even Higgs boson. To that
end, we briefly introduce the Higgs sector of the NMSSM
and set up the notation required both for the calculation
of the charged Higgs decays as well as for the discussion
of the higher-order-corrected neutral Higgs boson masses.
Since we apply the same approximations and renormaliza-
tion conditions as in our previous works on higher-order cor-
rections to the NMSSM Higgs boson masses and trilinear
self-couplings [20,26–30], we remain here as brief as possi-
ble and refer, where appropriate, to the corresponding litera-
ture for more information. We work in the framework of an
NMSSM wherein a gauge-singlet chiral superfield Ŝ is added
to the MSSM field content, and the superpotential couplings
of this singlet are constrained by a Z3 symmetry. In terms of
the two Higgs doublet superfields Ĥu and Ĥd and the singlet
superfield Ŝ the NMSSM superpotential is written as

WNMSSM = WMSSM + 1

3
κ Ŝ3 − εi jλŜ Ĥ

i
d Ĥ

j
u , (1)

with the totally antisymmetric tensor εi j (i, j = 1, 2) and
ε12 = ε12 = 1, where i, j denote the indices of the fun-
damental SU (2)L representation. Working in the framework
of the CP-conserving NMSSM, the dimensionless parame-
ters λ and κ are taken to be real. The MSSM superpotential
WMSSM is expressed in terms of the quark and lepton super-
fields and their charge conjugates as denoted by the super-
script c, i.e. Q̂, Û c, D̂c, L̂ and Êc, as

WMSSM = εi j

[
ye Ĥ

i
d L̂

j Êc + yd Ĥ
i
d Q̂

j D̂c − yu Ĥ
i
u Q̂

j Û c
]
.

(2)

For better readability, the color and generation indices have
been suppressed, and μ (i.e. the supersymmetric Higgs mass
parameter of the MSSM) is set to 0 due to the applied Z3

symmetry. We neglect flavor mixing so that the Yukawa cou-
plings yu, yd and ye, which in general are 3 × 3 matrices in
flavor space, are diagonal.

The soft supersymmetry (SUSY) breaking NMSSM
Lagrangian is given in terms of the scalar component fields
Hu , Hd and S by

Lsoft, NMSSM = −m2
Hd

H†
d Hd − m2

Hu
H†
u Hu − m2

Q̃
Q̃† Q̃
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− m2
L̃
L̃† L̃ − m2

ũ R
ũ∗
RũR − m2

d̃R
d̃∗
Rd̃R

− m2
ẽR
ẽ∗
RẽR − (

εi j
[
ye AeH

i
d L̃

j ẽ∗
R

+ yd Ad H
i
d Q̃

j d̃∗
R − yu AuH

i
u Q̃

j ũ∗
R

] + h.c.
)

− 1

2
(M1 B̃ B̃ + M2W̃ j W̃ j + M3G̃G̃ + h.c.)

− m2
S|S|2 +

(
εi jλAλSH

i
d H

j
u

− 1

3
κAκ S

3 + h.c.

)
, (3)

where the summation over all three quark and lepton gener-
ations is implicit. Here, we denote by Q̃ and L̃ the complex
scalar components of the corresponding left-handed quark
and lepton superfields, so that e.g. for the first generation
we have Q̃ = (ũL , d̃L)T and L̃ = (ν̃L , ẽL)T . The Mk

(k = 1, 2, 3) represent the gaugino mass parameters of the
bino, wino and gluino fields B̃, W̃ j ( j = 1, 2, 3) and G̃, the
m2

X are the squared soft SUSY-breaking mass parameters of
the scalar fields X = S, Hd , Hu, Q̃, ũ R, d̃R, L̃, ẽR and Ax

(x = λ, κ, d, u, e) are the soft SUSY-breaking trilinear cou-
plings. In general, the soft SUSY-breaking trilinear couplings
and the gaugino mass parameters can be complex, but in the
limit of CP conservation all parameters are taken to be real.

2.1 The Higgs sector at tree level

The Higgs potential at tree level reads

VH =
(
|λS|2 + m2

Hd

)
H†
d Hd

+
(
|λS|2 + m2

Hu

)
H†
u Hu + m2

S|S|2

+1

8

(
g2

2 + g2
1

) (
H†
d Hd − H†

u Hu

)2 + 1

2
g2

2

∣∣∣H†
d Hu

∣∣∣
2

+
∣∣∣−εi jλHd,i Hu, j + κS2

∣∣∣
2

+
[
−εi jλAλSHd,i Hu, j + 1

3
κAκ S

3 + h.c.

]
, (4)

with g1 and g2 being theU (1)Y and SU (2)L gauge couplings,
respectively. The two Higgs doublets and the singlet can be
expanded around their vacuum expectation values (VEVs)
vu, vd and vs as

Hu =
(

h+
u

1√
2
(vu + hu + iau)

)
,

Hd =
(

1√
2
(vd + hd + iad)

h−
d

)
and

S = 1√
2
(vs + hs + ias). (5)

The fields hu, hd and hs are the CP-even parts and au , ad
and as are the CP-odd parts of the neutral components of the

fields Hu , Hd and S, respectively. The electrically charged
components are denoted by h+

u and h−
d . The VEVs of the two

Higgs doublets, vu and vd , are related to the VEV v ≈ 246
GeV of the SM as

v2 = v2
u + v2

d , (6)

with the ratio between them being defined as

tan β = vu

vd
, (7)

such that vu and vd can be expressed in terms of v and tan β.
The potential VH is minimized by the VEVs, which implies
that the first derivatives of the potential with respect to the
Higgs fields must be zero. This leads to the definition of the
tadpole parameters tφ ,

tφ ≡
〈
∂VH

∂φ

〉
, φ ∈ {hu, hd , hs, au, ad , as} , (8)

which have to vanish. Since we are working in CP-conserving
NMSSM, the tadpole parameters that we have at tree level
are given by

thd = λ

2

(
−√

2vsvu Aλ + λvd(v
2
s + v2

u) − κv2
s vu

)

× q + 1

8
(g2

1 + g2
2)vd(v

2
d − v2

u) + m2
Hd

vd (9)

thu = λ

2

(
−√

2vsvd Aλ + λvu(v
2
s + v2

d) − κv2
s vd

)

+ 1

8
(g2

1 + g2
2)vu(v

2
u − v2

d) + m2
Hu

vu (10)

ths = vs

2

(√
2vsκAκ + λ2(v2

d + v2
u) − 2vdvuκλ + 2κ2v2

s

)

− 1√
2
vdvuλAλ + m2

Svs . (11)

In the CP-conserving NMSSM, there is no mixing
between CP-even and CP-odd Higgs fields so that the bilinear
parts of the Higgs potential read

VH ⊃ (
h+
d h+

u

)
MH±

(
h−
d

h−
u

)
+ 1

2

(
hd hu hs

)
Mh

⎛
⎝
hd
hu
hs

⎞
⎠

+ 1

2

(
ad au as

)
Ma

⎛
⎝
ad
au
as

⎞
⎠ , (12)

with separate mass matrices MH± ,Mh and Ma for the
charged, CP-even and CP-odd Higgs fields, respectively. The
explicit expressions of these tree-level mass matrices can
be found in [26]. The charged, neutral CP-even and CP-
odd mass eigenstates are obtained from the interaction states
through rotations with the unitary matrices RH±

, Rh and Ra

as
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(
G±
H±

)
= RH±

(
h±
d

h±
u

)
,

⎛
⎝
h1

h2

h3

⎞
⎠ = Rh

⎛
⎝
hd
hu
hs

⎞
⎠ and

⎛
⎝
G0

a1

a2

⎞
⎠ = Ra

⎛
⎝
ad
au
as

⎞
⎠ . (13)

These rotation matrices diagonalize the mass matrices such
that

Mdiag
H± = RH±

MH± RH± †
, Mdiag

h = RhMhR
h†

and

Mdiag
a = RaMaR

a†
. (14)

The obtained mass eigenstates are ordered by ascending mass
so that we have three CP-even Higgs states hi (i = 1, 2, 3)
with masses mh1 ≤ mh2 ≤ mh3 , two CP-odd states a j

( j = 1, 2) with masses ma1 ≤ ma2 and a charged Higgs pair
H± with mass mH± as the physical Higgs bosons. The fields
G0,G± form the massless charged and neutral Goldstone
modes.2 In general, the analytic forms of the mass eigenval-
ues are rather intricate, but analytic expressions for expan-
sions in special parameter regions can be found in [31]. On
the other hand, the squared mass of the charged Higgs boson
is at tree level given by the simple expression

m2
H± = M2

W + λvs

sin 2β

(√
2Aλ + κvs

)
− λv2

2
. (15)

Note that analogous to the MSSM there is an upper bound
on the squared SM-like Higgs boson mass at tree level. In
the NMSSM, it is given by

M2
Z cos2 2β + λ2v2

2
sin2 2β. (16)

In order to comply with the measured value of mH = 125.09
GeV [25], loop corrections therefore have to be included in
the computation of the Higgs boson mass.

The Higgs potential in Eq. 4 is parametrized by the param-
eter set

m2
Hd

,m2
Hu

,m2
S, g1, g2, vd , vu, vs, λ, κ, Aλ, Aκ . (17)

For a physical interpretation, it is convenient to substitute
some of these parameters with more intuitive ones, such as
e.g. the masses of gauge bosons which are measurable quan-
tities, or the tadpole parameters.3 We can use Eqs. (6) and (7)
to eliminate vu and vd in favour of v and tan β, and Eqs. (9)–
(11) to replace the soft SUSY-breaking parametersm2

Hd
,m2

Hu

2 By adding the ’t Hooft linear gauge-fixing Langrangian, G0 has mass√
ξZ MZ while the G± have mass

√
ξW MW , where ξZ , ξW are the

gauge parameters, and MZ , MW denote the Z ,W± gauge boson masses,
respectively.
3 Whether the tadpole parameters can be called physical quantities is
debatable but certainly their introduction is motivated by physical inter-
pretation.

and m2
S in VH with thd , thu and ths . Furthermore, Aλ can be

replaced by m2
H± using Eq. (15). Finally, g1, g2 and v are

substituted by the squared masses M2
W and M2

Z of the W±
and Z bosons and the electric charge e via

M2
W = v2g2

2

4
, M2

Z = v2(g2
1 + g2

2)

4
, and e = g1g2√

g2
1 + g2

2

.

(18)

In summary, our set of free parameters in the Higgs sector
is given by

thd , thu , ths ,m
2
H± , M2

W , M2
Z , e, tan β, vs, λ, κ, Aκ . (19)

Finally, the MSSM limit of the NMSSM Higgs sector can be
obtained by setting

λ → 0, κ → 0, κ/λ ≡ constant, (20)

and keeping all other parameters, including

μeff ≡ λvs√
2

(21)

and Aκ , fixed. In this limit the mixing between singlet and
doublet Higgs fields vanishes.

2.2 The loop-corrected Higgs sector

For the determination of the loop-corrected Higgs boson
masses, the UV-divergent self-energies have to be calcu-
lated. The divergent integrals are regularized by the SUSY-
conserving dimensional reduction scheme [32,33]. Evaluat-
ing the self-energies in D = 4 − 2ε dimensions, the diver-
gences can be parametrized by the regulator ε, leading to
poles 1/ε in the limit of ε → 0, i.e. in physical D = 4
space-time dimensions. Also in the one-loop corrections to
the process H± → W±hi we encounter UV divergences.
The UV divergences are cancelled by the renormalization
of the Higgs fields and the parameters relevant for the cal-
culation.4 In order to do so, the bare parameters p0 of the
Lagrangian are replaced by the renormalized ones, p, and
their corresponding counterterms, δp,

p0 = p + δp . (22)

Analogously, the bare fields φ0 in the Lagrangian are
expressed via the renormalized fields φ and the wave-
function renormalization constants (WFRCs) Zφ as

φ0 = √
Zφφ =

(
1 + δZφ

2

)
φ. (23)

4 Note that we do not renormalize the rotation matrices RH±
, Rh, Ra .

For more details, cf. [26].
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In accordance with our previous works on higher-order cor-
rections to the NMSSM Higgs boson masses [26–29], we
apply a mixed on-shell (OS) and DR renormalization scheme
to fix the parameter and WFRCs. The free parameters of
Eq. (19) are defined to be either OS or DR parameters as
follows

thd , thu , ths ,m
2
H± ,m2

W ,m2
Z , e︸ ︷︷ ︸

OS

, tan β, vs, λ, κ, Aκ︸ ︷︷ ︸
DR

. (24)

The renormalization scheme for the parameters is chosen
such that the quantities which can be related to physical
observables are defined on-shell, whereas the rest of the
parameters are defined as DR parameters.5 In addition, we
introduce the WFRCs for the doublet and singlet fields before
rotation into the mass eigenstates as

Hd → √
ZHd Hd =

(
1 + δZHd

2

)
Hd (25)

Hu → √
ZHu Hu =

(
1 + δZHu

2

)
Hu (26)

S → √
ZSS =

(
1 + δZS

2

)
S. (27)

We apply DR conditions for the WFRCs of the Higgs fields.
We introduce a WFRC for the W boson field, needed in the
computation of the loop corrections to the charged Higgs
boson decay, as

W± → √
ZWW± =

(
1 + δZW

2

)
W±. (28)

The WFRC δZW is defined through the OS condition

δZW = − ∂�T
WW

∂p2

∣∣∣∣∣
p2=M2

W

, (29)

where �T
WW denotes the transverse part of the W boson self-

energy.
The Higgs boson masses and hence the mixing matrices

receive large radiative corrections. Therefore it is necessary
to include these corrections at the highest order possible to
improve the theoretical predictions. Recently, we completed
the two-loop order O(α2

t ) corrections to the neutral Higgs
boson masses in the CP-violating NMSSM [29], thus improv-
ing our previous results, which were available to two-loop
order O(αtαs) [28]. The Higgs boson masses corrected up to
two-loop order O(αtαs + α2

t ) require also the renormaliza-
tion of the top/stop sector at one-loop order. The computation

5 The tadpoles will be required to minimize the potential also at higher
orders and in this sense are called OS parameters. The electric charge
is fixed through the OS e+e−γ vertex such that this vertex does not
receive any corrections at the one-loop level in the Thomson limit. For
more details, we refer e.g. to [27].

of the two-loop corrections together with the renormalization
of the parameters in the above defined mixed OS-DR scheme
has been described in great detail in [28,29],6 hence we do
not repeat it here and instead refer to these references for
details. The CP-conserving limit of these results given in
the CP-violating NMSSM is straightforward, further infor-
mation can also be found in [26] where the one-loop cal-
culation is presented for the real NMSSM. We review here,
however, important points and highlight differences for the
purpose of discussing the parameter dependence. In the fol-
lowing, we focus on the CP-even Higgs bosons. Their loop-
corrected masses are defined as the real parts of the poles
of the propagator matrix. These complex poles are the zeros
of the determinant of the renormalized two-point correlation
function �̂(p2), where p2 denotes the external squared four-
momentum. The renormalized two-point correlation function
is expressed as7

�̂(p2) = i
(
p21 − M̂2(p2, ξ)

)
, (30)

with

M̂2(p2, ξ)

=
⎛
⎜⎝
m2

h1
− �̂h1h1 (p

2, ξ) −�̂h1h2 (p
2, ξ) −�̂h1h3 (p

2, ξ)

−�̂h2h1 (p
2, ξ) m2

h2
− �̂h2h2 (p

2, ξ) −�̂h2h3 (p
2, ξ)

−�̂h3h1 (p
2, ξ) −�̂h3h2 (p

2, ξ) m2
h3

− �̂h3h3 (p
2, ξ)

⎞
⎟⎠ ,

(31)

where the renormalized self-energy �̂hi h j (p
2, ξ) of the tran-

sition hi → h j (i, j = 1, 2, 3) is given by

�̂hi h j (p
2, ξ) = �̂1l

hi h j
(p2, ξ) + �̂

αtαs
hi h j

(0) + �̂
α2
t

hi h j
(0). (32)

Here, �̂1l(p2, ξ) denotes the full one-loop self-energy with
full momentum-dependent contributions computed in gen-
eral Rξ gauge, where ξ stands for the gauge parameters
ξW , ξZ .8 The last two terms are the two-loop corrections of
order O(αtαs) [28] and O(α2

t ) [29], respectively, which are
evaluated in the approximation of vanishing external momen-
tum. These contributions do not introduce additional gauge-
dependent terms in the renormalized self-energies as they are
evaluated in the gaugeless limit. We want to point out that the
full one-loop renormalized self-energies �̂1l(p2, ξ) in gen-
eral Rξ gauge are newly computed by us and implemented
in NMSSMCALC [26–29,70–73]. We computed them both in
the standard tadpole scheme and in the Fleischer-Jegerlehner

6 The one- and/or two-loop of corrections to NMSSM Higgs boson
masses were also studied in [22,26,27,34–52].
7 Here and in the following, the hat denotes the renormalized quantity.
8 We do not consider the gauge parameter ξA of the photon which is
set to unity, i.e. ξA = 1. This choice does not affect the results of
our investigation and prevents the appearance of high-rank tensor loop
integrals with too many vanishing arguments that are infrared (IR)-
divergent and hence, they numerically blow up.
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scheme9 and the results are identical. We apply the iterative
procedure described and applied in [26] to extract the zeros of
the determinant. In the first iterative step for the calculation
of the nth CP-even Higgs boson mass, the squared exter-
nal momentum in the renormalized self-energies is chosen
to be at its squared tree-level mass value, i.e. p2 = m2

hn
.

The mass matrix M̂2(p2, ξ) is then diagonalized, yielding
the nth eigenvalue as a first approximation to the squared
mass of the nth CP-even Higgs boson. In the next step of
the iteration, this value is taken as the new OS value for
p2, and the mass matrix is again diagonalized. This pro-
cedure is repeated until the nth eigenvalue changes by less
than 10−9 GeV2 between two consecutive steps of the iter-
ation. The resulting complex pole is denoted by M̃2

Hn
and

the loop-corrected Higgs mass by MHn =
√

Re(M̃2
Hn

). The
loop-corrected CP-even Higgs masses are sorted in ascend-
ing order MH1 < MH2 < MH3 . Note that we denote the
loop-corrected masses and Higgs mass eigenstates by capi-
tal letters M and Hi , respectively, whereas the corresponding
tree-level values and eigenstates are denoted by lowercase
letters, i.e. m and hi . The iterative procedure automatically
mixes different orders of perturbation theory and therefore
introduces intricate gauge dependences.10 This will be inves-
tigated in more detail in the numerical section.

Besides the computation of the loop-corrected masses, the
code NMSSMCALC allows us to compute the loop-corrected
mixing matrices in several approximations which are dis-
cussed also in [57]. First, we introduce the matrix R0 for the
rotation of the mass matrix in the approximation of vanishing
external momentum,

diag
(
M2

0,H1
, M2

0,H2
, M2

0,H3

)
= R0M̂2(0, ξ)(R0)T . (33)

The corresponding loop-corrected mass eigenvalues are
denoted by an index 0, hence M2

0,Hi
(i = 1, 2, 3). In

this approximation the mixing matrix R0 is unitary, but
does not capture the proper OS properties of the external
loop-corrected states as momentum-dependent effects are
neglected.

A different approach leads to the rotation matrix Rmtree.
Here we diagonalize the mass matrix with the elements eval-
uated at fixed momentum squared which is given by the arith-
metic average of the squared masses,

p2
mtree =

m2
hi

+ m2
h j

2
. (34)

9 In the standard tadpole scheme, the tadpoles are renormalized OS
while in the Fleischer-Jegerlehner scheme tadpoles are not renormalized
[53–55].
10 The gauge dependence of the electroweakino masses determined by
the iterative method has been discussed in [56].

We hence have

(
M̂2

(
p2

mtree, ξ
))

i j
= m2

hi δi j − �̂hi h j

(
m2

hi
+ m2

h j

2
, ξ

)
,

(35)

and the corresponding mass values denoted by M2
mtree,Hi

are
obtained through rotation with the matrix Rmtree as

diag
(
M2

mtree,H1
, M2

mtree,H2
, M2

mtree,H3

)

= RmtreeM̂2
(
p2

mtree, ξ
)

(Rmtree)T . (36)

By this approach we approximately take into account the
momentum dependence of the self-energies (see [22] for a
discussion).

The correct OS properties of the loop-corrected mass
eigenstates are obtained by following the procedure described
in [15], i.e. by multiplying the tree-level matrix Rh with the
finite wave-function normalization factors given by the Z
matrix [15] for external OS Higgs bosons at higher orders,

Z =

⎛
⎜⎜⎜⎝

√
ẐH1

√
ẐH1 ẐH1H2

√
ẐH1 ẐH1H3√

ẐH2 ẐH2H1

√
ẐH2

√
ẐH2 ẐH2H3√

ẐH3 ẐH3H1

√
ẐH3 ẐH3H2

√
ẐH3

⎞
⎟⎟⎟⎠ , (37)

where

Ẑi = 1(
i

�i i (p2)

)′
(M̃2

i )

and Ẑi j = �i j (p2)

�i i (p2)

∣∣∣∣
p2=M̃2

i

, (38)

with the indices i, j = H1, H2, H3. The prime denotes the
derivative with respect to p2. The quantity

� = −
[
�̂(p2)

]−1
(39)

is evaluated at the complex poles M̃2
i . In contrast to the rota-

tion matrices R0 and Rmtree, which are unitary matrices, the
Z matrix is not as it contains resummed higher-order con-
tributions. If we want to compute the decay width at exact
one-loop level, we therefore have to expand the Z matrix and
take only the one-loop terms

Z1l ≈ I +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(�̂1l
h1h1

)′
(
m2
h1

,ξ
)

2

−�̂1l
h1h2

(
m2
h1

,ξ
)

m2
h1

−m2
h2

−�̂1l
h1h3

(
m2
h1

,ξ
)

m2
h1

−m2
h3

−�̂1l
h2h1

(
m2
h2

,ξ
)

m2
h2

−m2
h1

−(�̂1l
h2h2

)′
(
m2
h2

,ξ
)

2

−�̂1l
h2h3

(
m2
h2

,ξ
)

m2
h2

−m2
h3

−�̂1l
h3h1

(
m2
h3

,ξ
)

m2
h3

−m2
h1

−�̂1l
h3h2

(
m2
h3

,ξ
)

m2
h3

−m2
h2

−(�̂1l
h3h3

)′
(
m2
h3

,ξ
)

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(40)

where (�̂1l(p2))′ = ∂p2�̂1l(p2). Note that the �̂1l are eval-
uated at the tree-level mass values m2

hi
, since using loop-

corrected masses would introduce higher-order effects. The
matrix Z1l is not unitary.
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3 Electroweak one-loop corrections to H± → W±hi

3.1 Decay width at leading order

The decay of the charged Higgs boson H± into a W± boson
and a CP-even neutral Higgs boson hi (i = 1, 2, 3) depends
on the coupling

gW−hi H+ = g2

(
Rh
i1 cos β − Rh

i2 sin β
)

. (41)

The leading-order (LO) decay width can be written as

�H±→W±hi =
λ3/2

(
m2

H± , M2
W ,m2

hi

)

64πm3
H±M2

W

∣∣∣Mtree
H±→W±hi

∣∣∣
2
.(42)

with λ(x, y, z) = x2+y2+z2−2xy−2xz−2yz denoting the
usual Källén function and Mtree

H±→W±hi the reduced matrix
element, which for the tree-level decay is given by

Mtree
H±→W±hi = igW−hi H+ . (43)

We remind the reader that by mhi we denote the tree-level
mass of the final state Higgs boson.

3.2 Decay width at strict one-loop order

The next-to-leading order (NLO) decay width �NLO is given
by the sum of the LO width �LO, the virtual corrections �virt

and the real corrections �real as

�NLO = �LO + �virt + �real. (44)

The virtual corrections contain the counterterm contributions
that cancel the UV divergences. The IR divergences in the
real corrections cancel those in the virtual corrections. �virt

is given by

�virt =
λ3/2

(
m2

H± , M2
W ,m2

hi

)

64πm3
H±M2

W

2 Re
(
Mtree∗

H±→W±hiM
virt

)
.

(45)

Note that in Eq. (45) we set p2
hi

= m2
hi

, i.e. we set the
external Higgs boson on its tree-level mass shell. We do the
same in the LO decay width and the real corrections. In this
way, we ensure that the NLO decay width �NLO remains
at strict one-loop order by avoiding admixtures of higher
orders through loop corrections to the mass.Mvirt consists of
the one-particle-irreducible (1PI) diagrams depicted in Fig. 1.
They show the external leg corrections Mext,h and Mext,H±

to the neutral Higgs boson and to the charged Higgs boson,
respectively, and the genuine vertex corrections Mvert. They
already include the counterterms and are hence finite. The

corrections to the W boson leg vanish due to the OS renor-
malization of the W boson. We hence have

Mvirt = Mvert + Mext,H± + Mext,h . (46)

The amplitudes for the external leg contributions to the
neutral and charged Higgs bosons, Mext,h and Mext,H±

,
respectively, can be factorized into the tree-level ampli-
tude and the propagator corrections to the external legs. For
Mext,h we obtain

Mext,h =
3∑
j=1

δZ1l
i jMtree

H±→W±h j
. (47)

Note that here we apply δZ1l
i j at strict one-loop order, defined

as

δZ1l
i j = Z1l

i j − δi j , (48)

with the Z matrix at strict one-loop order, Z1l, given in
Eq. (40). The charged Higgs WFRC is determined in the
DR scheme so that there are finite contributions to the LSZ

factor
√
ẐH± at one-loop order,

√
ẐH± ≈ 1 − δ ẐH±

2
= 1 − Re�′

H+H−
(
m2

H±
)

2

− cos2 β δZHd + sin2 β δZHu

2
, (49)

where the prime denotes the derivative with respect to the
squared four-momentum.

The mixing between H± and G± can be related to the
mixing between H± and W± by using the Slavnov-Taylor
identity for the renormalized self-energies,

�̂H+G−(m2
H±) = m2

H±
MW

�̂H+W−(m2
H±) , (50)

where �̂H+W−(m2
H±) denotes the renormalized truncated

self-energy of the transition H+ → W+. The correction
to the H± propagator thereby results in

Mext,H± = δ ẐH±

2
Mtree

H±→W±hi

+ 1

M2
W

�̂H+W−
(
m2

H±
)
ghiWW , (51)

where the coupling is given by

ghiWW = g2
2

2
v(cβ Ri1 + sβ Ri2). (52)

The genuine vertex correctionsMvert are given by the dia-
grams depicted in Fig. 2 plus the corresponding counterterm
contributions that are not shown here. The vertex corrections
comprise the 1PI diagrams given by the triangle diagrams
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Fig. 1 Generic diagrams
contributing to Mvirt:
corrections to the external legs
of hi and H±, Mext,h and
Mext,H±

, and genuine vertex
corrections Mvert. � stands for
the fields � ∈ {H±,G±,W±}

H±

hi

W±

hj

Mext,h

H±

hi

W±

Φ

Mext,H±

H±

hi

W±

Mvert

Fig. 2 One-loop diagrams
contributing to the pure vertex
corrections at NLO. Here u j , d j
denote up- and down-type
quarks and ν j , e j neutrinos and
charged leptons for all three
generations ( j = 1, 2, 3), ũl , d̃l
denote up- and down-type
squarks and ẽl , ν̃l denote
charged sleptons and sneutrinos
(l = 1, . . . , 6), ak (k = 1, 2)
denote the pseudoscalar and
hi,m,n (i,m, n = 1, 2, 3) the
scalar Higgs bosons, and χ̃0

a,b
(a, b = 1, . . . , 5) and χ̃±

r,s
(r, s = 1, 2) represent the
neutralinos and charginos,
respectively
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Fig. 3 Feynman diagrams contributing to H± → W±hiγ

with scalars, fermions and gauge bosons in the loops, and
the diagrams involving four-particle vertices. The countert-
erm amplitude is given by

MCT = i
δg2

2

(
Rh
i1 cos β − Rh

i2 sin β
)

+i
g2

2

(
Rh
i1 cos βδZHd − Rh

i2sin βδZHu

)

+i
g2

2

(
Rh
i1 cos β − Rh

i2 sin β
) δZW

2
, (53)

in terms of the WFRCs δZHd , δZHu and δZW and the coun-
terterm δg2 for the SU (2)L gauge coupling constant g2,
which in terms of the counterterms of our input parameters,
cf. Eq. (24), reads

δg2 = δ

(
e

sin θW

)
= g2

e
δe

−g2
cos2 θW

2 sin2 θW

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
. (54)

The vertex diagrams also contain IR divergences. These
arise from the exchange of a soft virtual photon between the
external legs (cf. diagrams 21 and 28 of Fig. 2). Also δM2

W ,
δZW and ẐH+H− are IR-divergent. These soft singularities
in the virtual corrections are canceled by the IR-divergent
contributions from real photon radiation [58,59] in the pro-
cess H± → W±hiγ . The process has been calculated in
general Rξ gauge. The diagrams that contribute in general
Rξ gauge to the process are shown in Fig. 3. They consist of
the proper bremsstrahlung contributions, where a photon is
radiated from the charged initial and final state particles, and
the diagram involving a four-particle vertex with a photon.
The real radiation process is gauge-parameter independent11

only when the relation

MWghi H−G+ =
(
m2

H± − p2
h

)
ghi H−W+ , (55)

is satisfied. Due to the gauge structure of the Lagrangian, the
relation

MWghi H−G+ =
(
m2

H± − m2
hi

)
ghi H−W+ (56)

11 The usage of a finite photon mass to regulate the IR divergence
does not introduce additional gauge dependences related to the gauge
parameters ξW , ξZ .

holds, with m2
hi

being the tree-level CP-even Higgs mass
calculated from Eq. (14), cf. [69]. We can enforce the rela-
tion Eq. (55) beyond tree level by modifying the coupling
ghi H−G+ where necessary such that it is expressed in terms
of the loop-corrected masses,

MWghi H−G+ =
(
m2

H± − M2
Hi

)
ghi H−W+ . (57)

This is equivalent to an effective potential approach [69].
By applying this relation, we ensure that no further gauge
dependences are introduced by the real radiation process.
The decay width for the real emission is given by

�real ≡ �H±→W±hiγ =
αg2

W−hi H+

4π2mH±

[
− m2

H± IH±H±

+
(
m2

hi − m2
H± − M2

W

)
IH±W − M2

W IWW

−IH± − IW

+ 2M2
W

λ(m2
H± , M2

W ,m2
hi

)

(
I H

±H±
WW + 2I H

±
W + I

) ]
,

(58)

in terms of the bremsstrahlung integrals [60]

I j1... jmi1...in
= 1

π2

∫
d3 pW
2EW

d3 phi
2Ehi

d3 pγ

2Eγ

δ
(
pH±

−(pW + phi + pγ )
) (±2pγ p j1) . . . (±2pγ p jm )

(±2pγ pi1) . . . (±2pγ pin )
,

(59)

where EW , Ehi and Eγ denote the energies of the corre-
sponding particles and the plus sign corresponds to the out-
going momenta pW and phi while the minus sign belongs
to the incoming momentum pH± . No upper (lower) index
jk (il ) means that the corresponding ±2pγ p jk (±2pγ pil ) in
the numerator (denominator) of the fraction is replaced by 1.
The total NLO width �NLO

H±→W±hi is then both UV- and IR-

finite. Furthermore, since �NLO has been calculated at strict
one-loop level with p2

h = m2
hi

, it is also independent of the
gauge parameter as we explicitly checked.

We finish with the remark that for the computation of the
loop-corrected decay width we used a FeynArts-3.10
[61] model file for the NMSSM generated by
SARAH-4.12.3 [62–65]. The various pieces of the one-
loop corrected decay width were obtained with the help
of FormCalc-9.6 [66], FeynCalc-8.2.0 [67,68] and
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LoopTools-2.14 [66]. Both for the computation of the
loop-corrected Higgs boson masses and the decay widths two
independent calculations have been performed which are in
full agreement.

3.3 The issue of gauge dependence

Phenomenology requires that the loop corrections to the
masses of the external Higgs bosons should be taken into
account. This is particularly important when the external
Higgs boson is the SM-like scalar, as its upper mass bound
at tree level is well below the measured value of 125.09 GeV.
Therefore, in the decay of the charged Higgs boson H± into
a final state with neutral Higgs bosons, we should consider
the loop-corrected Higgs states Hi (i = 1, 2, 3) with the
corresponding loop-corrected masses MHi . For the decay
H± → W±hi , this means that we should set the external
momentum to p2 = M2

Hi
. However, this introduces contribu-

tions beyond the one-loop order in the one-loop decay width,
which has two implications. First, it invalidates the tree-level
relation between the couplings of the charged and neutral
Higgs bosons with a charged Goldstone boson or a W±
boson, i.e. between the couplings ghi H−G+ and ghi H−W+ .
This relation needs to be satisfied, however, in order to can-
cel the IR divergences occuring in the decay H± → W±hi
at one-loop order. Additionally the relation between ghi a j G0

and ghi a j Z is spoiled, but this does not influence IR diver-
gence. Second, the introduction of loop-corrected neutral
Higgs masses leads to mixing of different orders of per-
turbation theory, and the gauge independence of the matrix
element is no longer guaranteed, and it is indeed violated
as will be shown in the following. The problem of gauge
dependences arising from loop-corrected Higgs masses, and
their restoration via the inclusion of partial two-loop terms in
the case of neutral Higgs decays in the NMSSM with com-
plex parameters was recently discussed in [23]. In this work,
the gauge dependence arose from the mixing of the neutral
Higgs bosons with the Z boson. This does not apply to our
work as we are working in the CP-conserving NMSSM and
we are considering only decays into CP-even neutral Higgs
bosons. The gauge dependence in our case originates from
other sources and cannot be remedied easily, if at all.

In this paper, we want to investigate the impact of this
gauge dependence on the treatment of the wave-function nor-
malization factors and on the parameters of the model. We
also investigate the issue of the gauge dependence of the
loop-corrected Higgs masses themselves. As long as there is
no recipe on how to achieve gauge-independent results,12 the

12 Since the gauge dependence arises from the admixture of different
loop orders it cannot be cured at fixed order in perturbation theory and
most probably requires the resummation of all loop orders which is well
beyond the scope of this paper.

value of the gauge parameter applied in the computation of
a specific Higgs observable needs to be specified in order to
consistently relate measured observables with the parameters
of the underlying model.

3.4 Decay width at improved one-loop order

In the following, we look more closely into the relation
between the gauge dependence of the loop-corrected decay
H± → W±hi and the treatment of the external Higgs boson,
in particular the treatment of the Z matrix. While curing the
IR divergence beyond strict one-loop order is fairly straight-
forward, the intricacies of gauge dependence in our calcu-
lation with respect to setting p2

h = M2
Hi

are much more
involved. In order to study this in more detail, we proceed in
two steps:

1. In the first instance, we modify our result obtained in
Sect. 3.2 by changing p2

h from the tree-level value m2
hi

to the loop-corrected one M2
Hi

, and ensure that all IR
divergences cancel by enforcing the correct relations
between the gauge couplings ghi H−G+ and ghi H−W+
beyond tree level. However, we retain the use of the one-
loop diagrammatic expansion of the Z matrix as applied
in Eq. (47). It is clear that in order to get correct OS prop-
erties for the external neutral Higgs boson, we need to
make use of the resummed Z matrix defined in Eq. (37).
However, it is instructive to demonstrate the breaking of
the gauge symmetry that occurs simply by using loop-
corrected masses M2

Hi
, before we discuss the full result

obtained by using the resummed Z matrix.
2. For the next step, we set p2

h = M2
Hi

and apply the
resummed Z matrix in our calculation, treating it as a
part of the LO amplitude. This means that we no longer
need to explicitly include external leg correctionsMext,h .
As a result of this modification we will be required to
include Z factors also for the real corrections, as well as
to modify the gauge coupling relation between ghi H−G+
and ghi H−W+ , in order to obtain an IR-finite result.

Step 1 The first modification of our strict one-loop decay
width consists of calculating �virt

H±→W±hi in Eq. (45) and �real

in Eq. (58) with p2
h = M2

Hi
.13 The reduced matrix element

Mtree
H±→W±hi does not depend on p2

h , so this modification
does not affect its gauge independence. Similarly, the real
decay width �real is separately gauge independent even when

13 In order to avoid confusion we denote the decay always by H± →
W±hi , i.e.we use lowercase hi and not capital Hi also when we include
loop corrections in the mass of the external neutral Higgs boson. Only
the notation for its mass is changed from lowercase to capital letter.
From this and the text, it will always become clear how we treat the
external neutral Higgs boson.
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computed at p2
h = M2

Hi
. The virtual amplitude Mvirt, how-

ever, which is gauge independent when computed at strict
one-loop order, acquires a dependence on the gauge param-
eters due to higher-order mass effects.

In order to cancel the IR divergences, we have to enforce
the relation Eq. (55) beyond tree level, i.e. Eq. (57).14 This
modification ensures an IR-finite NLO width. The decay
width obtained with these modifications will be referred to
as “off-shell” and denoted as �

NLO,off-shell
H±→W±hi . This nomencla-

ture points towards the fact that the external loop-corrected
neutral Higgs boson does not have the correct OS properties
yet. We emphasize that while �

NLO,off-shell
H±→W±hi is UV- and IR-

finite, the modification of the coupling constants in Eq. (57)
does not restore gauge independence. The global modifica-
tion of the Goldstone couplings gG+G−hi , gG+W−hi , gG0G0hi
and gG0a j hi is not possible while keeping the result UV-finite,
such that gauge independence cannot be restored by a modifi-
cation of these couplings. Additionally, we have to deal with
the gauge dependence of the loop-corrected Higgs masses
themselves.
Step 2 The corrections from Mext,h to the “off-shell”
�NLO
H±→W±hi can be large. In order to obtain numerically sta-

ble NLO corrections15 and to ensure that the external neutral
Higgs bosons have proper OS properties, we need to use the
full Z matrix defined in Eq. (37) which resums higher-order
contributions to the external leg corrections, and treat it as
part of the LO amplitude. The second modification to our
strict one-loop computation therefore consists of not only
using p2

h = M2
Hi

, but also employing the resummed Z fac-
tors. The LO and the virtual amplitude Eq. (46) are now
computed as

Mtree,impr
H±→W±hi ≈

3∑
j=1

Zi jMtree
H±→W±h j

(60)

and

Mvirt,impr
H±→W±hi ≈

3∑
k=1

Zik

(
Mvert

H±→W±hk + Mext.H±
H±→W±hk

)
.

(61)

Including the resummedZ factors in the LO amplitude means
that Mext,h does not have to be calculated anymore, and that
the virtual NLO amplitude contains contributions that are for-
mally of two-loop order and higher. We refer to these ampli-
tudes as “improved” amplitudes and to their corresponding

14 We do not change ghi H−G+ in UV-divergent diagrams e.g. in the
external leg corrections to hi as that would lead to UV divergences.
15 We use the term ’numerically stable’ in the sense that the NLO
corrections to the LO decay width do not blow up so that the convergence
of the higher-order corrections must be questioned.

widths as “improved” widths. They are given by

�LO,impr =
λ3/2

(
m2

H± , M2
W , M2

Hi

)

64πm3
H±M2

W

∣∣∣Mtree,impr
H±→W±hi

∣∣∣
2

(62)

�virt,impr =
λ3/2

(
m2

H± , M2
W , M2

Hi

)

64πm3
H±MW

2

×2 Re
(
Mtree,impr∗

H±→W±hiM
virt,impr
H±→W±hi

)
. (63)

The Z matrix and the loop-corrected masses are obtained
from the programNMSSMCALCwith the new implementation
of the full one-loop renormalized self-energies in general Rξ

gauge as discussed in Sect. 2.2.
The inclusion of resummed higher-order corrections to

the external neutral Higgs boson via the full Z factor also
needs to be accounted for in the real corrections, so that the
IR divergences cancel properly. This means that we have

�
real,impr
H±→W±hiγ =

α

∣∣∣∑3
j=1 Zi j gW−h j H+

∣∣∣
2

4π2mH±

×
[

− m2
H± IH±H± +

(
M2

Hi
− m2

H± − M2
W

)
IH±W

−M2
W IWW − IH± − IW

+ 2M2
W

λ(m2
H± , M2

W , M2
Hi

)

(
I H

±H±
WW + 2I H

±
W + I

) ]
. (64)

Finally, since we set p2
h = M2

Hi
, we need to use the same

modified gauge couplings that we introduced in Eq. (57)
in order to cure the breaking of IR finiteness caused by
using loop-corrected masses. We refer to this width as
“improved” real corrections. The complete width obtained
after these modifications will henceforth be referred to as the
“improved” NLO width and is given by

�
NLO,impr
H±→W±hi = �LO,impr + �1l,impr ≡ �LO,impr

+�real,impr + �virt,impr. (65)

4 Numerical results

In this section, we will investigate in detail the gauge depen-
dence of our results. We start by studying the gauge depen-
dence of the loop-corrected neutral Higgs boson masses and
then investigate the gauge dependence of the virtual correc-
tions to the decay H± → W±hi before studying the gauge
dependence of the complete NLO width, by applying var-
ious treatments of the external Higgs bosons. We do this
for parameter points obtained from a scan in the NMSSM
parameter space as described in the following.
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Table 1 Scan ranges for the
NMSSM scan. All parameters
are varied independently
between the given minimum and
maximum values, denoted by
“min” and “max”, respectively

M1 M2 At Ab Aτ mQ̃3
mt̃R mb̃R

mL̃3
m τ̃R MH± Aκ μeff

in TeV

Min 0.4 0.4 −2.0 −2.0 −2.0 0.4 0.4 2.0 0.4 0.4 0.2 −2.0 0.2

Max 1.0 1.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 1.0 2.0 0.3

4.1 The NMSSM parameter scan

In order to find scenarios that are compatible with the recent
experimental constraints for the purpose of our numerical
analysis, we perform a scan in the NMSSM parameter space.
We apply the same procedure as in [74–76], where also fur-
ther details can be found. The parameters tan β, λ and κ are
varied in the ranges

1.5 ≤ tan β ≤ 10 , 10−4 ≤ λ ≤ 0.4 , 0 ≤ κ ≤ 0.6 ,

(66)

so that we obey the rough perturbativity constraint

λ2 + κ2 < 0.72. (67)

The scan ranges of further parameters are listed in Table 1.
We set

M3 = 1.85 TeV (68)

and the mass parameters of the first and second generation
sfermions are chosen to be

mũR ,c̃R = md̃R ,s̃R
= mQ̃1,2

= mL̃1,2
= mẽR ,μ̃R = 3 TeV.

(69)

The soft SUSY-breaking trilinear couplings of the first two
generations are set equal to the corresponding values of the
third generation. We follow the SUSY Les Houches Accord
(SLHA) format [77,78], which means that the soft SUSY-
breaking masses and trilinear couplings are understood as
DR parameters at the scale

μR = MSUSY = √
mQ̃3

mt̃R . (70)

The SM input parameters have been chosen to be [79,80]

α(MZ ) = 1/127.955, αMS
s (MZ ) = 0.1181

MZ = 91.1876 GeV MW = 80.379 GeV

mt = 172.74 GeV mMS
b (mMS

b ) = 4.18 GeV

mc = 1.274 GeV ms = 95.0 MeV

mu = 2.2 MeV md = 4.7 MeV

mτ = 1.77682 GeV mμ = 105.6584 MeV

me = 510.9989 keV GF = 1.16637 · 10−5 GeV−2.

(71)

We calculate the spectrum of the Higgs particles including
corrections up to two-loop order O(αtαs + α2

t ) [29] with

the recently published NMSSMCALC version 3.00. For the
scan, MH± has been used as input parameter, and not Aλ

which is also provided as an option by NMSSMCALC. We
choose OS renormalization for the top/stop sector (see [28,
29] for details). One of the neutral CP-even Higgs bosons
is identified with the SM-like Higgs boson and its mass is
required to lie in the range

122 GeV ≤ mh ≤ 128 GeV. (72)

We useHiggsBounds 5.3.2 [81–83] to check for agree-
ment with the Higgs exclusion limits from LEP, Tevatron and
LHC, and HiggsSignals 2.2.3 [84] to verify agree-
ment with the Higgs rates. We demand the total χ2 computed
by HiggsSignals with our given effective coupling fac-
tors to be compatible with the total χ2 of the SM within 2σ .
The input required for HiggsSignals is calculated with
NMSSMCALC.

Furthermore, the most relevant LHC exclusion bounds on
the SUSY masses are taken into account. These constrain the
gluino mass and the lightest squark mass of the second gen-
eration to lie above 1.8 TeV, see [85]. The stop and sbottom
masses in general have to be above 800 GeV [85,86], and the
slepton masses above 400 GeV [85].

For the numerical analysis we have chosen two sample
parameter points among all parameter sets obtained by our
scan. For the first scenario, denoted by P1, the lightest CP-
even Higgs boson is singlet-like and the second-lightest CP-
even Higgs boson is the SM-like Higgs boson. In this scenario
the mixing between the singlet- and the SM-like states is quite
significant. The second point is denoted by P2 and features
an SM-like Higgs boson that is the lightest CP-even Higgs
boson with the mixing between the singlet and the SM-like
state being non-significant.

Parameter point P1 Besides the SM values defined
above, the parameter point is given by the following soft
SUSY-breaking masses and trilinear couplings,

mt̃R = 1036 GeV, mQ̃3
= 2365 GeV,

mb̃R
= 2360 GeV,

mL̃3
= 1170 GeV,

m τ̃R = 2872 GeV,

|Au,c,t | = 2178 GeV, |Ad,s,b| = 358 GeV ,

|Ae,μ,τ | = 1401 GeV ,

|M1| = 423 GeV, |M2| = 669 GeV ,
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|M3| = 1850 GeV,

ϕAe,μ,τ = 0, ϕAd,s,b = π,

ϕAu,c,t = ϕM1 = ϕM2 = ϕM3 = 0, (73)

and the remaining input parameters are set to16

|λ| = 0.367 , |κ| = 0.584 , ReAκ = −1423 GeV,

|μeff| = 226.5 GeV,

ϕλ = ϕκ = ϕu = 0, ϕμeff = 0 , tan β = 3.11,

MH± = 624 GeV. (74)

Parameter point P2 Besides the SM values defined
above, the parameter point is given by the following soft
SUSY-breaking masses and trilinear couplings,

mt̃R
= 872 GeV, mQ̃3

= 1883 GeV, mb̃R
= 2341 GeV,

mL̃3
= 1867 GeV, m τ̃R

= 2394 GeV,

|Au,c,t | = 2150 GeV, |Ad,s,b| = 1189 GeV,

|Ae,μ,τ | = 159 GeV,

|M1| = 443 GeV, |M2| = 748 GeV , |M3| = 1850 GeV,

ϕAe,μ,τ = ϕAd,s,b = π, ϕAu,c,t = ϕM1 = ϕM2 = ϕM3 = 0. (75)

The remaining input parameters are set to

|λ| = 0.331, |κ| = 0.408, ReAκ = −402 GeV,

|μeff| = 224 GeV,

ϕλ = ϕκ = ϕu = 0, ϕμeff = 0, tan β = 4.46,

MH± = 988 GeV. (76)

4.2 Gauge dependence of the neutral Higgs Boson masses

As it has been discussed in Sect. 2.2, the masses of the neu-
tral Higgs bosons are obtained through an iterative method.
While this method yields precise solutions for the poles of the
propagator matrix, it may introduce intricate gauge depen-
dences due to the mixing of different orders of perturbation
theory. In this section we investigate how large this gauge
dependence can become for the Higgs boson masses. We
consider the first scenario in this section and the following
Sect. 4.3, and the second scenario in Sect. 4.4.

The Higgs boson masses and their main compositions in
terms of singlet/doublet and scalar/pseudoscalar components
at tree level, one-loop level as well as two-loopO(αtαs) level
and two-loop O(αtαs +α2

t ) level are given in Table 2 for OS
and in Table 3 for DR renormalization in the top/stop sector.
They have been computed with NMSSMCALC in the ’t Hooft–
Feynman gauge (ξ = 1). In the Table, lowercase hi refers
to the tree-level and capital Hi to the loop-corrected mass
eigenstates. In our chosen parameter point, the hs -like and the
hu-like Higgs boson masses are light and receive significant

16 The imaginary part of Aκ is obtained from the minimum conditions
via the tadpole equations.

higher-order corrections. We call the Higgs boson singlet-
like in case its dominant contribution to the mass eigenstate
stems from the singlet admixture. The second-lightest Higgs
boson is dominantly hu-like and has a mass of 125 GeV at
O(αtαs + α2

t ) for OS renormalization in the top/stop sector.
It reproduces the LHC production rates which proceed dom-
inantly through gluon fusion for small values of tan β. Since
the LO process is dominated by top-quark loops the Higgs
coupling to the tops must be substantial, as is the case for a
Higgs boson with large hu admixture.

We first vary the gauge parameter ξ of the general Rξ

gauge, which we set throughout the section ξW = ξZ ≡ ξ ,
while all other parameters are kept fixed. The masses of the
hs- and the hu-like Higgs bosons depend significantly on
ξ . All remaining Higgs bosons have masses larger than 600
GeV and show a very small gauge dependence. This is due
to the fact that only the light Higgs bosons receive signifi-
cant loop corrections. In Fig. 4, we show these dependences
for the mass Mhs of the CP-even singlet-like Higgs boson
in the upper left plot and for the mass Mhu of the SM-like
Higgs boson in the upper right plot including one-loop (black
lines), O(αtαs) two-loop (blue lines) and O(αtαs +α2

t ) two-
loop (red lines) corrections. These corrections are obtained
for the OS (full lines) and DR (dashed lines) renormaliza-
tion schemes of the top/stop sector. The two lower plots dis-
play the relative difference between the masses in general Rξ

gauge and in the ’t Hooft–Feynman gauge ξ = 1,

�M
ξ = |Mx (ξ) − Mx (ξ = 1)|

Mx (ξ = 1)
, with x = hs, hu, (77)

as functions of ξ . Here Mx denotes the loop-corrected mass
value of the Higgs boson x at a fixed loop order, calculated
in general Rξ gauge (Mx (ξ)) and in the ’t Hooft–Feynman
gauge (Mx (ξ = 1)). We remind the reader that only the
renormalized one-loop Higgs self-energies are calculated in
general Rξ gauge and therefore depend on ξ , while the renor-
malized two-loop Higgs self-energies at order O(αtαs) and
O(α2

t ) do not depend on ξ as they are computed in the gauge-
less limit. Note that the tree-level masses for the hs- and hu-
like Higgs bosons are 9.8 GeV and 91.38 GeV, respectively.
The loop corrections to their masses are positive. From the
plots, we can infer that the loop-corrected masses decrease
with increasing ξ , which we chose to lie between 0 and 100.
We can, however, increase ξ to a larger value and find that for
ξ = 1089 the loop-corrected mass of the hs-like Higgs boson
becomes negative. In the lower plots, we see two different
behaviors for the hs- and hu-like Higgs boson. The relative
ξ dependence is larger in the DR scheme than in the OS
scheme for the loop-corrected hs-like Higgs boson masses,
while the behavior is opposite for the loop-corrected hu-like
Higgs boson masses. The inclusion of the two-loop correc-
tions of orderO(αtαs) andO(α2

t ) changes �M
ξ in an intricate

way. The relative differences �M
ξ in the OS and DR scheme,
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Table 2 P1: mass values in
GeV and main components of
the neutral Higgs bosons at tree
level, one-loop level, two-loop
O(αtαs) level and at two-loop
O(αtαs + α2

t ) level obtained by
using OS renormalization in the
top/stop sector

h1/H1 h2/H2 h3/H3 h4/H4 h5/H5

Tree-level 9.80 91.38 621.27 627.37 1243.31

Main component hs hu a hd as

One-loop 94.96 133.12 620.97 628.1 1216.77

Main component hs hu a hd as

Two-loop O(αtαs) 93.06 118.95 620.99 627.82 1216.8

Main component hs hu a hd as

Two-loop O(αtαs + α2
t ) 93.95 125.08 620.99 627.96 1216.8

Main component hs hu a hd as

Table 3 P1: mass values in
GeV and main components of
the neutral Higgs bosons at tree
level, one-loop level, two-loop
O(αtαs) level and at two-loop
O(αtαs + α2

t ) level obtained by
using DR renormalization in the
top/stop sector

h1/H1 h2/H2 h3/H3 h4/H4 h5/H5

Tree-level 9.80 91.38 621.27 627.37 1243.31

Main component hs hu a hd as

One-loop 92.15 114.44 620.92 627.6 1216.81

Main component hs hu a hd as

Two-loop O(αtαs) 93.21 118.84 620.91 627.67 1216.8

Main component hs hu a hd as

Two-loop O(αtαs + α2
t ) 93.26 119.1 620.91 627.68 1216.8

Main component hs hu a hd as

Fig. 4 Upper panel: The CP-even singlet-like (left) and the SM-
like (right) Higgs boson masses as a function of the gauge param-
eter ξ at the one-loop (black), two-loop O(αtαs) (blue), two-loop
O(αtαs + α2

t ) (red) level in the OS (solid lines) and the DR (dashed
lines) scheme of the top/stop sector. Lower panel: Absolute value of

the relative ξ dependence of the loop-corrected masses, defined as
�M

ξ = |Mx (ξ) − Mx (ξ = 1)|/Mx (ξ = 1) (x = hs , hu), in percent,
as function of ξ . The color code in the lower plots is the same as in the
upper plots

however, move closer to each other with the inclusion of the
two-loop corrections.

Next, we fix the value of ξ to 10 and vary λ and κ at the
same time to very small values (10−5) while we keep the
ratio λ/κ constant. In this way we smoothly approach the
MSSM limit, where the singlet and doublet Higgs bosons do
not mix. In Fig. 5 we show the thus obtained loop-corrected

masses of the hs-like (left) and hu-like (right) Higgs boson
as function of λ. The line and color codes are the same as in
Fig. 4. The lower plots show �M

ξ=10, i.e. the deviation of the
hs- and hu-like masses, respectively, calculated for ξ = 10
from the value obtained in the ’t Hooft–Feynman gauge.

As expected, when λ and κ are close to zero, the hs-like
Higgs boson decouples and the loop corrections to the hs -like
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Fig. 5 Analogous to Fig. 4, but λ is varied while ξ is kept fixed at ξ = 10

Higgs boson mass vanish in this limit. Therefore all lines in
the left plots converge at the left endpoint where λ ≈ 0. As
we can see from Fig. 5 (right), the ξ dependence of the SM-
like loop-corrected Higgs boson masses does not vanish in
the MSSM limit. For our chosen parameter point the relative
deviation of the masses for ξ = 10 and ξ = 1 even slightly
increases. The kink around λ = 0.29 appears at the threshold
where the loop-corrected hs mass is twice the tree-level hs
mass.

In order to investigate the influence of the NMSSM-
specific contributions to the mass corrections atO(αtαs+α2

t )

and their ξ dependence we simultaneously vary the couplings
λ and κ and show in Fig. 6 (upper) the two-loop masses of
the singlet-like (left) and the hu-like (right) Higgs bosons
for the original values for λ and κ of the parameter point
P1 (red lines), half their values (blue) and for λ/100, κ/100
(black) in the two renormalization schemes of the top/stop
sector. In the left plot the black dashed and full lines lie on
top of each other. The lower plots depict the corresponding
relative ξ dependence. For hs the two-loop corrected mass
value and the ξ dependence decrease with smaller values of
the NMSSM-like couplings, as the singlet-like Higgs boson
decouples from the spectrum. The hu-like mass shows the
expected behavior and decreases with smaller singlet admix-
tures.17 The relative ξ dependence increases, however, for
the chosen parameter point. The increasing contribution to
the mass corrections for larger λ, κ values from the hu − hs
admixture mixes with the doublet-like mass corrections and
diminishes their gauge dependence.

17 One of the virtues of the NMSSM is the increased upper mass bound
of the SM-like Higgs boson due to the additional NMSSM-like contri-
butions to the tree-level mass value.

The gauge dependence strongly depends on the chosen
approach to determine the loop-corrected masses as we will
show next. Figure 7 displays the mass corrections (upper
plots) atO(αtαs +α2

t ) for OS renormalization in the top/stop
sector and their relative ξ dependence (lower plots) deter-
mined through the iterative method to extract the zeros of
the determinant [26] (red lines) as well as when we apply
the zero momentum approximation (’R0-method’ called in
the following, blue lines), cf. Eq. (33), and when the mass
matrix is diagonalized at the arithmetic squared mass aver-
age (’Rmtree-method’, black lines), cf. Eqs. (35) and (36).
The gauge dependence becomes very small for the latter
in contrast to the two former methods. This is because of
the fact that the dependence of the renormalized self-energy
�̂hi h j evaluated at the arithmetic squared mass average on
the gauge parameter is small for i being different from j and
vanishes completely for i being identical to j . Their behav-
ior as a function of ξ depends on the difference between
the tree-level mass and the squared momentum at which the
mass matrix is diagonalized resulting in �M

ξ values up to
about 1% (4%) for the R0-method (iterative method) for the
hs-like mass and 10% (7%) for the hu-like mass when ξ is
varied up to values of 100.

4.3 Gauge dependence of the loop-corrected decay width

In this section, we investigate the gauge dependence of the
loop-corrected decay width computed in Sect. 3.

123



292 Page 16 of 26 Eur. Phys. J. C (2020) 80 :292

Fig. 6 Upper panel: The CP-even singlet-like (left) and the hu-like
(right) Higgs boson masses at two-loop O(αtαs + α2

t ) level in the OS
(solid lines) and the DR (dashed lines) scheme of the top/stop sector

for λ = 0.37, κ = 0.58, i.e. the P1 values, (red), for half their values
(blue) and for λ/100, κ/100 (black). Lower panel: Corresponding �M

ξ

in percent, as function of ξ

Fig. 7 Upper panel: The CP-even singlet-like (left) and the hu-like
(right) Higgs boson masses at two-loop O(αtαs + α2

t ) level in the OS
scheme of the top/stop sector applying the iterative (red), the R0- (blue)

and the Rmtree-method (black). See text, for explanations. Lower panel:
Corresponding �M

ξ in percent, as function of ξ

4.3.1 Individual loop contributions

We start with the study of the gauge dependence of the var-
ious components of the virtual one-loop correction, namely
Mvert,Mext,H±

,Mext,h , and finally of the complete virtual
amplitude Mvirt, as defined in Sect. 3.2. We use the same
parameter point as given in Eqs. (73) and (74).

In Fig. 8 we show the relative gauge dependence of the
virtual amplitude and of its individual contributions for the
electroweak loop correction to the decay H± → W±hu as a

function of the gauge parameter ξ , where the mostly hu-like
Higgs boson corresponds to the SM-like Higgs boson. We
define the quantity �M

ξ to measure the gauge dependence of
the amplitude M, by

�M
ξ = |Mξ − Mξ=1|

|mcMvirt
ξ=1|

(78)

where Mξ with M ∈ {Mvert,Mext,H±
,Mext,h,Mvirt}

denotes the amplitude in the general Rξ gauge and Mξ=1

the computed in the ’t Hooft–Feynman gauge ξ = 1. Note
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Fig. 8 Gauge dependence of the virtual electroweak corrections to
H± → W±hu , with Mext,H±

(dotted, red), Mext,h (blue, dashed),
Mvert (green, dot-dashed) and Mvirt (black, solid). Left plot: Virtual

corrections computed at strict one-loop order. Right plot: Virtual correc-
tions computed with the external momentum set to the loop-corrected
neutral Higgs boson mass p2

h = M2
hu

. For details, we refer to the text

that we normalize to Mvirt, i.e. to the sum of all contribu-
tions to the virtual corrections of the one-loop amplitude, at
ξ = 1. We choose to vary ξ between 0 and 100 in order
not to introduce new scales in the calculation (the Goldstone
masses scale with

√
ξmgauge where mgauge denotes the elec-

troweak gauge boson masses). The individual components
of the virtual corrections include their respective countert-
erms, such that the individual parts are UV-finite, but still
IR-divergent. The IR divergence is regulated by a finite pho-
ton mass. The red (dotted) curve depicts the relative gauge
dependence of the external leg corrections Mext,H±

to the
charged Higgs boson, the blue one (dashed) is the corre-
sponding curve for the external leg correction Mext,h to the
outgoing neutral Higgs hu , and the green (dot-dashed) curve
depicts the relative gauge dependence of the vertex correc-
tions Mvert. Finally, the solid black curve shows the result
for the total virtual correction Mvirt. In the left plot of Fig. 8,
we show these curves for the strict one-loop calculation as
described in Sect. 3.2. This means that the external leg correc-
tions tohu are accounted for diagrammatically using Eq. (40),
as opposed to using the resummed Z matrix. Moreover, we
use the tree-level mass mhu for the external momentum such
that p2

h = m2
hu

. Here and in the following plots we use the
mixing matrix that diagonalizes the tree-level mass matri-
ces in the computation of the couplings as otherwise the
result will not be UV-finite. In this strict one-loop compu-
tation, the virtual corrections are gauge independent, as can
be checked explicitly numerically, cf. the solid black curve of
Fig. 8 (left): while each individual component of the virtual

correction is gauge dependent, their sum, resulting in Mvirt,
is gauge independent. Actually, the relative gauge depen-
dences of the external leg contributions to the charged and
the neutral Higgs mass,Mext,H±

andMext,h , and the ones of
the vertex corrections, Mvert, come with opposite sign (not
visible from the plot as we show the absolute values). The
reason for the kinks in the red (dotted) and green (dot-dashed)
curves is the following. The masses of the Goldstone bosons
depend on the gauge parameter ξ , and these kinks occur when
a production threshold for the Goldstone boson is reached,
i.e. at the points

mH± = √
ξMW + mh j and mH± = √

ξMZ + maj . (79)

In Fig. 8 (right), we investigate how this gauge independence
of the strict one-loop computation changes when we apply
the improved one-loop computation as defined in Sect. 3.4
’Step 1’ that we denoted ’off-shell’. The means, we use loop-
corrected masses for the external leg corrections to the neutral
Higgs boson hu , i.e. we set p2

h = M2
hu

. Note, however, that
the Z matrix is evaluated at pure one-loop order, as defined
in Eq. (40). The masses are calculated at O(αtαs + α2

t ) for
OS renormalization in the top/stop sector by NMSSMCALC
in general Rξ gauge as described in Sect. 2.2. Going from
the strict one-loop calculation to the ’off-shell’ one, we see
that the dependence of the individual components of the vir-
tual corrections on the gauge parameter ξ changes, such that
their sum Mvirt (solid, black curve) is no longer gauge inde-
pendent. The overall gauge dependence does not cancel any
more, as we move away from the strict fixed-order calcu-
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lation and include partial higher-order effects coming from
the loop-corrected Higgs mass M2

hu
, such that with increas-

ing ξ values, the NLO amplitude becomes arbitrarily large.
The relative change of the total virtual amplitude is of up to
O(10%) for ξ values up to 100.

In Fig. 9 (left), the curves corresponding to the right plot of
Fig. 8 are plotted in the MSSM limit of the chosen parameter
point. This limit is taken by setting λ, κ → 0 and keep-
ing the ratio λ/κ constant (actually λ, κ = O(10−8)). From
Fig. 9 we see that in the MSSM limit the resulting gauge
dependence of Mvirt has a numerically small effect. It varies
up to 0.7%,18 although we are using gauge-dependent loop-
corrected masses for the external momentum p2

h = M2
hu

. This
is illustrated once again in the right plot of the figure, where
we show Mvirt and its relative gauge dependence alone for
the chosen parameter point (red) and after varying λ and κ to
half their values (blue) and to λ/100 and κ/100 (black). The
relative gauge dependence decreases successively from 10%
to 1% at ξ = 100. While the gauge dependence of the masses
increases in the MSSM limit for our chosen parameter point
the opposite is hence the case for the loop corrections to the
decay. This again shows that the singlet admixtures play an
important role for the gauge dependence of the parameters
and observables and do not follow a simple law.

4.3.2 The complete loop-corrected decay width

In the following, we study for the parameter point P1 the
gauge dependence of the complete loop-corrected partial
decay width of the decay H± → W±hu . In the upper plots of
Fig. 10, the black (solid) curve shows, as a function of ξ , the
improved LO decay width for H± → W±hu , i.e. we apply
Eq. (62) as denoted with ’Step 2’ in Sect. 3.4. This means
that we set the external momentum to the loop-corrected
Higgs boson mass Mhu , p2

h = M2
hu

, which is calculated

at O(αtαs + α2
t ) with OS renormalization in the top/stop

sector. Additionally, we include in the external-leg correc-
tions to the neutral Higgs boson the resummed Z matrix
defined in Eq. (37) in order to ensure the correct OS proper-
ties. The blue (dot-dashed) curve displays the corresponding
improved NLO width, given by Eq. (65). The left plots are
for the NMSSM parameter point P1, whereas the right plots
are for the MSSM limit of the same benchmark point. The
NMSSM widths show a stronger dependence on ξ than the
ones in the MSSM limit (note that the scales of the two plots
are different). In the lower plots we show the relative gauge
dependence of the LO and NLO widths, respectively, as a
function of ξ , as defined by

��
ξ = �ξ − �ξ=1

�ξ=1
. (80)

18 Per definition, the line crosses zero at ξ = 1.

Here �ξ denotes the decay width calculated in general Rξ

gauge at fixed loop order, i.e. �LO, impr or �NLO, impr, and
�ξ=1 the width calculated in the ’t Hooft–Feynman gauge. In
the NMSSM the relative gauge dependence is larger for the
NLO width than for the LO one while in the MSSM, where
the singlet admixture vanishes, the opposite is the case. For
the complete NLO width of scenario P1 the relative correc-
tions ��

ξ can become as large as 200% for ξ = 100. Such
a strong gauge dependence is clearly unacceptable for mak-
ing meaningful predictions for the decay widths. For phe-
nomenological investigations, on the other hand, the interest-
ing quantity is the branching ratio. In order to make meaning-
ful predictions, this requires the inclusion of the electroweak
corrections to all other charged Higgs boson decays, so that
the total width entering the branching ratio is computed at
higher order in the electroweak corrections. This is beyond
the scope of the present paper and left for future work. Even
if one argues not to introduce new mass scales in the pro-
cess and to remain below ξ values of 100 the ξ dependence
is large, in particular it is far beyond the relative size of the
loop corrections which is about 11% for ξ = 1. In the MSSM
limit, depicted in the right plot of Fig. 10, the relative gauge
dependence is smaller with values of up to about 20% for
ξ = 100.

In Fig. 11, we show the corresponding curves analogous
to Fig. 10, however now using the R0 method to extract the
loop-corrected mass values and mixing matrix.19 The LO
and NLO widths are then calculated by applying Eqs. (60) to
(64), but with theZmatrix replaced by the R0 matrix, defined
in Eq. (33). We denote the corresponding widths with the
superscript R0 as �R0

. Figure 12 shows the corresponding
results if the masses are extracted at the arithmetic squared
mass average such that the Z matrix is replaced by the Rmtree

matrix, defined in Eqs. (35,36). The corresponding widths
are denoted by the superscript Rmtree.

The comparison of Figs. 11 and 12 with Fig. 10 shows that
for this parameter point the gauge dependence is smallest in
the R0 approximation. The relative change of the complete
NLO width with ξ compared to its value for ξ = 1, i.e. ��

ξ ,
is about −18% for ξ = 100, while in the Rmtree approxi-
mation it is about +28%, which is still smaller than if the
Z matrix is applied. The corresponding values in the MSSM
limit are 6.5% (R0) and−6% (Rmtree). The method of extract-
ing the mixing matrix elements has a strong influence on the
ξ dependence of the NLO width and also on the sign of this
ξ dependence. For the parameter point P1 the hu-like Higgs
boson has a strong singlet admixture. From previous analyses
[49,51], we know already that the mixing matrix elements
are then very sensitive to changes in the approximation of the
loop calculation. Since the mixing matrix elements enter the

19 As remarked above, in the couplings we always use the tree-level
mixing matrix elements, however.

123



Eur. Phys. J. C (2020) 80 :292 Page 19 of 26 292

Fig. 9 Left: Gauge dependence of the virtual electroweak corrections
to H± → W±hu in the MSSM-limit, using loop-corrected masses for
the external neutral Higgs boson p2

h = M2
hu

calculated in general Rξ

gauge. The color and line code is the same as in Fig. 8. Lower panel:
Gauge dependence of Mvirt with the vertical axis zoomed-in Right:

Mvirt as a function of ξ (upper) and its relative gauge dependence
(lower) for λ = 0.37, κ = 0.58 (parameter point P1, red/full lines)
and their variation to half their values (blue/dashed lines) and to λ/100,
κ/100 (black/dotted lines)

Fig. 10 Parameter point P1: gauge dependence of the LO and NLO
decay widths in the NMSSM (left) and its MSSM limit (right). �impr

depicts widths calculated using the resummed Z matrix defined in

Eq. (37). The upper panels show the gauge dependence of the LO (black,
solid) and NLO (blue, dot-dashed) widths. In the lower panels we dis-
play the relative gauge dependence of the LO and NLO widths
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Fig. 11 Analogous to Fig. 10, but using the R0-method instead of the iterative approach to extract the loop-corrected masses and mixing matrix

Fig. 12 Same as Fig. 10, but using the Rmtree-method instead of the iterative approach to extract the loop-corrected masses and mixing matrix
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Fig. 13 Parameter point P1: partial decay width of the decay H± →
W±hu (left) and H± → W±hs (right) at LO (full) and NLO (dashed) at
strict LO and one-loop order (black), in the improved approach apply-

ing the Z matrix (red) and the R0 matrix (green), as a function of tan β.
Lower panels: corresponding K factors

Higgs couplings, the computed observables, in this case the
decay width, become very sensitive to the applied approxi-
mation. This is confirmed by our results on the ξ dependence
but also by the values of the widths themselves for the various
approximations.20

Overall, we found that the gauge dependence of the loop-
corrected mass of the external neutral Higgs boson has a
much smaller influence on the gauge dependence of the NLO
width than the matrix that is used to set the external Higgs
boson OS. The strength of this effect sensitively depends on
the chosen parameter set, as can be inferred from Fig. 13.
The figure displays the partial decay widths of the decay
H± → W±hu (left plot) and H± → W±hs (right plot) both
at LO and NLO as a function of tan β. All other parameter
values are fixed to those of scenario P1. Shown are the results
for the pure LO and strict one-loop width (black lines) and the
ones when we calculate the improved LO and NLO widths
applying the Z matrix (red) and the R0 matrix (green). The
lower plots show the corresponding K factors, defined as the
ratio of the NLO width and its corresponding LO width

K = �NLO

�LO . (81)

As can be inferred from the left plot, the value of the
decay width �(H± → W±hu) strongly depends on the
applied approximation for our chosen parameter point, i.e. for

20 The NLO width in the MSSM-like scenario is negative for the Rmtree

approximation which is clearly non-physical and which is due to the
tiny tree-level width. Here higher-order corrections beyond one-loop
order would need to be included for a meaningful prediction.

tan β = 3.11, while the K factor is approximately the same
for the improved widths, with a value around 1.1. The K
factor for the pure one-loop result largely differs from the
improved ones as it does not take into account any resumma-
tion of higher orders. For values of tan β between about 3.26
and 3.52 the improved NLO results are rather close, but dif-
fer otherwise. In the singlet-like final state shown in Fig. 13
(right), i.e.�(H± → W±hs), the K factors for the improved
widths differ by less than 5% over the whole scanned range.

4.4 Analysis for scenario P2

In order to further investigate the impact of the gauge depen-
dence, we analyze the gauge dependence of the Higgs boson
masses and the charged Higgs decay widths for a second
parameter point, P2, defined in Eqs. (75) and (76). We sum-
marize the Higgs boson masses obtained in the OS renormal-
ization scheme of the top/stop sector in Table 4 and in the
DR scheme in Table 5, at tree level, at one-loop level and at
two-loop level including the O(αtαs) and the O(αtαs + α2

t )

corrections, respectively. We have deliberately chosen this
scenario in which the hu-like Higgs boson is the lightest
state with mass around 125 GeV at O(αtαs + α2

t ) in the
OS renormalization scheme of the top/stop sector while the
CP-even singlet-like Higgs boson is the second-lightest state
with mass around 433 GeV. In this scenario we analyze only
the mass of the hu-like Higgs boson since only its mass is
affected substantially by the change of the gauge parame-
ter ξ . We present in Fig. 14 the hu-like Higgs boson mass
as function of ξ . The left plot shows its two-loop mass at
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Table 4 P2: mass values in
GeV and main components of
the neutral Higgs bosons at tree
level, one-loop level, two-loop
O(αtαs) level and at two-loop
O(αtαs + α2

t ) level obtained by
using OS renormalization in the
top/stop sector

h1/H1 h2/H2 h3/H3 h4/H4 h5/H5

Tree-level 85.43 437.27 581.25 986.77 989.68

Main component hu hs a as hd

One-loop 133.59 433.79 577.39 989.71 986.69

Main component hu hs a as hd

Two-loop O(αtαs) 118.38 433.76 577.42 989.61 986.7

Main component hu hs a as hd

Two-loop O(αtαs + α2
t ) 125.03 433.76 577.42 989.66 986.7

Main component hu hs a as hd

Table 5 P2: mass values in
GeV and main components of
the neutral Higgs bosons at tree
level, one-loop level, two-loop
O(αtαs) level and at two-loop
O(αtαs + α2

t ) level obtained by
using DR renormalization in the
top/stop sector

h1/H1 h2/H2 h3/H3 h4/H4 h5/H5

Tree-level 85.43 437.27 581.25 986.77 989.68

Main component hu hs a as hd

One-loop 113.9 433.75 577.43 989.55 986.65

Main component hu hs a as hd

Two-loop O(αtαs) 118.4 433.76 577.42 989.56 986.64

Main component hu hs a as hd

Two-loop O(αtαs + α2
t ) 118.86 433.76 577.42 989.57 986.64

Main component hu hs a as hd

O(αtαs + α2
t ) for OS (full) and DR (dashed) renormaliza-

tion in the top/stop sector for three different singlet admix-
tures. This means we start with the λ and κ values of our
original scenario P2 (red lines) and compare with the results
when we take half (blue lines) and 1/100 their values (black
lines), where the latter means that we are close to the MSSM
limit. As can be inferred from the plot, the gauge dependence
�M

ξ shown in the lower plot is only mildly dependent on the
renormalization scheme and on the singlet admixture, and
amounts up to values of about 7–8% at ξ = 100.

In the right plot of Fig. 14 we show the ξ dependence of
Mhu when we apply different approximations to determine
the loop-corrected Higgs mass eigenstates with OS renor-
malization of the top/stop sector, namely through the iterative
method (red line), by applying the rotation matrix R0 to the
mass matrix in the zero momentum approximation (blue), or
finally by applying Rmtree to the mass matrix evaluated at its
arithmetic squared mass average (black). The ξ dependence
of the iterative and the zero momentum procedure is about
the same, with �M

ξ amounting to 8 and 9%, respectively, at
ξ = 100. For the arithmetic squared mass average method,
however, we again find that the ξ dependence is very small.
Overall, the gauge dependence of the hu-like mass in sce-
nario P1 is larger than in P2.

Figure 15 depicts the gauge dependence of the partial
widths of the decays H± → W±hu (left) and H± → W±hs
(right) at LO (full lines) and NLO (dashed lines) by applying
in Eqs. (62) and (65), respectively, the three different approx-
imations for the matrices that diagonalize the corresponding
loop-corrected mass matrices, namely the Z matrix (red), R0

(blue) and Rmtree (black). The corresponding decay widths
are denoted by the superscripts ’impr’, ’R0’ and ’Rmtree’.
The lower panels display the corresponding ��

ξ values. The
inspection of the plots shows that the ξ dependence of the
NLO widths not always decreases compared to the LO one.
Moreover, there is no pattern for the two decays that allows to
decide which of the three approximations induces the small-
est gauge dependence in the NLO widths. A closer investiga-
tion reveals that the mixing between hu and hd is responsible
for the gauge dependence of H± → W±hu and the mixing
between hs and hd for the one in H± → W±hs . Overall,
however, the gauge dependence of the partial widths is much
smaller than for the parameter point P1, with maximum val-
ues of ��

ξ around −22% for H± → W±hu (for �NLO,impr)

and 14% for H± → W±hs (for �LO,Rmtree
). The relative

NLO corrections at ξ = 1 amount to -20% (for �impr) for the
former and to -12% for the latter decay (for �Rmtree

), how-
ever, so that the gauge dependence is of the order of the loop
correction.
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Fig. 14 Left: The hu-like Higgs boson masses as a function of ξ at two-
loopO(αtαs+α2

t ) level in the OS (solid lines) and the DR (dashed lines)
scheme of the top/stop sector for scenario P2, i.e. λ = 0.33, κ = 0.41
(red line), for half their values (blue) and for λ/100, κ/100 (black).

Right: The hu-like Higgs boson mass of scenario P2 as a function of ξ

by applying iterative (red), the R0 (blue) and the Rmtree-method (black).
Lower panels: The corresponding �M

ξ values in percent, as a function
of ξ

Fig. 15 P2: Decay widths for H± → W±hu (left uppper plot) and H± → W±hs (right uppper plot) as functions of ξ using the iterative (red),
the R0 (blue) and the Rmtree method (black). Lower panels: Corresponding ��

ξ in percent, as function of ξ

5 Conclusions

In this paper we investigated the influence of the gauge
parameter both on the higher-order corrections to the NMSSM
Higgs boson masses and the partial decay width of H± →
W±hi , calculated in general Rξ gauge. The gauge depen-
dence enters through the mixing of loop orders: for the
masses, this happens due to the application of an iterative
method to determine the loop-corrected mass values. This is
transferred to the decay width as phenomenology requires
the inclusion of the mass corrections to the external Higgs

bosons in order to match the experimentally measured values.
These are calculated up to two-loop order including higher-
order terms through the application of the iterative procedure.
Gauge dependence then enters the process through different
mechanisms. On the one hand there is a mismatch between
the use of tree-level masses in the propagators of the internal
lines and in the Higgs–Goldstone boson couplings appearing
in the computation of the loops, and the use of the higher-
order-corrected Higgs mass for the external Higgs bosons.
The latter prevents the cancelation of IR divergences when
adding up the virtual and real corrections. While this can
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be cured by an appropriate adaption of the involved cou-
plings, the second source of the gauge dependences persists:
it stems from the resummation of higher orders that enters
both through the external Higgs boson mass and the mixing
matrix applied to set the external Higgs boson OS. The latter
has a particularly large impact as we found by applying dif-
ferent approximations to determine the higher-order masses
and mixing matrix elements. The relative gauge dependence
can then largely exceed the relative size of the loop correction
itself, so that for the interpretation of the results the speci-
fication of the used gauge is crucial. By analyzing different
parameter sets, we found that the impact of the gauge depen-
dence depends on the chosen parameter point and can vary
substantially depending on the applied parameter set. The
gauge dependence of the result is not a problem as long as
together with the presentation of the result the gauge that
has been applied in the computation is clearly stated and the
origin of the gauge dependence is understood and provided
the loop corrections for the chosen ξ value do not blow up.
Still, the situation is unsatisfactory in particular as the gauge
dependence in our process has turned out to be very large,
so that assigning it as theory error does not seem justified
either. The question of gauge dependence requires further
investigation that might also involve the analysis of the inter-
play between the chosen value of ξ and perturbative unitar-
ity. Such investigations are beyond the present scope of this
paper, however, and we postpone them to future work.
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