Quantum Machine Intelligence (2023) 5:24
https://doi.org/10.1007/s42484-023-00111-6

RESEARCH

®

Check for
updates

Quantum computing for a profusion of postman problem variants

Joel E. Pion'2 . Christian F. A. Negre? - Susan M. Mniszewski’

Received: 12 August 2022 / Accepted: 18 April 2023 / Published online: 3 July 2023

© The Author(s) 2023

Abstract

In this paper we study the viability of solving the Chinese Postman Problem, a graph routing optimization problem, and
many of its variants on a quantum annealing device. Routing problem variants considered include graph type, directionally
varying weights, number of parties involved in routing, among others. We put emphasis on the explanation of how to convert
such problems into quadratic unconstrained binary optimization (QUBO) problems. QUBO is one of two equivalent natural
paradigms for quantum annealing devices, the other being the Ising Model. We also expand upon a previously discovered
algorithm for solving the Chinese Postman Problem on a closed undirected graph to decrease the number of constraints
and variables used in the problem. Optimal annealing parameter settings and constraint weight values are discussed based
on results from implementation on the D-Wave 2000Q and Advantage. Results from classical, purely quantum, and hybrid

algorithms are compared.

Keywords D-Wave - Quantum annealing - QUBO - Routing problems

1 Introduction

Quantum annealing exploits the quantum-mechanical effects
of superposition, entanglement, and tunneling to explore the
energy landscape in an efficient manner Lanting et al (2014);
Santoro and Tosatti (2006) when sampling from energy-
based models. NP-hard combinatorial optimization problems
are formulated as either an Ising model or quadratic uncon-
strained binary optimization (QUBO) problem that can be
run on a D-Wave quantum annealer (QA). QUBO as well as
Ising model are formulations that both belong to the class of
binary quadratic models (BQM). A BQM is a problem con-
sisting of a collection of binary-valued variables (variables
that can be assigned two values, for example -1, 1) with asso-

X Joel E. Pion
joelepion@ucsb.edu

< Susan M. Mniszewski
smm@]lanl.gov

Christian F. A. Negre
cnegre@lanl.gov

Computer, Computational, and Statistical Sciences Division,
Los Alamos National Laboratory, Los Alamos, NM, USA

Mathematics Department, University of California, Santa
Barbara, CA, USA

Theoretical Division, Los Alamos National Laboratory, Los
Alamos, NM, USA

ciated linear and quadratic biases. The Ising model objective
function is

O, J,s) =ZhiSi+ZJijSiSj, (D
i

i<j

where s; € {—1, +1} are the spin variables, while /; and J;;
are, respectively, biases on, and strengths between spins.

Quantum computers use qubits to encode information.
Their behavior is governed by the laws of quantum mechan-
ics. This allows a qubit to be in a “superposition” state which
means it can be both a “—1" and a “+1” at the same time. An
outside event causes it to collapse into either. The anneal-
ing process results in a low-energy ground state, g, which
consists of an Ising spin for each qubit.

While solving a combinatorial optimization problem, QAs
are typically limited by the number of variables which can be
represented and embedded in the hardware graph topology.
During the embedding process each logical variable maps to
a chain of qubits. The D-Wave 2000Q QA uses a Chimera
topology with more than 2000 qubits and more than 6000
couplers. In the Chimera topology the qubits per unit cell are
8. Each qubit is connected to 4 orthogonal qubits through
internal couplers and each qubit is coupled to 6 different
qubits. This allows a fully connected graph (or clique) of 64
nodes (or variables) to be embedded in the sparse Chimera
graph. The newer D-Wave Advantage uses a Pegasus topol-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-023-00111-6&domain=pdf

24 Page2of 20

Quantum Machine Intelligence (2023) 5:24

ogy with over 5000 qubits and more than 35, 000 couplers.
In the Pegasus topology the qubits per unit cell are 24. Each
qubit is coupled to 15 different qubits. The largest embed-
dable clique size is 177 McGeoch and Farré (2021).

QAs proved to be useful for solving NP-hard optimization
problems such as those involved in graph theory Mniszewski
et al (2021); Negre et al (2020); Ushijima-Mwesigwa et al
(2017) and machine learning Dixit et al (2021); O’Malley
et al (2018) among others. The QUBO formulation is most
commonly used for optimization problems. The objective
function is

0(0.x) =Y Qiixi+ Y _ Qijxixj,)

i<j

where x; € {0, 1} encodes the inputs and results. The sym-
metric matrix, @, is formulated such that the weights on
the diagonal correspond to the linear terms, while the oft-
diagonal weights are the quadratic terms. Ising model to a
QUBO model transformation is related through s = 2x — 1.
Constraints on current D-Wave architectures include lim-
ited precision and range on weights and strengths, sparse
connectivity, and number of available qubits. These con-
straints impact both the size of the problems that can
be run and the solver performance. A QUBO matrix is
mapped onto the hardware using an embedding algorithm
such as minorminer D-Wave Systems Inc. (2021). A hybrid
quantum-classical approach is required when the number of
problem variables is too large to run directly on the D-Wave
hardware. In that case, the quantum-classical gbsolv sampler
is used Booth et al 2017. Other efforts have also explored rel-
evant work on experimental classical, quantum, and hybrid
methods using QA Asproni et al (2020); Bass et al (2021).
This paper presents a routing problem known as the Chi-
nese Postman Problem (CPP) as well as many of its variants
in the context of finding solutions with a QA. The details for
what the CPP is and how this will relate to QA is discussed
in detail in Sect. 3, but let us provide a brief explanation now.
Given a graph, the type of graph with vertices and edges, the
most classic version of the CPP problem is the one which
asks for the most efficient walk in the graph which traverses
every edge. The careful reader may note this problem is quite
similar to the more famous Traveling Salesman Problem.
The solutions to the CPP have many real-world applications,
some of which are discussed in Sect.3.1. The applicability
of the CPP to real world problems is increased when one
allows for more flexibility, such as requiring only a subset
of edges be traversed, or more constraints, such as a partial
order on edge traversals. The variants of the problem rele-
vant to the paper are defined in more detail in Sect. 3.1. Once
one begins to include some of these variants to the CPP, solv-
ing the CPP can become computationally difficult classically.

@ Springer

The primary aim of this paper is to explore ways to solve the
CPP problem on a QA and test if such methods are effective.

The following is an outline for how the paper has been
organized. In Sect. 2, we provide some graph theory defini-
tions necessary to understand the problem, followed by an
overview of the history of the CPP. In Sect.3.1, we define
many variants of the Postman Problem along with potential
applications. Next, in Sect.3.2, we introduce the Quantum
Annealing Workflow for solving the CPP as a QUBO on
a QA. In Sect.3.3, a CPP QA algorithm first put forth by
Siloi et al 2021 for solving the Closed Undirected CPP is
discussed with potential modifications. Then, we introduce
a novel algorithm for using a QA to solve a large class of
CPP variants in Sects.3.4 and 3.5. Finally, we show results
from our implementations and discuss observations from our
experiments in Sects. 4 and 5 respectively.

2 Preliminaries
2.1 Graph algorithm terminology

The following are definitions about graphs and objects used in
the graph algorithms discussed throughout this paper Bondy
and Murty (2008).

Definition 1 (Graph) A graph, G, is atriple (V, U, D) where
V C N is a non-empty finite subset, U C {([a, b], ¢)|a, b €
V.a # b,c € RT)?} with ¢ = [Wyp, Wpul, and D C
{((a,b), Wap)la,b € V, W, € RT}. We shall refer to
V as vertices, U as undirected edges, and D as directed
edges. Undirected edges and directed edges are labeled as
[a, b], (a, b), respectively, while W, is the weight of the
edge from vertex a to vertex b. We refer to E = U |J D as
the edges. Note (x, ..., *) is used to denote an ordered tuple
and [, ..., %] is used to denoted an unordered tuple.

Definition 2 (Vertex Adjacency) In a graph, G, vertexa € V
is said to be adjacent to vertex b € V if there exists some
Wa.b, Whq € RT sothat ([a, b], [Wa.p, Wp4]) € U or there
exists some W, , € R so that ((a, b), W,5) € D.

Definition 3 (Edge Adjacency) In a graph, G, the edge
labeled [a, b] or (a, b) is adjacent to the edge labeled [c, d]
or (c,d) if the edges may be written, up to reordering of
unordered tuples, so that b = c.

Definition 4 (Walk) A walk of length n in a graph, G, is a
tuple of lengthn+1, (vo, ..., v,), where v; is a vertex adjacent
to vj41 for all i.

Definition 5 (Open/Closed Walk) A walk in a graph is a
closed walk if the first and last vertex in the walk are the
same. Otherwise the walk is called an open walk.

Quantum Machine Intelligence (2023) 5:24

Page3of20 24

Definition 6 (Walk Weight) The walk weight of a walk is the

sum of all the weights of the edges traversed in the walk.
n—1

Given a walk (v, ..., v,), the walk weight is > W,
i=0

i Vit

Definition 7 (Trail) A trail is a walk for which no edge is
repeated within the walk.

Definition 8 (Circuit) A circuit is a closed trail.

Definition 9 (Eulerian Circuit) An Eulerian circuitis a circuit
which includes every edge in the graph.

Definition 10 (In/Out-Degree) A vertex, v, in a graph, G, has
in-degree equal to the number of vertices adjacent to v, and
out-degree equal to the number of vertices v is adjacent to.
In other words, the in-degree of the vertex v is the number of
edges which end in v, up to reordering of unordered tuples.
The out-degree is similar in reverse.

Definition 11 (Degree) A vertex, v, in an undirected graph,
G, has degree equal to its in-degree and out-degree.

Definition 12 (Strongly Connected) A graph G is said to be
strongly connected if for every pair of vertices, a,b € V,
there exists a walk in G from vertex a to vertex b.

Definition 13 (Partially Ordered Set) A pair (X,<) such that
X isaset, § C X x X (Cartesian product), and x < y for
x,y € Xifandonlyif (x, y) € S,is called a partially ordered
set if the following hold for all x, y, z € X:

1. x <x
2.x<yandy<x — x=y
3.x<yandy<z = x <z
Definition 14 (Perfect Pairing) Let S be a finite set with an
even number of elements. Then a perfect pairing of S is a
collection of subsets of S, A;, such that:
1. |A;| =2 foralli
2. AinAj=0foralli # j
3. UAi =S

Note our definition of graph precludes multi-graphs and
loops. Although if one is very careful with notation, all the
concepts in the paper should extend to multi-graphs. One
could include loops by adding an additional vertex to the
loop edges to eliminate the loops. We shall assume hence-

forth that all our graphs are strongly connected. Note that in
an undirected graph the property connected implies strongly

connected and so one may just assume the weaker property,
connected, in the undirected case. This strongly connected
assumption is used to guarantee the existence of a solution to
the CPP. It is worthy of note that some not strongly connected
graphs may also have solutions to the CPP and the methods
described in this paper would apply in those situations as
well. Though our method may have trouble determining if
such a solution exists.

2.2 History

The CPP was first posed as a combinatorial optimization
problem by the then lecturer at Shandong Normal Univer-
sity, Mei-Gu Guan, in 1960. At that time China was trying
to modernize itself as a country and mathematicians were
encouraged to work on real-world applications. The original
phrasing of the CPP is as follows:

“A postman has to deliver letters to a given neighborhood.
He needs to walk through all the streets in the neighborhood
and back to the post-office. How can he design his route
so that he walks the shortest distance? Grotschel and Yuan
(2010)"

This problem is usually modeled as a graph. One does
this by considering road intersections as vertices and roads
as graphs. Also one should consider the post office itself as
a vertex. One then adds weights to the edges based on how
long it takes to deliver the mail on that street. The historical
version of the CPP was then converted into a question about
the least weight walk in the graph which uses every edge.
As we will see in Sect. 3 there are many ways to modify this
question to enhance its range of uses in real-world problems.

3 Methods
3.1 Variants and applications

The CPP is a general term for a wide variety of routing
problems. Each variant of the CPP is often created to opti-
mize a specific application or technical consideration in
mind Comaklisokmen et al (2019); Thimbleby (2003). In
Table 1, we present the list of CPP variants covered orga-
nized by the general category that they belong to and provide
the associated specifics of the variant within the category.
This is followed by details of each variant from a graph per-
spective, as well as an example application.

Variant 1 (Undirected CPP) Given an undirected graph, G,
find a walk in G which traverses every edge in G with the
minimal walk weight.

Application 1 (Neighborhood Pothole Inspection) Imagine
one wished to survey the road conditions in a large neigh-
borhood with bidirectional roads. One could represent the

@ Springer

24 Page4of 20

Quantum Machine Intelligence (2023) 5:24

Table 1 Overview of CPP variants

Category Variant (number) Specification
Edge Type Undirected CPP (€)) undirected edges
Directed CPP) directed edges
Mixed CPP 3) directed and undirected edges
Walk Start/Stop Choice Closed CPP “) start equals stop
Open CPP 5) start and stop arbitrary
Open with Endpoints CPP (6) specified start and stop
Edges Required Rural Postman Problem @) traverse only a specified subset of
edges
Directional Edge Weights Windy Postman Problem 8) edge weight varies by direction
Number of Walks k-Postman Problem 9) use multiple walks to traverse
graph
Service versus Traversal Serviced-Based Traversal Postman Problem (10) cost to service edge may differ
from cost to traverse
Hierarchical Postman Problem (12) partially ordered set given for edge
service order
Turning Costs Turning Challenge Postman Problem (11) additional weights added based on

sequential edges in walk

neighborhood as an undirected graph with intersections as
vertices and the roads as edges and solve the Undirected
CPP.

Variant 2 (Directed CPP) Given a directed graph, G, find a
walk in G which traverses every edge in G with the minimal
walk weight.

Application 2 (Downtown Pothole Inspection) Imagine one
wished to survey the road conditions of a city’s downtown
containing only one-way streets. One could represent the
downtown area as a directed graph with the intersections as
vertices and the roads as edges and solve the Directed CPP.

Variant 3 (Mixed CPP) Given a mixed graph, G, find a walk
in G which traverses every edge in G with the minimal walk
weight.

Application 3 (Town Pothole Inspection) Imagine one wished
to survey the road conditions of an entire town which con-
tained one-way streets, two-way streets (e.g. a highway with
lanes), and bidirectional streets (e.g. a residential street with
no lanes). One could represent the town as a mixed graph
with the intersections as vertices, the one/two-way streets as
one/two directed edges, and the bidirectional streets as undi-
rected edges, and solve the Mixed CPP.

The above variants determine what types of graphs need
to be considered for the problem, which can drastically effect
the computational complexity of the problem. Both the undi-
rected and the directed variants are solvable classically in
polynomial time, while the mixed variant is NP-Hard Comak-
lisokmen et al (2019). For any CPP one will need to choose a

@ Springer

type of graph to work over as well as where the postman will
need to start and/or stop their route. When solving the CPP
classically, the start/stop choice will change what algorithm
is needed Thimbleby (2003).

Variant 4 (Closed CPP) Given a graph, G, find a walk in G
which traverses every edge in G such that the start and stop
are on the same vertex, with a minimal walk weight for such
a walk.

Application 4 (Tunnel Inspections) Imagine a mine operator
wishes to inspect the integrity of the tunnels in her mining
operation. The mine has only one entry/exit for its vast and
extensive network of tunnels. One could represent the tunnels
as edges and the tunnel junctions as vertices and solve the
Closed CPP.

Variant 5 (Open CPP) Given a graph, G, find a walk in G
which traverses every edge in G with the minimal walk
weight.

Application 5 (Museum Cleaning Robot) Imagine a museum
wishes to clean their floors using a robot and has two docking
stations for the robot start and stop at. The museum wishes
to know where to place these docking stations as well as
what walk the robot should take so as to clean the museum
efficiently. One could represent the rooms as vertices and the
hallways between them as edges and solve the Open CPP.

Variant 6 (Open with Endpoints CPP) Given a graph, G, and
a starting vertex, vy, and/or a stopping vertex, v, find a walk
in G which traverses every edge in G with the minimal walk
weight for such walks. This walk starts at vy if given and
ends at vy if given.

Quantum Machine Intelligence (2023) 5:24

Page50f20 24

Application 6 (Botanical Garden Picnic) Imagine you wish
to see every part of the Botanical Garden as efficiently as
possible. You may wish to just start at the beginning and
finish at the exit or you may wish to start at the beginning
and finish somewhere in the garden (you don’t care where) so
as to enjoy a picnic. One could represent the paths as edges
and the path junctions as vertices and solve the Open with
Endpoints CPP.

Now that all of the required variant choices have been laid
out, we will introduce some optional variants to modify the
CPP. Inclusion of these variants allow the CPP to be applied
in a much wider array of applications. Many of the variants
can be applied in conjunction with one another so as to be
applicable in an even broader set of use cases.

Variant 7 (Rural Postman Problem) Given a graph, G, and a
subset, R, of the edges of G, find a walk in G which traverses
every edge in R with the minimal walk weight.

Application 7 (Traveling Salesmen) Imagine you were a trav-
eling salesmen who wished to sell your wares in every capital
city in every state of the United States of America. One could
consider the graph defined with every capital city as a vertex
and with an edge (weighted by cost to travel) between every
pair of capital cities. Then one could modify this graph by
replacing each vertex with two vertices (each with all the
original vertices edges) with an edge of weight zero connect-
ing them. Considering only the added edges of weight O as
our R, one could solve the Rural Postman Problem.

Variant 8 (Windy Postman Problem) Given a graph, G,
where W, ;, may not equal Wj , for undirected edges, as
in definition 1, find a walk in G which traverses every edge
of G with minimal walk weight.

Application 8 (Injured Hiker) Imagine a rescue team is try-
ing to find an injured hiker on the trails in a mountain range.
One could represent the trails as undirected edges and the
trail junctions as vertices. One could then account for the
differences in difficulties of going uphill versus downbhill
by assigning different directional weights to the undirected
edges and solve the Windy Postman Problem.

Variant 9 (k-Postman Problem With Capacity) Given a
graph, G,k € N, and {cy, ..., cx} C (RU {oo})k, find k walks
in G such that each edge in G is covered by at least one of
the k walks, the i walk weight is less than or equal to ¢; for
i €{l, ..., k}, and the sum of walk weights are minimized.

Application 9 (Postal Service) Imagine you were in charge
of your local area postal service and had 10 postal agents/
vehicles in your employ. You need to deliver mail to every
street in your region in an efficient way, but no postal worker
may work more than an 8 h workday by law. One could rep-
resent every street as an edge and every street intersection as
a vertex and solve the k-Postman Problem With Capacity.

Variant 10 (Service-Based Traversal Postman Problem)
Given a graph, G, modify the graph so as to create a duplicate
of each edge, without duplicating any vertices. The dupli-
cated edges may have a different weight. Note that each
pair of vertices which had only one edge now has two edges
between them. All the original edges will be called servic-
ing edges, while all the added edges will be called traversal
edges. One should then solve the Rural Postman Problem on
all the servicing edges.

Application 10 (Pipe Repairman) Imagine your were a pipe
repairman and you had an extensive network of pipes to
repair. It takes you 1h to repair 10 meters of pipe and 10
minutes to pull your pipe fixing supplies that same distance.
One could represent the pipes as edges and the pipe-splitting
junctions as vertices and solve the Service-Based Traversal
Postman Problem.

Variant 11 (Turning Challenge Postman Problem) Given a
graph, G, and a collection of 3—tuples in the form (edge-in,
edge-out, bonus weight), we shall, with regard to the collec-
tion of 3—tuples, sum the corresponding bonus weights for
each instance where edge-in is followed by edge-out in the
walk. We will call this sum, extra weight. Find a walk which
traverses every edge in G where the sum of the walk weight
and extra weight is minimized.

Application 11 (Street Cleaner) Imagine your job was to
clean the streets in a North American city where there are
lights and stop-signs. In general, it is faster to go right or
straight than it is to make a left turn or a u-turn. One could
form a collection of 3—tuples by, for each road, r, making
3—tuples of the form (r, s, w) for each road, s, which could
follow r, with w being the added time it takes to make such
a turn. Then one could represent each road as an edge and
each intersection as a vertex and solve the Turning Challenge
Postman Problem.

Variant 12 (Hierarchical Postman Problem) Given a graph,
G, for which the edges, E, have a partial ordering, find a
Service/Traversal Postman Problem solution constrained by
the edges needing to be serviced in an order congruous to the
partial order.

Application 12 (Forgotten Packages) Imagine you were a
delivery person in a town and yesterday several packages
were delivered to the wrong address. Now you must deliver
today’s packages as well as pick-up and redeliver the misde-
livered packages. One could represent roads as edges and the
intersections as nodes. Then one could place a partial order-
ing on the edges so that a street with a package which was
misdelivered yesterday must come before the street with the
intended destination of the package. One could then solve
the Hierachical Postman Problem.

@ Springer

24 Page 6 of 20

Quantum Machine Intelligence (2023) 5:24

3.2 Foundations for solving a problem on a
quantum annealing device

At its core, QAs are machines which are meant to solve one
kind of problem extremely well. Fortunately, that problem is
NP-Complete Lewis Glover (2017) and many useful prob-
lems may efficiently be converted into an instance of this
problem. Ising model and QUBO formulations of the afore-
mentioned problems can be solved on a QA. We will frame
the CPP problem as a Polynomial Version QUBO (see Defi-
nition 16 below).

Definition 15 (Matrix Version: QUBO Problem) Given Q €
M, (R), find

min{xT Ox}
constrained by
X1
x = | | with x; € {0, 1) for all i.
Xn

Definition 16 (Polynomial Version: QUBO Problem) Given
qij € Rfori, j € {1, ..., n}, find

n n
min{z Zqijxixj}
i=1 j=1
constrained by x; € {0, 1} for all .

Once one realizes that any binary variable x € {0, 1} has
the property x> = x Glover et al (2022), the equivalence of

the two versions becomes clear upon inspection. Now that we
have defined what a QUBO is, we outline the individual steps
involved in solving a problem with a QUBO formulation on
a QA (see Fig. 1).

3.3 Closed undirected CPP

According to a literature review completed by the authors,
the first and only previous work done on the subject of using
a QA to solve the CPP in any form was done by Siloi et al.
in “Investigating the Chinese Postman Problem on a Quan-
tum Annealer” Siloi et al (2021) which solved the Closed
Undirected CPP.

Below we outline our implementation for solving the
Closed Undirected CPP (variants 1, 4) in Algorithm 1. Note
the Closed Undirected CPP is the Closed CPP on an Undi-
rected graph. The reason why this algorithm works is a
consequence of the following two theorems.

Theorem 1 (Euler Circuit Criterion) Given an undirected
graph, G, G contains an Eulerian circuit if and only if every
vertex in G is of even degree.

Upon inspection it should be obvious that if an Eulerian
circuit exists in your graph, then, that Eulerian circuit will
be an optimal solution. Additionally, if there exists an Eule-
rian circuit, then it can be found in polynomial time Ye and
Yu (2011). An example implementation of the algorithm for
finding an Eulerian Circuit is in NetworkX Hagberg et al
(2008).

Definition 17 (Perfect Pairing Weight) Let G be a graph. Let
S be a subset of vertices of G such that there exists a perfect

Choose Constraint
[Target Problem Jflnput Data%[Preprocess Problem]iDatag)[Weights]7

Data + Constraint Weight Choices

A

*)[Convert to QUBO J*QUBOH[Solve On QA J*Binary Vector—)[Translate Solution J

Solution Data

No

Is Solution Valid?

Yes

Fig.1 Quantum Annealing Workflow

@ Springer

Is Solution Good?

No

Quantum Machine Intelligence (2023) 5:24

Page70f20 24

Algorithm 1 Solving the Closed Undirected CPP on a QA.

1: procedure ROUTING(G)

2: Find all nodes of odd degree in G
3 Create QUBO for G, QUBO(G)
4 Run Quantum Annealing Process on QUBO(G) > Do N times
5: Identify lowest energy solution, S

6: Intepret S as perfect pairing amongst odd degree nodes of G

‘7.

8

> G is an undirected graph

if S is not a valid solution then

Modify QUBO
9: GOTO Line 4
10: end if

11: Create new graph G’ by adding perfect pairing edges to G

12: Find Eulerian Circuit in G, E’

13: Replace added edges in E’ with corresponding path to produce
path E

14: end procedure

pairing, P, of S, {(a1, b1), ..., (an, by)}. Let W; be the weight
of the minimal path between a; and b;. Then the perfect
pairing weight of P is > W;.

Theorem 2 Let G be an undirected graph. Let W = the sum
of all the edge weights in G.

1. For every perfect pairing of the vertices of odd degree
one can make a closed walk in G which traverses every
edge in G and whose walk weight minus W is equal to
the perfect pairing weight

2. For every closed walk in G, there is a perfect pairing of
the vertices of odd degree in G such that the walk weight
minus W is greater than or equal to the perfect pairing
weight

Proof Let G be an undirected graph. Let us begin with part
one. Suppose we have a perfect pairing of the vertices of
odd degree labeled as {(ag, by), ..., (an, b,)}. Let W; be the
weight of the minimal path from a; to b;. Now consider a
new graph G’ defined the same as G, but with precisely one
edge added between each pair of vertices a;, b; with weight
W;. Note that G’ may be a multi-graph. By construction,
every vertex in G’ is of even degree, so by the Euler Circuit
Criterion we know there exists an Eulerian circuit in G'. Now
we may pipe this Eulerian circuitin G’ to a closed walk which
traverses every edge in G. We do this by taking the same walk
in G that was given to us in G’, except when told to traverse
one of the added edges between an a; and a b;, one instead
traverses a minimal path between a; and b;. One observes
that this closed walk does indeed traverse every edge in G
and has walk weight equal to W + the perfect pairing weight
as required. O

Now we shall prove part two. Suppose we have a closed
walk in G which traverses every edge in G. Choose one
instance of each edge in the closed walk and label them as

used. The remaining edges in the walk will be referred to as
reused edges. Let v be a vertex of odd degree in G. In a closed
walk, the number of times the walk enters a vertex must equal
the number of times the walk exits a vertex. Because of this
we know that, counting repetitions, the walk must use an
even number of each vertex’s edges. As every edge is used
in the walk and v has an odd number of edges we conclude
at least one of v’s edges is reused. In fact the key fact is that
we conclude v has an odd number of reused edges. Similarly
a key fact is that we know that any even degree vertex must
have an even number of reused edges. Note this is all counted
with multiplicity. Choose one reused edge from v and give
it the label of used. From now on treat v like it is a vertex
of even degree since it only has an even number of reused
edges left. If this connects to a vertex of odd degree, say w,
then we are done with this step. Note w would have an even
number of reused edges. If this connects instead to a vertex
of even degree, as the edge is being reused, by similar logic
as before, we know that in fact this even degree vertex must
have an edge reused not yet chosen in this algorithm since
it currently has an odd number of reused edges. Note that
it could be the same edge as previously but counted as an
additional repetition from the closed walk. Choose a not yet
accounted for reused edge and now label it as used. Then
once again we reach a vertex of odd degree or even degree.
If the vertex is of odd degree then we are done with this
step. If of even degree do the previous step again. We know
this algorithm must terminate by the finiteness of the walk.
Thus eventually we get a walk from v to w, both vertices of
odd degree in G, built from reused edges in our given closed
walk. Note this walk weight is at least as much as the minimal
walk weight between v and w. From here on we will treat v
and w as vertices of even degree. Additionally we will treat
all the previously reused edges, counting with multiplicity,
from our walk between v and w as used as described above.
Note at this point v and w both have an even number of reused
vertices currently. If there are more vertices of odd degree we
may repeat the previous algorithm. This new process must
terminate since there are only a finite number of vertices of
odd degree in G. The outcome of this algorithm is a perfect
pairing. It is clear from construction that the weight of the
walk minus W is at least as large as the perfect pairing weight
as required.

Corollary 3 Given an undirected graph, G, and a perfect
pairing of the vertices of odd degree in G, whose perfect
pairing weight is minimal among such perfect pairings, then
one can construct an optimal solution to the Closed Undi-
rected CPP.

We now know we may solve the Closed Undirected CPP
problem by finding a minimal weight perfect pairing. The
process of finding a minimal weight perfect pairing is the
one we will solve on the QA.

@ Springer

24 Page 8 of 20

Quantum Machine Intelligence (2023) 5:24

Let G be an undirected graph with vertices of odd degree,
{v1, ..., vg}. Let x; ; be a binary variable for i, j € {1, ..., d}
with i < j. Note we will use x; ; and x; ; to represent the
same binary variable. The variable x; ; with value one or zero
represents, respectively, vertices v;, v; being paired together
or not paired together. The symbol W; ; will be a constant
representing the weight of the shortest path between v; and
v;. The symbol P will be a positive constant whose use will
be described shortly. The QUBO problem is then defined as:

2

d—1 d d d
min Z Z Wi,jxi,j)+P(Z 1_in,j
i=1 j=i+1 i=1 j=1
J#i
To understand this QUBO, let us examine it term by term.

First consider:)

d d
> {1-3
i=1 j=1

J#i
We shall label this part of the equation as C, for constraint.
This part of the equation is to make sure a perfect pairing
is formed. If C equals zero, we may interpret this as: “for

every i, the vertex v; is paired with exactly one vertex v;
with j # i.” Now we consider:

d—1 d
min Z Z Wi jxi,j

i=1 j=i+l

We shall label this part of the equation M for minimize. Let
us assume that C =0 and thus we have a perfect pairing. Then
the minimum value of M, and hence the whole QUBO, will
correspond to the perfect pairing amongst the odd degree
vertices which adds the least total weight. In other words,
the outputs of our binary variables, x; ;, which correspond to
the minimal value of the QUBO, will in turn correspond to a
solution of the Closed Undirected CPP. Note also the number
of variables in this QUBO is easy to compute as it is just (”21)
where once again, d is the number of vertices of odd degree;
also, the variables in the QUBO are not fully connected. Now
we shall talk about the use and importance of the constant
P. As we get a perfect pairing if and only if C = 0, we must
make sure that the QUBO will be penalized for breaking
this condition. Consider for a moment a new graph with two
vertices and one edge between them with Wy > > 2, and that
we set P = 1. If we set x12 = 0, we won’t get a perfect
pairing, but we will minimize the QUBO overall. This is
because relatively C will increase by 2 while M decreases
by more than 2 by switching x; 2 = 1 to x;2 = 0. Thus
we see the need for a constant P since it will increase the
cost incurred by breaking the condition C = 0. In theory, P

@ Springer

should be set equal to some arbitrarily large number as we
require that C = 0. This does not work in practice because
when setting up for the annealing process, all binary variable
constants are scaled to fit into an interval. Due to a limit
on the sensitivity of the method, values sufficiently close to
zero will be treated as zero. In practice the value that should
be chosen for P will depend on the graph itself and should
be large enough to force C = 0, but small enough to not
overshadow the M component.

As a quick example, the QUBO one would get from the
graph in Fig. 2 would be simply,

9x35 + P(1 — x35)%,

solution: [2, 4,5, 3,2,5,0,1, 2]

Fig.2 Undirected CPP algorithm example. The first graph introduces
an example of an undirected weighted graph. Below it is a solution to
the Undirected CPP for that graph presented in vertex order notation.
The way to read this solution is to start at the first vertex in the list and
then traverse the edge which connects to the next vertex in the list. One
should continue this process until one reaches the end of the list. The
second graph is the same as the first, except one extra edge was added
with the weight of the shortest path between those two vertices. That
edge was added because it makes every vertex have even degree and
has the smallest walk weight between the two vertices

Quantum Machine Intelligence (2023) 5:24

Page90of20 24

which if we let P = 10, for example, could be written as
10(x3.5)> — 11x3.5 + 10.

Upon inspection one can see that the value of x3 5 which
minimizes this equation is x3 5 = 1 for a total value of 9 as
expected.

3.4 A General Approach to the Chinese Postman
Problem

We now outline an algorithm for solving a more general class
of CPPs on a QA. We show how to solve variants 1 through 8
from Sect. 3.1 and discuss results for those variants in Sect. 4.
Algorithm 2 is an outline of the general algorithm.

Algorithm 2 Quantum Annealing for a CPP

1: procedure ROUTING(G)
2: Collect Graph Data

Choose maximum length of walk

Create QUBO for G, QUBO(G)

Run Quantum Annealing Process on QUBO(G) = Do 10-10000
times

ok

6: Identify lowest energy solution, S
7: Intepret S as walk in G

8: if Sis not a valid solution then
9: Modify QUBO

10: GOTO Line 5

11: endif

12: end procedure

Now we shall explain the construction of the QUBO. Let
G be a graph, directed, undirected or mixed. Let V be the set
of vertices in G. Let i,4 € N. The constant i,,,, represents
the maximum number of edges we will allow to be traversed
in the walk and we will discuss how to choose i,,, later. Our
binary variables will be ;e; and 2rs; for j,k € V, such
that there is an edge going from vertex j to vertex k, i €
{0, ..., imax}, and r € {0, ..., ceiling(log(imax))}. Let W; ;
be the weight of the edge going from vertex i to vertex j.
The mental picture we will use to guide our thinking is that
of choosing the steps in our path in an ordered manner. The
variable ;e; i taking the value of one in the solution to the
QUBO will correspond to an instruction to traverse the edge
going from vertex j to vertex k in the i step of the walk.
The variables, 55 ., are slack variables, which are helpful in
setting up some of our inequality conditions. Recall that we
are presetting the number of steps we will take in the walk
in our graph. As we do not know a priori how many steps
we need for our walk, let us assume we overestimate. To
compensate for this overestimation, we will allow repetition
in the steps we take in our walk so as to allow a shorter walk
than the one predetermined in our set-up. For example, ;e; x
and ;4 1e; ; will be allowed to simultaneously evaluate to 1.

Using this set-up, let us talk about what conditions and
constraints need to be met to create a legal path. First, at any
given step in our walk, the walk should traverse precisely
one edge. This can be phrased as: for all i, there is a unique
pair, (j, k), such that ;e; = 1. Written as a constraint for a
QUBO this is,

2

Cone_edge = Z 1— Zie./,k

i ok

The next constraint is that we do not want our walk to ’jump’
around in our graph, we only want graph walks. To do this
we will require that if ;e; x and ;y1e, s are both one, then
either k = r and the walk is legal at this location or j = r
and k = s and we have a repetition edge whose necessity for
existence was explained above. Written as a constraint for a
QUBO this is,

Cadjacency = Z Z Z i€jk " (i+1)€r,s-
ik r.s

r ;2k
and

r#j or s#k

The next constraint is that we want to make sure that every
edge in the graph which is required to be included into the
walk is included. This will be phrased as: for any directed
edge from vertex j to vertex k which should be included in
the walk, there exists at least one i such that ;e; x = 1. And
for any undirected edge between vertex j and vertex k, there
exists at least one i such that ;e; x = 1 or jer,; = 1. Itis
for this kind of inequality that we need the slack variables.
Written as a constraint for a QUBO this constraint is:

2
Crequired_directed = Z <<] _Z(iej,k)) +er2" Sj,k) s
i r

(k)

Crequired_undirected = Z ((1 - Z(iej,k + iek,ﬂ)

[j.k] i

2
+ Z 2r2rSj,k) , and
r
Crequired = Crequired_directed + Crequired_undirected-

The next constraint which may occur is a required start
and/or stop location. Unlike the constraints above which
increase the required connectivity between variables in the
QUBO, which makes it more difficult to embed on the hard-
ware, we can use this constraint to decrease the number of
variables needed and also decrease the connectivity between
variables in the QUBO. We can do this by not creating
unneeded variables, which means we would also omit those
variables from the constraints above. If a start location is

@ Springer

24 Page 10 0f 20

Quantum Machine Intelligence (2023) 5:24

required then we shall not include variables ;e; x for which
the edge (j, k) cannot be reached in i steps, accounting for
the type of repetition we spoke of previously. This is done
similarly at the end of the walk if an end location is speci-
fied. Let us consider as an example the first graph in Fig.2
and let us specify the starting vertex to be vertex 3. Then for
the variables, ;e; , for which i = 0, the first step, we only
have ge3 2. Fori = 1 we only have 1e32, 1€2.1, 1€2.3, 1€2.4,
and je; 5. In this way we forcibly achieve any start or stop
constraint.

Let us take a brief pause from talking about constraints to
introduce the part of the QUBO which will lead us to picking
the best walk amongst all the legal walks which meet our
requirements. The constraints above will all be zero if the
walk chosen is legal and meets the preset requirements. This
following part though, apart from some trivial cases, will be
non-zero and is the ‘meat’ of what we are trying to minimize.
The essence of this next part of the QUBO is that we want to
add up all the weights of all the edges we traverse while not
double counting weights when an edge is repeated solely to
reach the requested number of edges, which is i,,,,. This is
done as follows,

M = Z Z WikGejr-(1—i-1)ej i) +Z W; k(oej k)-

i>0 jk J.k

Before we proceed further, it is useful to note that we have
produced enough constraints to handle all combinations of
variants 1 through 8 for the CPP using the QUBO,

O0=M+ P required Crequired + P, adjacency * Cadjacency
+ P one_edge * Conefedgev

where the ' P’ variable’s are positive real numbers which are
used to scale the weight of the constraints. How to choose
those values will be discussed later.

There is an alternative optimization to the start/stop
optimization which will now be described in brief. The mod-
ifications to the QUBO related to this change are similar
to those at the end of Sect.3.5. Rather than using the edge
repetition method used to handle iy« Over-estimations, one
can instead use a terminal vertex method. The idea of the
terminal vertex method is to add one additional vertex, the
terminal vertex, to the graph which will represent the end
of the walk. One then needs to add the appropriate edges. If
a variable corresponding to an edge leading to the terminal
vertex at step i in the walk takes the value 1 in the QUBO
solution, this is interpreted as the walk ending at step i. The
edges one should add are a directed edge from any vertex
the walk is allowed to end at to the terminal vertex and a
directed edge from the terminal vertex to itself. The terminal
vertex edges should only be included in the above QUBO
at time steps greater than or equal to the cardinality of the

@ Springer

set of required edges. The terminal vertex method allows
us to do two things. One, we may remove the edge repeti-
tion from M, decreasing the connectivity between variables
in the QUBO, and two, we may remove the edge repetition
from determining which edges are possible to reach in the i
step in the start/stop optimization above, which decreases the
number of variables needed. However, one must account for
the increase of variables and variable connectivity induced
by including the terminal vertex itself. The two optimizations
both do better on different graphs, depending on the graph
topology. The authors have implemented both methods and
choose for each problem whichever uses the least variables.
Recall that the above QUBO was implemented with results
shown in Sect. 4.

3.5 Further modifications to the general approach

The following variants, variants 9 through 12, have not yet
been implemented on a quantum annealing device. We pro-
vide QUBO equations for implementing these variants and
discuss why the equations are valid.

To include variant 11 we need only add one additional
constraint. One may recall that variant 11 includes additional
information in the form of 3-tuples, (edge-in, edge-out, bonus
weight). Similar to the ;e variables, let us write the 3-
tuple as ((j, k), (k,r), xj k) where j, k,r € V such that
(j, k), (k,r) are edges in the graph. Then the QUBO con-
straint can be written as,

Curn = Z Xjkor@€j ik (i+D)€kr)
i,j.k,r

which in conjunction to what we had before would create the
QUBO,

Q + Pturn : Ctum~

Observe the turning constraint does not add any more vari-
ables, but does increase the connectivity between variables
in the QUBO.

Adding variants 9 and 10 requires additional modifications
to the QUBO construction above. Let us start with variant 10,
service-based traversal. We shall replace the variables ;e; x
with ,-ej.’ o ,-e;’ - The ,-ej.’ ; Variable equal to 1 corresponds to
servicing the edge going from vertex j to vertex k on the i
step of the walk. Setting ie;’ « = 1 will correspond to merely
traversing the edge going from vertex j to vertex k on the
jth step of the walk. We will also not use the 55 variables.
The modifications to the constraints are as follows:

2

Cone_edge = Z - Z (iej‘,k + ie;,k) ’

i .k

Quantum Machine Intelligence (2023) 5:24

Page 110f20 24

t t
Cadjacency = Z Z Z (iej,k ’ (i+1)er,s>
i j.k rs
r#k
and
r#j or s#k
N t S S
+y (iej,k'(i+1)er,s+i€j,k S+ s
r,s
r#k

t N
ti€j - (i+1)er,s) ,

2
Crequired_directed = Z 1 - Z ie;,k)
(j.k) i
2
Crequired_undirected = Z 1—- Z (ie;.k + ie}i,j) ’
[J k] i

Crequired = Crequired_directed

~+ Crequired_undirected: and

Coum = Z Xj.k.r (l'ej',k) (i+1)eli,r
i,j.k,r

s t t Ky
Fi€ ko (+DC, T i€k (+1)C,,
1 1
+iej i <i+1)€k,r) .

Let W/S. & be the weight corresponding to servicing the edge
going from vertex j to vertex k, while Wj’. « 1s the weight
corresponding to just traversing that edge. Then,

M= 3 (Wiaiehu (1= amnelhn) + Wik i€

i>0 j.k

S S t t
+Z (W],k . ()ej,k + W],k . er’k) .
J.k

One caveat to the service traversal variant QUBO set-up is
that if the solution involves only service steps and no traversal
steps, we won’t be able to get the optimal solution if we don’t
a priori know the precise number of steps our walks need as
we only allow repetition on traversal steps. This is easily
avoided in practice however as the only way a walk will only
use service steps is if there is an Eulerian circuit on the subset
of edges required, which as stated before, is computationally
easy to determine. One benefit is that it is easy to to make
the service based traversal hierarchical, like variant 12, for
any partially ordered set (i.e. some edges must be serviced
prior to others) without introducing more variables. Solving
variant 12 is achieved by adding on the following constraint.
Let x(;j x),(r,s) = 1 if the edge going from vertex j to vertex

k must be serviced prior to the edge going from vertex r to
vertex s, and O otherwise. Note x(; k), (r,s) 18 a given value in
the problem and not a variable the annealing device solves for.
Let the other notation be similar. Recall (x, *) is for directed
edges while [,] is for undirected edges. Then,

Chierarchy = Z Z

io 11<io,j.k,r,s

N N
(XK, (rs) " i0€ &~ i1€r.s)

+ (kL) o€k i€y s+ iglh ;" in€rs))

+ XGotrs1 - Go€) g in€r s T io€) k- i1€5,0))
S S S S

+ (X[ks - Go€g i€ + i€k - 1€ r

LSS LSS
+loek,j lles,r+ lOek,j lles,r))‘

The final variant to talk about is variant 9, the k-Postman
Problem. As we already use k, we shall suppose there are
[postmen. This variant provides us with the opportunity to
introduce a slightly different idea. For variant 9 we will need
to use a slight modfication of the terminal vertex paradigm.
We shall use the binary variables ie?,k’ or S?,k’ and ;rest? for
a € {1, ...,1}, all else the same. The a index will refer to the
a™ postman walk. So ie, = 1 will correspond to the a®
postman traversing the edge going from vertex j to vertex
k on the i™ step of their walk. The zrs;” binary variable
will be used as a slack variable similarly to before. When
the variable ;rest® equals one, this will correspond to the a'
postman at their walk’s endpoint on the i step and is their
terminal vertex from the terminal vertex method described
in Sect.3.4. Let Wf ¢ represent the weight corresponding to
the a™ postman traversing the edge going from vertex j to
vertex k. The variations to the QUBO constraints are listed
below:

2

1— Z(ie?,k) —rest® |
jik

Cone_edge = Z

i,a

Cadjacency = Z Z Z (ie?',k : (H_l)ef’s)

ia j.k r.s

r#k
+ (irest“ . ,~+1e(j~’k> ,
Crequired_directed = Z 1 - Z Z (i e?,k)

(j,k) a i
2

=D 2usii])
r

@ Springer

24 Page 120f20

Quantum Machine Intelligence (2023) 5:24

Crequired_undirected = Z <1 - Z (Z (i e?‘,k + ie/?, J)

[j.k] a i

2
-2 2r2’s.7,k>> ’
r
Crequired = Crequired_directed + Crequired_undirected,
Cum = Z Xj k. <i6";’k : (i+1)6;‘§,,) ,and

i,j.k,r,a

_ a . a
M=) Wi-iel,
a,i,j,k

Consider a use case where no two postmen may occupy
the same edge going in the same direction at the same time.
An example of an advantage one gains for using this resting
paradigm over the repeated edge paradigm is that it becomes
easy to create a constraint to avoid such collisions as

a b
Coeollisions = § : i€k i€k
i,a,b,j.k

Similar constraints can be made for avoiding collisions
going in the opposite direction along edges and for avoid-
ing collisions at vertices. Additionally, if W;l,k e Ny for
all i, j, a, then one may consider the k-Postman Problem
With Capacity. Suppose one is given {ci,...,¢;} C N,
where the a™ postman is limited to walks of weight less
than ¢,. Then, by introducing the slack variables oym“ for
y € {0, ..., ceiling(log(c,))} for a € {1, ..., I}, we have the
constraint,

Ccapacitance = Z(Ca - Z(W;,kie?,k) - Z(zyl"ma))z-
a y

i,j.k

The slack variables in the equation allow the postmen to have
walks with walk weights less than their maximum capacity
without punishing such solutions.

One may also note that it is possible to combine variant 9
and 10 together with a little thought, however we shall abstain
from doing so to save ourselves from the additional complex
notation it would create.

4 Results

In this section, we will consider the results of two kinds of
experiments for both the Closed Undirected CPP and the
General CPP. Here the General CPP refers to variants 1-8.
The first kind is a parameter study for various tuneable param-
eters for running the problem directly on quantum hardware.
The second kind is a comparison of results between various
purely quantum, classical, and quantum-classical solutions
to the same CPP problem. A reminder to help clarify the

@ Springer

Table 2 P Value Efficacy Directly on 2000Q

P Values

10 30 50 70
valid (%) 27.5 33.8 37.5 50
time to solution (avg, s) 3.11 3.05 2.89 3.11
optimal (%) 23.8 25 26.3 26.3
< 10% above optimum (%) 25 25 26.3 27.3
< 25% above optimum (%) 25 25 30 33.8

results shown is that the goal is to minimize the solution so
as to minimize the weight of the walk. In each table in Sect. 4
a collection of graphs and their associated data are gener-
ated randomly using NetworkX and Python libraries. More
explicit data for the graph generation will be provided near
the beginning of each subsection. Each value of the depen-
dent variable is tested on each graph and the resulting data is
put in the table.

4.1 Closed Undirected CPP Parameter Study

Let us begin with a parameter study of the Closed Undirected
CPP. The parameters tuned were the constraint weight, the
sample number, the intersample correlation, the number of
spin reversal transforms!, and the annealing time.

The tables in this subsection were generated as follows.
Table 2, Table 5, and Table 6 were each generated using
80 graphs total with 20 each of 4, 6, 8, and 10 odd degree
vertices. Table 4 and Table 7 each were generated using 68
graphs total with 17 each of 4, 6, 8, and 10 odd degree ver-
tices. All the graphs used had 16 vertices with roughly 40%
edge saturation. The edges were assigned uniformly random
integer weights between 1 and 10 inclusive.

The constraint weight is the P variable discussed in
Sect.3.3. The constraint weight needs to be large enough
to encourage valid solutions to the Closed Undirected CPP,
but small enough to not overshadow the rest of the QUBO.

Some guidance is provided for understanding the tables.
In Table 2, the number 3.05 in column 30 and row ’time to
solution,” means that using a P value of 30, the average wall-
clock time to get the solution across all such runs was 3.05s.
The wall-clock time is the time it took the algorithm to find a
solution from a given QUBO. Using the D-Wave Leap based
methods this includes over the internet communication plus
the time it took to validate the lowest energy solution. The
number 30 in column 50 and row ’< 25% above optimum’
means that 30% of the runs using a P value of 50 were valid

U A spin-reversal transform can improve results by reducing the impact
of possible analog and systematic errors. It does not alter the Ising
problem, but simply amounts to reinterpreting spin up as spin down,
and vice-versa, for a particular qubit.

Quantum Machine Intelligence (2023) 5:24

Page 130f20 24

Table 3 P Value Efficacy by Number of Odd Vertices Directly on
2000Q

4 Odd vertices: P Values
10 30 50 70

valid (%) 100 100 100 100

optimal (%) 95 100 95 100

< 25% above optimum (%) 95 100 95 100
6 Odd vertices: P Values

valid (%) 10 30 50 85

optimal (%) 0 0 10 5

< 25% above optimum (%) 5 0 25 30
8 Odd vertices: P Values

valid (%) 0 5 0 15

optimal (%) 0 0 0 0

< 25% above optimum (%) 0 0 0 5
10 Odd vertices: P Values

valid (%) 0 0 0 0

optimal (%) 0 0 0 0

< 25% above optimum (%) 0 0 0 0

and achieved a solution less than (meaning better than) or
equal to 25% above (above meaning worse than) the optimal
solution.

As one can see in Table 2, there is a strong correlation
between the percentage of valid solutions and the percentage
of optimal solutions with the size of the P value. In fact, this
becomes more apparent when we separate the data by the
size of the problem as in Table 3. The constraint weight for
the Closed Undirected CPP runs when done strictly on quan-
tum hardware will be set to 70. Next, we will consider the
effect the sample number has on the result. The sample num-
ber is the number of times states are read from the quantum
hardware.

A strong positive relationship between the validity and
quality of the solutions with the number of samples is seen
in Table 4. Even when viewed by problem size, the monotone
increasing relationship between validity and quality of solu-
tion with sample number is preserved across every problem
size. This is true except for one instance, a problem of size

Table4 Sample Number Efficacy Directly on 2000Q

Sample Numbers
10 50 100 500 1000

valid (%) 279 353 515 588 618
time to solution (avg, s) 2.85 2.87 3.06 2.76 3.08
optimal (%) 19.1 235 324 397 47.1

< 10% above optimum (%) 19.1 26.5 324 441 485
< 25% above optimum (%) 22.1 265 368 485 50

Table 5 Reduced Intersample Correlation Efficacy Directly on 2000Q

Intersample Correlation

Not Reduced Reduced
valid (%) 57.5 63.8
time to solution (avg, s) 3.03 3.46
optimal (%) 43.8 40
< 10% above optimum (%) 46.3 43.8
< 25% above optimum (%) 48.8 47.5

8 odd degree vertices where one solution of moderate qual-
ity (< 25% above optimum) was found for the 500 sample
number, but not the 1000 sample number. A sample number
of 1000 will be used for the Closed Undirected CPP when
there is a choice on quantum hardware.

Next, we will explore the relation that reducing intersam-
ple correlation has with solutions in Table 5. The relationship
between reducing intersample correlation and solution valid-
ity/quality is mixed with reducing intersample correlation
slightly increasing validity of the solution and slightly
decreasing solution quality. The time to solution is on aver-
age increased when reducing intersample correlation and so
is not used moving forward when studying the Closed Undi-
rected CPP.

We will continue our parameter study of the Closed Undi-
rected CPP by looking at the effect the number of spin
reversal transforms has on solutions in Table 6. There is lit-
tle relationship between the validity of the solution and the
number of spin reversal transformations. The solution qual-
ity does improve when using spin reversal transformations,
with the largest jump in quality coming from the first 10 spin
reversal transforms. The number of spin reversal transforma-
tions increases the time to solution significantly when a large
number is used. Only 10 spin reversal transformations will
be used henceforth for the Closed Undirected CPP when on
quantum hardware.

The final piece of our parameter study for the Closed
Undirected CPP is to study the effect that annealing time

Table 6 Spin Reversal Transforms Efficacy Directly on 2000Q

Number of Spin Reversal Tranforms
0 10 30 100

valid (%) 60 61.03 58.8 60

time to solution 331 3.36 391 5.04
(avg, s)

optimal (%) 36.3 43.8 40 42.5

< 10% above 38.8 43.8 413 45
optimum (%)

< 25% above 43.8 48.8 46.3 51.3

optimum (%)

@ Springer

24 Page 14 of 20

Quantum Machine Intelligence (2023) 5:24

Table7 Annealing Time Efficacy Directly on 2000Q

Annealing Time (us)

5 10 30 100 500
valid (%) 559 588 603 61.8 72.1
time to solution (avg, s) 325 324 341 3.1 3.82
optimal (%) 426 485 412 456 44.1
< 10% above optimum (%) 44.1 50 42.6 45.6 44.1
< 25% above optimum (%) 47.1 51.5 529 50 48.5

has on solutions. There is a positive relationship between
the validity of solutions and the annealing time apparent in
Table 7. The relationship between the annealing time and
the solution quality, however, is less clear. To find a middle
ground, an annealing time of 100us was chosen moving for-
ward when running the Closed Undirected CPP on quantum
hardware.

4.2 Closed undirected CPP comparison study

In this section we will compare the validity and quality of
solutions between a classical method, such as brute force,
and various methods for finding solutions to the QUBO cor-
responding to the problem. The classical methods, quantum
methods, and quantum-hybrid methods used in our compar-
ison are listed below.

Classical methods

e Brute force method (Standard for comparison): The brute
force method only runs on problems with a maximum of
14 vertices of odd degree.

e Greedy: This algorithm has no vertices limitations. It is
based on a steepest descent solver D-Wave Systems Inc.
D-WaveSystemsInc. (2022a).

e Tabu search: This algorithm has no vertices limitations. It
consists of a modified steepest descent algorithm which
keeps track of the locations of the best solutions found
and temporarily changes values in the QUBO to promote
search diversity. We have also tested this algorithm in
combination with both preprocessed and post-processed
with a greedy algorithm (greedy tabu) Musiat etal (2017).

e Simulated Annealing (SA): This algorithm has no ver-
tices limitations. SA is amodified hill-climbing algorithm
which improves solution diversity, and often quality, over
other hill-climbing algorithms by allowing worse solu-
tions to be picked sometimes during the search Rutenbar
(1989).

@ Springer

Quantum methods

e 2000Q: With a maximum of 10 vertices of odd degree,
this consists of only using the 2000Q machine to perform
the quantum annealing.

e Advantage: With a maximum of 18 vertices of odd
degree, this consists of using the Advantage4.1 machine
to perform the quantum annealing.

Quantum-Hybrid methods

e Greedy 2000Q: With a maximum of 10 vertices of odd
degree, this consists of using the 2000Q to perform a QA,
followed by post-processing with the greedy algorithm.

e Greedy Advantage: With a maximum of 18 vertices
of odd degree, this consists of using the Advantage4.1
machine to perform the QAs followed by post-processing
with the greedy algorithm.

e 2000Q gbsolv: With no limit on size, this consists of
using gbsolv and the 2000Q machine as the back-end for
performing QAs.

e Advantage gbsolv: With no limit on size, this consists of
using gbsolv and the Advntage4.1 machine as the back-
end for performing QAs.

For some runs we also compared gbsolv on both devices
when using the fixed embedding composite (f-2000Q gbsolv
and f-Advantage gbsolv respectively) versus the embedding
composite in the ocean-dwave-sdk D-Wave Systems Inc. D-
WaveSystemslnc. (2022a).

When running on sufficiently small problems, solution
quality is compared to the brute force method which finds
the optimal answer. When problems become too large for
brute force, we instead compare solutions with greedy tabu
which usually only provides approximate answers.

The tables in this subsection were generated as follows.
Table 8 was generated using 60 graphs total with 30 each of
4 and 6 odd degree vertices. Table 9 was generated using 44
graphs total with 30 graphs with 8 odd degree vertices and 14
graphs with 10 odd degree vertices. Table 10 was generated
using 30 graphs total with 15 each of 16 and 18 odd degree
vertices. Table 11 was generated using 30 graphs total with
10 each of 20, 30, and 50 odd degree vertices. All the graphs
used had twice the number of vertices as odd degree vertices
and had roughly 40% edge saturation. The edges were given
integer weights between 1 and 10 inclusive.

We first compare these methods on some small problems
of 4 and 6 odd degree vertices. Note an example of how
Table 8 should be read is as follows: the number 33 in the
column labeled ‘10’ and row labeled ‘greedy’ means that
33% of the greedy solutions were valid and at most 10%

Quantum Machine Intelligence (2023) 5:24

Page 150f20 24

Table 8 Comparison on graphs with 4 or 6 odd degree vertices

Table 10 Comparison on graphs with 16 or 18 odd degree vertices

Solution Quality % < —% above optimum

Solution Quality: % < —% above greedy tabu

0 10 25 100 -10 -5 0 10 25
classical classical
greedy 27 33 58 95 greedy 0 0 33 33 17
tabu 100 100 100 100 tabu 0 10 70 97 100
SA 100 100 100 100 SA 0 0 33 20 77
quantum quantum
2000Q 90 93 97 100 Advantage 0 0 0 0 0
Advantage 77 83 92 100 hybrid
hybrid greedy 33 6.7 57 83 100
greedy 2000Q 100 100 100 100 Advantage
greedy Advantage 100 100 100 100 2000Q gbsolv 3.3 17 100 100 100
2000Q gbsolv 100 100 100 100 Advantage 33 23 97 100 100
Advantage gbsolv 100 100 100 100 _dosoly

above the optimal solution. One observes from Table § that on
small problems we get perfect results on all methods except
2000Q, Advantage, and greedy. The 2000Q and Advantage
still attained strong results on these small problems, while
greedy only achieved mediocre results.

Now in Table 9 we compare some slightly larger prob-
lems of graphs of 8 and 10 odd degree vertices respectively.
For these larger problems we see that all of the methods
get optimal results except 2000Q, Advantage, and greedy.
However, this time, 2000Q, Advantage, and greedy got poor
results, with 2000Q and Advantage drastically decreasing in
efficacy. It is interesting to observe that despite the fact that
greedy and 2000Q individually were ineffective, when used
in concert optimal results were achieved. And this holds sim-
ilarly for greedy and Advantage. The advantage of a greedy
post-processing is not unique to this problem and was also
used to improve solution quality in Akrobotu et al 2022 and
Gaydai et al 2022.

Table 9 Comparison on graphs with 8 or 10 odd degree vertices

Solution Quality: % < —% above optimum

0 10 25 100
classical
greedy 14 20 50 98
tabu 100 100 100 100
SA 100 100 100 100
quantum
2000Q 4.5 4.5 11 27
Advantage 2.3 2.3 4.5 6.8
hybrid
greedy 2000Q 100 100 100 100
greedy Advantage 100 100 100 100
2000Q gbsolv 100 100 100 100
Advantage gbsolv 100 100 100 100

Table 10 shows results for problems which are too large
to be solved by brute force or to run directly on 2000Q hard-
ware. In fact, these are the largest problems which can be
run directly on the Advantage hardware. Once again, greedy
and Advantage both performed poorly alone, but when used
together produced results comparable to greedy tabu. The two
gbsolv methods almost always found solutions which were
equal to or better than greedy tabu, with the better results
occurring a non-negligible amount of the time.

In Table 11 we studied problems which were too large
to run directly on quantum hardware. The fixed embedding
produced better results than the non-fixed embeddings for
gbsolv, especially for the Advantage device. However, the
fixed embedding took significantly more overhead time for
finding the initial embedding and the fixed embedding gbsolv
used significantly more runs on the quantum hardware than
the non-fixed embeddings did.

Table 11 Comparison on graphs with 20, 30 and 50 odd degree vertices

Solution Quality: % < —% above greedy tabu

-5 0 10 25
classical
greedy 0 0 33 13
tabu 33 97 100 100
SA 0 0 0 6.7
hybrid
2000Q gbsolv 0 63 87 100
f-2000Q gbsolv 0 67 87 100
Advantage gbsolv 0 47 83 100
f-Advantage gbsolv 0 60 97 100

@ Springer

24 Page 16 of 20

Quantum Machine Intelligence (2023) 5:24

Table 12 Pyje_cage Value
Efficacy on Advantage

Pone_edge Values

30 40 50 60 70 80 90
valid (%) 86.7 85.7 80 75 66.7 72.7 61.5
time to solution (avg, s) 40.8 40.8 26.3 31.7 26.221 32.002 30.928
< 0% below SA (%) 66.7 66.7 60 55 58.3 72.7 46.2
< 10% above optimum (%) 66.7 66.7 60 55 58.3 72.7 46.2
< 25% above optimum (%) 73.3 71.4 64 60 66.7 72.7 53.8

4.3 General CPP parameter study

Let us now examine our parameter study of the General CPP
on the Advantage hardware with a greedy algorithm post-
processing.

The graphs for the tables in this subsection were generated
as follows. Table 12 was generated using 117 graphs. Table 13
was generated using 74 graphs. Table 14 was generated using
141 graphs. Table 15 was generated using 72 graphs. The
graphs could have 3,4, 5, or 6 vertices. The graphs could have
roughly 25%, 50%, or 75% edge saturation. The graphs could
require about 25%, 50%, or 75% of the edges to be traversed,
the context of this parameter being variant 7. The graphs
could also have have a fixed or unfixed start or stop position. If
both start and stop were fixed to a position then they could be
either the same or different. The edge weights were integers
chosen between 1 and 5 inclusive. Approximately 70% of the
edges in the graphs were undirected. Across all combinations
of the above listed options the graphs were picked in aroughly
uniform manner.

In Table 12 one can see that overall, there is a negative rela-
tionship between Pope_edge and solution validity and quality,
with Pype_edge = 80 being an exception. The parameter value
chosen for problems run after this is Pope_edge = 40. While
doing strictly worse than Pope_edge = 30 in terms of solution
validity and quality overall, Pope_edge = 40 actually did sig-
nificantly better when looking at the larger end of problems
able to run directly on the hardware in the 100-200 variable
range.

Table 13 shows a strong positive relationship between the
validity of the solution and Pygjacency. If one separates the

Table 13 Pugjacency Value Efficacy on Advantage

Padjacency

60 70 80
valid (%) 71.3 81 90.3
time to solution (avg, s) 29.1 52.6 27.473
< 0% below SA (%) 59.1 52.4 61.3
< 10% above SA (%) 59.1 57.1 61.3
< 25% above SA (%) 63.6 57.1 67.7

@ Springer

data out by problem size, Pygjacency = 70 does the best in
terms of validity and solution quality for problems in the
0 — 100 variable range, while Pygjacency = 80 does better
for problems in the 100 — 250 range. So the average of these
two values is used moving forward setting Pugjacency = 75.

As can be seen in Table 14 there is a generally negative
trend for solution validity and solution quality with respect
t0 Prequireda- When one looks at the data by problem size,
Prequirea = 30 and Pyeguirea = 40 each do better on certain
problem sizes. So once again we take the average and set
Prequirea = 35 moving forward.

Table 15 highlights that having a very large chain strength?
can deteriorate both the validity and quality of solutions. A
chain strength of 400 leads to the highest percentage of valid
solutions and mostly the highest quality solutions. However,
when one looks at the data broken up by problem size, one
finds that a chain strength of 500 gets generally better results
on larger problems. So the chain strength moving forward
has been set to 475.

4.4 General CPP comparison study

We compare results for the General CPP algorithm using
tabu, greedy tabu, SA, Advantage, greedy Advantage, 2000Q
gbsolv, and Advantage gbsolv. We compare how each method
does on various problem sizes, for the sizes a method can run.
The problem sizes are broken up into three categories: small
as 0 — 250 variables, medium as 250 — 1000 variables, and
large as 1000 — 3200 variables. As a reminder, how these
variables are formulated is explained in Sect.3.4. Roughly
speaking, small problems correspond to graphs with 3 — 4
vertices, 25% — 75% edge saturation, all kinds of start/stop
conditions, 75% undirected edges, and edge weights between
1 and 5 inclusive. Medium problems correspond to graphs
with 5 — 6 vertices, and similar other data. Large problems
were run on graphs with 9 — 10 vertices, 25% — 50% edge
saturation, and similar other data. We compare against SA
for the small and medium sized problems. However, for the

2 Chain strength specifies the relative strength of chains embedded
on the quantum hardware topology, which become important when a
problem’s graph does not map one-to-one, problem variable to physical
qubit.

Quantum Machine Intelligence (2023) 5:24

Page 170f20 24

Table 14 P,.yyireq Value Efficacy on Advantage

Table 16 Comparison on Small Problems

Prequired Values

Solution Quality: % < —% above SA

30 40 50 60 -10 -5 0 10 25
valid (%) 96.4 85.3 82.9 85.3 classical
time to solution (avg, s) 32 294 47.5 333 greedy 0 0 6.9 6.9 8.3
< 10% below SA (%) 0 5.88 0 2.94 tabu 1.4 1.4 88 92 96
< 0% below SA (%) 71.4 73.5 54.3 64.7 greedy tabu 0 0 89 93 96
< 10% above SA (%) 71.4 73.5 54.3 64.7 quantum
< 25% above SA (%) 82.1 76.5 62.9 64.7 Advantage 0 0 19 19 22
hybrid
greedy Advantage 0 0 68 69 74
medium sized problems SA took a long time to compute. 2000Q gbsolv 0 0 7 9 85
Advantage gbsolv 0 0 81 81 88

For the large problems, SA became prohibitively expensive
to run. The large problems are compared against greedy tabu.

Let us start with the small problems. When comparing
the small problems for the General CPP in Table 16, we see
once again that greedy and Advantage by themselves do not
perform well, but that together get strong results. For these
small problems in the 0 — 250 variable range it appears that
the classical algorithms like SA and tabu are more effective
than the quantum/hybrid approaches running on current D-
Wave Leap resources.

When looking at the data for medium sized problems in
the range of 250 — 1000 variables in Table 17, we see that
the hybrid methods are comparable in solution quality to
the classical methods and will sometimes get higher quality
results.

Once we start to look at larger problems, as shown in
Table 18, we see that the quantum-classical hybrids start to
significantly outperform the classical methods in terms of
solution quality.

5 Discussion

The following insights come from the data in Sect.4 and
intuition gained from the implementation of the Closed Undi-
rected CPP and variants 1 through 8 in the generalized
algorithm for the CPP. The observations come from run-

Table 15 Chain Strength Efficacy on Advantage

Chain Strength

ning the algorithms both directly on the D-Wave 2000Q and
Advantage chip, and via the quantum-classical implementa-
tion of gbsolv Booth et al (2017) on the QAs.

The differences between the original algorithm Siloi et al
(2021) and our modified version are as follows. First, we use
X;,j to represent the same binary variable as x; ; whereas the
original version treated them as two separate variables. The
advantage of this approach is that it halves the number of vari-
ables used. Second, we are able to remove a now unnecessary
constraint from the equation. The advantages of this are two-
fold. One, removing the constraint makes understanding the
QUBO and implementing it easier. Two, the removal of the
second constraint reduces the QUBO’s variable connectivity,
allowing for larger problems to fit directly on the hardware.
These changes lead to being able to run a 12 odd degree ver-
tices problem directly on the 2000Q versus the previous 8
odd degree vertices.

Now let us talk about the generalized CPP algorithm.
While handling a much more general class of problems, this
algorithm can use a large number of variables. Depending on
which variants are used, the number of variables can grow
quadratically with the number of edges in the graph. The
bright side is that the variables used are not in general fully

Table 17 Comparison on Medium Problems

Solution Quality: % < —% above SA
-35 20 -10 -5 0 10 25

400 500 800 900
valid (%) 94.7 93.8 84.2 88.9
time to solution (avg, s) 36.8 27.3 70.6 29
< 10% below SA (%) 0 6.25 0 0
< 0% below SA (%) 68.4 56.3 52.6 55.6
< 10% above SA (%) 68.4 62.5 57.9 55.6
< 25% above SA (%) 73.7 68.8 57.9 61.1

classical

greedy 0 0 0 0 0 0 0
tabu 0 0 21 37 42 63 95
greedy tabu 0 0 26 26 47 63 89
hybrid

2000Q gbsolv 5.3 53 21 26 47 53 84

Advantage gbsolv 0 11 21 26 42 68 89

@ Springer

24 Page 18 0f 20

Quantum Machine Intelligence (2023) 5:24

Table 18 Comparison on Large Problems

Solution Quality: % < —% above greedy tabu
—-995-75 50 20 O 10 25

classical

greedy 0 0 0 0 0 0 0
tabu 0 0 0 4 20 32 36
hybrid

2000Q gbsolv 4 8 28 36 52 56 56
Advantage gbsolv 4 12 40 40 44 56 56

connected. This means more variables may be used when
running the problem on quantum hardware. For example, on
the 2000Q D-Wave chip, 109 variables for the algorithm were
successfully embedded on the hardware compared to the 64
variable maximum when fully connected.

There are many ways the choice of variants can increase
or decrease the QA efficiency. Specifying the start and/or
end vertex will decrease the number of variables and some-
what decrease the connectivity between the variables. When
implementing a Rural Postman Problem, requiring fewer
edges can greatly decrease the connectivity between the vari-
ables. Variants 9 through 12 all greatly increase the number of
variables required and/or increase the connectivity between
variables.

One of the main determining factors one has control of
which affects how many variables are required is iyax, the
maximum length of the walk allowed. To find a minimal walk
weight which meets all criteria, one must allow sufficient
steps in the walk to find that minimal walk weight. Roughly
(2|U |4 |D))imax variables are required for all variants except
9, 10, and 12, which require approximately some integer
multiple more variables. Thus we try to pick a minimal, yet
sufficiently large imax. A safe value to pick, in the sense it will
be sufficiently large for any variant, is imax = 2| E|. If this is
too many variables, one may try a smaller ipax. It is safer to
greatly decrease imax from 2| E| when either there are a large
number of undirected edges or when a significant number of
edges are not required in the Rural Postman variant.

Now let us take a moment to talk about the * P’ variables
from earlier, the ones which we multiply each constraint by
when adding to our QUBOs. This is where our effort becomes
a bit more of an art than a science. From a mathematical per-
spective, one should choose the * P’ variables to be arbitrarily
large. From an implementation perspective this should not be
done. When the QUBO is embedded on the hardware, all the
values are scaled to fit within a specific range with limited
precision and as such, if the P’ variables are chosen too
large, then numbers which are not zero may be treated as
zero, leading to poor results. There are some general guide-
lines for the choices. All the ’ P’ variables are multiplied
with constraints which, if broken, lead to an invalid solution.

@ Springer

The ’ P’ variables should at the very least be larger than the
highest weight edge. The authors often found having all such
variables set between 1.5 to 15 times the highest edge weight
worked well. If one tries to implement the algorithms in this
paper and gets results which lead to invalid solutions, then
the likely culprit is the * P’ variables. In this case, one should
increase the * P’ value for the constraint which is broken. If
however one is getting valid, but non-optimal results, this
may be caused by having ’ P’ variables which are too large
and one should try decreasing all of them slightly.

One of the surprising results is how effective combining
annealing on a QA and greedy were, even when either method
alone achieved poor results. An interpretation of why this
occurs is as follows. The energy landscape for our QUBOs,
especially the larger ones, is complex with many peaks and
valleys of varying heights and depths. The greedy algorithm
by itself can only ever go down, and so will descend into the
nearest valley which has alow likelihood of being the deepest
valley or even a deep valley. When annealing on a QA, their
is a strong likelihood of arriving at the deepest, or at least
one of the deepest valleys, but due to noise and flux errors
D-Wave Systems Inc. (2022b). has trouble settling to the
bottom of these values. So when we combine these methods
together, the QA finds one of the deepest valleys and then
greedy quickly gets us to the bottom of the valley.

Another surprising result appears in Sect.4.4. For the
methods tested, the data shows a comparative advantage for
classical algorithms on small problems, but as the problems
grow in size, the quantum-classical hybrid methods overtake
the classical algorithms and achieve superior results. This
trend is highlighted in Tables 16, 17, and 18.

One should note that in this paper we have defined our
graphs to not include multi-graphs, graphs which may have
more than one edge which go from vertex i to vertex j. This is
to make the notation simpler. Everything in this paper may be
extended to work with multi-graphs with the largest obstacle
being the notation. For ideas on how to implement this work
for multi-graphs one should look at the QUBOs for variant
9 and variant 10.

In conclusion, the authors have designed and developed
a framework for solving a large number of variants of the
CPP on a QA. Implementation of the framework for variants
1 through 8 on the D-Wave 2000Q were successful. Optimal
results were achieved for problems which could be embedded
on the hardware with only short chains and optimal results
were sometimes achieved for larger problems after tuning
the P’ variables. Future directions include the following.
Implementation of the remaining variants outlined. Imple-
mentation of further variants as there are more variants which
could be easily adapted to the method defined in Sects. 3.4
and 3.5, but were not included to keep this paper reasonable in
length. Translating the CPP algorithm and variants for gate-
based quantum architectures. Developing a more efficient

Quantum Machine Intelligence (2023) 5:24

Page 190f20 24

way to choose optimal * P’ variable values given the inputs
from the problem. Additionally, there is room to experiment
with this algorithm in conjunction with an iterative and/or
graph partitioning approach to the CPP.

Acknowledgements We acknowledge the ASC program at LANL for
use of their Ising D-Wave 2000Q quantum computing resource. We also
acknowledge the use of the D-Wave Leap 2000Q and Advantage quan-
tum computing resources. Assigned: Los Alamos Unclassified Report
LA-UR-22-27468.

Author Contributions J.E.P. and S.M.M. designed the project. J.E.P.
performed the numerical simulations and optimizations. S.M.M. super-
vised the whole project. C.F.A.N advised on the mathematical formu-
lations. All authors contributed to the discussion, analysis of the results
and the writing of the manuscript.

Funding Thisresearch was supported by the U.S. Department of Energy
(DOE) National Nuclear Security Administration (NNSA) Advanced
Simulation and Computing (ASC) program at Los Alamos National
Laboratory (LANL). This research has been funded by the LANL Lab-
oratory Directed Research and Development (LDRD) under project
number 20200056DR. JEP, CFAN, and SMM were funded by LANL
LDRD. JEP was also funded by the U.S. Department of Energy (DOE)
through a quantum computing program sponsored by the Los Alamos
National Laboratory (LANL) Information Science & Technology Insti-
tute. Assigned: Los Alamos Unclassified Report LA-UR-22-27468.
LANL is operated by Triad National Security, LLC, for the National
Nuclear Security Administration of U.S. Department of Energy (Con-
tract No. 89233218NCA000001). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Availability of data and materials All author-produced code will be
available upon reasonable request.

Declarations

Conflicts of interest The authors declare no competing interests.

Consent for publication All authors agreed to publication of this
research

Human and Animal Ethics Not Applicable

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Akrobotu PD, James TE, Negre CFA, Mniszewski SM (2022) A
QUBO formulation for top-t eigencentrality nodes. PLoS ONE
177:0271292. https://doi.org/10.1371/journal.pone.0271292

Asproni L., Caputo D, Silva B, Fazzi G, Magagnini M (2020). Accuracy
and minor embedding in subqubo decomposition with fully con-
nected large problems a case study about the number partitioning
problem. Quantum Machine Intelligence, 2 (4). https://doi.org/10.
1007/542484-020-00014-w

Bass G, Henderson M, Heath J, Dulney III J (2021). Optimizing
the optimizer Decomposition techniques for quantum annealing.
Quantum Machine Intelligence, 3 (10). https://doi.org/10.1007/
$42484-021-00039-9

Bondy J, Murty U (2008) Graph theory, 1st edn. Springer Publishing
Company, Incorporated

Booth M, Reinhardt SP, Roy A (2017). Partitioning optimization prob-
lems for hybrid classical/quantum execution. D-Wave Technical
Report Series

Comaklisokmen O, Emec S, Akkaya G (2019) An overview of chinese
postman problem. International Conference on Advanced Engi-
neering Technologies

D-Wave Systems Inc (2021). minorminer Documentation Release 0.2.6.
D-Wave Reference Documentation

D-Wave Systems Inc (2022a). D-Wave Ocean Software Documenta-
tion. D-Wave Ocean Documentation. Retrieved from https://docs.
ocean.dwavesys.com/en/stable/

D-Wave Systems Inc (2022b). QPU Solver Datasheet. D-Wave Docu-
mentation. Retrieved from https://docs.dwavesys.com.docs/latest/
doc_gpu.html

Dixit V, Selvarajan R, Alam M.A, Humble TS, Kais S (2021). Training
restricted boltzmann machines with a D-Wave quantum annealer.
Frontiers in Physics, 9 (589626). https://doi.org/10.3389/fphy.
2021.589626

Gaydai I, Babikov D, Teplukhin A, Kendrick BK, Mniszewski SM,
Zhang Y, Dub PA (2022). Molecular dynamics on quantum
annealers. Scientific Reports, 12 (16824). https://doi.org/10.1038/
s41598-022-21163-x

Glover F, Kochenberger G, Hennig R, Du Y (2022). Quantum bridge
analytics i A tutorial on formulating and using QUBO models.
Annals of Operations Research. https://doi.org/10.1007/s10479-
022-04634-2

Grotschel M, Yuan Y-X (2010). Euler, mei-ko kwan, konigsberg. Doc-
umenta Mathematica

Hagberg AA, Schult DA, Swart PJ (2008). Exploring network structure,
dynamics, and function using NetworkX. G. Varoquaux, T. Vaught,
& J. Millman (Eds.). Proceedings of the 7th Python in Science
Conference pp 11-15. Pasadena, CA USA

Lanting T, Przybysz AJ, Smirnov AY, Spedalieri FM, Amin MH,
Berkley AJ, Rose G (2014) Entanglement in a quantum anneal-
ing processor. Phys. Rev. X 4:021041. https://doi.org/10.1103/
PhysRevX.4.021041

Lewis M, Glover F (2017) Quadratic unconstrained binary optimization
problem preprocessing: Theory and empirical analysis. Networks.
https://doi.org/10.1002/net.21751

McGeoch C, Farré P (2021). The advantage system Performance
update. D-Wave Technical Report Series. Retrieved from https://
www.dwavesys.com/media/qdmlgsul/14-1054aa_advantage_
system_performance_update.pdf

Mniszewski SM, Dub PA, Tretiak S, Anisimov PM, Zhang Y, Negre
CFA (2021) Reduction of the molecular hamiltonian matrix using
quantum community detection. Sci Rep 11(4099):1-18. https://
doi.org/10.1038/s41598-021-83561-x

Musiat K, Kotowska J, Gérnicka D, Burduk A (2017). Tabu search and
greedy algorithm adaptation to logistic task. Computer Informa-
tion Systems and Industrial Management (CISM). https://doi.org/
10.1007/978-3-319-59105-6_4

Negre CFA, Ushijima-Mwesigwa H, Mniszewski SM (2020) Detect-
ing multiple communities using quantum annealing on the D-
Wave system. PLoS ONE 15(2):e0227538. https://doi.org/10.
1371/journal.pone.0227538

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pone.0271292
https://doi.org/10.1007/s42484-020-00014-w
https://doi.org/10.1007/s42484-020-00014-w
https://doi.org/10.1007/s42484-021-00039-9
https://doi.org/10.1007/s42484-021-00039-9
https://docs.ocean.dwavesys.com/en/stable/
https://docs.ocean.dwavesys.com/en/stable/
https://docs.dwavesys.com.docs/latest/doc_qpu.html
https://docs.dwavesys.com.docs/latest/doc_qpu.html
https://doi.org/10.3389/fphy.2021.589626
https://doi.org/10.3389/fphy.2021.589626
https://doi.org/10.1038/s41598-022-21163-x
https://doi.org/10.1038/s41598-022-21163-x
https://doi.org/10.1007/s10479-022-04634-2
https://doi.org/10.1007/s10479-022-04634-2
https://doi.org/10.1103/PhysRevX.4.021041
https://doi.org/10.1103/PhysRevX.4.021041
https://doi.org/10.1002/net.21751
https://www.dwavesys.com/media/qdmlgsu1/14-1054aa_advantage_system_performance_update.pdf
https://www.dwavesys.com/media/qdmlgsu1/14-1054aa_advantage_system_performance_update.pdf
https://www.dwavesys.com/media/qdmlgsu1/14-1054aa_advantage_system_performance_update.pdf
https://doi.org/10.1038/s41598-021-83561-x
https://doi.org/10.1038/s41598-021-83561-x
https://doi.org/10.1007/978-3-319-59105-6_4
https://doi.org/10.1007/978-3-319-59105-6_4
https://doi.org/10.1371/journal.pone.0227538
https://doi.org/10.1371/journal.pone.0227538

24 Page 20 of 20

Quantum Machine Intelligence (2023) 5:24

O’Malley D, Vesselinov VV, Alexandrov BS, Alexandrov LB, (2018)
Nonnegative/binary matrix factorization with a D-Wave quan-
tum annealer. PLoS ONE. https://doi.org/10.1371/journal.pone.
0206653

Rutenbar R (1989). Simulated annealing algorithms an overview. IEEE
Circuits and Devices Magazine, 5 (1), 19 — 26. https://doi.org/10.
1109/101.17235

Santoro G, Tosatti E (2006). Optimization using quantum mechanics
quantum annealing through adiabatic evolution. Journal of Physics
A Mathematical and General , 39 (36). https://doi.org/10.1088/
0305-4470/39/36/R0

Siloi I, Carnevali V, Pokharel B, Fornari M, Felice R (2021) Inves-
tigating the chinese postman problem on a quantum annealer.
Quantum Machine Intelligence. https://doi.org/10.1007/s42484-
020-00031-9

Thimbleby H (2003) The directed chinese postman problem. John Wiley
& Sons. https://doi.org/10.1002/spe.540

@ Springer

Ushijima-Mwesigwa H, Negre CFA, Mniszewski SM (2017). Graph
partitioning using quantum annealing on the D-Wave sys-
tem. Proceedings of the Second International Workshop on
Post Moores Era Supercomputing, 22-29 https://doi.org/10.1145/
3149526.3149531

Ye J, Yu S (2011). Accelerating finding euler circuit on CPU-GPGPU
heterogeneous architecture. Proceedings of the 2011 International
Conference on Mechatronic Science, Electric Engineering and
Computer (MEC) pp 1649-1652. https://doi.org/10.1109/MEC.
2011.6025795

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://doi.org/10.1371/journal.pone.0206653
https://doi.org/10.1371/journal.pone.0206653
https://doi.org/10.1109/101.17235
https://doi.org/10.1109/101.17235
https://doi.org/10.1088/0305-4470/39/36/R0
https://doi.org/10.1088/0305-4470/39/36/R0
https://doi.org/10.1007/s42484-020-00031-9
https://doi.org/10.1007/s42484-020-00031-9
https://doi.org/10.1002/spe.540
https://doi.org/10.1145/3149526.3149531
https://doi.org/10.1145/3149526.3149531
https://doi.org/10.1109/MEC.2011.6025795
https://doi.org/10.1109/MEC.2011.6025795

	Quantum computing for a profusion of postman problem variants
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph algorithm terminology
	2.2 History

	3 Methods
	3.1 Variants and applications
	3.2 Foundations for solving a problem on a quantum annealing device
	3.3 Closed undirected CPP
	3.4 A General Approach to the Chinese Postman Problem
	3.5 Further modifications to the general approach

	4 Results
	4.1 Closed Undirected CPP Parameter Study
	4.2 Closed undirected CPP comparison study
	4.3 General CPP parameter study
	4.4 General CPP comparison study

	5 Discussion
	Acknowledgements
	References

