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Provable quantum advantage in randomness
processing
Howard Dale1, David Jennings1 & Terry Rudolph1

Quantum advantage is notoriously hard to find and even harder to prove. For example

the class of functions computable with classical physics exactly coincides with the class

computable quantum mechanically. It is strongly believed, but not proven, that quantum

computing provides exponential speed-up for a range of problems, such as factoring. Here

we address a computational scenario of randomness processing in which quantum theory

provably yields, not only resource reduction over classical stochastic physics, but a strictly

larger class of problems which can be solved. Beyond new foundational insights into the

nature and malleability of randomness, and the distinction between quantum and classical

information, these results also offer the potential of developing classically intractable

simulations with currently accessible quantum technologies.
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S
uppose you are handed a classical coin with some unknown
bias, is there a method by which one can simulate a
perfectly fair coin-flip? A popular method (often attributed

to von-Neumann1) is as follows: flip the coin twice, if the two
outcomes are different then output the coin with its value on the
second flip, otherwise start over. Provided that the unknown
probability of heads, p is not 0 or 1, it is clear that this method
yields, with probability one, an unbiased output after a random
number of coin-flips. Contrast this with the case where one is
asked to output a new coin that has probability of heads p2.
In this case exactly two flips suffice for any pA[0, 1]: we flip the
biased coin twice and if both flips are heads then we output the
new coin showing heads, otherwise we output it showing tails.

These two examples tell us that the output bias functions
f(p):¼ 1/2 and f(p):¼ p2 can both be ‘constructed’ by flipping a
coin with some unknown bias p. More generally, we say that a
function f is constructible if there is an algorithm that yields an
output with bias f(p), almost surely after a finite number of
coin-flips. Slightly more precisely: for all p the procedure to
construct f(p) must define disjoint sets S1 and S2 whose elements
are finite strings, such that with probability 1 the sequence of flips
produced has exactly one of these strings as an initial segment.
For any sequence of flips the output is heads if the initial segment
is in S1 and tails if it is in S2, and thus an output is produced
almost surely in finite time. In the mathematics literature the
words observable and simulable are often used, however these
already have unrelated and so potentially confusing technical
meaning within quantum theory.

The topic of which functions are constructible, how easily they
can be constructed, and their applications goes by the name
‘Bernoulli Factory’2–5. Crucially, in 1995 a theorem of Keane and
O’Brien2 determined the exact set of functions constructible from
a classical coin of unknown bias p. Loosely speaking, it was found
that a function f(p):(SD[0, 1])-[0, 1] is constructible if and only
if (a) it is continuous, (b) it does not touch 0 or 1 within its
domain and (c) it does not approach zero or one exponentially
quickly at any edge of its domain (see the Supplementary
Methods for a precise statement). While this allows such
surprising functions as ecosp;

ffiffiffi
p

p
, it also rules out important

ones such as as the ‘probability amplification’ function f(p)¼ 2p,
which is central to certain stochastic simulation protocols.
Moreover, it says nothing about the resources required to
actually construct the functions—often an infeasibly large
number of coin-flips are required.

The scenario described for the Bernoulli factory bears
similarities to a Turing Machine, however it is worth emphasizing
that there are differences between them. While both possess a
target function to be ‘computed’, the Bernoulli factory, with its
unbounded, probabilistic, identically independently distributed
input, is in a sense a simpler, arguably more tractable, model. This
makes the Bernoulli Factory an ideal candidate with which to
establish quantum-mechanical results that are provably beyond
the reach of classical physics.

There are two central results presented in this work. Firstly,
the Quantum Bernoulli Factory (QBF) allows the construction
of a strictly larger class of functions than allowed in
stochastic classical physics. Secondly, the QBF provides dramatic
improvements in terms of resource requirements over a range of
classically constructible functions.

Results
2p protocol. The classical Bernoulli Factory (CBF) can be easily
described within a quantum-mechanical setting via (arbitrarily
many) copies of a qubit prepared in the mixed qubit state

r ¼ p 0j i 0h j þ 1� pð Þ 1j i 1h j; ð1Þ

for unknown pASD[0, 1]. Here the computational basis
0j i; 1j if g of the two-dimensional qubit Hilbert space H, denotes

a fiducial projective measurement that extracts classical data.
In contrast, a quantum-mechanical extension of the classical coin
states has coherences in this basis. Our goal is to contrast the
fundamental processing of such classical randomness with
the quantum randomness attainable in a QBF. It should be
emphasized, however, that our desired output is still classical.
We refer to the quantum-mechanical extension of the coin
state as a quoin, and accordingly it is described by the coherent
state

pj i � ffiffiffi
p

p
0j i þ

ffiffiffiffiffiffiffiffiffiffi
1� p

p
1j i: ð2Þ

For this we find measurement in the computational basis
0j i; 1j if g returns the probability distribution (p, 1� p), and so by

restricting to stochastic mixing in this basis, together with
algorithmic processing, we see that the CBF setting is recovered
as a special case from the quantum-mechanical one.
In particular we see that the stochastic mixing available in the
classical factory is a special case of the unitary operations
available in the quantum setting. One could consider convex
combinations of unitaries, however this turns out to be equiva-
lent, since it is always possible to simulate this stochasticity via
unitary generation of randomness on a subset of quoins or
ancillae qubits.

We now demonstrate that the full set of quantum-mechanical
operations allows a strictly larger class of functions than allowed
classically. We focus on the primary example studied in the CBF
literature, the probability amplification function f(p)¼ 2p. This
function is impossible to construct classically, since it attains
the value f(p)¼ 1 for p¼ 1/2, and so traditional work-arounds
involve ‘chopping’ the function as it approaches p¼ 1/2, and
forming a truncated function, f(p)¼min(2p, 1� E) for some fixed
0oEo1. This approximate function then does satisfy the
conditions of the Keane O’Brien theorem, however the amount
of coins needed to produce such a function scale very poorly with
E (see refs 6,7 for examples). By contrast we will now show that
within a QBF it is possible to efficiently construct the classically
impossible probability amplification function f4:[0, 1]-[0, 1]
defined by:

f^ pð Þ :¼ 2p ; p 2 0; 1=2½ �
2 1� pð Þ ; p 2 1=2; 1ð �

�
;

as shown in Fig. 1.
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Figure 1 | The probability amplification function. This figure shows the

amplification function f4:[0, 1]-[0, 1], and the first 35 functions in the

convex decomposition (3). This function is impossible to construct

classically, but can be achieved quantum mechanically via two-qubit

measurements in the entangled Bell-basis, together with classical

processing.
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Our method is as follows. The target function admits an
alternative representation of f^ pð Þ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4p 1� pð Þ

p
, which

in turn possesses an expansion of the form

f^ pð Þ ¼
X1
k¼1

2k

k

� �
1

2k� 1ð Þ22k 4p 1� pð Þð Þk :¼
X1
k¼1

qk 4p 1� pð Þð Þk;

ð3Þ
where qk is a probability distribution independent of p.

Since within the CBF or QBF we can generate any constant
distribution, we first construct an integer output k with
probability

qk :¼
2k
k

� �
1

2k� 1ð Þ22k ; ð4Þ

and then conditioned on this output construct the function
gk(p)¼ (4p(1� p))k. The latter set of functions {gk} are classically
inaccessible for all k40. We also note that gk pð Þ ¼ gk1 pð Þ and so
our task reduces to constructing the k¼ 1 case.

This is easily achieved by considering a Bell-basis measurement

f��� �
¼ 00j i � 11j ið Þ=

ffiffiffi
2

p
; c��� �

¼ 01j i � 10j ið Þ=
ffiffiffi
2

pn o
;

ð5Þ
on two quoins pj i� 2. The probability that we obtain jcþ ihcþ j
or jf� ihf� j is 1/2, however the probability of obtaining the
outcome jcþ i cþ� ��, conditioned on obtaining jcþ ihcþ j or
jf� ihf� j is exactly 4p(1� p)�g1(p). Putting everything
together, to construct a f4(p) coin we output an index k with
probability qk and then construct k g1(p)-coins using O kð Þ
quoins. If k outcomes of heads in a row are obtained from the
g1(p)-coins then heads is output, otherwise tails is output. This
provides an exact construction of the function f4, as claimed.

We can provide a clearer account of this construction by
adapting a method in8, where we can represent the above method
as a random walk on a ladder as depicted in Fig. 2. One begins at
the point marked Start and flips a g1(p)-coin to decide where to
move next. Once on the ladder at any vertex we step up the ladder
with probability g1(p)/2, or down the ladder with the same
probability; otherwise we move across. If we reach the bottom left
corner we output heads, while if we reach the bottom right corner

we output tails; this means that if the very first flip is tails we
output tails immediately. The probability of outputting heads can
be shown to be

P headsð Þ ¼ g1 pð Þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g1 pð Þ

p
g1 pð Þ ð6Þ

¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g1 pð Þ

p
ð7Þ

¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4p 1� pð Þ

p
¼ f^ pð Þ: ð8Þ

The construction that we have provided uses two-qubit
measurements in an entangled basis, and so one might think
that entanglement is required for any quantum advantage;
surprisingly this is not the case—the following theorems
determine the exact class of functions f:[0, 1]-[0, 1] that are
constructible within a QBF using only single-qubit operations,
and are the main results of this work. In fact the only type of
operations required for our proofs are the unitaries

H að Þ ¼
ffiffiffiffiffiffiffiffiffiffi
1� a

p ffiffiffi
a

p
ffiffiffi
a

p
�

ffiffiffiffiffiffiffiffiffiffi
1� a

p
� �

; ð9Þ

which construct a coin that gives output one with probability

ha pð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� að Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1� pð Þ

p	 
2
: ð10Þ

Classes of constructible functions.
Theorem 1: a function f:[0, 1]-[0, 1] is constructible with

quoins and a finite set of single-qubit operations if and only if the
following conditions hold:

1. f is continuous.
2. Both Z¼ {zi:f(zi)¼ 0} and W¼ {wi:f(wi)¼ 1} are finite sets.
3. 8zAZ there exists constants c, d40 and and integer koN

such that c p� zð Þ2k� f pð Þ8p 2 z� d; zþ d½ �:
4. 8wAW there exist constants c, d40 and an integer koN

such that 1� c p�wð Þ2k� f pð Þ8p 2 w� d;wþ d½ �:

The proof of Theorem 1 is too long to include here and is
provided in the Supplementary Methods. The main idea is similar
to the construction of the probability amplification function, and
involves arriving at a convex decomposition in terms of functions
that are explicitly constructible using quantum operations on
quoins. The proof is constructive although far from optimal. It is
clear that the conditions of the theorem are a natural general-
ization of the classical case, except now the function is allowed to
go (polynomially quickly) to 0 and 1 at a finite number points
over the interval [0, 1]. Moreover, this implies that the scaling of
resources within the interior no longer behaves as in the classical
case, where large number of coins is required if the function
approaches 0 or 1 at, for example, p¼ 1/2 for f4(p).

One straightforward generalization is that we do not require
the target function be defined at all points inside the interval
[0, 1], and can allow more extreme behaviours (such as rapidly
increasing oscillations or apparent discontinuities) in the
functions that we construct, see Fig. 3. To this end we have the
following theorem.

Theorem 2: A function f:(0, a1),(a1, a2),...,(an, 1)-[0, 1]
is constructible with quoins and a finite set of single-qubit
unitaries if f is continuous on its domain and there exists a finite
list {a1, a2, ... an0}, which contains {a1, a2, ... an}, and integer k
such that

ak pð Þ � f pð Þ � 1� ak pð Þ ð11Þ

g1(p)

1 – g1(p)

g1(p) /2 g1(p) /2

g1(p) /2g1(p) /2

1 – g1 (p)

Start

Figure 2 | The random walk used in the 2p procedure. The quantum

probability amplification construction can be represented via a random walk

on a semi-infinite ladder with transitions given by Bell-measurement

outcomes on two qubits. The bell procedure gives a result of heads with

probability g(p). Initially one flip is used to determine the starting point.

After the first flip a result of heads causes a move upwards or downwards

with equal probability; a result of tails causes a move to the other side of

the ladder. If the bottom left corner is ever reached, we output heads, if the

bottom right is reached we output tails. The probability of outputting heads

overall is f^ pð Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4p 1� pð Þ

p
.
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for all pA(0, 1), where

a pð Þ :¼ p 1� pð Þ
Y

1�i�n0
hai pð Þ 1� hai pð Þð Þ ð12Þ

The proof of Theorem 2 follows a slightly different construc-
tion to Theorem 1, and is also provided in the Supplementary
Methods. As before, the proof is constructive but far from
optimal. The above two theorems both relate to single-qubit
operations and provide a broad class of constructible functions,
however multi-qubit unitaries do not extend the set of quantumly
constructible functions, but do provide additional speed-ups, as is
illustrated by the example of the function g1(p) constructed from
Bell measurements.

Discussion
In addition to extending the class of constructible functions, the
quantum-mechanical Bernoulli Factory provides dramatic speed-
ups for certain functions that are classically accessible. For
example, consider the function

fa pð Þ ¼ aha pð Þ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� að Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1� pð Þ

p	 
2
ð13Þ

with 0oao1, which is easily constructed via a convex
combination of ha (which requires just a single quoin) and the
function 0. Since the function ha is inaccessible classically, the
construction of the function fa necessarily requires a rapidly
increasing number of classical coins as a tends to 1, in stark
contrast to the quantum-mechanical case which requires only a
single quoin for all values of a.

This leads us to argue that unlike many black-box scenarios,
such as the Deutsch–Jozsa algorithm9, our advantage survives the
addition of errors. Since the classical coin requirements scale
exponentially6 with the cutoff E at the top of the f4(p) function, it
would be impossible in the presence of any realistic errors for the
classical factory to catch up for small values of E.

Another obvious question is when do we find ourselves in a
position where we have a superposition of a probability
distribution but the actual distribution is unknown to us. Recent
work on boson sampling10 provides an example of just that. The
circuit is extremely hard to classically simulate and quantum
mechanically we can only sample from the distribution, not
efficiently learn it. If one wanted to perform some transformation
on the distribution the quantum Bernoulli factory would certainly
be applicable. This is just one of several avenues11–18 where the
quantum Bernoulli factory might offer insight.

The distinguishing features of quantum and classical informa-
tion are subtle, and often well-hidden. Paradigmatic examples

have already appeared in single-party cryptography19, two-party
cryptography and communication complexity20. Of arguably
broader significance is to determine the computational abilities
allowed by quantum physics. Quantum computing does not allow
new functions to be constructed and the speed-ups, whilst
strongly supported by evidence remain unproven. The work
presented here provides a computational scenario in which
quantum mechanics has strict superiority over classical physics,
and by virtue of requiring only single-qubit manipulations
appears vastly easier to attain experimentally. Understanding
models like this one will lead to a better understanding of
quantum computing.
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Figure 3 | One example of a constructible function which appears

discontinuous. One example of the unusual functions one could construct

using Theorem 2, the actual discontinuities are excluded. Effectively we

gain access to piecewise continuous functions but with their discontinuous

points excluded, leaving a function which is continuous on its domain.
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