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Abstract
The one-dimensional Gross-Pitaevskii equation, under non-vanishing boundary 
condition, has a set of solitary solutions. The orbital stability of these solitons has 
been well established. However, the existing proof methods usually treat the cases 
of dark solitons and black solitons separately. Here we provide an alternative proof 
of this orbital stability result, which treats the two cases in a unified framework.

Keywords Gross-Pitaevskii equation · Soliton · Constrained minimization · 
Ginzburg-Landau energy.

Mathematics Subject Classification 35Q51 · 35Q55 · 35Q40 · 35J20 · 37K40

1 Introduction

We study the Gross-Pitaevskii equation,

 iΨt + Ψxx + Ψ
(
1 − |Ψ|2

)
= 0 x ∈ R, (1)

where Ψ : R × R → C satisfies the boundary condition
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 |Ψ| → 1 as |x| → ∞.

Equation (1) appears in various fields in physics, including superfluidity and Bose-
Einstein condensation ([1, 3, 4, 20–22]), and it describes the dark soliton in nonlinear 
optics ([23, 24]). Under the nonzero boundary condition, (1) has a nontrivial dynam-
ics, in contrast with the zero boundary condition case, where the dynamics is essen-
tially dispersion and scattering.
The energy functional

 
E(Ψ) =

∫

R
|Ψx|2 + 1

2
(
|Ψ|2 − 1

)2
dx

is a conserved quantity of (1), where V (|Ψ|2) = 1
2 (|Ψ|2 − 1)2 is the potential.

The momentum P (Ψ) is also conserved. Section 2 will give P (Ψ) a rigorous 
definition.

We consider the traveling wave solution of (1): Ψ(x, t) = ϕ(x + vt), where v is 
velocity. It satisfies

 ivϕx + ϕxx + ϕ
(
1 − |ϕ|2

)
= 0 in R. (2)

We only focus on the case v ≥ 0, because a function ϕ solves (2) for some v is 
equivalent to ϕ(−x) solves it with velocity −v.
Equation (2) is integrable, by the ordinary differential equation technique (see [6]). If 
v ≥

√
2, ϕ = 1 (modulo complex number of magnitude 1). We set vs =

√
2 (called 

the sound speed). For 0 ≤ v <
√

2, the solution is either 1, or

 
bv =

√
2 − v2

2
tanh

(√
2 − v2

2
x

)
− i

v√
2

, (3)

modulo unit length complex number and translation. For v ̸= 0,bv  are called dark 
solitons and they do not vanish on R. In the case v = 0, b0 = 0 at x = 0. b0 is called 
the black soliton.      
We consider orbital stability of the solution (3). Two ways are used to tackle the 
orbital stability problem: the first one is concentration-compactness argument in [11], 
and the other one is Grillakis-Shatah-Strauss theory ( [18, 19]). Our goal is to estab-
lish orbital stability using [11] for all speed |v| <

√
2, under a general class of pertur-

bations in the energy space.
The overall strategy is to implement (3) as minimizers of E at fixed P, where v 

serves as the Lagrange multiplier. Then using [11], we get the orbital stability result.
We introduce some function spaces. Let ϕ ∈ H1

loc (R) and Ω ⊂ R be an open set, 
we define

 
EΩ(ϕ) =

∫

Ω
|ϕ′|2 + V (|ϕ|2)dx

1 3

    9  Page 2 of 31



Journal of Nonlinear Mathematical Physics            (2025) 32:9 

to be the Ginzburg-Landau energy of ϕ in Ω. When Ω = R, we use E(ϕ) rather than 
ER(ϕ).
We use the notation Ḣ1(R) =

{
ϕ ∈ L1

loc (R)
∣∣ ϕ′ ∈ L2(R)

}
. Define the energy 

space

 

E =
{

ϕ ∈ Ḣ1(R)
∣∣ |ϕ|2 − 1 ∈ L2(R)

}

=
{

ϕ ∈ Ḣ1(R)
∣∣ E(ϕ) < ∞

}
.

Denote the distance (E , dE) as

 dE (ϕ1, ϕ2) = ∥|ϕ1| − |ϕ2|∥L2(R) + ∥ϕ′
1 − ϕ′

2∥L2(R) + ∥ϕ1 − ϕ2∥L2+L∞(R) . (4)

(E , dE) is a complete metric space (this can be proved following section 1 in [15], pp. 
132–133).
Denote the semi-distance d0 on E  as

 d0(ϕ1, ϕ2) = ∥|ϕ1| − |ϕ2|∥L2(R) + ∥ϕ′
1 − ϕ′

2∥L2(R) . (5)

The following theorem is established in ( [6, 7]). Our main aim of this article is to 
provide an alternative proof of this well-known theorem.

Theorem 1.1 ( [6, 7]) For 0 < q ≤ π, let

 
Emin(q) = inf

ϕ∈E
{E(ϕ)

∣∣ P (ϕ) = q}.

Then any minimizing sequence (ϕn)n≥1 ⊂ E  verifying E(ϕn) → Emin(q) under the 
constraint P (ϕ) → q has a convergent subsequence, under the semi-distance d0 (up 
to translations).
Uq = {ϕ ∈ E

∣∣ E(ϕ) = Emin(q), P (ϕ) = q} has a unique element bv(q) (up to 
translations and rotations), where v(q) is the unique speed v such that P (bv) = q. The 
set Uq is orbitally stable, with respect to the semi-distance d0.

Theorem 1.1 is a summary of Theorem 4.1, Proposition 4.6 and Theorem 5.5.
The orbital stability of dark solitons v = 0, under the distance (see Lemma 10 in 

[12], p. 1338, and [25])

 d (ϕ1, ϕ2) = |ϕ1(0) − ϕ2(0)| + ∥|ϕ1| − |ϕ2|∥L2(R) + ∥ϕ′
1 − ϕ′

2∥L2(R) , (6)

was proved in [25]. The proof exploits the hydrodynamical form of (1), which is a 
Hamiltonian system and Grillakis-Shatah-Strauss theorem is applied.
This method is not valid for the case v = 0, since b0 vanishes at x = 0. Orbital stabil-
ity for black soliton (v = 0) for distance

1 3
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 dA (ϕ1, ϕ2) = ∥ϕ1 − ϕ2∥L∞[−A,A] + ∥|ϕ1| − |ϕ2|∥L2(R) + ∥ϕ′
1 − ϕ′

2∥L2(R) (7)

was established in [7] relying on variational arguments, given any A > 0. The orbital 
stability of bv  (|v| <

√
2) with the distance (7) has been proved in ( [6, 7]).

Using Lemma 2.2, it can be shown that the semi-distance d0, the distance defined in 
(6) and (7) are equivalent, so we state Theorem 1.1 using the semi-distance d0.

A motivation of this work is that, previous work, e.g. ( [6, 7, 12]), treated the cases 
0 < v <

√
2 and v = 0 separately, while our proof strategy deals with the two cases 

in a unified framework.
[16] proved orbital stability of black soliton, under a very restricted class of pertur-

bations. See [12] for a detailed study of the stability problem of the traveling waves 
for the nonlinear Schrödinger equation, under the distance (6). Generalizations of the 
orbital stability to variations of the 1-dimensional Gross-Pitaevskii equation (with 
non local terms and general nonlinearities) was shown in ( [5, 14]). The asymptotic 
stability was shown in [8].

In space dimension N ≥ 2, the constraint minimization procedure is used in [13] 
to obtain a class of orbitally stable traveling waves, for general nonlinearity (includ-
ing the Gross-Pitaevskii equation).

We then comment on the proof methods. We rely on the ideas in [13]. An impor-
tant quantity called modified Ginzburg-Landau energy is indispensable in analyzing 
the traveling waves in space dimension ≥ 2 ( [13, 27]). However, for the one dimen-
sional equation (1), we don’t need this modified Ginzburg-Landau energy because 
the Ginzburg-Landau energy E itself can be used to control ∥|ϕ| − 1∥L∞(R), see 
Lemma 2.2.

We use the concentration-compactness principle (similar to [13]) to prove that 
bv(q) is minimizer (modulo translations and rotations) for Emin(q). If “vanishing” 
holds, we have that ∥|ϕn| − 1∥L∞ → 0, provided (ϕn)n≥1 is a vanishing minimizing 
sequence. Then from Lemma 3.2 (ii) we get E(ϕn) ≥ v |P (ϕn)| for all v ∈ (0, vs), 
Taking limit v ↑ vs we obtain E min (q) ≥ vsq, which contradicts the upper bound 
Emin(q) < vsq (see Lemma 3.3).

If we have “dichotomy”, then we show that 
E min (q) = E min (q1) + E min (q − q1),q1 ∈ (0, q), which contradicts with Emin 
is strictly subadditive (see Lemma 3.5).

Hence, we have concentration since vanishing and dichotomy are excluded.

1.1 Outline

Section 2 gives the rigorous definition of momentum. Section 3 contains some prop-
erties of Emin. Section 4 shows the precompactness of the minimizing sequence. 
Section 5 presents the orbital stability result. Finally, in the Appendix A, we give a 
technical result: a splitting lemma, which is used to ruling out dichotomy in the proof 
of Theorem 4.1.
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2 The Definition of Momentum in 1D

To solve (2) via a variational approach, we need a reasonable definition of momen-
tum. In dimension N ≥ 3, a definition of the momentum for all functions in the 
energy space has been given in [27]. The definition of momentum in dimension 2 
is given in [13]. In dimension 1, a definition called untwisted momentum for any 
function in E  has been provided by [7]. We propose an alternative definition in 1D, 
generalizing a strategy given in [27] for dimension ≥ 3, and show that this definition 
is equivalent to the one given in [7]. We will use this alternative definition in the fol-
lowing sections.

We now give some observations of why we need to give a definition of momen-
tum. The momentum should be defined as

 
P (ϕ) =

∫

R
⟨iϕ′, ϕ − 1⟩ dx.

provided ϕ − 1 ∈ H1(R). But there are functions ϕ − 1 ∈ E \ H1(R) satisfying 
⟨iϕ′, ϕ − 1⟩ /∈ L1(R).
If ϕ ∈ E  has a lifting ϕ = ρeiθ, and limx→∞ ϕ, limx→−∞ ϕ exist, a computation 
gives

 

∫

R
⟨iϕ′, ϕ − 1⟩ dx = −

∫

R

(
ρ2 − 1

)
θ′dx + [Im(ϕ) − θ]|∞−∞.

But there exists ϕ ∈ E  such that ϕ can not be liftted. Also, limx→∞ ϕ(x), 
limx→−∞ ϕ(x) may not exist.

Lemma 2.1 Let ϕ ∈ E  satisfies 0 < c1 ≤ |ϕ| < ∞ on R for a constant c1. Then we 
can write ϕ = ρeiθ with ρ − 1 ∈ H1(R), θ ∈ Ḣ1(R),

 
⟨iϕ′, ϕ − 1⟩ = d

dx
(Im(ϕ) − θ) −

(
ρ2 − 1

)
θ′ a.e. on R. (8)

In addition, ∫R | (ρ2 − 1)θ′ | dx≤ 1√
2c1

E(ϕ).

Proof Since ϕ ∈ H1
loc(R), the existence of ρ, θ ∈ H1

loc(R) such that ϕ = ρeiθ a.e. 
can be obtained using Theorem 1 in ( [10], p. 37). Direct calculation shows

 |ϕ′|2 = |ρ′|2 + ρ2 |θ′|2 . (9)

Since ρ = |ϕ| ≥ c1 and ϕ′ ∈ L2(R), it follows that ρ′, θ′ ∈ L2(R). We have 

ρ2 − 1 ∈ L2(R) because ϕ ∈ E . Since |ρ − 1| = |ρ2−1|
ρ+1 ≤

∣∣ρ2 − 1
∣∣, then 

ρ − 1 ∈ L2(R).
A short computation yields

1 3

Page 5 of 31     9 



Journal of Nonlinear Mathematical Physics            (2025) 32:9 

 
⟨iϕ′, ϕ − 1⟩ = ⟨iϕ′, −1⟩ − ρ2θ′ = d

dx
(Im(ϕ) − θ) −

(
ρ2 − 1

)
θ′.

Using 9, we have |θ′| ≤ 1
ρ |ϕ′| ≤ 1

c1
|ϕ′|, and

 

∫

R
| (ρ2 − 1)θ′|dx≤∥(ρ2 − 1)∥L2∥θ′∥L2≤ 1

c1
∥(ρ2 − 1)∥L2∥ϕ′∥L2

≤ 1√
2c1

(1
2

∥(ρ2 − 1)∥2
L2 + ∥ϕ′∥2

L2) = 1√
2c1

E(ϕ).

 □
We use the notation

 X1(R) =
{

ϕ ∈ L∞(R)
∣∣ ϕ′ ∈ L2(R)

}
.

Lemma 2.2 We have E ⊂ L∞(R). There exists a universal constant C such that

 ∥ϕ∥L∞(R) ≤ C(1 +
√

E(ϕ)).

Moreover,

 |ϕ|2 − 1 ∈ H1(R), ∀ϕ ∈ E . (10)

Proof Let χ1 ∈ C∞
0 (C) with 0 ≤ χ1 ≤ 1, χ1(x) = 1 for |x| ≤ 2, and χ1(x) = 0 for 

|x| ≥ 3. Let us decompose

 ϕ = ϕ1 + ϕ2, ϕ1 = χ1(ϕ)ϕ, ϕ2 = (1 − χ1(ϕ)) ϕ.

Using Lemma 1.5 in ( [15], p. 132), we have

 ∥ϕ1∥X1(R) + ∥ϕ2∥H1(R) ≤ C1 + C2
√

E(ϕ).

By Sobolev inequality in 1D ([9], pp. 212–213),

 

∥ϕ∥L∞(R) ≤ ∥ϕ1∥L∞(R) + ∥ϕ2∥L∞(R) ≤ ∥ϕ1∥X1(R) + C ∥ϕ2∥H1(R)

≤ C(1 +
√

E(ϕ)).

Since 
(
|ϕ|2 − 1

)′ = 2 ⟨ϕ, ϕ′⟩, we have

 

∥(|ϕ|2 − 1)′∥L2(R) = 2 ∥⟨ϕ, ϕ′⟩∥L2(R) ≤ 2
(∫

R
|ϕ|2|ϕ′|2dx

) 1
2

≤ 2∥ϕ∥L∞(R) ∥ϕ′∥L2(R) ≤ C(1 +
√

E(ϕ))
√

E(ϕ) < ∞,

1 3

    9  Page 6 of 31



Journal of Nonlinear Mathematical Physics            (2025) 32:9 

thus, 
(
|ϕ|2 − 1

)′ ∈ L2(R). Combining with the fact that |ϕ|2 − 1 ∈ L2(R), we have 
|ϕ|2 − 1 ∈ H1(R).  □

Remark 2.3 [7] uses the energy space

 χ1 =
{

γ ∈ L∞(R)
∣∣ 1 − |γ|2 ∈ L2(R) and γ′ ∈ L2(R)

}
.

Using Lemma 2.2, we see that E = χ1.

Lemma 2.4 Let χ ∈ C∞
c (C, R) satisfies χ = 1 on {x

∣∣ ||x| − 1| < 1
4 }, 0 ≤ χ ≤ 1 

and supp(χ) ⊂ {x
∣∣ ||x| − 1| < 1

2 }. For any ϕ ∈ E , denote ϕ1 − 1 = χ(ϕ)(ϕ − 1) 
and ϕ2 − 1 = (1 − χ(ϕ))(ϕ − 1). Then ϕ1 ∈ E , ϕ2 − 1 ∈ H1 (R) and we have the 
following:

 |ϕ′
i| ≤ C|ϕ′| i = 1, 2, with C depends only on χ; (11)

 

∥ϕ2 − 1∥L2(R) ≤ C1
∥∥|ϕ|2 − 1

∥∥
L2(R) and

∥∥(
1 − χ2(ϕ)

)
(ϕ − 1)

∥∥
L2(R) ≤ C2

∥∥|ϕ|2 − 1
∥∥

L2(R) ;
 (12)

 

∫

R
(|ϕ1|2 − 1)2dx ≤ C3

∫

R

(
|ϕ|2 − 1

)2
dx; (13)

 

∫

R
(|ϕ2|2 − 1)2dx ≤ C3

∫

R

(
|ϕ|2 − 1

)2
dx. (14)

Let ϕ1 = ρeiθ be the lifting of ϕ1, provided by Lemma 2.1. Then

 
⟨iϕ′, ϕ − 1⟩ =

(
1 − χ2(ϕ)

)
⟨iϕ′, ϕ − 1⟩ −

(
ρ2 − 1

)
θ′ + d

dx
(Im(ϕ1) − θ) .  (15)

Proof Since |ϕi| ≤ |ϕ − 1| + 1 we have ϕi ∈ L∞(R) for i = 1, 2 by Lemma 2.2. It 
can be shown that ϕi ∈ H1

loc(R) (see Lemma C1 in [10], p. 66) and we have

 
ϕ′

1 =
(

∂1χ(ϕ)d(Re(ϕ))
dx

+ ∂2χ(ϕ)d (Im(ϕ))
dx

)
(ϕ − 1) + χ(ϕ)ϕ′. (16)

For ϕ2 we have a similar formula. Since ∂iχ(ϕ)(ϕ − 1) are bounded, i = 1, 2, we 
have (11).
Since ||ϕ| − 1| ≥ 1

4  on the support of (1 − χ(ϕ))ϕ, there exists C1 > 0 such that

 ∥ϕ2 − 1∥L2(R) = ∥(1 − χ(ϕ))(ϕ − 1)∥L2(R) ≤ ∥|ϕ| + 1∥L2(R) ≤ C1
∥∥|ϕ|2 − 1

∥∥
L2(R) .

Thus we get the first part in (12). Similarly we have the second part.        

1 3
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Since ϕ1(x) = ϕ(x) when ||ϕ| − 1| ≤ 1
4 , so

 

∫

{||ϕ|−1|≤ 1
4 }

(|ϕ1|2 − 1)2dx =
∫

{||ϕ|−1|≤ 1
4 }

(
|ϕ|2 − 1

)2
dx.

There exists C3 > 0 such that

 (|ϕ1|2 − 1)2 ≤ C3
(
|ϕ|2 − 1

)2

if ||ϕ| − 1| ≥ 1
4 . Thus

 

∫

{||ϕ|−1|> 1
4 }

(|ϕ1|2 − 1)2dx ≤ C3

∫

{||ϕ|−1|> 1
4 }

(
|ϕ|2 − 1

)2
dx.

This implies (13). (14) is similar.
Since ∂1χ(ϕ) d(Re(ϕ))

dx + ∂2χ(ϕ) d(Im(ϕ))
dx ∈ R, using (16) to get

 ⟨iϕ′
1, ϕ1 − 1⟩ = χ2(ϕ) ⟨iϕ′, ϕ − 1⟩ .

From Lemma 2.1,

 
⟨iϕ′

1, ϕ1 − 1⟩ = χ2(ϕ) ⟨iϕ′, ϕ − 1⟩ = d

dx
(Im(ϕ1) − θ) −

(
ρ2 − 1

)
θ′, (17)

hence,

 
⟨iϕ′, ϕ − 1⟩ =

(
1 − χ2(ϕ)

)
⟨iϕ′, ϕ − 1⟩ −

(
ρ2 − 1

)
θ′ + d

dx
(Im(ϕ1) − θ)

and this gives (15). □
Consider the Banach space Y = {u′

∣∣ u ∈ Ḣ1(R)} (see [27], p. 122). Defining the 
norm as ∥u′∥Y = ∥u∥Ḣ1(R) = ∥u′∥L2(R).

For any ϕ ∈ E , from (15), Lemma 2.1 and Lemma 2.4, we see that 
⟨iϕ′, ϕ − 1⟩ ∈ L1(R) + Y . It motivates us to give:

Definition 2.5 For any ϕ ∈ E , let χ, ϕ1, ϕ2, ρ, θ are as in Lemma 2.4, the momen-
tum of ϕ is

 
P (ϕ) =

∫

R

(
1 − χ2(ϕ)

)
⟨iϕ′, ϕ − 1⟩ −

(
ρ2 − 1

)
θ′dx. (18)

The above formula is independent of the choice of the χ.
If ϕ ∈ E  can be lifted, that is, ϕ = ρeiθ with ρ − 1 ∈ H1(R) and θ ∈ Ḣ1(R), then 

from lemma 2.1 and Definition 2.5 we have
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P (ϕ) = −

∫

R

(
ρ2 − 1

)
θ′dx. (19)

Remark 2.6 We have |ϕ|2 − 1 ∈ H1(R) by Lemma 2.2, then nec-
essarily limx→∞ |ϕ(x)| = limx→−∞ |ϕ(x)| = 1, and then 
limx→±∞ (ϕ1 − ϕ) = limx→±∞(χ(ϕ)(ϕ − 1) + 1 − ϕ) = 0. From (15) and (18), 
we have

 

P (ϕ) =
∫

R

(
1 − χ2(ϕ)

)
⟨iϕ′, ϕ − 1⟩ −

(
ρ2 − 1

)
θ′dx

=
∫

R
⟨iϕ′, ϕ − 1⟩ − d

dx
(Im(ϕ1) − θ) dx

=
∫

R
⟨iϕ′, −1⟩ − d

dx
Im(ϕ1) + ⟨iϕ′, ϕ⟩ + θ′dx

= lim
x0→∞

[
(Im(ϕ) − Im(ϕ1))|x0

−x0
+

∫ x0

−x0

⟨iϕ′, ϕ⟩ dx + θ|x0
−x0

]

= lim
x0→∞

[∫ x0

−x0

⟨iϕ′, ϕ⟩ + arg ϕ|x0
−x0

]
.

The last formula above is an alternative definition for momentum of ϕ in E  and is 
precisely the untwisted momentum defined in ( [7], Lemma 1.8), when mod 2π.

Remark 2.7 We have

 

P (bv) = −v
√

2 − v2 − 2 arctan v√
2 − v2

+ π.

d

dv
P (bv) = −2

√
2 − v2.

P (bv) is a diffeomorphism from (0,
√

2) to (0, π). It follows from Proposition 2.6 in 

( [6], p. 63) that E (bv) = 2(2−v2)
3
2

3 . It can be easily shown as in ( [6], p. 64) that the 
map P �→ E(P ) satisfies E(P ) < vsP  on (0, π].

Corollary 2.8 For any constant c1 ∈ C and ϕ ∈ E  such that ϕ + c1 ∈ E , we have 
P (ϕ + c1) = P (ϕ).

Proof For any ϕ ∈ E , let ϕ1, ρ, θ are given by Lemma 2.4. Then (17) gives

 

⟨iϕ′, ϕ + c1 − 1⟩ =
(
1 − χ2(ϕ)

)
⟨iϕ′, ϕ − 1⟩ + χ2(ϕ) ⟨iϕ′, ϕ − 1⟩ + ⟨iϕ′, c1⟩

=
(
1 − χ2(ϕ)

)
⟨iϕ′, ϕ − 1⟩ + ⟨iϕ′, c1⟩ + d

dx
(Im(ϕ1) − θ) −

(
ρ2 − 1

)
θ′.

Then using a calculation similar to Remark 2.6, we have
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P (ϕ + c1) = lim
R→∞

∫ R

−R

⟨iϕ′, ϕ + c1 − 1⟩ − d

dx
(Im(ϕ1)) − ⟨iϕ′, c1⟩ + θ′dx

= lim
R→∞

∫ R

−R

⟨iϕ′, ϕ⟩ + θ′dx

=P (ϕ).

 □

Lemma 2.9 Let ϕ ∈ E  and w ∈ H1(R), we have

 

∫

R
⟨iϕ′, w⟩ + ⟨iϕ, w′⟩ dx = 0. (20)

Proof Since w, ϕ′ ∈ L2(R), then ⟨iϕ′, w⟩ ∈ L1(R). Let χ, ϕ1, ϕ2 be given by 
Lemma 2.4. Set w1 = χ(w)w, w2 = (1 − χ(w))w. We have ϕ = ϕ1 + ϕ2 − 1, 
w = w1 + w2, ϕ1 − 1 ∈ Ḣ1 ∩ L∞(R) and ϕ2 − 1, w1, w2 ∈ H1(R).

We see that ⟨iϕ′
2, w⟩, ⟨i(ϕ2 − 1), w′⟩ ∈ L1(R) by Cauchy-Schwarz inequality. 

We have

 

∫

R
⟨iϕ′

2, w⟩ + ⟨i (ϕ2 − 1) , w′⟩ dx = 0. (21)

Since ϕ1 − 1 ∈ Ḣ1 ∩ L∞(R) and w1 ∈ H1 ∩ L∞(R), 
we have ⟨i(ϕ1 − 1), w1⟩ ∈ Ḣ1 ∩ L∞(R) and 

d
dx ⟨i(ϕ1 − 1), w1⟩ = ⟨iϕ′

1, w1⟩ + ⟨i(ϕ1 − 1), w′
1⟩. Since w1 ∈ H1(R), then neces-

sarily lim|x|→∞ w1(x) = 0 on R, and together with ϕ1 − 1 ∈ L∞(R) we have

 

∫

R

d

dx
⟨i (ϕ1 − 1) , w1⟩ dx = [⟨i (ϕ1 − 1) , w1⟩]|∞−∞ = 0.

Then

 

∫

R
⟨iϕ′

1, w1⟩ + ⟨i (ϕ1 − 1) , w′
1⟩ dx = 0. (22)

Let B = {x ∈ R
∣∣ ||w| − 1| ≥ 1

4 }. We have 1
16 |B| ≤

∫
B

|w|2dx ≤ ∥w∥2
L2  and B 

has finite measure. It can be seen that w2 = 0 and w′
2 = 0 a.e. on R \ B. By Sobo-

lev inequality in 1D ( [9], pp. 212–213), we have w2 ∈ L∞(R). Combined with 
w′

2 ∈ L2(R), we deduce that w2 ∈ L1 ∩ L∞(R) and w′
2 ∈ L1 ∩ L2(R). Using 

ϕ1 − 1 ∈ L∞(R) and ϕ′
1 ∈ L2(R), this gives ⟨i(ϕ1 − 1), w2⟩ ∈ L1 ∩ L∞(R), 

⟨iϕ′
1, w2⟩ ∈ L1(R) and ⟨i(ϕ1 − 1), w′

2⟩ ∈ L1 ∩ L2(R). We have
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d

dx
⟨i (ϕ1 − 1) , w2⟩ = ⟨iϕ′

1, w2⟩ + ⟨i (ϕ1 − 1) , w′
2⟩ .

The above information implies ⟨i(ϕ1 − 1), w2⟩∈ W 1,1(R), thus

 

∫

R
⟨iϕ′

1, w2⟩ + ⟨i (ϕ1 − 1) , w′
2⟩ dx =

∫

R

d

dx
⟨i (ϕ1 − 1) , w2⟩ dx = 0. (23)

Now from (21), (22) and (23) we have

 

∫

R
⟨iϕ′, w⟩ + ⟨i(ϕ − 1), w′⟩ dx = 0.

Since 
∫
R⟨−i, w′⟩dx = 0, we have (20). □

Corollary 2.10 Let ϕ1, ϕ2 ∈ E  be such that ϕ1 − ϕ2 ∈ L2(R). Then

 |P (ϕ1) − P (ϕ2)| ≤ ∥ϕ1 − ϕ2∥L2(R)
(
∥ϕ′

1∥L2(R) + ∥ϕ′
2∥L2(R)

)
 (24)

Proof The proof uses formula (20) and is the same as ( [27], Corollary 2.6).  □  

3 Some Preliminary Results

Let Ω ⊂ R be an open set, and it may not be bounded or connected.

Lemma 3.1 Let ϕ ∈ E . For any 0 < δ0 < 1 and R > 0, there exists a constant 
M = M(δ0, R) > 0, such that if EΩ(ϕ) < M , then

 −δ0 < |ϕ(x)| − 1 < δ0,

for x ∈ Ω satisfies dist(x, ∂Ω) > 2R.        

Proof Using the 1D Morrey inequality,

 

|ϕ(x) − ϕ(y)| ≤ ∥w′∥L2(Ω)|x − y| 1
2

≤ (EΩ(ϕ))
1
2 |x − y| 1

2 ∀x, y ∈ B (x0, R) .
 (25)

Fix δ0 > 0. Suppose dist(x0, ∂Ω) > 2R and ||ϕ(x0)| − 1| ≥ δ0. Let 

rδ0 = min{R,
δ2

0
4EΩ(ϕ) }. Since 

∣∣||ϕ(x)| − 1| − ||ϕ(x0)| − 1|
∣∣ ≤ |ϕ(x) − ϕ(x0)|, 

using (25) we get
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||ϕ(x)| − 1| ≥ δ0

2
∀x ∈ B (x0, rδ0) .

We have

 

EΩ(ϕ) ≥ 1
2

∫

B(x0,rδ0)

(
|ϕ|2 − 1

)2
dx

≥ 1
2

∫

B(x0,rδ0)
(|ϕ| − 1)2dx

≥ δ2
0
4

rδ0 = δ2
0
4

min
{

R,
δ2

0
4EΩ(ϕ)

}
.

 (26)

Solving (26), we have EΩ(ϕ) ≥ δ2
0
4 min {R, 1}. Let M = M(R, δ0) := δ2

0
4 min {R, 1} , 

then the lemma holds.  □

Lemma 3.2 (i) If ϕ ∈ E  satisfies ||ϕ| − 1| ≤ δ with δ ∈ (0, 1), then

 E(ϕ) ≥
√

2(1 − δ)|P (ϕ)|.

(ii) Let ϕ ∈ E , 0 ≤ v <
√

2 and ε ∈ (0, 1 − v√
2 ). There exists a constant 

M = M(v, ε) > 0, such that if E(ϕ) < M , then

 E(ϕ) − v|P (ϕ)| ≥ εE(ϕ).

                      

Proof (i) Writing ϕ = ρeiθ, where ρ, θ are provided by Lemma 2.1. Using (19),

 
P (ϕ) = −

∫

R

(
ρ2 − 1

)
θ′dx.

We have the following:

 

√
2(1 − δ)|P (ϕ)| ≤

√
2(1 − δ)

∥∥ρ2 − 1
∥∥

L2(R) ∥θ′∥L2(R)

≤ (1 − δ)2 ∥θ′∥2
L2(R) + 1

2
∥∥ρ2 − 1

∥∥2
L2(R)

≤ E(ϕ).

(ii) Set ε < 1 − v√
2 . Let δ > 0 satisfies ε ≤ 1 − v√

2(1−δ) . Let M = M(δ, 1) be given 
by Lemma 3.1. Let ϕ ∈ E  satisfies E(ϕ) < M. Using Lemma 3.1, −δ < |ϕ| − 1 < δ. 
Using Lemma 3.2 (i), we have
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v|P (ϕ)| ≤ v√

2(1 − δ)
E(ϕ) ≤ (1 − ε) E(ϕ). (27)

Using (27) we obtain

 E(ϕ) − v|P (ϕ)| ≥ εE(ϕ),

then (ii) follows.  □                        
For 0 < q ≤ π, we define

 
Emin(q) = inf

ϕ∈E
{E(ϕ)

∣∣ P (ϕ) = q}.

For any ϕ ∈ E , the function ϕ1(x) = ϕ(−x) ∈ E  and E(ϕ1) = E(ϕ), 
P (ϕ1) = −P (ϕ), then Emin(−q) = Emin(q). That is, Emin is an even function. This 
is the reason why we only need to consider Emin(q) at the interval q ∈ (0, π].

Lemma 3.3 Let 0 < q ≤ π, we have Emin(q) <
√

2q.

Proof From Remark 2.7, we have Emin(q) ≤ E(bv(q)) < vsq, where v(q) is the 
unique velocity v such that P (bv) = q. □

Lemma 3.4 For any ε > 0, there exists q1(ε) > 0 with

 
Emin(q) ≥

(√
2 − ε

)
q ∀q ∈ (0, q1(ε)).

      

Proof Lemma 3.2 (ii) implies

 E(ϕ) ≥ (
√

2 − ε)|P (ϕ)|

for all ϕ ∈ E  verifying E(ϕ) < M(ε). Set q1(ε) = M(ε)√
2+c1

< π, where c1 is a 
positive constant. Fix q ∈ (0, q1(ε)). There exists ϕ ∈ E  satisfying P (ϕ) = q, 
E(ϕ) < Emin(q) + c1q. Using Lemma 3.3, we have

 
E(ϕ) <

(√
2 + c1

)
q <

(√
2 + c1

)
q1(ε) = M(ε),

thus E(ϕ) ≥ (
√

2 − ε)|P (ϕ)| = (
√

2 − ε)q. This yields Emin(q) ≥ (
√

2 − ε)q. □

Lemma 3.5 (i) For any 0 ≤ q1 ≤ q ≤ π, we have Emin(q) ≤ Emin(q1) + Emin(q − q1)
.
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(ii) Emin is nondecreasing. It is continuous with best Lipchitz constant 
√

2. It is 
concave.

(iii) The conclusion of (i) can be upgraded to strictly subadditive, i.e., for any 
0 < q1 < q < π, Emin(q) < Emin(q1) + Emin(q − q1).

Proof (i) Corollary A.2 in Appendix A provides ϕ1, ϕ2 ∈ E  with 
P (ϕ1) = q1, P (ϕ2) = q − q1, E(ϕ1) < E min (q1) + ε

2
, E(ϕ2) < E min (q − q1)

+ ε

2
,

 

where ε > 0ϕ1 = 1 on [R1, ∞), ϕ2 = 1 on (−∞, R2]. 

Define ϕ(x) =
{

ϕ1(x), if x ≤ R1
ϕ2(x − 2(R1 + R2)) otherwise.  Then 

ϕ ∈ E , P (ϕ) = P (ϕ1) + P (ϕ2) = q and E(ϕ) = E(ϕ1) + E(ϕ2). Thus 
Emin(q) ≤ E(ϕ) < E min (q1) + E min (q − q1) + ε. This gives (i).

(ii) Let 0 < q1 < q2 < π and σ = q1
q2

< 1. Assume that ϕ ∈ E  satisfies 
infx∈R |ϕ(x)| > 0 and P (ϕ) = q2 (such ϕ exists according to Remark 2.7). We 
write ϕ = ρeiθ, by Theorem 1 in ( [10], p. 37). Then for ϕσ = ρeiσθ we have 
P (ϕσ) = P (ρeiσθ) = σP (ϕ) = q1. Using (9) we have Emin(q1) ≤ E(ϕσ) ≤ E(ϕ). 
Taking the infimum over all ϕ satisfying P (ϕ) = q2, we see that Emin(q1) ≤ Emin(q2). 
We thus have that E min  is nondecreasing.      

The conclusion of (i) and Lemma 3.3 implies

 Emin(q2) − Emin(q1) ≤
√

2(q2 − q1).

Combining with Lemma 3.4, we see that Emin is Lipchitz continuous with best Lip-
chitz constant 

√
2.

For f : R → C and c ∈ R, denote

 

Q+
c f(x) =

{
f(x) if x ≥ c

eiθf(2c − x) if x < c,

Q−
c f(x) =

{
eiθf(2c − x) if x ≥ c
f(x) if x < c,

where θ ∈ R is a constant satisfying f(c) = eiθf(c), which ensures 
that Q+

c f(x), Q−
c f(x) is continuous at x = c. For any ϕ ∈ E  we have 

Q+
c ϕ, Q−

c ϕ ∈ E , E(Q+
c ϕ) + E(Q−

c ϕ) = 2E(ϕ) and P (Q+
c ϕ) + P (Q−

c ϕ) = 2P (ϕ). 
The map c �→ P (Q+

c ϕ) is continuous on R, goes to 0 as c → ∞ and to 2P (ϕ) as 
c → −∞. Then proceeding similarly as in ( [13], p. 176), we can show the concavity 
of Emin.
(iii) Let 0 < q1 < q ≤ π. The result of (ii) implies that Emin(q1) ≥ q1

q Emin(q), 
with equality holds if and only if E min (q1) = a1q1 for a constant a1 ∈ R. 
Using Lemma 3.3, we see that a1 <

√
2. However, using Lemma 3.4 we see that 
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a1 ≥
√

2 − ε. Hence a1 doesn’t exist. This means that we have the strict inequality 
Emin(q1) > q1

q Emin(q).  □  

4 Minimizing E at Fixed P

We will implement bv  as solution of the constrained minimization problem using 
concentration-compactness principle. We will show the precompactness of minimiz-
ing sequences.

Theorem 4.1 Set 0 < q ≤ π. Let (ϕn)n≥1 ⊂ E  be a minimizing sequence, that is, 
suppose that

 P (ϕn) → q and E (ϕn) → Emin(q).

Then, up to a subsequence and translations, we have the following:
(i) there exist ϕ ∈ E  such that ϕn → ϕ a.e. on R and d0(ϕn, ϕ) → 0, i.e.,

 

∥ϕ′
n − ϕ′∥L2(R) → 0,

∥|ϕn| − |ϕ|∥L2(R) → 0 as n → ∞.

(ii) P (ϕ) = q, E(ϕ) = Emin(q).

Proof Let β0 = Emin(q). We have that E (ϕn) → β0 > 0 as n → ∞.  

The concentration-compactness principle [26] will be used. Let ξn(t) be the con-
centration function of E(ϕn):

 
ξn(t) = sup

y∈R
EB(y,t)(ϕn).

Following [26], up to a subsequence, there exists ξ : [0, ∞) → R and β ∈ [0, β0] 
satisfying

 ξn(t) → ξ(t) when n → ∞ and ξ(t) → β when t → ∞.

Using similar arguments as Theorem 5.3 in [27], there exists a nondecreasing 
sequence rn → ∞ satisfying

 
lim

n→∞
ξn (rn) = lim

n→∞
ξn

(rn

2

)
= β. (28)
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Step 1 (Ruling out vanishing) We will prove that vanishing will not hold, i.e., there 
exists a constant c1 > 0 such that supy∈R EB(y,1) (ϕn) ≥ c1 as n → ∞. Suppose in 
contradiction that up to a subsequence

 
lim

n→∞
sup
y∈R

EB(y,1)(ϕn) = 0, (29)

then we show that ∥|ϕn| − 1∥L∞(R) → 0 as n → ∞.
Since (E(ϕn))n≥1 is bounded, then ∥ϕ′

n∥L2(R) is bounded for any n. Using Morrey 
inequality, there exists C1 > 0 such that

 |ϕn(x) − ϕn(y)| ≤ C1|x − y| 1
2 ∀ x, y ∈ R. (30)

Since ϕn ∈ E , using Lemma 2.2, ϕn ∈ L∞(R). Let δn = ∥|ϕn| − 1∥L∞(R). Choose 

xn ∈ R such that ||ϕn(xn)| − 1| ≥ δn

2 . From (30) we have ||ϕn(x)| − 1| ≥ δn

4  for 

any x ∈ B(xn, rn), with rn = ( δn

4C1
)2. We have

 

∫

B(xn,rn)

(
|ϕn|2 − 1

)2
dx ≥ δ2

n

8
rn. (31)

Combining (29) with (31), limn→∞ δ2
nrn = 0. Clearly this implies limn→∞ δn = 0. 

Then Lemma 3.2 (i) implies

 E (ϕn) ≥
√

2 (1 − δn) |P (ϕn)| .

Letting n → ∞, we have

 
lim inf
n→∞

E (ϕn) ≥
√

2q. (32)

However, using Lemma 3.3,

 
lim sup

n→∞
E (ϕn) <

√
2q. (33)

We see that (32) contradicts with (33).              
Step 2 (Ruling out dichotomy) We will prove that β /∈ (0, β0). Suppose that 
0 < β < β0. Let rn be as in (28) and set Rn = rn

2 . After translation, we have 
EB(0,Rn)(ϕn) ≥ ξn(Rn) − 1

n . Using (28) we obtain

 
εn := EB(0,rn)\B(0,Rn) (ϕn) ≤ ξn (rn) −

(
ξn (Rn) − 1

n

)
→ 0.
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Applying Lemma A.1 (in Appendix A), set R = Rn, A = 2, ε = εn in that Lemma, 
then there exist two functions ϕn,1, ϕn,2 such that E (ϕn,1) ≥ EB(0,Rn)(ϕn)

≥ ξn(Rn) − 1
n , E(ϕn,2) ≥ ER\B(0,2Rn)(ϕn) ≥E(ϕn) − ξ(2Rn) and

 |E (ϕn) − E (ϕn,1) − E (ϕn,2)| → 0 as n → ∞.

From (28), we deduce that necessarily

 E (ϕn,1) → β and E (ϕn,2) → β0 − β as n → ∞.

From Lemma A.1 (v) (in Appendix A) we have

 |P (ϕn) − P (ϕn,1) − P (ϕn,2)| → 0 as n → ∞. (34)

Proceeding as ( [13], p. 181), we infer that up to a subsequence, there exists 
q1, q2 ∈ (0, q), such that P (ϕn,1) → q1 and P (ϕn,2) → q2 and q1 + q2 = q.
Since E(ϕn,1) ≥ Emin(P (ϕn,1)) and E(ϕn,2) ≥ Emin(P (ϕn,2)), taking limit we 
obtain β ≥ E min (q1), β0 − β ≥ Emin(q2). We then have

 Emin(q) = β + (β0 − β) ≥ Emin (q1) + Emin (q2) ,

which is in contradiction with strictly subadditivity of Emin (Lemma 3.5 (iii)). Thus 
we have β /∈ (0, β0).
Step 3 (Concentration-compactness) After finishing step 1 and step 2, we thus have 
concentration, i.e., β = β0. Then after translation, for any ε > 0, there exists positive 
Aε and nε ∈ N satisfying

 ER\B(0,Aε)(ϕn) < ε ∀n ≥ nε. (35)

Let χ be provided by Lemma 2.4 and set ϕn,1 = χ(ϕn)(ϕn − 1) + 1, 
ϕn,2 = (1 − χ(ϕn))(ϕn − 1) + 1. From Lemma 2.4 we see that (ϕn,1)n≥1 ⊂ E ,
(ϕn,2 − 1)n≥1 ⊂ H1(R) and (E(ϕn,1))n≥1, (E(ϕn,2))n≥1 are bounded. 

Using Lemma 2.1, write ϕn,1 = ρneiθn  with 1
2 ≤ ρn ≤ 3

2  and θn ∈ Ḣ1(R),

(ρn − 1)n≥1 ⊂ H1(R). (ϕn)′
n≥1 ⊂ L2(R) and (ϕn)n≥1 ⊂ L2(B(0, A)) for 

any A > 0 (using Lemma 2.2). We see that up to a subsequence (nk)k≥1, 
there exist ϕ ∈ H1

loc(R) with ϕ′ ∈ L2(R), ϕ1 ∈ H1
loc(R) with ϕ′

1 ∈ L2(R), 
ϕ2 − 1 ∈ H1(R), θ ∈ Ḣ1(R), ρ − 1 ∈ H1(R) such that
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(ϕnk
)′ ⇀ ϕ′, (ϕnk,1)′ ⇀ ϕ′

1, and (θnk
)′ ⇀ θ′ weakly in L2(R),

ϕnk,2 − 1 ⇀ ϕ2 − 1 and ρnk
− 1 ⇀ ρ − 1 weakly in H1(R),

ϕnk
⇀ ϕ weakly in H1(B(0, A)) ∀A > 0,

ϕnk,1 → ϕ1, ϕnk,2 → ϕ2, θnk
→ θ, ρnk

− 1 → ρ − 1, ϕnk
→ ϕ

strongly in Lp(B(0, A)) and a.e. on R, ∀A > 0, p ∈ [1, ∞].

 (36)

Weak convergence implies

 

∫

R
|ϕ′|2dx ≤ lim inf

k→∞

∫

R
|(ϕnk

)′|2dx. (37)

Fatou’s Lemma implies

 
V (|ϕ|2) ≤ lim inf

k→∞
V (|ϕnk

|2). (38)

From (37) and (38),

 
E(ϕ) ≤ lim inf

k→∞
E(ϕnk

) = Emin(q). (39)

Step 4: Lemmas 4.2 and 4.3 will be used.  

Lemma 4.2 Suppose the following hold for (ωn)n≥1 ⊂ E :

(i) (E (ωn))n≥1 is bounded, and (35) holds for ωn;

(ii) There exists ω ∈ E  such that ∥ωn − ω∥L2(B(0,A)) → 0 for A > 0 and ωn → ω 
a.e. on R.

Then we have |ωn| → |ω| in L2(R), (1 − |ωn|2)2 → (1 − |ω|2)2 in L1(R) as 
n → ∞.

Proof Fix ε > 0, assumption (i) implies that

 ∥|ωn|2 − 1∥2
L2(R\B(0,Aε)) ≤ 2ε for n ≥ nε. (40)

ω has a similar estimate. From 40 we have

 

∥|ωn| − |ω|∥L2(R\B(0,Aε))

≤ ∥|ωn|2 − 1∥L2(R\B(0,Aε)) +
∥∥|ω|2 − 1

∥∥
L2(R\B(0,Aε)) ≤ 2

√
2
√

ε.
 (41)

Using assumption (ii) and the fact that |ωn| ∈ Lp(B(0, A)) for 1 ≤ p ≤ ∞ (using 
Lemma 2.2), we obtain ωn → ω in Lp(B(0, A)) for 1 ≤ p ≤ ∞. Therefore for large 
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n, we have ∥|ωn| − |ω|∥L2(B(0,Aε)) ≤ ε, ∥V (|ωn|2) − V (|ω|2)∥L1(B(0,Aε)) ≤ ε, 

Combining with (40) and (41), we have ∥|ωn| − |ω|∥L2(R) ≤ 2
√

2
√

ε + ε, 

∥V (|ωn|2) − V (|ω|2)∥L1(R) ≤ 3ε for large n. Lemma 4.2 follows when letting ε 
goes to 0.  □            
The following lemma is a 1D counterpart of Lemma 4.12 in [13], where the space 
dimension is assumed to be N ≥ 2. The conformal transform method is used in the 
prove of Lemma 4.12 in [13], however, this method is not valid for the 1D case. We 
use a method which is inspired by ( [27], pp. 163–164).

Lemma 4.3 Suppose the following hold for (ωn)n≥1 ⊂ E :

(i) (E (ωn))n≥1 is bounded, and (35) holds for ωn;

(ii) There is ω ∈ E  with ω′
n ⇀ ω′ weakly in L2(R), and ∥ωn − ω∥L2(B(0,A)) → 0 

for any A > 0
Then P (ωn) → P (ω) as n → ∞.

Proof Consider a subsequence of (ωn)n≥1. For simplicity, we still denote it by 
(ωn)n≥1. Let ε, Aε, nε be as in (35). From 12 we get

 

∥∥(
1 − χ2 (ωn)

)
(ωn − 1)

∥∥
L2(R) ≤ C

∥∥∥|ωn|2 − 1
∥∥∥

L2(R)
≤ C(E (ωn)) 1

2 .

The Cauchy-Schwartz inequality implies

 

∫

R\B(0,Aε)

∣∣(1 − χ2 (ωn)
)

⟨iω′
n, ωn − 1⟩

∣∣ dx

≤
∥∥(

1 − χ2 (ωn)
)

(ωn − 1)
∥∥

L2(R) ∥ω′
n∥L2(R\B(0,Aε))

≤C
√

M
√

ε

 (42)

for any n ≥ nε, and M > 0 is such that E (ωn) ≤ M  for any n.  
Let χ be provided by Lemma 2.4 and set ωn,1 = χ(ωn)(ωn − 1) + 1, 
ωn,2 = (1 − χ(ωn))(ωn − 1) + 1. From Lemma 2.4, we see that (ωn,1)n≥1 ⊂ E , 
(ωn,2 − 1)n≥1 ⊂ H1(R). Using Lemma 2.1, we write ωn,1 = ρneiθn  with 

1
2 ≤ ρn ≤ 3

2 , θn ∈ Ḣ1(R). Using assumption (i) and (ii), we deduce that up to a 
subsequence, there exist {ρn}, {θn}, {ωn}, {ωn,1}, {ωn,2}, ρ, θ, ω that satisfy (36).

From (13) we have

 ∥ρ2
n − 1∥L2(R) ≤ C(E(ωn)) 1

2 ≤ CM
1
2 .

Using (9) and (11) we get

1 3

Page 19 of 31     9 



Journal of Nonlinear Mathematical Physics            (2025) 32:9 

 
|θ′

n| ≤ 2
∣∣∣∣
d (χ (ωn) (ωn − 1))

dx

∣∣∣∣ ≤ C |ω′
n| .

Then assumption (i) implies that

 ∥θ′
n∥L2(R\B(0,Aε)) ≤ C

√
ε ∀n ≥ nε.

We have

 

∫

R\B(0,Aε)

∣∣(ρ2
n − 1

)
θ′

n

∣∣ dx ≤
∥∥ρ2

n − 1
∥∥

L2(R) ∥θ′
n∥L2(R\B(0,Aε)) ≤ C

√
M

√
ε (43)

∀n ≥ nε. We see that (42) and (43) also hold with ω, ρ, and θ replacing ωn, ρn 
and θn.
Since ωn → ω and ρn − 1 → ρ − 1 in L2(B(0, Aε)) and a.e., then

 
(
1 − χ2 (ωn)

)
(ωn − 1) →

(
1 − χ2(ω)

)
(ω − 1) and ρ2

n − 1 → ρ2 − 1

in L2(B(0, Aε)). Combining with the fact that ω′
n ⇀ ω′ and θ′

n ⇀ θ′ weakly, we 
have

 

∫

B(0,Aε)

⟨
iω′

n,
(
1 − χ2 (ωn)

)
(ωn − 1)

⟩
dx →

∫

B(0,Aε)

⟨
iω′,

(
1 − χ2(ω)

)
(ω − 1⟩dx  (44)

and

 

∫

B(0,Aε)

(
ρ2

n − 1
)

θ′
ndx →

∫

B(0,Aε)

(
ρ2 − 1

)
θ′dx. (45)

Using (42)-(45) and (18), we deduce that there exist n1(ε) ≥ nε such that for any 
n ≥ n1(ε),

 |P (ωn) − P (ω)| ≤ C
√

ε.

Since every subsequence of (ωn)n≥1 includes a further subsequence satisfying 
P (ωn) → P (ω) as n → ∞, thus Lemma 4.3 follows. □
We will finish the proof of Theorem 4.1. From (35), (36) and Lemma 
4.3 we see that q = limk→∞ P (ϕnk

) = P (ϕ). Necessarily we have 
limk→∞ E(ϕnk

) = Emin(q) ≤ E(ϕ). Together with (39), we see that 
E(ϕ) = Emin(q). From (35), (36) and Lemma 4.2, we see that |ϕnk

| → |ϕ| in L2(R), 
V (|ϕnk

|2) → V (|ϕ|2) in L1(R). Combining (37), (38) and E(ϕnk
) → E(ϕ) leads to ∫

R |(ϕnk
)′|2dx →

∫
R |ϕ′|2dx. Combining with the weak convergence (ϕnk

)′ ⇀ ϕ′ 
in L2(R), we have the strong convergence ∥(ϕnk

)′ − ϕ′∥L2(R) → 0 as k → ∞. □
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Corollary 4.4 The momentum P and energy E defined on E  are continuous function-
als, under the semi-distance d0.

Proof For momentum P, the proof uses Lemma 4.3 and Corollary 2.8. For energy E, 
the proof uses Lemma 4.2. The details are similar to ( [13], Corollary 4.13) and we 
omit it.  □

Remark 4.5 (1) It is proved in Lemma 2.7 of [7] that the momentum P is locally Lip-
schitz continuous on E  for the distance dA defined as Eq. (7). It is proved in ([6], pp. 
75–76) that P is continuous on E  for the distance dA. Hence, Corollary 4.4 is an 
improvement of these results.

(2) For 0 < q < π, assume ϕ ∈ E  satisfies P (ϕ) = q, E(ϕ) = Emin(q). For 
(ϕn)n≥1 ⊂ E  such that d0(ϕn, ϕ) → 0, by Corollary 4.4, we have P (ϕn) → q and 
E(ϕn) → Emin(q), modulo translation. Therefore, Theorem 4.1 offers an optimal 
convergence result. The corresponding optimality in dimension N ≥ 2 is pointed out 
by ( [13], p. 187).
Now we will show that the minimizers are traveling waves bv .

Proposition 4.6 Let 0 < q ≤ π. Suppose ϕ ∈ E  minimizes E subject to P (ϕ) = q. 
Then

(i) There exists v such that

 ivϕ′ + ϕ′′ + ϕ
(
1 − |ϕ|2

)
= 0 in D′(R). (46)

(ii) There exist constants θ0 ∈ R, x0 ∈ R and ϕ = eiθ0bv(· + x0) ∈ E  such that 
P (ϕ) = q, E(ϕ) = Emin(q) and ϕ satisfies (46) with speeds v = E′

min(q) for 
0 < q < π and v = d−Emin(π) = 0 for q = π (d−Emin(π) is the left derivative of 
Emin at π), where bv  is given by (3).
More precisely, for 0 < q ≤ π,

 Uq =
{

ϕ ∈ E
∣∣ P (ϕ) = q, and E(ϕ) = Emin(q)

}

has a unique element bv(q) (up to translations and rotations), where v(q) denote the 
unique speed v such that P (bv) = q.

Proof (i) Proceeding exactly as Proposition 4.14 in ( [13], pp. 187–188), for any 
ψ ∈ C∞

c (R), there exists v such that

 

∫

R

⟨
ivϕ′ + ϕ′′ + ϕ

(
1 − |ϕ|2

)
, ψ

⟩
dx = 0,

and this implies (46).
(ii) Consider a sequence qn → q (when q = π, this sequence should be 
qn ↑ q). Assume qn > 0. Let ϕn ∈ E  be such that P (ϕn) = qn → q and 
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E(ϕn) = E min (qn) → Emin(q) (using continuity of Emin). Using Theorem 
4.1, we see that up to translation and subsequence, there exist ϕ1 ∈ E  verifying 
P (ϕ1) = q, E(ϕ1) = Emin(q) and ϕn → ϕ1 a.e. on R and

 d0 (ϕn, ϕ1) → 0 when n → ∞.

Using (i), ϕn satisfies (46). Taking limit n → ∞, we see that ϕ1 satisfies (46). Using 
the fact that (46) is integrable, we infer that ϕ = ϕ1, and there exist constants θ0 ∈ R 
and x0 ∈ R, such that

 ϕ = eiθ0bv(· + x0)

and the statement in Proposition 4.6 (ii) holds.  □    

5 Orbital Stability

The Cauchy problem of (1) was solved in [28], see Theorem 2.3 in ( [15], p. 142) for 
a summary of the case in space dimension N = 1.

Theorem 5.1 ( [15]). For any ϕ0 ∈ E , there exists a unique solution ϕ(t) ∈ C([0, ∞), E) 
of (1) with ϕ(0) = ϕ0. The following properties of solution hold:

(1) For any T > 0, if dE(ϕn
0 , ϕ0) → 0, then dE(ϕn(t), ϕ(t)) → 0 uniformly on 

[0, T] as n → ∞, where ϕn(t) is solution with initial data ϕn
0 .

(2) For any t ∈ [0, ∞), E(ϕ(t)) = E(ϕ0).
(3) ϕ − ϕ0 ∈ C([0, ∞), H1(R)).
(4) If ∆ϕ0 ∈ L2(R), then ∆ϕ ∈ C([0, ∞), L2(R)).

The following two Lemmas 5.2 and 5.3 are a regularization of functions in E . The 
regularization technique was exploited in [13, 27, 2].

For ϕ ∈ E  and s > 0, consider

 
Gϕ

s,Ω(γ) = EΩ(γ) + 1
s2

∫

Ω
|γ − ϕ|2dx.

We see that Gϕ
s,Ω(γ) < ∞ when γ ∈ E  and γ − ϕ ∈ L2(Ω), 

We define H1
0 (Ω) :=

{
w ∈ H1(R) | w = 0 in R \ Ω

}
, and 

H1
ϕ(Ω) :=

{
γ ∈ E | γ − ϕ ∈ H1

0 (Ω)
}

.

Lemma 5.2 (i) There exists a minimizer of Gϕ
s,Ω in H1

ϕ(Ω).

(ii) Denote the minimizer provided by (i) by γs. Then
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 EΩ (γs) ≤ EΩ(ϕ); (47)

 ∥γs − ϕ∥2
L2(Ω) ≤ s2EΩ(ϕ). (48)

(iii) Denote F (z) = z(|z|2 − 1) for z ∈ C. Then

 
−γ′′

s + F (γs) + 1
s2 (γs − ϕ) = 0 in D′(Ω). (49)

For set Ω1 ⊂⊂ Ω, γs ∈ W 2,p(Ω1), ∀p ∈ (1, ∞). Hence, γs ∈ C1,α(Ω1) for 
α ∈ (0, 1).

Proof (i) We see that ϕ ∈ H1
ϕ(Ω). Let (γn)n≥1 be a minimizing sequence for Gϕ

s,Ω in 
H1

ϕ(Ω). Suppose Gϕ
s,Ω(γn) ≤ Gϕ

s,Ω(ϕ) = EΩ(ϕ). This implies 
∫

Ω |γ′
n|2dx ≤ EΩ(ϕ). 

We have

 

∫

Ω
|γn − ϕ|2 dx ≤ s2EΩ(ϕ).

It follows that γn − ϕ ∈ H1
0 (Ω). Then, up to a subsequence, there exists w ∈ H1

0 (Ω) 
such that γn − ϕ ⇀ w weakly in H1

0 (Ω), γn − ϕ → w a.e. and γn − ϕ → w in 
Lp

loc (Ω) with p ∈ [1, ∞]. Let γ = ϕ + w, we have γ′
n ⇀ γ′ weakly in L2(R), together 

with an application of Fatou’s Lemma, we have Gϕ
s,Ω(γ) ≤ lim infn→∞ Gϕ

s,Ω(γn). 
Hence, γ is a minimizer.
(ii) We see that Gϕ

s,Ω (γs) ≤ Gϕ
s,Ω(ϕ) = EΩ(ϕ), then (47) and (48) hold.

(iii) Since d
dh

∣∣
h=0 (Gϕ

s,Ω(γs + hζ)) = 0, ∀ζ ∈ C∞
c (Ω), we then have (49).

Since γs ∈ E , we have |γs|2 − 1 ∈ L2(R). We also have γs ∈ L∞ by Lemma 2.2. 
Using ∥F (γs)∥L∞ ≤ ∥γs∥L∞(∥γs∥2

L∞ + 1), we have F (γs) ∈ L∞(R). We then 
have

 ∥F (γs)∥L2(R) ≤ ∥γs∥L∞(R) ∥|γs|2 − 1∥L2(R),

this gives F (γs) ∈ L2(R). Then F (γs) ∈ L2 ∩ L∞(R). We have γs, ϕ ∈ H1
loc(R). 

We deduce that γs, ϕ ∈ Lp
loc(R) for p ∈ [1, ∞] by 1D Sobolev embedding. Using 

(49) we deduce that γ′′
s ∈ Lp

loc(Ω) for p ∈ [1, ∞]. Then using the elliptic estimates 
([17], Theorem 9.11), we get (iii).  □
The following lemma provides a way of using higher regularity functions to approxi-
mate the functions in E .

Lemma 5.3 Fix ϕ ∈ E  and k ∈ N. For any ε > 0, there exists γ ∈ E  satisfying 
γ′ ∈ Hk(R), E(γ) ≤ E(ϕ) and ∥γ − ϕ∥H1(R) < ε.
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Proof The proof uses Lemma 5.2 and is similar to Lemma 3.5 in ( [13], pp. 170–171). 
 □

Lemma 5.4 (Conservation of the momentum) Let ϕ solves (1) (provided by Theorem 
5.1) with initial condition ϕ0 ∈ E . Then

 P (ϕ(t)) = P (ϕ0) ∀t ∈ [0, ∞).

Proof We first assume that ∆ϕ0 ∈ L2(R). By Theorem 5.1 (4) we have 
ϕx ∈ C

(
[0, ∞), H1(R)

)
. For t, t + t1 > 0, Theorem 5.1 (3) says ϕ(t + t1) − ϕ(t) ∈

H1(R), we thus have ⟨iϕx(t + t1) + iϕx(t), ϕ(t + t1) − ϕ(t)⟩ ∈ L1(R). Using (20) 
we get

 
1
t1

(P (ϕ(t + t1)) − P (ϕ(t))) =
∫

R
⟨iϕx(t + t1) + iϕx(t), 1

t1
(ϕ(t + t1) − ϕ(t))⟩dx.

Taking limit t1 → 0 and using (1),

 
d

dt
P (ϕ(t)) = 2

∫

R

⟨
∂ϕ(t)

∂x
, ϕxx(t) + ϕ(t)

(
1 − |ϕ|2

)⟩
dx. (50)

Since ϕx(t) ∈ H1(R), we have

 

∫

R
⟨ϕx(t), ϕxx(t)⟩ dx = 1

2

∫

R

∂

∂x

(
|ϕx(t)|2

)
dx. (51)

Since |ϕx|2 ∈ L1(R) and ∂
∂x (|ϕx|2)= 2⟨ϕx, ϕxx⟩ ∈ L1(R), hence |ϕx|2 ∈ W 1,1(R). 

Using (51) we get 
∫
R⟨ϕx, ϕxx⟩dx = 0.

We have 2⟨ϕx, ϕ(1 − |ϕ|2)⟩ = − 1
2

∂
∂x (1 − |ϕ|2)2. Since ϕx ∈ L2(R), and 

ϕ(1 − |ϕ|2) ∈ L2(R) by Lemma 2.2, we have ∂
∂x (1 − |ϕ|2)2 = −4⟨ϕx, ϕ(1 − |ϕ|2)⟩ ∈

L1(R), hence (1 − |ϕ|2)2 ∈ W 1,1(R). Thus, 
∫
R

∂
∂x (1 − |ϕ|2)2dx = 0. Then we 

obtain d
dt P (ϕ(t)) = 0 using (50), i.e., P (ϕ(·)) is constant on [0, ∞).

Then we deal with arbitrary function ϕ0 ∈ E . By Lemma 5.3, there exists 
(ϕn

0 )n≥1 ⊂ E  with (ϕn
0 )x ∈ H2(R), ∥ϕn

0 − ϕ0∥H1(R) → 0 as n → ∞ (thus, 
dE (ϕn

0 , ϕ0) → 0). From Theorem 5.1 (1), for any T > 0, dE (ϕn(t), ϕ(t)) → 0 uni-
formly on [0, T] for large n, where ϕn solves (1) with initial condition ϕn

0 . Then we 
have d0 (ϕn(t), ϕ(t)) → 0 uniformly on [0, T]. We deduce that P (ϕn(t)) → P (ϕ(t)) 
by Corollary 4.4. We get P (ϕn(t)) = P (ϕn

0 ) using the conclusion of the first part of the 
proof. Since ∥ϕn

0 − ϕ0∥H1(R) → 0, using Corollary 2.10 we get P (ϕn
0 ) → P (ϕ0) . 

Thus, we have P (ϕ(t)) = P (ϕ0).  □
Using the arguments in [11], we have the following orbital stability result, with 
respect to the semi-distance d0.
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Theorem 5.5 Let 0 < q ≤ π, and let

 Uq =
{

ϕ ∈ E
∣∣ E(ϕ) = Emin(q), P (ϕ) = q

}

be defined as in Proposition 4.6. Then Uq is orbitally stable, under the semi-distance 
d0. That is, for any ε > 0 there exists δ > 0, if d0 (ϕ0, Uq) < δ, then d0 (ϕ(t), Uq) < ε 
for any t > 0, where ϕ(t) is a solution with initial condition ϕ0.

Proof If the converse is true, then there exists ε0 > 0 and ϕn
0 ∈ E  satisfying 

d0(ϕn
0 , Uq) < 1

n  for any n ≥ 1, d0(ϕn(tn), Uq) ≥ ε0 for some tn > 0, where ϕn is 
the solution of (1) with ϕn(0) = ϕn

0 .            

We claim that E(ϕn
0 ) → E min (q), P (ϕn

0 ) → q. Consider an arbitrary subse-
quence of (ϕn

0 )n≥1 (still use (ϕn
0 )n≥1). Using Theorem 4.1, we see that up to subse-

quence and translation, there exist ϕ ∈ Uq such that d0(ϕn
0 , ϕ) → 0. Using Corollary 

4.4 we get P (ϕn
0 ) → P (ϕ) = q and E(ϕn

0 ) → E(ϕ) = E min (q). Because any sub-
sequence of (ϕn

0 )n≥1 includes a further subsequence satisfying the property, we con-
clude that the claim holds.

By Theorem 5.1 (2): E(ϕn(tn)) = E(ϕn
0 ) → Emin(q). Lemma 5.4 implies 

P (ϕn(tn)) = P (ϕn
0 ) → q. Using again Theorem 4.1, we see that up to translation, 

there exist a subsequence (ϕnk
)k≥1 and ϕ1 ∈ Uq satisfying d0(ϕnk

(tnk
), ϕ1) → 0, 

which contradicts d0(ϕn(tn), Uq) ≥ ε0 for all n.  □

A Splitting lemma

The following technical lemma is used to ruling out dichotomy of minimizing 
sequences. The proof is an adaptation of Lemma 3.3 in [27] and Lemma 3.3 in [13] 
to our 1D setting. For, set ΩR1,R2 = B(0, R2) \ B(0, R1).

Lemma A.1 Let R ≥ 1, 1 < A1 < A2 < A. There are ε0 > 0C1, C2, C3 > 0, for 
0 < ε < ε0 and ϕ ∈ E  with EΩR,AR

(ϕ) ≤ ε, there exist ϕ1, ϕ2 ∈ E  and a constant 
θ0 ∈ [0, 2π), such that:

(i) ϕ1 = ϕ on (−∞, A1R], ϕ1 = eiθ0  on [A2R, ∞) ;

(ii) ϕ2 = ϕ on [A2R, ∞), ϕ2 = eiθ0  on (−∞, A1R];

(iii) 
∫
R

∣∣|ϕ′|2 − |ϕ′
1|2 − |ϕ′

2|2
∣∣ dx ≤ C1ε;

(iv) 
∫
R |(|ϕ|2 − 1)2 − (|ϕ1|2 − 1)2 − (|ϕ2|2 − 1)2|dx ≤ C2ε;

(v) |P (ϕ) − P (ϕ1) − P (ϕ2)| ≤ C3ε.
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Proof Let k > 01 + 2k < A1 < A2 < A − 2k. Set δ = 1
2 . Let M(δ, R) be provided 

by Lemma 3.1. Set ε0 = M( 1
2 , k).

Set ε < ε0. Consider ϕ ∈ E  satisfies EΩR,AR
(ϕ) ≤ ε. Using Lemma 3.1,

 
1
2

≤ |ϕ(x)| ≤ 3
2

for R + 2k ≤ |x| ≤ AR − 2k.

ΩA1R,A2R has two connected components (−A2R, −A1R) and (A1R, A2R). We 
consider the lifting of ϕ in the open interval (A1R, A2R). We can write

 ϕ(x) = ρ(x)eiθ(x) in (A1R, A2R)

with ρ, θ ∈ W 1,p ((A1R, A2R)) , 1 < p < ∞ (see Theorem 1 in [10], p. 37). Using 
(9) we have

 

∫

(A1R,A2R)
|ρ′|2dx ≤

∫

ΩA1R,A2R

|ϕ′|2dx ≤ ε, (52)

 

1
2

∫

(A1R,A2R)

(
ρ2 − 1

)2
dx ≤ EΩA1R,A2R

(ϕ) ≤ ε, (53)

 

∫

(A1R,A2R)
|θ′|2dx ≤ 4

∫

ΩA1R,A2R

|ϕ′|2dx ≤ 4ε. (54)

The Poincaré inequality implies that

 

∫

(A1R,A2R)
|f − m(f, (A1R, A2R))|2dx ≤ C (A1, A2) R

∫

(A1R,A2R)
|f ′|2dx (55)

for any f ∈ H1((A1R, A2R)) and

 
m (f, (A1R, A2R)) = 1

(A2 − A1)R

∫

(A1R,A2R)
f(x)dx.

Using (54) and (55), we get

 

∫

(A1R,A2R)
|θ − θ0|2 dx ≤ C (A1, A2) R

∫

ΩA1R,A2R

|ϕ′|2dx ≤ C (A1, A2) Rε,  (56)

where θ0 = m(θ, (A1R, A2R)).
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Consider φ1 ∈ C∞(R) with φ1 = 1 in (−∞, A1], φ1 = 0 in [A2, ∞), and φ1 is 
nonincreasing on R. Consider φ2 ∈ C∞(R) with φ2 = 0 on (−∞, A1], φ2 = 1 on 
[A2, ∞), and φ2 is nondecreasing on R.

We define ϕ1 and ϕ2 by the following:

 
ϕ1(x) =




ϕ(x) if x ∈ (−∞, A1R] ,(
1 + φ1

(
|x|
R

)
(ρ(x) − 1)

)
e

i
(

θ0+φ1
(

|x|
R

)
(θ(x)−θ0)

)
if x ∈ (A1R, A2R) ,

eiθ0 if x ∈ [A2R, ∞) ,

 (57)

 
ϕ2(x) =




eiθ0 if x ∈ (−∞, A1R] ,(
1 + φ2

(
|x|
R

)
(ρ(x) − 1)

)
e

i
(

θ0+φ2
(

|x|
R

)
(θ(x)−θ0)

)
if x ∈ (A1R, A2R) ,

ϕ(x) if x ∈ [A2R, ∞) .

 (58)

Then ϕ1, ϕ2 ∈ E . (i) and (ii) hold.

Using ρ + 1 ≥ 3
2  on (A1R, A2R) and (53), we get

 
∥ρ − 1∥2

L2((A1R,A2R)) ≤ 8
9

ε. (59)

We have

 
d

dx

(
1 + φi

(
|x|
R

)
(ρ(x) − 1)

)
= x

R|x|
φ′

i

(
|x|
R

)
(ρ(x) − 1) + φi

(
|x|
R

)
ρ′.

By (52), (59) and R ≥ 1, we get

 

∥∥∥∥
d

dx

(
1 + φi

(
|x|
R

)
(ρ(x) − 1)

)∥∥∥∥
L2((A1R,A2R))

≤ 1
R

sup |φ′
i| · ∥ρ − 1∥L2((A1R,A2R))

+
∥∥∥∥φi

(
|x|
R

)
ρ′

∥∥∥∥
L2((A1R,A2R))

≤ C
√

ε.

 (60)

Using (54) and (56), we have
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d

dx

(
θ0 + φi

(
|x|
R

)
(θ(x) − θ0)

)
∥L2((A1R,A2R))

≤ 1
R

sup |φ′
i| · ∥θ − θ0∥L2((A1R,A2R))

+
∥∥∥∥φi

(
|x|
R

)
θ′

∥∥∥∥
L2((A1R,A2R))

≤ C
√

ε.

 (61)

From (60), (61) and the definition of ϕ1, ϕ2 it follows that

 ∥ϕ′
1∥L2((A1R,A2R)) ≤ C

√
ε and ∥ϕ′

2∥L2((A1R,A2R)) ≤ C
√

ε.

Then

 

∫

R
||ϕ′|2 − |ϕ′

1|2 − |ϕ′
2|2|dx =

∫

(A1R,A2R)
|ϕ′|2 + |ϕ′

1|2 + |ϕ′
2|2dx ≤ C1ε.

So we have proved (iii).

On (A1R, A2R), we have ρ ∈
[ 1

2 , 3
2
]
. Then

 

((
1 + φi

(
|x|
R

)
(ρ(x) − 1)

)2

− 1

)2

= (ρ − 1)2φ2
i

(
|x|
R

) (
2 + φi

(
|x|
R

)
(ρ − 1)

)2

≤ C|ρ(x) − 1|.
 (62)

From (57), (58) and (62), we see that 
∥∥|ϕi|2 − 1

∥∥
L2((A1R,A2R)) ≤ C

√
ε. We get

 

∫

R

∣∣∣(|ϕ|2 − 1
)2 −

(
|ϕ1|2 − 1

)2 −
(
|ϕ2|2 − 1

)2
∣∣∣ dx

≤
∫

(A1R,A2R)

(
|ϕ|2 − 1

)2 +
(
|ϕ1|2 − 1

)2 +
(
|ϕ2|2 − 1

)2
dx

≤ C2ε.

So (iv) holds.

Using Definition 2.5, (8) and (57), (58), we obtain
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P (ϕ) − P (ϕ1) − P (ϕ2)

=
∫

(A1R,A2R)
Im (ϕ′ − ϕ′

1 − ϕ′
2) dx

−
∫

(A1R,A2R)

d

dx

(
θ −

2∑
i=1

(
θ0 + φi

(
|x|
R

)
(θ(x) − θ0)

))
dx

−
∫

(A1R,A2R)

(
ρ2 − 1

)
θ′dx

+
∫

(A1R,A2R)

2∑
i=1

((
1 + φi

(
|x|
R

)
(ρ − 1)

)2

− 1

)
d

dx

(
θ0 + φi

(
|x|
R

)
(θ − θ0)

)
dx.

 (63)

We have ϕ − ϕ1 − ϕ2 = −e−iθ0 = constant, 

θ1 := θ −
∑2

i=1

(
θ0 + φi

(
|x|
R

)
(θ − θ0)

)
= constant on R\ (A1R, A2R). 

Therefore,

 

∫

(A1R,A2R)

d

dx
(Im (ϕ − ϕ1 − ϕ2)) dx = 0 and

∫

(A1R,A2R)

dθ1

dx
dx = 0. (64)

Using (53), (54) we have

 

∣∣∣∣∣
∫

(A1R,A2R)

(
ρ2 − 1

)
θ′dx

∣∣∣∣∣ ≤ 2
√

2ε. (65)

From (59), (61), (62) we get

 

∣∣∣∣∣
∫

(A1R,A2R)

((
1 + φi

(
|x|
R

)
(ρ − 1)

)2

− 1

)
d

dx

(
θ0 + φi

(
|x|
R

)
(θ − θ0)

)
dx

∣∣∣∣ ≤ Cε. (66)

From (63)-(66) we get |P (ϕ) − P (ϕ1) − P (ϕ2)| ≤ Cε. So (v) holds. □

Corollary A.2 For any ϕ ∈ E , there exist (ϕn)n≥1 ⊂ E  verifying:

(i) ϕn = ϕ on (−∞, 2n], ϕn = eiθn = constant on 
[
2n+1, ∞

)
;

(ii) 
∫
R

∣∣|ϕ′
n|2 − |ϕ′|2

∣∣ dx → 0;

(iii) 
∫
R

∣∣V (|ϕn|2) − V (|ϕ|2)
∣∣ dx → 0;

(iv) P (ϕn) → P (ϕ) as n → ∞.

Similarly, there is a sequence (γn)n≥1 ⊂ E  with γn = ϕ in [2n+1, ∞), γn = eiθn = 
constant in (−∞, 2n]. Moreover, results of (ii)-(iv) hold for (γn)n≥1.
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Proof Let εn = ER\B(0,2n)(ϕ), so we have εn → 0 as n → ∞. Using Lemma A.1 
with R = 2n and A = 2, we obtain two functions ϕn

1 , ϕn
2  fulfill properties (i)-(v) in 

Lemma A.1. Let ϕn = ϕn
1 , then (ϕn)n≥1 satisfies (i)-(iv) above. Similar results hold 

for (γn)n≥1. □
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