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Abstract We find exact formulas for the Extended Uncer-
tainty Principle (EUP) for the Rindler and Friedmann hori-
zons and show that they can be expanded to obtain asymptotic
forms known from the previous literature. We calculate the
corrections to Hawking temperature and Bekenstein entropy
of a black hole in the universe due to Rindler and Friedmann
horizons. The effect of the EUP is similar to the canonical
corrections of thermal fluctuations and so it rises the entropy
signalling further loss of information.

1 Introduction

The Heisenberg Uncertainty Principle (HUP) constitutes a
cornerstone of the quantum physics and is rooted in the
quantisation of electromagnetic radiation resulting in pho-
tons. It introduces the Planck fundamental constant 7 which
together with two other fundamental constants — the speed
of light ¢, and Newton’s gravitational constant G — form
the Planck (natural) scale in physics. One of the units of
this scale is the Planck length [, = VGhi/c3. In fact, the
HUP does neither take into account quantum gravity effects
of the photon interaction nor the curvature of space-time.
However, widely spread by the considerations of superstring
theory [1-5] and loop quantum gravity [6,7], these two phe-
nomena have been gradually taken into account resulting in
the Generalised Uncertainty Principle (GUP) [8-20] and the
Extended Uncertainty Principle (EUP) [21-24], or were even
put together as the Generalised Extended Uncertainty Princi-
ple (GEUP) [25-29]. Yet, a different approach to the problem
using the so-called qmetric was also considered [30,31].
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In terms of the standard deviations of position and momen-
tum

of = (#) — (%) §))
op = (p*) — (p)* )

and in the context of space-times with external horizons, the
most general asymptotic form of the GEUP which includes
both the GUP and the EUP can be formulated as [25,26]
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where x is the position, p the momentum, /,, plays the role of
the minimum length, 7y, is the radius of the horizon which
is introduced by the background space-time, and «q, Bo are
dimensionless parameters.

An interesting property of (3) which relates to superstring
theory [32] is the invariance of it under the (duality) trans-
formations

Jaol h V l
«0 pap <~ ol —'Bodx o L Ux_l, @
h Jeol, P Iy VBo

just for the GUP sector (8y = 0) and the EUP sector (g = 0)
respectively, and
wly o NP, )

h lg
for both sectors simultaneously. It is interesting to note some
general relations between black hole and cosmological hori-
zons [33].

There have been various derivations of the GUP which
account for the gravitational part of the interaction between
an electron and a photon including simple Newtonian argu-
ments [25]. The changes caused by classical gravity could
in principle have a great deal of implications. An example
is the disappearance of the Chandrasekhar limit [34] under
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the GUP and its recovery under the application of the EUP
[35]. In fact, it emerges that the curvature effect is missing
in the GUP and once the EUP is applied, it helps to recover
the limit which is an observational fact. However, the most
important consequence of the GUP is its influence on the
Hawking temperature [36,37] and Bekenstein entropy [38].
In fact, it modifies the black hole evaporation process which
ceases under GUP conditions leaving a remnant which stores
information [39,40] giving a possible solution to the infor-
mation puzzle [41].

There have been some attempts to bound the GUP param-
eter «g in (3) observationally[42—46] including the issue of
its positivity or negativity [14,42,43,43,44,47-50]. In fact,
the microcanonical corrections reduce the entropy and so
the parameter o seems to be negative while for the canoni-
cal corrections it should be positive [18,19,25,48]. It is also
worth mentioning that there is some analogy between the
GUP in particle physics and the solid state phenomena in
graphene which could pave the path to experimentally sup-
port this idea [51].

A very nice, quite rigorous derivation of the EUP based
on space-times of constant curvature was presented in Ref.
[52] and it directly shows that even classical gravity alters
the uncertainty relation. This had been suggested earlier in
the context of geometry and topology [53-55]. In particular,
if we make any measurement, we are certain that the particle
we measure is located inside its own universe which thus
restricts the uncertainty.

The paper is organized as follows. In Sect. 2 we present
the method of derivation of the EUP from geometrical argu-
ments. In Sects. 3 and 4 we present the application of the
method for Rindler space and Friedmann universes sliced
in a way that the cosmological horizon appears manifestly.
Section 5 describes a way to interpret some of the results as
manifestations of Hawking radiation. In Section 6 we dis-
cuss the influence of cosmological horizons onto the Hawk-
ing radiation and Bekenstein entropy of a local black hole.

2 Background geometry determined EUP

The underlying idea of our approach is that the measurement
of momentum depends on a given space-time background
[52,54,55]. In order to measure the momentum one needs
to consider a compact domain D with boundary d D charac-
terised by the geodesic length Ax around the location of the
measurement with Dirichlet boundary conditions. Thus the
wavefunction is confined to D. Note that D lies on a space-
like hypersurface. Thus like other quantum gravity effects
this method is observer dependent. The method then reduces
to the solution of an eigenvalue problem for the wave function

/B

Ay +ry =0 (6)
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inside D with the requirement that ¥ = 0 on the boundary
d D, A denotes the eigenvalue, and A is the Laplace-Beltrami
operator. As we can choose 1 to be real (the eigenvalue
problem is the same for the real and the imaginary part), the
Dirichlet boundary conditions assure that (p) = 0, and so
one can obtain the uncertainty of a momentum p = —iho;
measurement as

op = (52) = i/ —WIAlY) = /s ™)

where A1 denotes the first eigenvalue. Multiplying by Ax,
the uncertainty relation corresponding to this momentum
measurement is obtained. It was found for Riemannian 3-
manifolds of constant curvature K that [52]

K
opAx > 1h,/1 — —(Ax)2. ®)
p 72

Note that the uncertainty relation derived this way is not of the
same kind as the one described by (3) because it features the
characteristic length of confinement Ax. The domain applied
in this letter is a ball of radius Ax. Thus, Ax should rather be
interpreted as uncertainty and does not describe the standard
deviation of position.

3 EUP for Rindler spacetime

The method requires a foliation of spacetime into hypersur-
faces of constant time and so we consider only the spatial
part of the Rindler metric which is of the form

c2di?

ds? = ——
T ul

+dy? ©)
with the acceleration « describing a boost in the /-direction
as applied to Minkowski space, ¢ the speed of light, and
y1 denote all components of the metric perpendicular to
[—direction. An observer (the measured particle) moving
with the acceleration « is located at Iy = 2¢?/a and sees
a horizon at a distance [y at [ = 0.

For simplicity the directions transversal to the acceleration
will not play any role in this treatment. Thus, the obtained
uncertainty will account for the effect on measurements done
along the direction of acceleration.

As we are basically describing a one-dimensional prob-
lem, the domain can most conveniently be taken to be the
interval I = [lo — Ax, [y + Ax].

The covariant Laplacian along the direction of accelera-
tion for the spatial part of the Rindler metric (9) becomes

A= C°‘_2 (210 +3) . (10)
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so that the eigenvalue problem reads

i
lw[’+%+iw1=o, (11)

where 1; stands for the part of the wave-function along the
direction of acceleration, a prime denotes the derivative with
respect to [, and A = 2Ac2/a. The differential Eq. (11) has
the general solution

Y =c [cos (2\/5) ~+ ¢ sin (2 Wi ] s (12)
with ¢, ¢ being constants. The constant ¢, and the eigen-

value A can be determined using the Dirichlet boundary con-
ditions giving

cos (a\/i) + ¢ sin (a\/i) =0, (13)
cos [(a + 5)\@] + cpsin [(a + a)ﬁ] —0, (14)
where we have defined

a=,/2c2/a — Ax, a+8 = /2c% /o + Ax. (15)

Solving (13) for ¢ and plugging the result into (14) one
obtains that

sin [(a + oV — a\/i] — sin (a\/i) —0, (16)
which is fulfilled, if the eigenvalues are given by

_ 2.2 «
Iy =Pl (17)

Using (7) and (17), the EUP for Rindler spacetime reads

aAx

2 : (18)
YU+ - - g

which is an exact formula plotted in Fig. 1. While looking
at the formula (18) it is worth noticing that the uncertainty
never reaches zero although it is monotonically decreasing
with increasing Ax and it features a minimum value of 1/+/2
in units of /1/2 where Ax = ly. Finally, for the sake of com-
parison with the common form of the EUP (presented for
example in Ref. [17]), one can Taylor expand (18) for small
values of a Ax/(2¢?) to get

@?(Ax)? a2(Ax)?\*

opAx > mh
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Fig. 1 The Extended Uncertainty Principle (18) for accelerated
observers in terms of the rescaled position uncertainty in units of 7 7.
In these units the uncertainty approaches a minimum value of 1/~/2

4 EUP for Friedmann spacetime

In this section we consider Friedmann universe with hyper-
surfaces of constant Schwarzschild-like time (in deSitter/
anti-deSitter space this slicing corresponds to static coor-
dinates). The corresponding spatial metric becomes

dr?
2 2 2
= dQs, 20
A T 0
where
2

A(r ) =1 — — 1)

r& (r, to)

with the apparent horizon

6‘2

H2+K_62’

a2

ry = (22)

the Hubble-parameter H, the scale factor a, the curvature
index K, and the metric of the two sphere d€2. Note that in this
approach the homogeneity of the universe is broken, putting
an observer at the center of symmetry. Now, the universe is
isotropic, though with respect to just one point, and not with
respect to every point as it happens in maximally symmetric
spaces.

Matching the spherical symmetry of the metric, the
domain to which the wave function is restricted is a geodesic
ball Bay of radius Ax around the origin. The covariant Lapla-
cian along the radial direction for any spherically symmetric
metric of the form (20) reads

A'(r)
+ = }a,. (23)

2A(r)

A, = A0 + [
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Correspondingly, the radial eigenvalue problem becomes
A2\ 1] 2 ~ ’ by
A =ry: + ;—3r v+ Ay =0, (24)

where 1/; stands for the part of the wave-function along the
rescaled radial coordinate 7 = r/ry and A = rlzik. The
differential Eq. (24) has the general solution

Yr = —
p

[cl PEGR) + 20} (f)} , (25)

where P and Q are associated Legendre polynomials of the
1% and the 2™ kind, and we defined a = v 14+ — 1/2.
Taking into account the Dirichlet boundary conditions, we
obtain the relations

CIPE(0) + 202(0) = 0, (26)
CIPE(AR) + 202 (A) = 0, @7)

where AX = Ax/rg. Solving (26) for ¢, and plugging into
(27), we obtain the condition

PE0)02(A%) — PE(AR)Q2(0) =0, 28)

which after using the definition of A, yields the EUP for the
Friedmann spacetime

Ax > 2 T T 1 29
OpOX = ry <2arctan f(Ax) — 71/2) ’ 29
where

_ 1—Ax/rg
flax) = 14+ Ax/ry’ (30)

The plot of (29) can be seen in Fig. 2. Expanding (29) for
small values of Ax/rg gives the standard form of such an
EUP

3 2 A 2
opAx 2 mh l—iﬂ—FO[(Ax/VH)A‘] .
67‘[2 r%{

€1y

5 Relation to Hawking radiation
The global minimum of momentum uncertainty entails an
interesting implication. As we can assign the temperature

_opc -
%= kg (32)
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Fig. 2 The Extended Uncertainty Relation (29) for Friedmann back-
ground with manifest horizon in terms of the rescaled position uncer-
tainty in units of ;. In these units the uncertainty approaches a mini-
mum value of /3 /7

to the uncertainty of momentum, a global minimum of
momentum uncertainty can be interpreted as global temper-
ature or temperature of space-time. For the given horizons
this temperature has the form

Ts, min = Ty lim g(AX) (33)
Ax—1

with the Hawking temperature of the respective horizons Ty,
AXx = Ax/lp for Rindler and Ax = AXx/ry for Friedmann
space-time, respectively, and a function g(Ax) which basi-
cally possesses a limit of the order of +/272 for Rindler
and 27 /+/3 for Friedmann universes respectively for hori-
zon sized uncertainties (Ax = 1).

Thus, the existence of a minimum of the momentum
uncertainty can be understood as a different manifestation
of Hawking radiation.

6 Influence on black hole thermodynamics

The temperature of a Schwarzschild black hole can be derived
heuristically using the standard HUP

h
op(Ax) ~ A (34)

Setting the uncertainty in position equal to the Schwarzschild
radius 7 with the black hole mass M (in fact, Ax is basically
the radius, so the real uncertainty is twice this value), one can
relate the Hawking temperature to the standard deviation of
momentum as

0) C crp(rs) ch 1
TH = — 3 = — .
kg 4w kp 4mrg

(35)



Eur. Phys. J. C (2019) 79:716

Page 50f 8 716

Using the first law of thermodynamics

— =T 36
1B (36)
with
C4
—27v4G = rsFiax, 37

where Fj, 4y is the maximum force [56-58], the entropy can
be integrated to give

kpc? kpA
© _ B 2 _ XBAs
S =367 =

(38)

where Ay and [, are the area of the Schwarzschild horizon
and the Planck length respectively.

Taking into account the uncertainty relations obtained in
Sects. 3 and 4, the departure from the standard Bekenstein
entropy and Hawking temperature can be calculated. This
will be done for the asymptotic form of the EUP with horizons
and the exact relations (18) and (29) obtained above.

6.1 Asymptotic form
As we can conclude from the previous results (19) and (31),

the asymptotic form of the EUP for a background space-time
which contains a horizon of radius ry,,, reads

h Ax?
oy~ % (1 n ﬁo—x + O[(rs/ hor) ]) (39)
hor

and leads to the Hawking temperature

2
Thas =T} (1 + s/ Thor) ]) (40)

hor

which yields an entropy

k 2 2
SBH,as = T[B—Zwr log ( /rhar) ])
/30 P rhor
41)
~s0 (1P r? ol 42
— “BH 2 + (rs/rhor) (42)
hor
©0) (]
0) Bo Spy S
~ S l———"*+4+0 , 43
BH 2 Shor * (Shor) ( )

where the horizon entropy of the background spacetime is
equal to

wkpr?
Shor = —o5 1. (44)
lp

Recall that By < 0 for given spacetimes, so the total entropy
of the black hole is increased - this is an effect of taking
canonical corrections due to some thermal fluctuations [47—
49].

6.2 Rindler space

Applying the exact relation (18), the Hawking temperature
of an accelerated black hole reads

har \/1+°‘“ \/1 ars ) (45)
8mckp 2¢2 2¢2

which leads to the entropy

Ty g =

g, _l6mkgct (1+ars)3/2+(1 ars)3/2 L
FHETT30 o2 202 2¢2 0
(46)
with the integration constant S
32]‘[/(3 C4
So = — — 47
0 E o (47)

chosen for proper normalization (Sp g g (rs = 0) = 0). Thus,
the entropy becomes

167kp c* arg\3/2 arg\3/2
1 —) (1 ) —2|.
312 o? |:( T o + 2¢? }

(48)

SBH,R =

This entropy change encodes the entire non-perturbative
influence of the Rindler horizon on an accelerated black
hole. For small black holes (arg /202 & 1) this result can
be expanded to yield

0)

~ <O Sp 0 2
Spi.p ~ S <1+16R+0[(SBH/SR) ]) (49)

with the entropy of the Rindler horizon Sk whichis, of course,
the result for the calculation in the asymptotic form.

Plots of the corresponding altered Hawking temperature
and Bekenstein entropy are shown in Figs. 3 and 4, respec-
tively. As stated above, the presence of a Rindler horizon
decreases the temperature of a black hole thus increasing
its entropy. This effect is maximal when one uses the exact
formulas.

6.3 Friedmann space-time

Analogously, the entropy of a black hole surrounded by a
Friedmann horizon can be obtained. Correspondingly, the
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Fig. 3 The temperature of an accelerated black hole in units of the stan-
dard Hawking temperature as a function of the Schwarzschild horizon
in units of the Rindler horizon distance arg /Zc2 for fixed acceleration
o in comparison to the asymptotic result
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Fig. 4 The entropy of an accelerated black hole in units of the standard
Bekenstein entropy as a function of the Schwarzschild horizon in units
of the distance to the Rindler horizon ar/2¢? for fixed acceleration o
in comparison to its asymptotic form

Hawking temperature becomes

T . ch 1 ¥4 z |
HF= kg 4m2ry 2 arctan f(rg) — /2
(50)

Unfortunately, the integration of the entropy cannot be done
analytically. Therefore it will be given in its integral form

dr

/ s
\/ ’
< 14 ) 1
2 arctan f(rg)—m/2

27‘[2](37'1-1
SBH,F = 2

+ So

(S

with the integration constant Sy, again, chosen in a way that
Spu,F(rs =0) =0.
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Fig. 5 The Hawking temperature of a black hole surrounded by a cos-
mological horizon in units of the standard Hawking temperature as a
function of the Schwarzschild horizon in units of the cosmological hori-
zon distance r /ry for a fixed horizon distance ry in comparison to the
asymptotic result
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Fig. 6 The entropy of a black hole surrounded by a cosmological hori-
zon in units of the standard Bekenstein entropy as a function of the
Schwarzschild horizon in units of the distance to the cosmological hori-
zon rg/ry for fixed ry in comparison to its asymptotic form

The expansion for small 7 /rg reads

3+ 72 Spy 0 2

(52)

SBH,F ~ S;OI)_I 1+

where the Hubble-horizon entropy Sy equals to the asymp-
totic result.

Plots of the modified Hawking temperature and Beken-
stein entropy are shown in Figs. 5 and 6 respectively, where
the latter was computed numerically. Analogously to the
Rindler case, the presence of the horizon decreases the tem-
perature and increases the entropy. As for the Rindler hori-
zon, the application of the exact relation results in a consid-
erable amplification of this effect.
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7 Summary

The influence of the Rindler acceleration & and the cosmolog-
ical horizon ry on the uncertainty relation has been derived.
The solutions recognize the horizons atlg = 2¢2/« and ry as
maximal position uncertainties and recover the usual Heisen-
berg uncertainty principle for « — 0 and ry — 00, respec-
tively. While crossing the horizons, the uncertainties become
imaginary meaning that the position and momentum opera-
tors cease to be observables.

In general, both cases show a very similar behaviour. This
indicates that maximum lengths by external horizons leave a
very particular imprint on the uncertainty relation: not only
does the uncertainty become imaginary, but it also does not
go to zero even though it continuously decreases thus pro-
viding a natural momentum cut-off. This cut-off has values
op = Fmoe/«/g and 0, > ﬁh/ry for Rindler and Fried-
mann spaces respectively. In contrast, a maximum length by
topology as derived in Ref. [52] is given by (8). For positive K
it becomes zero before turning imaginary, so the momentum
does not get restricted which is sensible because the wave-
length can cover a closed universe several times without any
problem.

This result implies that the existence of horizons con-
strains the momentum uncertainty which can be interpreted
as assigning a temperature to a spacetime that contains a
horizon just as it is done in terms of Hawking radiation.
Consequently, the minimum momentum uncertainty is of the
order of the Hawking temperature. We can then identify the
presence of Hawking radiation with this particular influence
on the uncertainty relation thus understanding the latter as a
manifestation of the former.

Finally, the effects of Rindler and cosmological horizons
on black hole thermodynamics have been analysed heuris-
tically for the asymptotic and exact momentum uncertain-
ties derived before thereby showing that the temperature is
decreasing while the entropy is increasing. In particular, the
application of exact solutions yields a considerable amplifi-
cation of this effect.
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