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Analytical solution for nonadiabatic quantum
annealing to arbitrary Ising spin Hamiltonian
Bin Yan 1,2 & Nikolai A. Sinitsyn2✉

Ising spin Hamiltonians are often used to encode a computational problem in their ground

states. Quantum Annealing (QA) computing searches for such a state by implementing a

slow time-dependent evolution from an easy-to-prepare initial state to a low energy state of a

target Ising Hamiltonian of quantum spins, HI. Here, we point to the existence of an analytical

solution for such a problem for an arbitrary HI beyond the adiabatic limit for QA. This solution

provides insights into the accuracy of nonadiabatic computations. Our QA protocol in the

pseudo-adiabatic regime leads to a monotonic power-law suppression of nonadiabatic

excitations with time T of QA, without any signature of a transition to a glass phase, which is

usually characterized by a logarithmic energy relaxation. This behavior suggests that the

energy relaxation can differ in classical and quantum spin glasses strongly, when it is assisted

by external time-dependent fields. In specific cases of HI, the solution also shows a con-

siderable quantum speedup in computations.
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The ground state of a classical Ising spin Hamiltonian
HI(σ1,… , σN), where σk are binary variables, can be found
after QA by mapping σk to the z-projection Pauli operators

σkz of quantum spins-1/2 (qubits). The Hamiltonian for QA is
generally defined as1–4

HðtÞ ¼ f ðtÞHI þ rðtÞHM ; ð1Þ
where f(t) is monotonically increasing with time from zero to a
finite value and r(t) is monotonically decreasing from a finite
value to zero; HM is the initial “mixing" Hamiltonian whose
ground state is easy to prepare, and

HI ¼ ∑
k
akσ

k
z þ ∑

k≠s
aksσ

k
zσ

s
z þ ∑

k≠s≠r
aksrσ

k
zσ

s
zσ

r
z þ ¼ : ð2Þ

The number of different terms in (2) can be exponentially large
as HI can have arbitrary k-local terms that couple k spins directly
with different coefficients a{k}.

Allowing only binary couplings in (2), this already includes
NP-complete problems5–8, which means that many important
QA problems that are usually formulated with a different from
(2) target Hamiltonian, can be mapped to the model (1) with only
a polynomial overhead. The integer number factorization and the
Grover algorithm can be also formulated as QA problems with
some HI

9,10.
Today, accessible hardware for a large number, over 100, qubits

uses only heuristic approaches to QA11, for which the operator
HM and the annealing schedule, f(t) and r(t), in (1) are not spe-
cifically tuned to the choice of HI. The QA protocol is chosen
then mainly for the simplicity of implementing it in practice. Still,
HM must not commute with HI, and have a large gap between the
lowest eigenvalue and the rest of its spectrum. According to the
adiabatic theorem, if the time-dependent parameters change
sufficiently slowly, the system remains in the instantaneous
ground state and thus transfers to the ground state of HI as
t→∞. Measuring the qubit polarizations σkz , k= 1,…,N, we then
obtain the desired configuration of Ising spins that minimize HI.

In real heuristic QA experiments, time is restricted by the
coherence time of qubits, so the adiabatic regime is practically never
achievable. Given the widths ΔEI of the energy band of HI, it is
possible to perform a pseudo-adiabatic evolution with T≫ 1/ΔEI,
where T is the achievable QA time. However, the gap between
nearest levels of HI is generally δ∼ΔEI/2N, i.e., exponentially
smaller than ΔEI, during the QA. The ground state of the full
Hamiltonian H(t) with a complex HI then usually passes through
avoided crossings with exponentially small gaps to other levels.
Hence, the practical situation corresponds to the nonadiabatic
regime.

Thus, the experimentally accessible QA computing is inspired
by a phenomenological assumption that there are computational
problems whose partial solutions, i.e., the low Ising spin energy
states can be obtained during the nonadiabatic QA process faster
than during classical computations. If this assumption is correct,
the quantum coherent evolution can be used in combination with
incoherent classical annealing for a longer time.

Whether this is true or not is hard to verify either numerically
or analytically because we deal with driven and nonadiabatic
many-body dynamics. We still do not have definite answers on
how quickly the useful information is gained during nonadiabatic
QA computations, and whether there can be quantum algorithms
that outperform classical computations during the time that is
accessible in practice.

Results
Solvable model. To address these problems, first, let us show that
the original model (1) can be rewritten in the form of a scattering

problem that depends on a single time-dependent parameter g(t).
In the Schrödinger equation,

i
d
dt

ψðtÞ ¼ HðtÞψðtÞ; ð3Þ

we switch to a new time variable

sðtÞ ¼
Z t

0
dτ f ðτÞ:

Here, f(τ) is positive, so s(t) is a single-valued function, which is
growing monotonically with t. Moreover, since both f(t) and r(t)
are changing monotonically with t, they are single-valued func-
tions of s: f(s)≡ f(t(s)) and r(s)≡ r(t(s)). Using that

d
dt

¼ f ðtðsÞÞ d
ds

in (3), we find that (3) is equivalent to

i
d
ds

ψðsÞ ¼ HI þ
rðsÞ
f ðsÞHM

� �
ψðsÞ: ð4Þ

Since f(s)→ 0 as s→ 0, the initial conditions become

gðsÞ � rðsÞ
f ðsÞ ! 1; as s ! 0;

and since r(s) decays to zero as s→∞, so does the redefined
coupling g(s). Thus, the QA problem in (1) is equivalent to a
model with the Hamiltonian

HðtÞ ¼ HIðσ1z ; ¼ ; σNz Þ þ gðtÞHMðfσgÞ; ð5Þ
where g(t) is decaying from an infinite value to zero.

Next, if the goal is to study the accuracy of computations, one
needs the probabilities of nonadiabatic excitations that are
produced during QA starting from the ground state. Here, we
point to the fact that there is a fully solvable model that provides
all excitation probabilities for evolution (5) with an arbitrary HI.
This model has g(t) and HM, which satisfy the basic requirements
for a QA protocol. Namely,

gðtÞ ¼ � g
t
; g > 0; ð6Þ

and HM is the projection operator onto the state with all spins
pointing along x axis:

HM ¼ ψ0

�� �
ψ0

� ��; ψ0

�� � � ! � � � !j i: ð7Þ
This HM has been considered for QA problems previously in

relation to the adiabatic Grover algorithm10. In Methods, we
show that the model remains solvable even when the state ψ0

�� �
is

chosen arbitrarily. This means that the model generally depends
on 2N different complex parameters that encode this state.
However, having no information about HI, a wise choice of HM

would be to consider jψ0i that does not discriminate among
possible eigenstates of HI, which is achieved by initially polarizing
all spins along the x axis.

As t→ 0+, the state jψ0i is the ground state of H with energy

E0 � � g
t
:

Since all the other eigenvalues of HM are zero, ∣E0∣ is also the
leading order energy gap to the rest of the spectrum of H as t→ 0.

Let nj i be the state of an arbitrary configuration of all the spins
with definite projections along the z axis. For this state,

njψ0

� ��� ��2¼ 1
N ; 8n; ð8Þ

where

N ¼ 2N ð9Þ
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is the dimension of Hilbert space of N spins-1/2’s. Thus, the
matrix form of HM in the computational basis has identical
exponentially small but nonzero entries. Let us also introduce the
Ising energies

εn � nh jHI nj i; 0 ≤ n<N ; ð10Þ
where we reserve n= 0 for the ground state of HI, and assume
that the state indices are chosen so that

ε0 < ε1<¼ εN�1:

We postpone the case of HI with eigenvalue degeneracy to a
later section. We will call n in εn the number of excitations,
because this index tells how many basis states have smaller Ising
energy than the given state.

Let a0ðtÞ; ¼ ; aN�1ðtÞ be the amplitudes of the basis states in
the Schrödinger equation solution:

ψðtÞ
�� � ¼ ∑

N�1

n¼0
anðtÞ nj i:

For our QA protocol, the Schrödinger equation is given by

i _an ¼ εnan �
g
N v; v ¼ 1

t
∑

N�1

k¼0
ak; n ¼ 0; ¼ ;N � 1: ð11Þ

The solvability of equations (11) follows from the fact that, after
the Laplace transform, theN coupled equations reduce to a single
first-order ordinary differential equation in the Laplace transform
of v, which can always be solved analytically (see Methods). This
model is a special case of a model that was solved by one of us12.
Algebraic properties of this model were also mentioned in
refs. 13,14, but the relation of its solution to the QA problem has
not been discussed before.

The analytical solution gives a simple formula for the
probabilities of excitation numbers at the end of the evolution.
If as t→ 0+ the system is in the ground state, jψ0i, the probability
to produce n excitations as t→∞ is given by

Pn ¼
pnð1� pÞ
1� pN

; p � e�
2πg
N : ð12Þ

Note that the final state probabilities do not depend on the
particular expressions for the eigenstates nj i, and in this sense tell
nothing about the ground state of HI. However, equation (12)
gives complete information about the performance of the given
QA protocol. For example, the probability to obtain the ground
state is given by

P0 ¼
1� p

1� pN
; ð13Þ

and the average number of excitations is

nh i � ∑
N�1

n¼1
nPn ¼

p
1� p

þ 1� 1

1� pN

� �
N : ð14Þ

These expressions simplify for a large number of interacting
qubits N≫ 1, for which N is exponentially large, and we can
disregard pN in comparison to p. For g≫ 1 we find pN � 1, and
Pn follows the geometric distribution, with

P0 ¼ 1� p; nh i ¼ p
1� p

: ð15Þ

To provide an intuition about the properties of the distribution
(12), we also note that if the energy dispersion of HI were linear,
i.e., if εn= nδ, then the distribution (12) would be the Gibbs
distribution

Pn ¼
e�εn=ðkBTÞ

Z
; εn ¼ nδ;

where 1/Z is a normalization factor and

kBT ¼ N δ=ð2πgÞ � ΔEI=g: ð16Þ
As the dimensionless parameter g is growing, the effective

temperature (16) of the final excitation distribution is decreasing.

Characteristic annealing times. The currently studied QA sys-
tems use a slowly changing transverse magnetic field with

H0
M � � ∑

N

k¼1
σkx; ð17Þ

where σkx are Pauli x-operators acting in space of individual spins.
In later sections, we will argue that the model with schedule g(t)
in (6) and HM from (7) is, for a certain large subclass of HI,
optimal. Therefore, its solution can be used to learn about the
entire strategy of using nonadiabatic QA for finding low-energy
states. To show this, we must first introduce a method to compare
the performance of different QA protocols with g(t)∼ 1/tα and
different HM, but the same HI and the computation time T.

There is an additional time scale that characterizes the speed of
QA. The operator g(t)HM has a bounded spectrum. Due to the
exponentially large Hilbert space, this spectrum must have a high-
density region at some distance ΔEM from the ground state of g(t)
HM. The Ising part HI also has a characteristic energy scale ΔEI,
that is, the bandwidth of its spectrum (Fig. 1, left panel). Since HI

and g(t)HM do not commute, the resonant nonadiabatic
transitions between the ground level of g(t)HM and the dense
region of its spectrum become most probable near the time τa,
when the operators HI and g(τa)HM become comparable (Fig. 1,
left and middle panels), i.e.,

ΔEMðτaÞ ¼ ΔEI : ð18Þ
For example, for our solvable model (see Methods)

τa ¼ gτI ;

where

τI ¼ 1=ΔEI

is the characteristic time of dephasing that can be induced by the
Ising part HI. We will call τa the annealing time, in contrast to the
total evolution time T that we will call computation time.

Any QA protocol must pass through the moment (18). Hence,
τa can always be defined consistently. We will say that two
different protocols with power-law decays of g(t) and the same HI

and T, have the same speed of QA if they also have the same τa.
The practically interesting values of τa are restricted to the range

τI < τa < T: ð19Þ
The first inequality in (19) follows from the fact that the case of

τa < τI corresponds to a strongly nonadiabatic regime, for which the
gap in the spectrum of g(t)HM closes faster than the characteristic
interaction rates of HI. We will say that one of the compared
protocols is better if it produces fewer excitations, 〈n〉, when
T=τa ¼ const � 1 and the same characteristic times, τI and τa,
are set for the different protocols.

If a protocol is optimal, i.e., outperforms all other protocols at
some imposed conditions on the QA schedule and for a certain
class of HI, it must remain optimal after time-rescaling, t→ λt, in
the Schrödinger equation, because the latter merely means the
change of time-counting procedure. It has been recently proved15

that if such a protocol exists, it must correspond to a power-law
decay of the coupling: g(t)∼ ta. We will use this result because it
strongly restricts the class of the schedules that should be tested in
order to prove the optimality. Here we also note that the solvable
protocol has g(t)∼ 1/t, which means that it may be optimal for
some classes of HI, which we will identify later.
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Computational convergence rates. The analytical solution says
that the probability to find the ground state configuration is
growing linearly with τa, however, starting from an exponentially
small value. Thus, if we assume that g= τa/τI≫ 1, then

P0 ¼ 1� p � 2πg
N ¼ 2π

N
τa
τI

:

Hence, in order to make P0∼ 1, we need the QA time

τa � τI2
N : ð20Þ

The theory of simulated QA has previously produced various
bounds on the rate of change of the coupling16–18. The simulated
QA is a Monte-Carlo algorithm, which performance dependence
on N and T can be different from the performance of the physical
QA but both algorithms are interesting to compare. According to
ref. 17, to guarantee the convergence of the simulated QA for
binary couplings in the Ising Hamiltonian, as t→∞, to O(1)
ground state probability, the field should change as

gðtÞ ≥ ðξtÞ�1=ð2N�1Þ; ð21Þ
where ξ is exponentially small for large N. Our solution agrees
with this estimate. It shows the convergence of QA computing to
the ground state in the adiabatic limit, during a finite non-
polynomial in N annealing time (20). However, for a fair
comparison, the result in ref. 17 must be extended to the limit of
maximal complexity of (2). At least the fact that the number of
terms in HI can be exponentially large adds an extra-large
overhead on the Monte-Carlo algorithms, such as the simulated
QA, because the time to calculate just one eigenvalue becomes,
itself, exponentially large. In the worst-case then, the calculation
time should grow as � N 2. In contrast, programming such a
complex HI for QA means setting OðN Þ different couplings only
once. This takes only OðN Þ amount of time and therefore this
preparation step for QA can change only the exponential
prefactor but not the exponential scaling in (20).

The result (20) also shows that the generally exponentially hard
computational problem requires exponentially large calculation
time for a precise solution. Hence, computational difficulties
reemerge in some form in different computational approaches.
For specific problems, this annealing time can be generally

obtained by the gap analysis and fine-tuning of the protocol for a
specific HI. For example, if the minimal gap over the ground state
scales as � 1=

ffiffiffiffiffiNp
, this imposes the same constraint for the

annealing time τa � N . However, we stress that the gap analysis
for complex HI can be very challenging, and a proper choice of
the annealing protocol, g(t) and HM, requires individual
tuning19,20. In contrast, our analytic solution applies to all HI

with a fixed simple form of the annealing protocol.
The time estimate (20) can be compared to the one for a

classical search algorithm that would identify the ground state of
the diagonal matrix HI. If the entries of HI are random, there is no
other way but to compare all eigenvalues, which requires N
computational steps. Using this analogy, equation (20) suggests
that τI can be considered as an analog of the single computation
time step and τa is the analog of the full computation time in the
classical search algorithms.

Scaling for the average excitation number. The modern
attempts to develop QA hardware are largely based on a heuristic
assumption that at moderate QA rates we can obtain a con-
siderable reduction in computational error rate even when the
true ground state cannot be found. The needed intuition for this
regime can be gained from physics using the similarity of the
complex Ising Hamiltonians with spin-glass systems that corre-
spond to randomly chosen couplings between spins21. The glass
phase appears at low temperatures and corresponds to logarith-
mically slow relaxation of standard measurable characteristics22.
Indeed, classical annealing simulations of spin glasses generally
show a logarithmic residual energy dependence on time T of the
temperature decay from a finite value to zero16,23:

εclres � 1=logβT; ð22Þ
where β=O(1) is a constant. The transition to the glass phase is
also expected for QA but the scaling of the residual energy with
QA time is not clear. On one hand, quantum tunneling is more
efficient than thermal fluctuations when overcoming spikes of a
potential barrier. On the other hand, such barrier spikes can be
bypassed in the multidimensional phase space of many qubits,
whereas stochastic fluctuations are more efficient for transiting
over shallow but broad potential barriers. Moreover, disordered

Fig. 1 Characteristic annealing time. Left: histogram of the spectrum of the Hamiltonian HI(2) with Gaussian distribution of all coefficients a{k}. Middle:
time evolution of the spectrum of the transverse field Hamiltonian H0

M(17) with quench schedule g(t)= g/t, where g= 4. (Thicker curves correspond to the
higher density of states). The vertical line marks the annealing time τa(18), for which the gap between the ground state and the highest density point in the
spectrum equals the bandwidth ΔEI (full width at half maximum) of the spectrum of HI. Right: time evolution of the (normalized to 1) excitations
�n � hni=ððN � 1Þ=2Þ for different QA protocols at g= 4 of N= 12 spins. These protocols are tuned to have the same annealing time τa as summarized in
Table 1. The colored vertical lines mark the corresponding times at which the excitations reach the halfway into their saturation, which verifies almost the
same effective annealing rate for the protocols with the same τa.
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quantum systems show purely quantum effects, such as many-
body localization, that resist the propagation of information
inside a system. An example of this behavior is found in gamma-
magnets24—the models of arbitrarily many interacting spins that
resist flipping even a single spin in response to arbitrarily strong
and fast magnetic fields. Thus, there are arguments both in favor
and against QA in comparison with classical annealing
performance.

Early numerical studies found that QA leads to an inverse
power of the logarithmic decay (22) as well, where T is the time of
the QA protocol, but with a larger power β, and hence
outperforms classical annealing25,26. However, later studies27

claimed that this behavior might be a numerical artifact caused
by time discretization, and the improvement of QA reduces only
to a small finite offset in the time-continuum limit. If the system
passes into a glassy phase, there are analytical arguments showing
that QA has no advantage over classical annealing at all28. In any
case, if slow energy relaxation (22) describes QA of spin glasses in
the pseudo-adiabatic regime generally, the heuristic QA method
looks impractical for computations, apart from niche applications
that avoid the spin-glass behavior.

Returning to our solvable model, QA superiority in the
nonadiabatic regime would correspond to a fast suppression of
the average number of excitations, for N � 1, which is given by

hni ¼ p
1� p

� 1
P0

¼ N τI
2πτa

: ð23Þ

As expected, 〈n〉 decreases with the growing annealing time
τa but nonexponentially and starting from an exponentially large
initial value.

Let us now discuss the fact that, formally, the computation
time T in the solvable model is infinite but in practice, it has to be
finite. Let us set T to be proportional to τa. The same scaling then
would be found for the dependence of〈n〉 on T if the deviation
of the QA result at finite T from the exact solution is suppressed
by a small parameter τa/T. Numerically, we always found that
〈n〉 saturates for T > τa close to the T→∞ value, up to
corrections of some order of τa/T (Fig. 1, right panel).

The following analytical arguments show that, indeed, a
sudden termination of the protocol at finite T≫ τa produces a
negligible difference from our analytical prediction. Using the
Landau–Zener formula, the nonadiabatic transitions may not be
suppressed during t > T for the states within the energy difference
δε2∼ ∣dΔEM/dt∣ ≤ g/T2. For spin glasses with a smooth density of
states, the introduced deviations from 〈n〉 are suppressed, at
least, by a factor O(τI/T), which has the same dependence on T as
the 〈n〉 dependence on τa but the factor 1/T is much smaller.
For example, if we set τa/T∼ 0.01, then the deviations from the
analytical prediction for 〈n〉 should not exceed∼ 1%. Thus, we
find the scaling

hni � 1=T; ð24Þ
assuming that τa=T ¼ const � 1.

Equation (24) is the main result of our article. We showed
analytically that QA with the solvable protocol does not lead to a
logarithmically slow relaxation for arbitrarily complex HI. In fact,
the exact solution does not show any sharp changes in the
relaxation curve, which are expected for the transition to a
glass phase.

We now analyze the behavior of the residual energy

εres ¼ hHIit!1 � ε0: ð25Þ
For spin glasses with random HI, the middle of the density of

states is smooth and broad, and can be well described with a
constant density, i.e., En= δn, where δ ¼ ΔEI=N is the
characteristic distance between nearest energy levels. In this case,

for a broad range of annealing times, 〈n〉 and the average
energy after QA are linearly related: εres∼〈n〉δ. Then, equation
(23) means a surprising fact that the energy relaxation as a
function of the annealing time follows a power law:

εres � ΔEIðτI=τaÞ; ð26Þ
rather than a logarithmic relaxation with growing τa, which is
found in the classical annealing of spin glasses.

In interacting-spin systems, the density of state typically follows a
Gaussian form29, whose tail near the ground state can be distorted,
e.g., to an exponential shape. Hence, for truly slow QA, deviations
from (26) are expected because the residual energy becomes
sensitive to the exact form of the density of states near the ground
level. However, any power-law energy dispersion near the ground
level, εn∼ nα, leads to a power law εres � 1=ταa rather than
logarithmic residual energy dependence on 1/τa after averaging
over the distribution (12). This allows us to analyze the residual
energy scaling with various forms of low-energy spectral density. In
Methods, we show that the power-law relaxation for the residual
energy is typically expected, including for the Gaussian and
exponential spectral densities.

Numerically, we could not find a spectrum that would produce
a clearly logarithmic residual energy relaxation for the solvable
excitation distribution. We attribute this to the fact that the
inverse power law for the average excitation (24) is a sufficiently
strong constraint to lead to a power-law relaxation for a broad
type of energy spectra. We leave the question open: whether this
behavior is a consequence of the non-local nature of the mixing
Hamiltonian (7).

Below, we discuss other properties of the solvable protocol,
which should be of interest for the heuristic QA hardware
developments.

Degenerate ground state. The exponentially large QA time is
needed for the solvable protocol to obtain the ground state only if
this state is nondegenerate. We consider now the case with the
ground state degeneracy: ε1=…= εM−1= ε0. Summing the first
M equations in (11), we then find that the superposition

þj i ¼ 1ffiffiffiffiffi
M

p ∑
M�1

m¼0
mj i

is coupled to any nj i, where n ≥M, with a larger coupling g
ffiffiffiffiffi
M

p
.

All other orthogonal superpositions of the Ising ground states
then decouple and have zero probability to be at the end of the
evolution.

The solvable model in Appendix B of ref. 12 (see also Methods)
is applied even when all N states are coupled to each other with
different independent N parameters. Thus, the modification of
the effective coupling to state þj i is still described by the exact
solution in ref. 12, which leads to the probability of the final state
þj i:

Pþ ¼ ð1� pMÞ=ð1� pN Þ; p ¼ e�
2πg
N ; ð27Þ

whereas the probabilities of the energy excitations do not change.
This gives us an estimate for the time to prepare the state þj i
with probability P+ ∼1:

τa �
N τI
M

:

If M is large, e.g.,

M � N =logaeN ; ð28Þ
this leads to an exponential speedup for extracting non-local
information that can be obtained from measurements on the
prepared superposition þj i.
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For example, suppose that all excitation energies of HI are
random positive and ε0=…= εM−1= 0 appear periodically, so
that, when sorted in the known standard computational basis,
they correspond to the eigenstates jx0 þ rTi, where x0 and T are
integers, such that x0 <T � logaeN ; r= 0, 1, 2, …, and N =T is
also an integer. This corresponds to M � N =logaeN , so during
the QA time of an order

τa � τI log
a
eN

the solvable protocol prepares a state of the qubits as a symmetric
superposition:

þj i ¼ 1ffiffiffiffiffi
M

p ∑
r
x0 þ rT
�� �

: ð29Þ

The Quantum Fourier Transform then can be used to change
this state into a superposition of the states kj i, where k is the
integer multiple of N =T . Finding only two different k, one can
then find their greatest common divisor by classical means, and
thus determine the period T faster than by classical means.

The possibility to solve the period finding problem on a
quantum computer is an essential ingredient in many quantum
algorithms, such as Shor’s factorization algorithm. An important
step in such algorithms is to find a symmetric superposition of
equal energy eigenstates of a quantum function that has a high
degeneracy of eigenstates in the entire phase space. Such a
function can be usually encoded in the target Hamiltonian HI and
thus one of its eigenstates can be found using QA. However, it is
clear from our solution why such algorithms are hard to
implement with other heuristic protocols, such as with the
transverse field (17). This field couples different Ising ground
states with the higher Ising energy states differently. Hence, even
if we assume that the ground state can be prepared quickly, it will
appear generally in a nonsymmetric superposition

ψG

�� � ¼ ∑
r
Cr x0 þ rT
�� �

;

where the coefficients Cr have not only different absolute values
but also different phases which depend on all parameters of HI.
Hence, further manipulations, such as making the Quantum
Fourier Transform, may not provide the desired effect on this
state, which is needed to complete the algorithm.

Effectiveness of the solvable protocol in the limit of maximal
complexity of HI. The annealing protocol in our solvable model is
unbiased in the sense that the amplitudes an(t)(11) do not depend
on the specific structure of the basis states. This is not the case for
the protocol with a transverse field30, which couples directly only to
the basis states whose net spin polarization differs by ±1. Our
protocol is also unbiased in the sense that degenerate ground state
configurations as a symmetric superposition couple to the other
states equally, which results in equal probabilities to find such
ground states of HI.

Moreover, the statistical learning theory31 says that direct
approaches, which avoid the gain of irrelevant information, should
be favorable for learning algorithms. This is partly addressed by our
finding that the final state probabilities obtained by solving equation
(11) are independent of the precise values of εk, i.e., the transition
probability to any state nj i depends only on how many other states
have smaller Ising energies. For example, the probability to find the
ground state does not depend on the choice of HI at all. This
independence of the scattering probabilities of certain basic
parameters is shared by all integrable models with time-
dependent Hamiltonians13 but is not expected otherwise. Hence,
it must be unique for g(t)∼ 1/t annealing protocol because other
g(t) is not among the known solvable models with arbitrary HI. This
property means that our solvable protocol does not produce

irrelevant information about specific values of εk, as needed because
only the ordering of these eigenvalues matters for finding good
approximations to the ground energy.

Such properties altogether are unique among the possible QA
protocols, which suggests that the solvable protocol, for some
types of problems, could be favorable. Owing to the universality
of the analytical solution, if true, this should be true for the most
complex form of HI. Thus, let HI be the sum of all possible terms
in (2) with independent random coefficients a{k}. Such a high-
complexity limit reduces the problem of identifying the minimal
value from an unsorted array of independent random energies εn
that are sampled from some distribution. For instance, for
Gaussian random coupling coefficients, εn forms a Gaussian
distribution as well (Fig. 1, left panel). Such a construction of HI

does not favor any particular ground state spin configuration and
even any systematic correlations between the excited states.
Hence, it is expected that the low-energy states are estimated
faster with a maximally unbiased QA protocol, which is our
solvable protocol.

To test this hypothesis, we employ the result in15 that allows us
only to compare the performance of the solvable protocol with a
family of the protocols with a power-law decay of the coupling,
g(t)∼ 1/tα, and identical for each protocol fully random HI, as
well as τa and T/τa. First, we note that the protocols with α < 1
produce definitely worse than 〈n〉∼ 1/τa scaling for the
excitations if we set T=τa ¼ const. This follows from the fact
that even in the adiabatic approximation the term HM/tα mixes
any Ising eigenstate with other states within the window of energy
ε∼ 1/tα. Hence, sudden termination of such protocols at a finite
time T cannot resolve the states within the energy window that
scales as 1/Tα, which decays slower than 1/T.

For α ≥ 1, we resort to the numerical investigation. Figure 2
compares numerically calculated final 〈n〉 for different protocols
at N= 12 and the Hamiltonian (2) with randomly chosen all
possible couplings. For large g, which we define for all protocols as
g≡ τa/τI, the excitation number decays as a power law. For any g
and N, our analytically solvable model (Protocol 1) always
outperforms the other protocols, although all of them show scaling
similar to 1/g for large g. In numerous other tests (not shown), we
found that all non-power-law schedules, e.g., with g(t) decaying
exponentially, had a much worse performance for the same values
of τI, τa, and T, in agreement with15. Figure 3 also shows the data
that we used to extrapolate the results to larger N. For such
interpolations, we always found that the solvable protocol produced
smaller residual energy for the fully random Hamiltonian HI.
Hence, as far as we could test numerically and extrapolate our
results, the solvable protocol was, indeed, optimal for our
comparison criteria and the most complex form of HI.

An alternative argument for the optimality of the solvable
protocol for fully random HIs follows from the estimate (23),
which says that the performance of this protocol is actually the
same as in the classical Monte-Carlo search. Indeed, a random
search for the lowest eigenvalue has probability nmax=N per step
to pick up an eigenvalue from the first nmax excitations. Hence it
takes time τ � N τstep=nmax to find an eigenvalue with
0≤ n≤ nmax, where τstep is the time of one eigenvalue of HI

computation and its comparison to a previously found lowest
value. This is precisely the estimate of equation (23), in which we
identify τa with τ, τI with τstep and〈n〉 with nmax. Since our QA
protocol has the same convergence rate as the classical Monte-
Carlo search of the completely unsorted array, any improvement
over its performance on HI with all random entries, either for the
full or the partial search, would mean the quantum supremacy
that does not rely on hints such as the oracle in the Grover
algorithm, which is believed to be impossible.
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Thus, our protocol gives an explicit example of heuristic QA
computations leading to the same performance as for one of the
known classical algorithms. This includes all possible HI with
nondegenerate spectra, and all possible time restrictions. As our
QA protocol, the unbiased random search Monte-Carlo is the
preferable choice for searching through a completely random
array but then by classical means. This raises a question of
whether many other heuristic approaches, such as using the
practically most accessible QA protocols without correlating them
with the desired task, or post-processing the final state as in the
case of the ground state degeneracy, have also the same
performance for all possible tasks as certain classical algorithms.

Avoiding the bound. The limit of fully random HI represents the
largest class of all possible computational problems (5). Classical
optimization algorithms usually trade between good and bad
performance in different applications, which is known as the “no-

free-lunch” property. Although similar results are not known for
QA, it is expected that the effectiveness of the solvable protocol
for the big class of the most complex problems generally means
that there are protocols that outperform it on simpler problems
with more structured HI. Below, let us show several examples in
support of this hypothesis.

A well-known example of a problem with a structured HI is the
one that is solvable by the Grover algorithm. It prepares the
ground state of an operator HI that has all but one zero
eigenvalues, whereas the ground state energy is −1. Let ηk= ± 1,
where the sign depends on whether this ground state has the k-th
spin, respectively, up or down. Then, HI for Grover’s problem can
be written as

HG
I ¼ �

YN
k¼1

ð1þ ηkσ
k
zÞ

2
: ð30Þ

In comparison with the most complex version of (2), this
Hamiltonian is much simpler. It depends only on N sign
parameters, and it has considerable symmetry: changes in these
parameters do not affect the spectrum of HG

I . It is, indeed, known
that the ground state of HG

I can be found by adiabatic QA during

the time that scales only as N 1=210. Achieving this adiabatically
requires a very fine-tuned choice of the schedule g(t). However, if
our solvable protocol is not optimal for the structured problems
there must be protocols that achieve better estimates for the ground
state for Grover’s problem also beyond the adiabatic regime, and
such protocols may not need to be very complex.

Let us show that this expectation is true. Consider the QA
Hamiltonian

HðtÞ ¼ εHG
I � gðtÞHM ; ð31Þ

where HM is given by (7). Due to the degeneracy of eigenvalues of
HG

I , the evolution equation (11) reduces to two coupled
differential equations for the amplitude a0 of the ground state
and the normalized sum of the other amplitudes:

aþ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiN � 1
p ∑

N�1

k¼1
ak:

Namely,

i _a0 ¼ � gðtÞ
N þ ε

� �
a0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiN � 1
p

gðtÞ
N aþ;

i _aþ ¼ � ðN � 1ÞgðtÞ
N aþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiN � 1
p

gðtÞ
N a0:

ð32Þ

The initial conditions, as t→ 0+, correspond to a0 ¼ 1=
ffiffiffiffiffiNp

�
0 and, hence, aþ � 1. The protocol that makes P0≡ ∣a0∣2∼ 1 is
obtained by immediately setting the schedule to a constant value

gðtÞ ¼ εN =ðN � 2Þ � ε; ð33Þ
and then letting the system evolve under such conditions during
time

T ¼ π
ffiffiffiffiffiNp

2ε
: ð34Þ

One can verify that this makes P0 � 1 by noting that equations
(32) with condition (33) are equivalent to the evolution equations
for a spin 1/2 in a transverse magnetic field, which rotates this spin.
Condition (33) is needed to remove the component of this field that
points along the spin axis. Time T corresponds to a rotation angle
that switches between orthogonal states of this spin.

Unlike the time of the solvable protocol with g(t)=− g/t, which
scales as T � N , the time in (34) scales as�

ffiffiffiffiffiNp
, which is expected

for Grover’s computational problem.

Fig. 3 Asymptotic excitation numbers. Numerically found final normalized
excitation numbers �n � hni=ððN � 1Þ=2Þ for various numbers of spins at
g= 2 and Ising Hamiltonian (2) with the coupling coefficients
independently drawn from the standard normal distribution. Blue dots
correspond to the transverse field protocol, and red dots are numerical
confirmation of the analytical prediction for the solvable model, which is
marked by a dashed black curve. Error bars show the standard deviations of
the data points obtained from averaging over 25 realizations of the random
Hamiltonian. A Blue dotted curve is the best fit to ∑4

k¼0 ck=N
k , which

predicts that the exact solution has better performance for any N.

Fig. 2 Scaling of the excitation number. Numerically found final normalized
excitation number �n � hni=ððN � 1Þ=2Þ at various g= τa/τI for N= 12 spins
for three different protocols listed in Table 1. The Hamiltonian HI takes the
form (2) with the coupling coefficients independently drawn from the
standard normal distribution. The main figure and inset show the adiabatic
(large g) and nonadiabatic (small g) regimes in log–log and semi-log scales,
respectively. The solvable protocol (red points) always outperforms the
other protocols for the same g.
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This efficient protocol to solve Grover’s problem is fine-tuned
for HG

I and cannot show good performance on other tasks.
Identifying such algorithms for heuristic computations requires
additional optimization steps, e.g., using the methods of machine
learning32, which would correlate the annealing protocol to a
given structured HI. Such methods, however, become inefficient
in the limit of maximal complexity with fully random HI because
of the emergence of the barren plateau33.

Another example corresponds to the systems with small
connectivity between qubits in HI. It is expected then that a QA
protocol that emphasizes interactions without many direct spin
flips can achieve a better performance, such as the protocol
induced by the decaying transverse field.

To test this, we performed simulations for HI with limited
connectivity ranges, i.e., a range-k Hamiltonian is of the form (2)
but only contains terms with at most k simultaneously coupled
spins. This allows the control of the problem complexity by
tuning the connectivity range. Our numerical simulations (Fig. 4)
show that, for finite size systems of up to 12 spins and the
transverse field (17), the final excitation numbers always scale as a
power law of g, i.e., hni � 1=gα � 1=ταa , and α increases with the
decrease of the connectivity range of HI. At k= 2, which is known
as the Sherrington–Kirkpatrick model34, α reaches the value 2.

Figure 4 demonstrates the convergence of the performance to the
universality domain of the solvable protocol with increasing
complexity. In agreement with our expectations, as far as we could
see numerically, the protocol with the decaying transverse field
produced better performance on the structured problems than the
solvable protocol, in agreement with the “no-free-lunch” property.

Let us now return to the question of whether QA computations in
the nonadiabatic regime can provide a better performance, in terms
of scaling with the number of qubits, than the adiabatic quantum
computations for the same problem. Our solvable protocol, as well as
the nonadiabatic Grover protocol, do not show this feature, as their
performances scale equally with the adiabatic QA. Generally, this
may not be true.

Here, we note that there is one more solvable model of QA that
can be used to explore the scaling of τa(N) for a specific simple HI:
Consider

Hε
I ¼ ∑

N

k¼1
εkσ

k
z ; ð35Þ

that is subject to a non-local constraint ∑N
k¼1 σ

k
z ¼ 0. Let us

assume that ∣εk∣ are of the order ε. The ground state of Hε
I has

N/2 spins pointing up. They correspond to the smaller half of εk
values. The other N/2 spins point down. Here, HI is parametrized
by only N numbers εk. Naturally, a wise algorithm should not
look through all 2N eigenvalues of HI but rather learn those
parameters.

Due to the constraint, the ground state of (35) has zero total
qubit polarization. To find this state, one can use the protocol
with HM that also has the ground state with zero initial total
spin35:

HðtÞ ¼ ∑
N

k¼1
εkσ

k
z �

g
t
∑
N

i≠j¼1
σ̂þi σ

�
j : ð36Þ

As t→ 0, the ground state energy of H(t) is separated from the
dense region of g(t)HM near-zero energy by ΔEM � gNðN�1Þ

2t , and
the Hε

I bandwidth scales linearly with N: ΔEI∼ εN. The exact
solution of this model was found in ref. 35. It says that the ground
state is determined if g � 1.

Using our definition of the annealing time, we can now
compare the performance of such QA computations with the
performance of classical algorithms for the same problem. We
find for the model (36) that g � 1 corresponds to

τa � N=ε:

The same solution in ref. 35 also shows that if we need only a
partial search by allowing a fraction α≪ 1 of mistakes, i.e.,
allowing αN spins pointing in a wrong direction, then it is
sufficient to choose g∼ 1/(Nα), i.e., the computation time reduces
by a factor∼ 1/(Nα), so in our notation

τa � Oð1=αÞ:
Classically, finding the smaller half of N/2 of εk values takes∼N

steps. The partial QA solution thus has a better N-scaling than
both the best available classical algorithm and the complete
solution in the adiabatic limit. This example supports the
speculations that a hybrid approach that involves a moderately
fast QA step combined with a subsequent classical relaxation may
improve the search for the true ground state.

Estimates for the physical time of computation. The tests of QA
hardware36–41 on specific problems gave contradictory results.
There are claims for superior performance of QA in some
instances42, but achieving scalable quantum supremacy11 using
QA is still far from conclusive.

Let us estimate the performance of our solvable protocol at the
current level of technology. The coupling energy of a single qubit
to the rest of the quantum processor is physically restricted to
some value ϵmax. For example, for a superconducting qubit, a
coupling larger than the superconducting gap may produce
unwanted excitations outside the qubit phase space. The
bandwidth for HI is then restricted by ΔEI < ϵmaxN . Hence, τI
for N qubits is restricted by

τI > 1=ðϵmaxNÞ:
If we assume ϵmax ¼ 10GHz as the upper bound for a

superconducting qubit, then to find the ground state of only 20
qubits, from (19), we need at least time τa∼ 0.1 μs, which is the
typical upper bound on coherence time of such qubits. The
required computation time τa is growing exponentially with extra
qubits, so chances to solve an optimization problem for >20
qubits with the modern level of quantum technology are quickly
vanishing.

One practical advantage of the solvable protocol that may
justify the efforts to implement it in hardware may follow the

Fig. 4 Annealing for systems with the finite connectivity range. The
scaling rate, α, was obtained by fitting numerically obtained excitation
numbers with hni � 1=ταa , for various interaction ranges of the Hamiltonian
HI and the transverse field protocol (Protocol 2 in Table 1). The inset shows
a comparison of the typical power-law decay for such fits of the data for
protocols 1 and 2 with N= 12 spins under a range-2 (only binary spin-spin
couplings) Hamiltonian.
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complexity to retrieve the HI eigenvalues. Namely, when the
sorting problem is encoded in the Hamiltonian of spin projection
operators the direct classical algorithm requires the additional
computation of eigenvalues of HI at each step, which can be
exponentially long on its own for the most complex HI, but is not
required during QA. To exploit this resource, one should create a
small processor, with only ∼25 high-quality qubits, but with HI

that depends on ∼225 different coupling parameters.

Discussion
Finding the ground state of an arbitrary Ising spin Hamiltonian is
generally an exponentially hard computational problem. Even
harder, it seems, is to study dynamics with a time-dependent
quantum Hamiltonian that implements quantum annealing com-
putation in the nonadiabatic regime. Nevertheless, we showed that a
fully solvable model for the most general case of Ising spin inter-
actions exists.

In other branches of physics, integrable many-body models have
been very influential—often not for a particular experimental
application but for the opportunity to understand the behavior of
complex matter in the regimes unreachable to numerical simula-
tions. Similarly, our exact solution produces an insight into both
spin-glass physics and quantum computing from an original per-
spective. Thus, we used it to set new limits on the computation
precision and proved the better relaxation scaling of the residual
energy for quantum over classical annealing computations.

Numerically, we found considerable evidence to our conjecture
that in the limit of the maximal complexity of the computational
problem our solvable QA protocol outperforms other protocols
for arbitrary QA rate at identical conditions for the time of
computation. Given also the “no-free-lunch" property of algo-
rithms, this leads to a new conjecture that more structured
computational problems can be solved by certain QA protocols
faster than in our solvable model. We provided the arguments in
support of this conjecture too. Hence, our analytical solution can
serve as a reference for the performance that can be achievable in
the nonadiabatic regime for arbitrary HI.

A currently discussed technical question, besides improving
quantum coherence, is how to redesign the inter-qubit connections
and the annealing protocol in order to improve heuristic QA41. It is
often stated that the performance can improve if one-to-many qubit
couplings are implemented in the Ising Hamiltonian, and if the
annealing protocol has a simpler spectrum in order to make it less
biased and thus reduce the effects of resonances that are specific to
HM. Our results show that such approaches may not lead to a boost
in performance. In fact, the solvability of our model follows from a
high symmetry that makes the solvable protocol maximally
unbiased. We showed that this provides the advantage, over other
protocols, only for the tasks with the maximal complexity but not
for more structured Ising spin Hamiltonians. Hence, by adding one-
to-many qubit connections and preparing less biased QA protocols,
we may only bring the complexity of the QA computations closer to
the domain of our model’s superiority.

Our findings suggest that the quantum annealing superiority,
for a specific problem, over all classical algorithms should be
searched either in small size processors but with combinatorially
complex interactions in HI or among relatively simple-structured
HI, with a polynomial number of parameters but a transverse part
g(t)HM that is tailor-made for this specific computational task. It
is thus important to understand how the QA performance
depends on the correlations between HI and HM, and on the
prepared correlations in the initial state for quantum annealing.

Methods
Solution for QA model with arbitrary target Hamiltonian. The annealing pro-
blem is sometimes formulated so that the target Hamiltonian, H0, is different from

the Ising Hamiltonian:

HðtÞ ¼ H0 þ gðtÞHM : ð37Þ
Let us show that our protocol with g(t)= g/t and HM given by (7) is still solvable

in the sense that we can write the probabilities of the final eigenstates of H0 in
terms of the parameters of H0.

Suppose that U is the unitary operator that diagonalizes H0, i.e.,

HI ¼ UH0U
y

is a diagonal matrix. The latter means that it can be written in the Ising form (2),
and we can define the basis states nj i where n is the index of the excitation, as in
the main text. Let us define the state

ψ0�� � ¼ U ψ0

�� �
; ψ0

�� � � !;!; ¼ ;!j i:
In the basis jni, the entire Hamiltonian has the form

HðtÞ ¼ HI �
g
t
ψ0�� �

ψ0� ��: ð38Þ
It is now almost the same as in the problem considered in the main text but the

state jψ0i is dependent on the matrix U. Hence, the matrix elements of the mixing
part are given by

ðgHMÞnm ¼ gng
	
m;

where

gn ¼ ffiffiffi
g

p hnjU ψ0

�� �
: ð39Þ

Thus, unlike the model in the main text, the mixing Hamiltonian gHM depends
on N generally different parameters that depend on the eigenstates of H0 via the
matrix elements of U.

Nevertheless, the most general form of the model that was solved in Appendix B
of ref. 12 includes this particular case. Thus, if we define the probabilities

pn � e�2πjgn j2

then equation (12) for the excitation probabilities (see also equation (B13) in
ref. 12) is extended to

Pn ¼
ð1� pnÞ

Q
k<n

pk

1� QN
n¼0

pn

:

Returning to the original problem (5) in the main text, it follows from (39) that
knowledge of a unitary transformation UHIU†, such that its action increases the
overlap of the ground state with the state jψ0i, can be used to increase the
probability to find the ground state.

Solution of the model. Following steps from Appendix B in ref. 12, we perform
Laplace transformation

anðtÞ ¼
Z

A
e�stbnðsÞ ds; ð40Þ

where A is a contour in the complex plane such that the integrand vanishes when
A originates and escapes to infinity (Fig. 5). Substituting (40) into (11), we find a
first-order differential equation with a simple solution for bn(s), which we sub-
stitute to (40) to find

anðtÞ ¼ c
Z

A

e�st

�sþ εn

YN�1

n¼0

ð�sþ εnÞig=N ds; ð41Þ

where c is a normalization constant that is fixed by the initial conditions.
Following12, as t→∞ this integral is evaluated using the saddle point method and
suitable deformation of A into the paths that go around the branch cuts in Fig. 5.
This results in the analytical expression for an(t→∞) in terms of the Gamma

Fig. 5 Contour A defined in (40). This contour integral can be computed
using the integral over the contours enclosing the branching cuts.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29887-0 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2212 | https://doi.org/10.1038/s41467-022-29887-0 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


function of the parameters. The excitation probability is then obtained from
Pn= ∣an(t→∞)∣2, and using the properties of the Gamma function.

Setting parameters of protocols to compare their performance. First, we note
that H with HM in (7) and H0

M in (17) have the same ground states both as t→ 0+
and t→∞. For both of them, the maximum density of states is at zero energy. Hence,
for HM, ΔEt= g(t), and for H0

M , ΔE0
t ¼ NgðtÞ, where N is the number of spins. If, for

the analytically solvable protocol with HM, we choose the time-dependent form
g(t)= g/t and fix the quench parameter g, then the annealing time is given by
g/τa=ΔEI, or

τa ¼ gτI ; ð42Þ
where τI= 1/ΔEI. This also gives the meaning to the parameter g, that is, the ratio of
the annealing time and the characteristic time of the dephasing by HI. For the
transverse field protocol (7) withH0

M , the same annealing time τa in [(42)] is achieved
if we set

g0ðtÞ ¼
g
Nt

: ð43Þ

Similar arguments for g0(t)∼ 1/t2 lead to g(t)=− g/(at2), where a=ΔEI/g, as listed
in Table 1.

Scaling of the residual energy. In the main text, we have shown that for a
uniform spectral density, ρðEÞ ¼ constant, the residual energy (25) scaling is a
power-law in the annealing time τa (or in the parameter g).

The power-law scaling of the residual energy can be generalized to any power-
law dependence of εn, by readily evaluating the average over the probability
distribution (12). Namely, for εn∝ nα, and in the limit of N � 1, it can be shown
that εres∼ 1/gα.

For a generic spectral density ρ(ε), the energy level index n can be written as a
function of the energy,

nðεÞ ¼
Z ε

ε0

ρðxÞdx: ð44Þ

Without loss of generality, let us assume that the ground state has zero energy,
ε0= 0. The residual energy can be evaluated as

εres � ∑
n
Pnεn ¼

Z
dεPnðεÞερðεÞ;

where Pn is the probability distribution (12). The behavior of the residual energy is
determined by the shape of the spectral density. However, we argue that its power-
law scaling is generally expected.

Consider the Gaussian and exponential spectral densities. Both of the spectra
are restricted to the energy range [0, 2] and are centered at ε= 1. The Gaussian
spectral density we simulated is

ρðεÞ ¼ Ae�10ðε�1Þ2 ; 0< ε< 2; ð45Þ
and the exponential spectrum is

ρðεÞ ¼ Bðe10ε � 1Þ; 0< ε< 1;

Bðe10ð2�εÞ � 1Þ; 1< ε< 2;

�
ð46Þ

where A and B are normalization factors. At large annealing time, when the system
approaches the ground state, we can expand the spectral density to the leading
order of the energy. Note that the exponential spectrum modeled above vanishes at
the ground state, hence, with (44), n(ε)∝ ε2. Using the result for power-law εn
aforementioned, we expect a scaling of the residual energy εres � 1=

ffiffiffi
g

p
. The

Gaussian spectrum studied above has a finite value at the ground state cutoff. This
constant value can dominate the sub-leading terms when the total number of states
is sufficiently large. In this case, we get εn∝ n and consequently εres∼ 1/g. These
two types of scaling behavior are verified in Fig. 6.

We now consider an analytically solvable model case. Suppose the spectral
density near the ground state is given by an exponential function

ρðεÞ ¼ aeε; ð47Þ
with a finite but small density at the ground state, ρ(0)= a. The number of states
below energy ε is

nðεÞ ¼ N a
Z ε

0
dx ex ¼ N aðeε � 1Þ; ð48Þ

where N is the total number of states. Therefore,

εn ¼ logðnþN aÞ � logðN aÞ: ð49Þ
The average of this energy over the distribution Pn(12) can be computed exactly.

We note that the exponential density of the state is only valid at small energies
since it diverges when ε becomes large. Hence, to get a physically sensible result
representing the correct low-energy behavior, the total number of states N must be

Table 1 Quantum annealing protocols with different
interaction HM and schedule g(t), but of the same
annealing time.

Quench Protocol Schedule Control Hamiltonian

Protocol 1 − g/t HM ¼ ψ0

�� �
ψ0

� ��
Protocol 2 g/(at), a= N H0

M ¼ � ∑
N

k¼1
σkx

Protocol 3 − g/(at2), a=ΔEI/g HM ¼ ψ0

�� �
ψ0

� ��
ΔEI refers to the bandwidth of the Hamiltonian HI. See Methods for analysis of the parameters.

Fig. 6 Residual energy of the Gaussian and exponential model. Simulation
of the residual energy for Gaussian (triangle) and exponential (square)
spectral density, defined in equations (45, 46). Red and black solid lines are
� 1=

ffiffiffi
g

p
and ~1/g, respectively. The total number of states is fixed at

N ¼ 109.

Fig. 7 Residual energy for the exactly solvable exponential spectral
density. Blue solid line: residual energy in equation (50) at various scales.
The parameters are fixed at a= 1 and N ¼ 109. To guide the eye, ~1/g is
plotted in red dotted lines.

Fig. 8 Residual energy of the independent spin model. Simulation of the
residual energy for the independent spin model, plotted in log–log scale.
The red solid line is fitted to 1/g0.34. The total number of spins is 30, which
corresponds to N � 109. Inset is the same plot in semi-log scale, which
shows an exponential fit of the adiabatic tail (red solid line).
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sufficiently large, so the decay of Pn at large n compensates for the nonphysical
growth of the exponential spectral density. With this, we get

εres ¼ ∑
1

0
εnPn

¼ � 1� p

1� pN
Φð0;1;0Þðp; 0;N aÞ � logðN aÞ;

ð50Þ

where p ¼ e�2πg=N � 1� 2πg=N , Φ(x, y, z) is the Lerch transcendent function,
and f (0, 1, 0) is the derivative of f with respect to its second argument. This function
at large N simplifies to a power-law scaling ∼ 1/g (see Fig. 7).

As the last example, consider a model of many non-interacting spin 1/2’s. Each
spin has eigenenergies ±1. The number of states for a fixed number of spin excitations
is given by the binomial distribution. This allows us to compute the energy levels
exactly. This model has a global spectral density well described by a Gaussian
function. Figure 8 shows a finite size simulation of the residual energy, which scales as
a power-law 1/gα, with the exponent fitted to α � 0.34. Note that α= 1/3 is expected
for a Gaussian spectrum, whose density of states vanishes at the ground state, because
it expands to the leading order as ∼ε2, which results in εn∝ n1/3. Our simulation fits
into this picture very well. The residual energy eventually switches to an exponential
decay near the truly adiabatic regime (as shown in the inset). This is expected because
the energy relaxation is dominated then by only a few states that all decay with time
exponentially.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.

Code availability
The code used to generate the data in this study is available from the corresponding
author upon reasonable request.
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