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Abstract
In the present study, daily downwelling shortwave (QS) and longwave radiation (QL) data from one satellite and two hybrid 
products have been evaluated using Global Tropical Moored Buoy Array during 2001–2009 in the tropical oceans. Daily 
satellite data are used from the Clouds and Earth’s Radiant Energy System (CERES) program. Data are obtained using 
Moderate Resolution Imaging Spectroradiometer (MODIS) (CM) aboard the Terra and Aqua satellites. Coordinated Ocean 
Research Experiments (CORE-II) and Tropical Flux data (TropFlux) are the other two hybrid products used in this study. 
The analysis shows that majority of QS observations as well as derived products lie in 200–300 Wm−2 range in all the three 
tropical oceans. Both QS and QL in all products overestimated the majority of the observations. Yet, they underestimated 
the lower (0–100 Wm−2) values in QS and higher (300–440 Wm−2) values in QL. Majority of the QL observations lie within 
390–420 Wm−2 range, and CM slightly overestimated this observed distribution in the Pacific and the Atlantic Oceans. 
But, majority of the observations in the Indian Ocean lie within 420–450 Wm−2 range. This implies that the tropical Indian 
Ocean receives 30 Wm−2 more energy as compared to the tropical Pacific and the Atlantic in the form of downwelling 
longwave radiation. Daily observed QS shows dominant seasonal cycle over the central, the eastern Pacific and the 
eastern Atlantic. On the other hand, the western Pacific, the central Atlantic and the Indian Oceans show intraseasonal 
variations. All products show this variation with high root-mean-square error (RMSE) values (QS and QL) over the Indian 
Ocean than in the Pacific and the Atlantic Oceans. Downwelling radiation from CORE-II shows highest RMSE (for both 
QS and QL) with least correlation coefficient (CC), and TropFlux has lowest RMSE and highest CC among all products in 
all three tropical oceans. CM has intermediate values of standard deviation, CC and RMSE. These results are not season-
ally dependent, since the seasonal statistics are consistent with seasonal changes. Assuming that the SST is only driven 
by the downwelling shortwave and longwave fluxes, the errors associated with monthly SST can be as large as 0.2–0.3 
(0.1–0.2) °C associated with errors in QS (QL). Both QS and QL in CORE-II have lower spatial variability as compared to 
other datasets. QL in the tropical oceans shows seasonal spatial variability determined by intertropical convergence zone 
positions. This variability does not change significantly over the Pacific and the Atlantic Oceans. The summer and winter 
monsoon patterns in the Indian Ocean guide the QL variability. Opposite to QS, higher QL values have lower variability. 
Thus, this study aims at finding better radiation dataset to use in the numerical models and deduce that satellite data 
could be an alternative to existing reanalysis products.
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1  Introduction

The atmosphere and ocean interact and respond 
through the exchange of mass, momentum and heat 
fluxes. Heat flux variability is a major contributor to 
weather and climate on different timescales. Short-
wave radiation and latent heat flux are the principal 
contributors of heat flux variability in the tropics [48]. 
Tropical oceans receive high solar irradiance in the form 
of shortwave radiation. Subtropics and Polar Regions 
receive relatively less solar irradiance. The excess heat 
received over the tropical ocean balances through tur-
bulent mixing, longwave radiation, and transport to the 
higher latitudes through ocean circulation [107]. Tropi-
cal and subtropical cyclones also contribute to the large 
energy transfer from the ocean to atmosphere, mainly 
through the release of latent heat on weekly time scales 
[59]. Heat fluxes modulate the intraseasonal oscillations 
(ISO) in the tropical oceans [35, 103, 111]. Heat fluxes 
are also a major modulator of large-scale climatic events 
like El Niño/Southern Oscillation, Indian Ocean Dipole, 
Atlantic Meridional Mode [33, 66, 112, 113, 117, 126].

The net heat flux at the sea surface is the sum of net 
radiative and turbulent fluxes [16, 19, 70, 73]. Radiative 
flux has two components, i.e., longwave and shortwave. 
The downwelling fluxes of shortwave and longwave 
radiation, together with other meteorological variables, 
are used to force the ocean general circulation models 
(OGCMs). The near-surface atmospheric state is used to 
parameterize the surface boundary conditions for the 
heat and momentum flux [52] in the OGCMs. Parekh et al. 
[67] highlighted the potential impact of accurate momen-
tum forcing on the seasonal SST variations over the north 
Indian Ocean. Similarly, the heat balance in the boundary 
conditions prescribed for the OGCMs is limited by uncer-
tainties in turbulent and radiative heat fluxes ([110] and 
the references therein). These limitations in the forcing 
fields are partially responsible for the OGCMs to cause bias 
in simulating intraseasonal, seasonal, interannual variabil-
ity and climatic features [64]. Hence, accurate near-surface 
atmospheric fields are essential for the accurate simula-
tions in a forced ocean model. Rahaman and Ravichan-
dran [81] have evaluated the near-surface air temperature 
and humidity from Coordinated Ocean Research Experi-
ments (CORE-II), Objectively analized air-sea fluxes (OAF-
LUX), and Tropical Flux (TropFlux) in the Indian Ocean to 
find a better dataset to use in the model forcing.

The forced ocean model simulation accuracy also 
depends on the accuracy of the downwelling radia-
tive fluxes. There are many forcing fields available over 
the  global ocean such as DRAKKAR from European 
Community [9], JRA-do [109] and most commonly used 

Common Reference Ocean-Ice Experiments (CORE-
II) dataset to run global ocean and sea ice model [52, 
53]. All these datasets are based on corrected reanaly-
sis products. In addition to these reanalysis products, 
satellite-derived products such as International Satel-
lite Cloud Climatology Project (ISCCP-FD), Clouds and 
the Earth’s Radiant Energy System (CERES), etc., are 
also a source of radiative flux data. Trolliet et al. [108] 
compared the irradiance data from reanalysis product 
such as MERRA-2 and ERA-5 and three satellite-derived 
datasets (HelioClim 3v5, SARAH 2 and CAMS) with five 
PIRATA buoys during 2012–2013. This study concluded 
that present existing reanalysis data have large biases, 
errors and poor correlation coefficient values compared 
to the independent in situ buoy observations. However, 
the performances are similar between the three satellite-
derived datasets used in this study.

Chaudhuri et al. [12] compared the various atmospheric 
reanalysis surface products over global ocean with ISCCP 
data to estimate the uncertainties in air–sea boundary 
forcing. Interim ECMWF Re-Analysis (ERAInterim), CORE-
II, 25-Year Japanese Reanalysis Project (JRA-25), and 
NCEP–NCAR are evaluated against satellite-derived obser-
vations for eight different fields in this study. No product 
was compared well in all fields with satellite-derived obser-
vations, both in time mean and in time variable analysis. 
Reanalysis products are mostly comparable to each other 
due to their assimilation of common observations and their 
similar physical assumptions. Evaluation of the surface 
radiation fluxes with buoy observations in the Southeast-
ern Pacific Ocean during 2000–2012 [75] and at the Pacific 
“Cold Tongue” of the Tropical Pacific Ocean concluded that 
satellite data match well with the observations which is 
followed by reanalysis data than the model data [72, 74]. 
Pinker et al. [70, 73] compared the heat budgets derived 
at the ocean–atmosphere interface from satellites and 
blended products, with in situ observations in the Atlantic 
during 2003–2005. Ramesh Kumar et al. [83] used satel-
lite data (MODIS) as the reference to evaluate the radiative 
fluxes from Ocean Moored Network for the Northern Indian 
Ocean (OMNI). A study from Ma and Pinker [60] concluded 
that the Earth Radiation Balance from satellite observations 
has large bias over ocean than their better agreement over 
land. These differences are further attributed to frequent 
changes in satellite observing systems, degradation of sen-
sors, restricted spectral intervals, viewing geometry of sen-
sors, and changes in the quality of atmospheric inputs that 
drive the inference schemes.

Feng et al. [20, 21] generated high accuracy daily pho-
tosynthetically active radiation (PAR, solar radiation at 
400–700 nm) by evaluating several radiative transfer and 
artificial intelligence models with ground observations 
at twenty-nine stations over China. Wenmin Qin et al. 
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[78] compared the performances of four shortwave solar 
radiation models in different climates over China and con-
cluded that the cloud fraction and solar zenith angle are 
the major parameters influencing the model accuracies. 
A similar study from Feng et al. [20, 21] using 15 typical 
empirical models concluded that the model with second-
order polynomial performed better than other models for 
estimating diffuse radiation in different climate zones over 
China. Zou et al. [132] studied the spatial distribution and 
long-term variation in global solar energy based on the 
Coupled Model Intercomparison Project Phase 5 (CMIP5) 
and found that the global mean surface solar radiation 
significantly decreased in 1850–2005. Wang et al. [119] 
compared various models for predicting diffuse solar 
radiation in China using daily observations at 17 stations 
during 1993–2015 to highlight the accuracy of newly pro-
posed models compared with empirical models.

Raschke et al. [86] used ISCCP data to show the effect 
of clouds on the radiation fields. It shows that the ISCCP 
data underestimate the absorption of solar radiation in 
the tropical and subtropical atmosphere about 10 to 20 
Wm−2 on seasonal to annual time scale. Recent satellite-
based monthly CERES estimates of incident solar radia-
tion agree better with the surface measurements rather 
than at daily timescales. These monthly estimates are also 
useful to capture the seasonal variation of incident solar 
radiation [123]. Differences between the FLASHFlux, CERES 
shortwave radiation flux, and surface measurements are 
larger in cloudy-sky conditions than in clear-sky conditions 
over Loess Plateau [127]. Kato et al. [42] estimated the bias 
(RMSE) between computed and observed monthly mean 
irradiances with ten years of CERES data as, 4.7 (13.3) Wm−2 
for QS and − 2.5 (7.1) Wm−2 for QL over global oceans. Rutan 
et al. [91] compared CERES surface radiantion fluxes data 
with 85 globally distributed land (37) and ocean buoy 
(48) surface observations as well as several other publicly 
available global surface radiantion flux data products. This 
study finds that the downward fluxes from CERES have the 
monthly bias (standard deviation) of 3.0 Wm−2 (5.7%) QS 
and −4.0 Wm−2 (2.9%) for QL compared to surface observa-
tions. Also, the standard deviation between surface down-
ward shortwave flux calculations and observations at the 
3-hourly time scale was reduced during the diurnal cycle 
of cloud changes. Improvement is smaller for QL due to 
an additional sensitivity to boundary layer temperature/
humidity, which has a weaker diurnal cycle compared to 
clouds. Complete technical details and the present status 
of CERES can be found from Barkstrom [4] and Smith et al. 
[101].

The other blended flux products like OAFlux [128] and 
TropFlux [77] combine the desirable aspects of observa-
tions, satellite products, and model analysis. But, these 
blended products have limitations, in having complete 

set of data for model forcing (e.g., OAFlux) or in their 
global coverage (e.g., TropFlux). ISCCP-FD is not available 
for the recent decade (from 2009) and is used in all these 
datasets for the radiative fluxes at the sea surface. The 
ISCCP data have problems over oceans, in particular, over 
the Atlantic Ocean [60, 70, 73]. There are a few studies 
which evaluated radiative fluxes from different satellite, 
reanalysis and models with the observations over land 
and ocean [70–75]. But all these studies either contain 
only single downwelling radiation parameter/dataset or 
confined to a narrow region for a short period of time. 
In the present work, we try to fill this gap by evaluating 
both the components of downwelling radiation (short-
wave and longwave) from CERES, CORE-II and TropFlux 
data derived from ISCCP in the tropical oceans.

To the best of our knowledge, no long-term evalua-
tion studies are available for the radiative fluxes from 
different datasets with in situ observations, in all the 
three tropical oceans. Hence, in this study, we evaluated 
the radiative components from satellite and reanalysis 
products with in situ observations over global tropical 
oceans. Though the similar attempt was made by Pinker 
et al. [71], the study includes surface shortwave radiation 
from single (satellite) product only for a short duration 
(2003–2005). Hence, the objective of the present study 
is to undertake a comparison of the downwelling fluxes 
of radiation from the existing and commonly used radi-
ation forcing fields and satellite data over the tropical 
oceans with in situ observations. In addition, we tried to 
assess whether satellite data can be complementary to 
the reanalysis data in forcing the OGCMs. The radiation 
data from a satellite-based product, the Moderate Reso-
lution Imaging Spectrometer (MODIS) from the Clouds 
and Earth’s Radiant Energy System (CERES) (CM), and two 
blended products, CORE-II and TropFlux, are evaluated 
with independent in situ observations over the tropi-
cal oceans. It is worth to mention that this study is first 
of its kind to evaluate various radiation datasets in all 
three tropical oceans for a longer period (about a dec-
ade). Since CORE-II and TropFlux use ISCCP data, essen-
tially, we evaluated the ISCCP radiation datasets with all 
available in situ radiation data for a decade in the global 
tropical ocean which was never attempted before.

This paper organized as follows. Section 2 describes 
the various references and hybrid datasets used in this 
study. In Sect. 3.1, we discussed the spatial variability of 
hybrid datasets. We illustrated the details and results of 
the validation process with reference data from Global 
Tropical Moored Buoy Array (GTMBA) [61] in Sect. 3.2. In 
Sect. 3.3, we presented the error in SST due to error in 
hybrid and reanalysis data. The main conclusions and 
summary are in Sect. 4.
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2 � Data and methodology

This study makes use of the GTMBA radiation data to evalu-
ate downwelling shortwave radiation (QS) and downwelling 
longwave radiation (QL) fluxes from various sources in the 
global tropical oceans. The near real time or regularly updat-
ing satellite/hybrid products are used for evaluation. Various 
flux data sources and their spatial and temporal resolution 
details are given in Table 1. These products are selected 
based on their frequent use in the GCMs by modeling com-
munity to force the numerical models. The comparisons of 
these products are made with GTMBA collocated and con-
current datasets with nearest grid point data. We used data-
sets with spatial grid resolutions of 1° and 1.9° and compared 
with collocated buoy observations. This approximation does 
not give much differences in our results. Trolliet et al. [108] 
showed the comparison of point location with gridded data 
is valid over tropical ocean since no strong systematic gradi-
ent in irradiance present over short distance in the tropical 
ocean. The mean, standard deviation (SD) and root-mean-
square error (RMSE) are computed with the Eqs. 1, 2 and 3. 
The following sections concisely present each of the datasets 
used in the present study.

where A is average (or arithmetic mean), n is the total num-
ber of observations, and xi is the daily value of each obser-
vation in the list of observations averaged.

where xi is an individual value, μ is the mean/expected 
value, and n is the total number of daily observations
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where yi   is the observed value for the ith observation,  
ŷi  is the estimated value, and n is the total number of daily 
observations.

2.1 � Global Tropical Moored Buoy Array

Moored buoy observing system in all three tropical 
oceans (GTMBA) is a multinational effort to get surface 
meteorological and subsurface oceanic near-real-time 
data for research and applications. It has three com-
ponents, namely Tropical Atmosphere Ocean/Triangle 
Trans-Ocean Buoy Network (TAO/TRITON) in the tropi-
cal Pacific Ocean [62], Pilot Research Moored Array in the 
Tropical Atlantic (PIRATA) in the tropical Atlantic Ocean [8] 
and Research Moored Array for African–Asian–Australian 
Monsoon Analysis and Prediction (RAMA) in the tropical 
Indian Ocean [63]. The GTMBA data undergo rigorous 
quality control procedures before delivering to users, to 
ensure high accuracy standards [23, 24, 51, 65, 69]. Quality 
control is performed in three stages, i.e., daily, weekly and 
monthly (https​://www.pmel.noaa.gov/gtmba​/data-quali​
ty-contr​ol). Complete details of the GTMBA project/pro-
gram are discussed in McPhaden et al. [61] and Venugopal 
et al. [110] and the references therein. The uncertainty in 
the shortwave radiation is 2% due to drift criteria. Foltz 
et al. [22] reported monthly mean accumulation biases as 
large as − 200 Wm−2 and record-length mean biases of − 10 
Wm−2 in the shortwave radiation from the moorings in the 
Atlantic (PIRATA) due to dust accumulation.

All mooring locations data for downwelling shortwave 
radiation and downwelling longwave radiation are used 
during the study period. However, many buoy locations 
have data gaps and there exist a few stations with only 
either QS or QL. In the Indian Ocean among 27 mooring 
sites, QL is available only at 0°N, 80.5°E; 15°N, 90°E and 8°S, 
67°E (three locations) during the study period. QS data 
are available at 19 sites in the Indian Ocean. Among the 
seven stations delivering QL in the Atlantic Ocean, only 
four locations have the data in the study period. However, 
QS has data over 17 out of 21 locations. Relatively, Pacific 
Ocean has more moorings, and data availability is better 
than other oceans. The QL data delivered from 11 moorings 
and QS data obtained from 32 out of 34 sites in the Pacific 
Ocean are used in the study.

Figure 1 shows the distribution of GTMBA data in all 
three tropical oceans. Locations of the GTMBA buoys can 
be found in supplementary figure S1. The Pacific Ocean 
has more data points for both QS and QL, followed by the 
Atlantic and the Indian Oceans. Daily QS and QL data with 
quality flags of one and two (highest or default quality) 
are chosen to evaluate reanalysis/hybrid/satellite prod-
ucts. Data availability period of all mooring sites is not 
same. Nonetheless, all available data during 2001–2009 

Table 1   The spatial and temporal details of reanalysis data used in 
the study

Data product Start date Resolution End date

Spatial Temporal

CM 01/01/2001 1° × 1° Daily 31/12/2009
CORE-II 01/01/2001 1.9° × 1.9° Daily 31/12/2009
TropFlux 01/01/2001 1° × 1° Daily 31/12/2009

https://www.pmel.noaa.gov/gtmba/data-quality-control
https://www.pmel.noaa.gov/gtmba/data-quality-control
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are considered in the present study. Data gaps and spuri-
ousness of mooring data are paid attention while perform-
ing validation of reanalysis products. Sharp peaks and dips 
(> 50 Wm−2) in the daily PIRATA data over a few locations 
are removed in the process of evaluation. We reported the 
GTMBA program office about these spurious values and 
subsequently our inputs were used to correct the GTMBA 
data base (personal communication).

2.2 � CERES/MODIS (CM)

The CERES project as a successor to Earth Radiation Budget 
Experiment (ERBE) has been providing radiative flux com-
ponents from 2000 to till date [6, 43, 122]. CERES program 
focused on measuring outgoing longwave radiation (OLR) 
radiances and reflected solar radiances to an accuracy of 
1% and 2%, respectively. The ERBE [5, 6] program pro-
vided significant information about the energetics and the 
effects of clouds in modulating the energy balance [31, 
82]. The CERES project conceived as a successor to ERBE to 
compile a data record for the investigation of interannual 
variations of climate [31, 43, 122]. In the present study, 
we have used daily averaged CM observed Geostation-
ary enhanced, temporally interpolated surface radiative 

fluxes for all-sky conditions (version 3) data of QS and QL. 
The computed fluxes produced using the Langley Fu-Liou 
radiative transfer model. The CERES Synoptic (SYN1 deg), 
edition 3, product provides climate-quality global 3-hourly 
1° × 1° gridded top of atmosphere, in-atmosphere, and sur-
face radiant fluxes available from March 2000 to February 
2017 [110]. However, we have used data during 2001–2009 
in the current analysis to match the data period of other 
reanalysis/hybrid products. Details of the product compu-
tation, methodology and validation of CM data are given 
in Rutan et al. [91].

2.3 � CORE‑II

The CORE data combine NCAR/NCEP reanalysis with satel-
lite data, by certain limitations of reanalysis [52]. Although 
there are many cautions, the CORE datasets and CORE proto-
col provide a means for the global ocean climate modeling 
community to integrate ocean-ice models without a fully 
coupled atmospheric General Circulation Model (GCM) [29]. 
However, these data have known biases and were therefore 
adjusted based on comparisons with observations [102]. 
Details of the correction methods are available in the work 
of Large and Yeager [52]. The interannual forcing fields are 

Fig. 1   Frequency distribution 
of a downwelling shortwave 
(Wm−2) and b downwelling 
longwave (Wm−2) from all 
GTMBA observations used to 
collocate with the concurrent 
data from CM, CORE-II and 
TropFlux
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available until 2009 due to unavailability of observed radia-
tive flux data. This CORE-II was produced using corrected 
NCEP2 data [37] and ISCCP radiation data [129]. Since the 
ISCCP data are available until 2009, CORE-II forcing fields are 
not available beyond 2009. Hence, present study contains 
the daily averaged corrected interannual forcing version 2 
data during 2001–2009. The spatial resolution of the data is 
in 1.9° × 1.9° grid size.

2.4 � TropFlux

The TropFlux data provide daily air–sea heat and momentum 
fluxes over the tropical oceans (30°N–30°S). TropFlux uses 
bias, amplitude corrected ERA-I (10 m winds, 2 m air and sea 
temperature, 2 m air relative humidity and downward radia-
tive fluxes), and ISCCP (shortwave radiation) fluxes. All bias 
corrections to the ISCCP data are based on the GTMBA data 
and are described in detail in Kumar et al. [50]. Additional 
details on the ISCCP datasets, its methodology and evalua-
tion can be found in Rossow and Schiffer [90], and Schiffer 
and Rossow [93]. Evaluations with mooring data (GTMBA) 
have shown that TropFlux is more accurate than the other 
reanalysis products [50]. Since TropFlux provides net short-
wave and longwave radiation data, we compute QS and QL 
fluxes given by Eqs. 3 and 4 [52, 77].

The net solar flux (QNS) from the incident solar insolation 
QS on the ocean surface; the solar albedo, α = 0.05 [88], and 
the downwelling longwave flux from the atmosphere, QL, 
is given by:

The longwave radiation occurs from the ocean surface 
provided by the blackbody radiation law which is a function 
of εσ(SST)4, where σ = 5.679 × 10−8 Wm−2 per K4, which is the 
Stefan–Boltzmann constant and ε is the surface emissivity, 
considered to be 1.0 [58]. The net longwave flux becomes

3 � Results and discussions

3.1 � Spatial variability of QS and QL in the global 
tropical oceans

3.1.1 � Seasonal mean distribution of QS

The tropical Indian and the western Pacific Ocean together 
constitute the major part of the large warm pool on the 
Earth [85]. The air–sea interaction and their fluxes over 
this region play a significant role in shaping climate on 
regional and global scales [96]. Although a few previous 
studies reported the annual distribution of QS during El 
Niño and La Niña [68, 124], its seasonal spatial distribution 

(4)QNS = QS(1 − �)

(5)QNL = QL − �(SST)4

has not been studied in those studies except during El 
Niño and La Niña time. Hence, in addition to evaluate 
the different products with GTMBA in situ data, we show 
the seasonal spatial distributions of QS in all these hybrid 
datasets. In this section, we show the spatial distribution 
of QS and QL seasonal mean and daily variability over 
tropical oceans. Figure 2 shows the seasonal mean QS 
over global tropical oceans from CM, CORE-II and Trop-
Flux. QS shows high values over the subtropical region 
(between 10 and 30 degree of latitude band not in the 
equator region) in all seasons. This is mainly due to the 
low cloudiness over these subtropical regions rather than 
equator, where the total cloudiness values are ~ 60–70% 
due to the intertropical convergence zone (ITCZ) [68]. 
The reason being explained by Pavlakis et al. [68], entire 
southern hemisphere receives uniform high QS during DJF 
with an average value of 300–340 Wm−2. These high QS 
values are subject to shift in the thermal equator towards 
southern hemisphere coupled with the presence of less 
clouds. Thus, this region well exposed to receive more QS 
during this season. The south pacific convergence zone 
(SPCZ) and the eastern equatorial Indian Ocean show low 
QS values (~ 200 Wm−2). The equatorial Pacific and Atlantic 
Oceans also have values less than 300 Wm−2. These low 
values correspond to the presence of ITCZ and associated 
convection over equator and SPCZ. Hatzianastassiou et al. 
[32] have shown a strong anti-correlation between QS 
and cloud amount. Hence, the lower QS values are associ-
ated with the regions with high convections and cloud 
cover such as ITCZ. The low band of QS over the equatorial 
Pacific Ocean lies above the equator and almost station-
ary throughout the year [2]. In the Indian Ocean, the low 
QS values extend till 25°N associated with the northward 
shift of ITCZ during the Indian Summer Monsoon [26, 28, 
120] (Fig. 2). Variability is large over the low QS region and 
is evident from the seasonal SD plots (Fig. 3). Entire north-
ern hemisphere has low QS values (~ 130–180 Wm−2) in 
the north of equator till 30°N during DJF. This is due to 
the low solar radiation reaching this region during this 
season. Both CM and CORE-II show similar mean spatial 
distribution pattern. TropFlux shows low QS values over 
the northern Pacific and Atlantic Oceans as compared to 
CM and CORE-II. This bias could be attributed to the bias in 
the radiation data used in the TropFlux and the correction 
applied to generate this product [50]. But the variability is 
less in CORE-II as compared to other two products (Fig. 3). 

The equator shows large QS during spring. Except in the 
northern ITCZ, the west coast of north America and SPCZ 
locations have low QS values (~ 200–220 Wm−2) [40, 44, 
87] (Fig. 2). Similar spatial pattern of spring prevails with 
extent of low QS values over the north Indian Ocean during 
summer is associated with the Indian summer monsoon [1, 
7, 15]. TropFlux in summer shows different spatial patterns 
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as in winter, as compared to CORE-II and CM (Fig. 2). All 
products show low values in the subtropics (20°–30°S lati-
tude band). The QS values over the west coast of the South 
America and Africa show much lower values as compared 
to the adjacent regions of the same latitudes. TropFlux 
shows lowest values over these regions as compared to 
the other products. Hatzianastassiou et al. [32] have shown 
that these lower values are due to the large cloud amounts 
(~ 80%) present over these regions. The QS in JJA over the 
Indian Ocean shows low values as compared to the Pacific 
and Atlantic Oceans. It is due to the presence of clouds, 
especially low-level stratus and stratocumulus forms dur-
ing the Indian summer monsoon [12, 32]. The western 
Indian Ocean and the east coast of African/Somali show 
large QS in all seasons. This is mainly due to the absence 
of clouds over the western Indian Ocean throughout the 
year [26, 27, 121]. Low QS values (less than 100 Wm−2) are 
observed during DJF in the north of 20°N and during JJA in 
the south of 20°S. All the reanalysis products show similar 
spatial and temporal patterns with a change in the mag-
nitude. The equatorial belt and the Indonesian Through 
Flow regions are consistently receiving low QS values with 
magnitude below 200 Wm−2. This region hosts the large 
warm pool. The presence of warm waters with strong con-
vection and deep cloud formation that are opaque to QS 

would lead to low QS. CM shows the highest mean values 
in all seasons among all the products, followed by CORE-II. 
Large QS values over the subtropical Pacific, Atlantic and 
the western Indian Oceans are associated with subsidence 
regions due to the presence of anti-cyclonic conditions 
over these regions [32]. Daily variability between seasons 
has no significant change and has similar regional mean 
values (Fig. 3). CORE-II variability is low in all seasons as 
compared to CM and TropFlux. This can be seen in Tables 2, 
3 and 4.  

3.1.2 � Seasonal mean distribution of QL

Figure 4 shows the seasonal mean of QL from CM, CORE-II 
and TropFlux in global tropical oceans for different sea-
sons (DJF, MAM, JJA and SON). Unlike QS, QL in the tropi-
cal oceans shows the spatial pattern determined by ITCZ 
positions. Large QL values are seen over ITCZ. But, except 
in the Indian Ocean, seasonal patterns and magnitudes 
of QL do not change significantly over the  tropical 
oceans. The spatial pattern of QL changes with the sum-
mer and winter monsoon over the Southeast Asia [55]. 
All the reanalysis products in the north Indian Ocean 
have low QL during DJF which corresponds to shift in 
the thermal equator leading to changes in the amount 

Fig. 2   Seasonal mean of downwelling shortwave radiation (Wm−2) from CM, CORE-II, and TropFlux in the global tropical oceans. Basin-aver-
aged mean values are given in each sub panel



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1171 | https://doi.org/10.1007/s42452-019-1172-2

Fig. 3   Seasonal SD of downwelling shortwave radiation (Wm−2) from CM, CORE-II, and TropFlux in the global tropical oceans. Basin-aver-
aged SD values are given in each sub panel

Table 2   Statistics of 
downwelling shortwave 
radiation (QS) and downwelling 
longwave radiation (QL) of all 
reanalysis/satellite products 
compared with TRITON data 
in the Pacific Ocean during 
2001–2009

QS (mean = 227.27 Wm−2, SD = 65 Wm−2)
Number of collocated data points: 63,309

QL (mean = 408.15 Wm−2, SD = 17.02 
Wm−2)
Number of collocated data points: 
9106

Parameter CM CORE-II TropFlux CM CORE-II TropFlux

Bias (Wm−2) 7.23 − 0.22 − 4.62 − 3.68 − 0.20 3.33
SD (Wm−2) 47.12 45.53 58.83 13.92 16.77 16.77
RMSE (Wm−2) 40.41 43.60 36.58 8.78 11.94 10.56
Mean (Wm−2) 234.50 227.05 222.65 404.48 407.96 411.48
CC 0.79 0.74 0.83 0.89 0.75 0.82

Table 3   Statistics of 
downwelling shortwave 
radiation (QS) and downwelling 
longwave radiation (QL) of all 
reanalysis/satellite products 
compared with PIRATA data 
in the Atlantic Ocean during 
2001–2009

QS (mean = 232.70 Wm−2, SD = 56.58 Wm−2)
Number of collocated data points: 35,604

QL (mean = 404.16 Wm−2,SD = 14.80 
Wm−2)
Number of collocated data points: 
4105

Parameter CM CORE-II TropFlux CM CORE-II TropFlux

Bias (Wm−2) 5.00 2.22 − 0.45 − 3.76 − 1.12 0.89
SD (Wm−2) 42.51 39.92 51.04 14.50 19.05 18.40
RMSE (Wm−2) 34.88 39.63 32.21 9.27 13.59 14.46
Mean (Wm−2) 237.70 234.92 232.24 400.40 403.04 405.04
CC 0.79 0.72 0.83 0.83 0.71 0.64
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of downward radiation receiving at the surface. The low 
QL region in the Pacific and Atlantic Oceans shifted to 
north of 20°N during DJF due to less radiation over these 
regions in the northern winter. High QL values greater 
than 400 Wm−2 are observed in JJA over the Indian 
Ocean. These high QL values in the Pacific and Atlantic 
Oceans are limited to the equatorial belt extended up 
to 10° north and south. CM has the least global mean in 
all seasons, followed by CORE-II, and TropFlux with the 
highest mean value. Peak values of QL are concentrated 

at the equatorial belt and over the Indonesian Through 
Flow region during all seasons. Low (high) variability 
corresponds to the high (low) mean of QL (Fig. 5). Entire 
tropical belt (10 S–10 N), including the Indo-Pacific warm 
pool region, shows lowest variability in all seasons and in 
all three reanalysis products due to the persistent cloud 
and rainfall over this region. CORE-II shows maximum 
SD values both in the north and southern hemispheres 
independent of seasons, followed by TropFlux and CM. 

Table 4   Statistics of downwelling shortwave radiation (QS) and downwelling longwave radiation (QL) from all reanalysis products compared 
with RAMA data in the Indian Ocean

QS (mean = 223.67 Wm−2, SD = 70.182 Wm−2)
Number of collocated data points: 9789

QL (mean = 417.78 Wm−2, SD = 18.45 Wm−2)
Number of collocated data points: 1639

Parameter CM CORE-II TropFlux CM CORE-II TropFlux

Bias (Wm−2) 3.51 − 2.75 − 9.1 − 6.63 − 7.99 3.58
SD (Wm−2) 52.37 48.23 60.62 17.23 23.38 21.66
RMSE (Wm−2) 43.16 50.58 40.46 9.17 13.7 9.55
Mean (Wm−2) 227.18 220.92 214.57 411.15 409.79 421.36
CC 0.79 0.69 0.83 0.94 0.89 0.92

Fig. 4   Seasonal mean of downwelling longwave radiation (Wm−2) from CM, CORE-II, and TropFlux in the global tropical oceans. Basin-aver-
aged mean values are given in each sub panel
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3.2 � Temporal variation of QS and QL in the global 
tropical oceans

3.2.1 � Pacific Ocean

The distribution of QS and QL from in situ observations 
(TRITON), CM, CORE-II, and TropFlux is shown in Fig. 6a. 
Majority of QS observations as well as derived products 
lie in 200–300 Wm−2 range (Fig. 6a). All products over-
estimated the observed QS in the 200–250 Wm−2 range 
and underestimated the low (100–150 Wm−2) and high 
(300–350 Wm−2) values. QS from CORE-II has no match 
with the observations in the 300–350 Wm−2 range. Other 
products performed better to meet the observations 
in this range (Fig. 6a). This discrepancy in matching the 
different ranges with the observations could be due to 
errors in the radiative transfer algorithms and biases in 
the input data used to develop the products. The down-
ward energy flux (QL) at the ocean surface in the tropi-
cal Pacific Ocean mostly lies in the 390–420 Wm−2 range 
(Fig. 6b). All products have this near Gaussian distribu-
tion pattern. Both CORE-II and TropFlux data have better 
match with observations. But TropFlux has higher values 
in the 420–450 Wm−2 range. This result is noticeable as the 
TropFlux use the GTMBA observations for the calibration 

and bias corrections. All products are in good agreement 
with observations at 360–390 Wm−2 range. However, QL 
from CM failed to capture the values in the 420–450 Wm−2 
range (Fig. 6a). Thus, CM has large bias in the higher QL 
range. Comparison with the magnitude does not offer any 
physical insights to know why the differences exist. But, it 
is more revealing when mean diurnal cycle or irradiance 
sorted by meteorological conditions is compared. This 
kind of study requires more focus into regional and remote 
forcing factors in each of the three tropical oceans and on 
each product evaluated. However, present study focusses 
only on evaluating and validating the existing reanalysis 
and hybrid products to find the best alternative to use in 
model forcing.

Figure 7 shows the daily time series of QS from CM, 
CORE-II, TropFlux, and observations from TRITON buoy for 
a few locations over the western (Figs. 7a, b), the central 
(Fig. 7c) and the eastern Pacific Oceans (Fig. 7d) during 
2001–2009. Mean and standard deviation (Wm−2) from 
observations and all the products are also shown in each 
panel. The intraseasonal variability of QS over the west-
ern Pacific is dominant due to the presence of high-level 
clouds (cloud amount over 40%) and is concentrated over 
these moist convective regions [104]. TropFlux has the 
mean and SD close to TRITON observations, but CORE-II 

Fig. 5   Seasonal SD of downwelling longwave radiation (Wm−2) from CM, CORE-II, and TropFlux in the global tropical oceans. Basin-averaged 
mean values are given in each sub panel
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underestimated both the mean and SD. Although CM 
closely follows TRITON, it varies more with the observed SD 
(SD values are underestimated: Table 2). The seasonal cycle 
is prominent (Fig. 7c, d) in the central and eastern Pacific 
Oceans. This is due to the near absence of convective activ-
ity over the central and the eastern Pacific Oceans [25, 
30, 34, 116]. The observed mean QS is the highest (277.3 
Wm−2) at the central Pacific Ocean buoy location as com-
pared to the eastern (263 Wm−2) and the western Pacific 
Ocean buoy (243.7 Wm−2); and is due to the presence of 
subsidence regions with small total cloud amounts [104].

The time series comparison of QL is shown in Fig. 8 for 
the same TRITON buoy locations as shown for QS. QL in TRI-
TON has large data gaps, and continuous data are available 
only from 2006. Some observations are available at 95°W 
during 2002–2003 (figure not shown). QL shows constant 
variation throughout the year. Intraseasonal variability is 
noticed in all locations in all products. But, the seasonal 
cycles are not prominent in QL. TropFlux shows systematic 
positive bias over the western Pacific Ocean (Fig. 8a) with 
a mean bias of ~ 10 Wm−2. CM has better match with the 
observations over the western Pacific Ocean (Figs. 8a, b). 
But, CORE-II has systematic negative bias over the western 
Pacific Ocean and is overestimated in the eastern Pacific 
Ocean (Fig. 8d). This is followed by TropFlux. All products 

have underestimated the SD over the eastern Pacific 
Ocean.

Complete statistics of mean, bias, SD, and RMSE of QS 
for all products compared with observations over the 
Pacific Ocean are shown in Table 2. CM overestimated 
the QS with mean bias of 7.23 Wm−2; TropFlux underes-
timated by -4.62 Wm−2. CORE-II has least mean bias of 
− 0.22 Wm−2. Since the TropFlux using the GTMBA data in 
its bias corrections, QS from TropFlux has the least daily 
RMSE of 36.58 Wm−2, and it has the daily SD (58 Wm−2) 
close to observation (65 Wm−2). But, CORE-II has the least 
SD among all products. The satellite-derived product 
(CM) shows least RMSE of 40.41 Wm−2 and is better than 
CORE-II (43.59 Wm−2). CM and CORE-II underrated the 
observed QL with a bias of -3.68 Wm−2 and − 0.2 Wm−2, 
respectively. QL from TropFlux has the positive bias of 
3.35 Wm−2. SD of QL from both CORE-II and TropFlux 
(16.77 Wm−2) has better agreement with the observa-
tions (17.02 Wm−2). CM underestimated (SD = 13.92 
Wm−2) the observed SD values and has lower RMSE of 
8.78 Wm−2 which is better than CORE-II (11.94 Wm−2) 
and TropFlux (10.56 Wm−2), respectively. CM has high-
est mean CC (average CC of both QS and QL) (0.83) com-
pared to CORE-II (0.82) and TropFlux (0.74). These values 
are consistent throughout the year since the values have 

Fig. 6   Frequency distribution 
of a downwelling shortwave 
(Wm−2) and b downwelling 
longwave (Wm−2) from TRITON 
and other reanalysis products
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similar magnitudes in different seasons (supplementary 
table S2).

3.2.2 � Atlantic Ocean

Figure 9 shows the frequency distribution of QS and QL in 
the tropical Atlantic Ocean. Similar to Pacific Ocean, all the 
products overestimated the observed QS in the 200–250 
Wm−2 range of the frequency distribution in the Atlan-
tic Ocean (Fig. 9a) and underestimated the lower (< 200 
Wm−2) and higher values (> 250 Wm−2). This result also cor-
roborates the recent finding of Trolliet et al. [108] which 
shows the Meteosat satellite-based QS overestimates the 
PIRATA observed values. Majority of QL observations fall 
in 390–420 Wm−2 range and CM is able to produce this 
trend better than other products. But, CM failed to match 
the observations in 420–450 Wm−2 range (Fig. 9b). On 
the other hand, QL variations significantly modify the net 

radiation at the sea surface; hence, the inability to capture 
the higher values will significantly affect estimating the 
energy transfer at the sea surface and hence the SST 
variations.

The time series comparison of QS from all products with 
observations (PIRATA buoy locations) is shown in Fig. 10. 
All products are able to reproduce buoy observed daily 
variations. Daily QS variations over the western Atlantic 
Ocean are shown in Fig. 10a. The prominent annual cycle 
embedded with ISOs is seen during the evaluation period 
(2001–2009). Observed lower values in 2003 could be 
erroneous which was also pointed out by Trolliet et al. 
[108] and also by our own assessment by checking the 
consistency with the other year’s variations. The similar 
errors were observed both in QS and QL at several loca-
tions in all three tropical oceans during different years 
(figures not shown). Most of these errors are corrected by 
the quality control and data distribution team of GTMBA 

Fig. 7   Seven-day smoothed time series of downwelling shortwave 
(Wm−2) from TRITON (black), CM (red), CORE-II (blue), and TropFlux 
(purple) from selected locations in the Pacific Ocean during 2001–
2009. Mean and standard deviations  (STD in the figure) (Wm−2) 

from TRITON observations and corresponding collocated and con-
current values from CM, CORE-II and TropFlux are also given in each 
panel
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through the feedback during our study. The buoy loca-
tion at 15°N and 38°W is almost in the fringe location of 
summer ITCZ (Maloney and Shaman 2008). Seasonal cycle 
with embedded ISO variations is very prominent at the 
central Atlantic Ocean buoy location (Fig. 10b). Also, all 
products could able to capture the daily buoy observed QS 
at this location. This buoy location at the equatorial Atlan-
tic Ocean experiences the presence of both summer and 
winter ITCZ in the Atlantic Ocean. Hence, the intraseasonal 
activity is significant in this location among all other loca-
tions shown in Fig. 10 [105]. The seasonal cycle is dominant 
in the off-equatorial eastern Atlantic Ocean buoy location 
with near absence of any ISO activity (Fig. 10c). This buoy is 
located off ITCZ locations both in summer and winter, and 
hence the QS variation follows the seasonal migration of 
Sun [105]. The daily variation of QS at the near-equatorial 
Atlantic Ocean from buoy observations and all the prod-
ucts are shown in Fig. 10d. All the products are able to 

capture the daily variations, yet fail to capture the lower 
observed values of QS which can also be seen in Fig. 9a.

Figure 11 shows the time series comparison for QL over 
the western (38°W), the central (23°W) and the eastern 
(10°W) Atlantic Ocean. QL also has the prominent annual 
cycle over the western and the central Atlantic Oceans. The 
presence of ISOs is also observed over the eastern Atlantic 
Ocean in the observations which are well captured by all 
the products.

Statistical analysis performed with the collocated data 
from all buoys is given in Table 3. QS in TropFlux shows 
better agreement with observations among all the data-
sets evaluated. CM has the highest positive bias (5 Wm−2) 
in QS and negative bias in QL (− 3.76 Wm−2), followed by 
CORE-II (QS = 2.22 Wm−2, QL = − 1.12 Wm−2). QS in TropFlux 
has least negative bias of − 0.45 Wm−2 (QL = 0.89 Wm−2), 
and CORE-II has large RMSE (39.6 Wm−2) values compared 
to other products (CM: 34.8 Wm−2; TropFlux: 32.2 Wm−2). 

Fig. 8   Seven-day smoothed time series of downwelling longwave 
(Wm−2) from TRITON (black), CM (red), CORE-II (blue), and TropFlux 
(purple) from selected locations in the Pacific Ocean during 2006–
2009. Mean and standard deviations (STD in the figure)  (Wm−2) 

from TRITON observations and corresponding collocated and con-
current values from CM, CORE-II and TropFlux are also given in each 
panel
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SD of QS is low (39.9 Wm−2) in CORE-II compared to other 
products and observations (56.7 Wm−2). Analogous to 
the Pacific Ocean, CM outplayed other reanalysis/hybrid 
QL datasets in the Atlantic with highest CC value of 0.83, 
followed by CORE-II and TropFlux with 0.71 and 0.64, 
respectively (Table 3). Similar to the Pacific Ocean, TropFlux 
shows highest CC of 0.83 in QS, followed by CM (0.79) and 
CORE-II (0.72). Despite the changes in different statistical 
parameter values in seasons (supplementary table S3), all 
the parameters closely follow the annual values (Table 3).

3.2.3 � Indian Ocean

The Indian Ocean differs from the Pacific and the Atlantic 
Oceans in numerous ways. Indian Ocean is landlocked in 
the north by the Asian continent, thus driving the strong-
est monsoon on the Earth. In recent years, there are several 
studies focusing on understanding the role of the Indian 
Ocean in the climate change [92, 94, 95]). The GTMBA 
program in the Indian Ocean (RAMA) was initiated much 
later than that of in the Atlantic and Pacific Oceans. This 
program aims to study the role of the Indian Ocean on 
the Asian monsoon and on the global climate [63]. The 

SST variability in the north Indian Ocean is mainly deter-
mined by the net heat flux on seasonal and ISO time scale 
[47, 98]. Errors associated with the QS and QL would affect 
the net heat flux computation and hence the SST. We also 
compared the QS and QL from CM, CORE-II and TropFlux 
over the north Indian Ocean. Shahi et al. [99] showed 
the evaluation of net shortwave radiation over the north 
Indian Ocean. This product was generated using buoy and 
satellite-derived outgoing longwave radiation data with 
an empirical relationship. As per best of our knowledge, no 
studies are available over the Indian Ocean documenting 
the errors in QS and QL from existing satellite, reanalysis or 
hybrid products on daily time scale.

QS observations are available over 18 locations, and 
only 3 locations contain QL during 2001–2009 in the 
Indian Ocean. Hence, the availability of QL is low in the 
Indian Ocean. Frequency distribution of downwelling 
radiation data in the Indian Ocean is similar to TRITON and 
PIRATA (Fig. 12). QS in CM is close to observed distribution 
from RAMA (Fig. 12a) and is near Gaussian and is unlike 
its skewed nature in TRITON (Pacific Ocean) and PIRATA 
(Atlantic  Ocean). QS in both CORE-II and TropFlux has 
overestimated the observations in 150–250 Wm−2 range, 

Fig. 9   Distribution of a down-
welling shortwave radiation 
(Wm−2) and b downwelling 
longwave radiation (Wm−2) 
from PIRATA and other reanaly-
sis products available during 
2001–2009
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and all products have underestimated the observations 
in lower and upper range. But, all products are in better 
agreement with observations in the 250–300 Wm−2 range. 
QL in all reanalysis products is in coherence with obser-
vations in the 360–390 Wm−2 range (Fig. 12b). However, 
CM and CORE-II (TropFlux) have overestimated (underes-
timated) the observed values in 390–420 Wm−2 range and 
is opposite in 420–450 Wm−2 range.

Figure 13 shows the daily time series of QS during 2004 
to 2009. The Indian Ocean is more dominated by ISO which 
is contrary to the eastern Pacific and the Atlantic Oceans 
with prominent seasonal cycle. The prominent ISO in QS 
is observed over the central Bay of Bengal (Fig. 13a), the 
eastern equatorial Indian Ocean (Fig. 13b, c, d) and the 
thermocline ridge region (Fig. 13e). ISO in the SST over 
these regions are seen in both observations and model 
simulations [13, 18, 97, 98], and all products show this 
variation. CM reproduced the observed large variations 

of QS particularly over the central Bay of Bengal and the 
eastern equatorial Indian Ocean. Figure 14 shows the daily 
variation of QL during 2008 and 2009. Peak values reached 
to 450 Wm−2 in the central Bay of Bengal during summer 
monsoon season. This is mainly due to the presence of 
deep convective clouds over this region [76, 89, 133]. None 
of the buoys in the Atlantic or the Pacific Oceans shows 
this high QL values. The presence of the strong convective 
activity over the western Pacific Ocean warm pool region 
[115, 130, 131] also contributes to high QL values (Fig. 8b). 
Dips in QS and QL in Fig. 14 correspond to the intense pre-
cipitation events and deep cloud cover [81]. Rahaman and 
Ravichandran [81] showed a linear relationship between 
drop in air temperature and the rainfall events. The direct 
and indirect effects of anthropogenic aerosols and cloudi-
ness also contribute to these changes [132]. Wang [119] 
highlighted the dusty air conditions and the rainy weather 
characteristics for the larger model errors in predicting the 

Fig. 10   Seven-day smoothed time series of downwelling short-
wave radiation (Wm−2) from PIRATA (black), CM (red), CORE-II (blue), 
and TropFlux (purple) from OLR (green) from selected locations in 
the Atlantic Ocean during 2001–2009. Mean and standard devia-

tions (STD in the figure) (Wm−2) from PIRATA observations and cor-
responding collocated and concurrent values from CM, CORE-II and 
TropFlux are also given in each panel
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solar radiation. Furthermore, the drop in the radiation (QS 
and QL) is significant in the central Bay of Bengal during 
the southwest and the northeast monsoon due to the 
presence of low-level clouds and intense rainfall. The highs 
and lows associated with the QS and QL correspond to the 
seasonal changes in the radiation. 

Table 4 shows the statistics of QS and QL from all the 
products with respect to collocated RAMA observations. 
The observed SD of QS is highest over the Indian Ocean 
(70.1 Wm−2) as compared to the Pacific (65 Wm−2) and the 
Atlantic (56.5 Wm−2) Oceans. All the products have highest 
RMSE over the Indian Ocean as compared to the Pacific and 
the Atlantic Oceans (Tables 2, 3), and they underestimated 
the observed SD (70.18 Wm−2) over the Indian Ocean. The 
highest SD of observations in the Indian Ocean highlights 
the extreme dynamical nature of fluxes over this region. 
The higher SD also emphasizes the larger errors and com-
plexity involved in the estimating air-sea fluxes and under-
standing the ocean–atmosphere interactions in the Indian 
Ocean. QS in CM and QL in TropFlux have the positive biases 
of 3.51 Wm−2 and 3.58 Wm−2, respectively. CORE-II and Trop-
Flux also show higher RMSE values in the Indian Ocean as 
compared to the Atlantic and the Pacific Ocean. CM and 
TropFlux have least RMSE in QL (9.17 Wm−2) and QS (40.46 
Wm−2), respectively, as compared to CORE-II. QS in TropFlux 

shows better aggregate CC (0.83) than any other product in 
the Indian Ocean, followed by CM with CC of 0.78. Highest 
CC value (0.94) in CM for QL in the Indian Ocean also high-
lights its accuracy in estimating the QL in the global tropi-
cal oceans. Like in other oceans, these values are consistent 
over the Indian Ocean throughout the year. Summary of 
seasonal statistics for all the products are given in supple-
mentary material (S4). Unlike the Pacific and the Atlantic 
Oceans, the Indian Ocean shows the highest and lowest CC 
values in different seasons for different products (refer S4 
in supplementary material). CORE-II shows the highest CC 
in DJF, CM in SON (0.79), and TropFlux in JJA (0.85). QS from 
TropFlux shows strong daily variability with observations 
in this region. Similar to the Atlantic and the Pacific Oceans, 
CM in the Indian Ocean shows highest aggregate CC for QL 
(0.91), followed by TropFlux, and CORE-II. Seasonal CC values 
of QL in CM are also greater than 0.9 in DJF, MAM, and JJA 
seasons. Both CORE-II and TropFlux show the highest CC for 
QL in DJF, and lowest in JJA.

3.3 � Probable SST error associated with the QS 
and QL error

Tropical oceans show a number of modes of climate vari-
ability, ranging from intraseasonal-to-interannual and 

Fig. 11   Seven-day smoothed time series of downwelling longwave 
radiation (Wm−2) from PIRATA (black), CM (red), CORE-II (blue), and 
TropFlux (purple) from the selected locations in the Atlantic Ocean 
during 2006–2009. Mean and standard deviations (STD in the fig-

ure)  (Wm−2) from PIRATA observations and corresponding col-
located and concurrent values from CM, CORE-II and TropFlux are 
also given in each panel
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decadal time scales [10, 46, 84]. SST anomalies play an 
important role in upper ocean, lower atmospheric vari-
ability and predictability [11, 39, 100, 106, 114]. Factors 
causing the SST anomalies could also cause temporal and 
spatial discrepancies in several atmosphere–ocean param-
eters due to lack of air-sea coupling. These SST anomalies 
can also induce anomalous convection through surface 
evaporation and low-level moisture convergence [45]. A 
large positive simultaneous correlation between rainfall 
and SST indicate that the SST is forcing the atmosphere, 
and the atmosphere response to SST forcing is rela-
tively fast [125]. The anomalous atmospheric convection 
through cloud radiation, wind-evaporation, wind-induced 
oceanic mixing and upwelling causes the SST to change. 
These atmospheric feedbacks can be detected in the SST 
tendency. In the central and the eastern tropical Pacific 
Oceans, the observed SST anomalies are mainly due to 
oceanic processes [36, 38]. Atmospheric forcing plays an 
important role in modulating SST anomalies in the extra-
tropics and in the tropical Indo-Western Pacific Ocean 
regions [3, 49, 54, 56, 57, 118]. SST in the north Indian 
Ocean is also mainly modulated by net heat flux [47, 98]. 
Therefore, detailed representation of SST requires a better 

quantification of upper ocean processes and atmospheric 
forcing. Furthermore, the discrepancy in reproducing the 
evolution of seasonal SST in coupled models leads to bias 
in the spatial and temporal distribution of precipitation 
[14]. Chowdhury et al. [14] showed that the processes 
responsible for SST tendency differ from region to region 
over the tropical Indian Ocean. Yet, errors involved in 
advection and heat flux over the tropical Indian Ocean 
is mainly responsible for the distortion of seasonal SST 
change in the coupled models. Thus, it is essential to evalu-
ate the role of different fluxes on SST and mixed layer. In 
this study, we estimated the error in mixed layer tempera-
ture due to error in QS and QL.The mixed layer temperature 
or SST tendency equation is given as

where Tm denotes mixed layer temperature. Kz is the coef-
ficient of vertical diffusion of heat (0.1 × 10−4 m2s−1). Res 
is residual term. We is the entrainment rate (m/s), and 
Tb is the temperature at the bottom of mixed layer [17, 
79, 80]. ∂Tm/∂t is the rate of change of Tm, ρ is seawater 

(6)

�Tm

�t
=

Q0 − Qp

�CpHm

+
We

(

Tm − Tb
)

Hm

− U.∇Tm − Kz +
�2Tm

�z2
+ Res

Fig. 12   Frequency distribution 
of a downwelling shortwave 
radiation (Wm−2) and b down-
welling longwave radiation 
(Wm−2) from RAMA and other 
reanalysis products during 
2001–2009
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density (1024 kgm−3), Cp is heat capacity of seawater 
(3993 J kg−1 °C−1), and Hm is mixed layer depth. Q0 is the 
net surface heat flux (Wm−2), and Qp is the shortwave 
radiation (Wm−2) penetrating below the mixed layer [14].

If heat fluxes are solely responsible for the SST change, 
then only the first term in the above equation is domi-
nant and all other term can be discarded. We assume this 
approximation to show the maximum possible errors 
involved in SST tendency due to QS and QL RMSE. We 
assume the errors associated with corresponding QS and 
QL as net radiative heat flux, i.e. (Q0-Qp) in the above equa-
tion. The maximum monthly errors caused by the QS and 
QL in the global oceans are given in Table 5.

We have selected a few representative stations, i.e., 
0°N, 80.5°E in the Indian Ocean, 0°N, 23°W in the Atlantic 
Ocean and 0°N, 110°W (east) and 0°N, 165°E (west) in the 
Pacific Ocean. The monthly mixed layer depths (MLD) are 

computed using the monthly vertical temperature pro-
files [41]. A reference depth of 10 m, including tempera-
ture gradient criteria ∆T = 0.8 °C, is used to compute the 
MLD from monthly temperature profiles available from 
TRITON, PIRATA and RAMA buoy locations. In the west-
ern Pacific Ocean, the annual average of MLD is 97 m and 
shows the highest MLD of 122 m in December and lowest 
of 87 m in September. In the eastern Pacific Ocean (0°N, 
110°W), the MLD is shallower than the western Pacific 
Ocean with annual average being 30 m and has the high-
est MLD of 35 m in November and lowest of 25 m in March. 
In the Atlantic Ocean, at 0 N, 23 W; the annual average of 
MLD is 47 m with highest and lowest of 77 m and 35 m, in 
October and March, respectively. In the Indian Ocean, MLD 
has annual average value of 80 m at 0°N, 80.5°E with high-
est of 100 m in November and lowest of 60 m in March. 
Corresponding RMSE of QS and QL at each location is used 

Fig. 13   Seven-day smoothed time series of downwelling short-
wave radiation (Wm−2) from RAMA (black), CM (red), CORE-II (blue), 
and TropFlux (purple) from the selected locations in the Indian 
Ocean during 2004–2009. Mean and standard deviations (STD in 

the figure)  (Wm−2) from RAMA observations and corresponding 
collocated and concurrent values from CM, CORE-II and TropFlux 
are also given in each panel
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to estimate the error in SST along with the annual aver-
aged MLD values (Table 5).

The maximum monthly error in SST due to error in QS 
and QL is shown in Table 5. RMSE in QS in all products is 
large over the western Pacific Ocean (27 Wm−2) followed 
by the Indian Ocean and the Atlantic Ocean (Table 5). 
Highest SST error (0.36 °C per month) arises due to error in 
QS, and is over the eastern Pacific Ocean in TropFlux prod-
ucts followed by low SST error of 0.30 °C in CM and CORE-II 
products, respectively. Same is the case in other regions 
with difference in magnitudes. Monthly error in SST due 
to error in QL from TropFlux is also high over the eastern 
Pacific Ocean with 0.19  °C and is followed by CM and 
CORE-II. The Indian Ocean shows least monthly SST errors 
due to errors in QL in all the products. On average, QL from 
CM shows the least error in all three global tropical oceans.

4 � Summary and conclusions

The weather and climate over the global tropical ocean 
are mainly modulated by the net heat flux variation at the 
sea surface. The turbulent and the radiative heat fluxes 
at the sea surface determine the net heat flux variability. 
Different observations and reanalysis-based radiative heat 
flux products are available to study the net heat flux vari-
ability and to force the OGCMs as a surface boundary con-
dition. Considerable progress has been made to improve 
the accuracy and reliability of these products [9, 12, 52, 
109]. However, many of these gridded products have not 
been quantitatively evaluated with the independent reli-
able data sources. Particularly, this exercise is essential 
over the tropical oceans to understand the weather and 
climate variability in a better way by using these gridded 

Fig. 14   Seven-day smoothed time series of downwelling long-
wave radiation (Wm−2) from RAMA (black), CM (red), CORE-II 
(blue), and TropFlux (purple) from the selected locations of QL in 
the during 2008–2009. Mean and standard deviations (STD in the 

figure)  (Wm−2) from RAMA observations and corresponding col-
located and concurrent values from CM, CORE-II and TropFlux are 
also given in each panel

Table 5   SST error per month (in °C) associating with errors in downwelling shortwave radiation (QS) and downwelling longwave radiation 
(QL)

Product/location QS QL

CM CORE-II TropFlux CM CORE-II TropFlux

RMSE SST error RMSE SST error RMSE SST error RMSE sst error RMSE SST error RMSE SST error

0 N, 110 W 14.35 0.30 14.11 0.30 16.88 0.36 8.06 0.17 7.68 0.16 8.84 0.19
0 N, 165E 26.54 0.17 25.98 0.17 31.48 0.21 6.33 0.04 9.74 0.06 8.55 0.06
0 N, 23 W 18.53 0.25 18.65 0.25 22.19 0.30 10.45 0.14 10.65 0.14 11.44 0.15
0 N, 80.5E 24.51 0.18 24.54 0.18 28.73 0.21 3.7 0.03 5.96 0.03 5.05 0.04
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products. Thus, it is important to fill this gap by evaluating 
the most commonly used radiative forcing datasets with 
the independent in situ observations. Hence, in this study 
we evaluated the daily downwelling shortwave (QS) and 
longwave (QL) radiation at the sea surface from satellite-
derived and corrected reanalysis products with GTMBA 
in situ observations in the tropical oceans.

Daily data from MODIS/CERES (CM) satellite estimations, 
CORE-II, and TropFlux products during 2001–2009 are used 
in this study. To the best of our knowledge, there are only a 
few studies available over the tropical oceans document-
ing the errors in QS and QL from existing satellite, reanaly-
sis, hybrid or blended products with limitations in param-
eters used, spatial extent and period of evaluation [108]. 
This study is also first of its kind to evaluate QS and QL from 
ISCCP data (TropFlux) and recent satellite-based product 
from CERES/MODIS (CM) in all three tropical oceans using 
in situ measurements. Furthermore, as per our knowledge 
there is no study exists on long-term evaluation (for a dec-
ade) of radiative fluxes from these three products with 
in situ data in all three tropical oceans.

The frequency distribution of QS shows that the major-
ity of QS observations as well as derived products lie in 
200–300 Wm−2 range in all the three tropical oceans. All 
products overestimated majority of the observations 
both in QS and QL. However, they underestimated the 
lower range (0–100 Wm−2) values in QS and higher range 
(300–440 Wm−2) values in QL. This suggest that the existing 
biases in QS and QL in estimating lower and upper range 
values in all three products used in this study may have 
significant effect on the SST simulation. Majority of the 
QL observations lie within 390–450 Wm−2 range and CM 
slightly overestimated the observed distribution in the 
Pacific and the Atlantic Oceans. But, the observations 
lie within 420–450 Wm−2 range in the Indian Ocean. This 
implies that the tropical Indian Ocean receives 30 Wm−2 
more energy as compared to the tropical Pacific and the 
Atlantic Oceans in the form of downwelling longwave 
radiation. Although TropFlux is able to capture this distri-
bution, CM and CORE-II have more biases as compared to 
observation. The daily QS variation shows dominant sea-
sonal cycle over the off-equatorial eastern Pacific Ocean, 
however intraseasonal variation is more prominent 
throughout the year in the western Pacific Ocean, and is 
embedded within the seasonal variations. The presence 
of intraseasonal oscillations (ISO) activity throughout the 
year at this location is mainly due to the presence of sum-
mer and winter intertropical convergence zone (ITCZ). 
The observed variability is more accurately reproduced by 
TropFlux and is less in CORE-II in the Pacific Ocean (Fig. 7, 
Table 2). The mean bias is least in CORE-II products, with 
highest RMSE value and least CC values. At the same time, 
TropFlux has least RMSE. This lower RMSE value in TropFlux 

product may be due to the use of GTMBA data in TropFlux 
corrections. CM performance lie in between CORE-II and 
TropFlux (Fig. 7, Table 2). No clear seasonality is observed 
in QL either in observations or in any other hybrid prod-
ucts. Intraseasonal variations are dominant in the Pacific 
Ocean and prominent in all seasons. TropFlux systemati-
cally overestimated the QL over the Pacific Ocean but accu-
rately captured the variability (Fig. 8, Table 2). CM shows 
the observed daily variation with least RMSE and highest 
CC values (Fig. 8, Table 2).

Daily QS over the western Atlantic Ocean shows clear 
annual cycle embedded with ISOs. All the products cap-
tured this variation (Fig. 10a). Similar variation is seen in 
the central Atlantic Ocean (Fig. 10b) with the presence 
of more prominent ISO activity. This buoy location at the 
equatorial Atlantic Ocean exposed to both summer and 
winter ITCZ, and hence the intraseasonal activity is most 
prominent in this location in the Atlantic Ocean. Seasonal 
cycle is dominant with near absence of any ISO activity 
in the off-equatorial eastern Atlantic Ocean (Fig. 10c, d) 
since it is located in the shadow region of ITCZ. All prod-
ucts show this observed variation. However, all products 
underestimated the variability and have lower SD values 
compared to observations. TropFlux closely follows the 
observations compared to CORE-II and CM (Fig. 10, Table 3) 
and has least RMSE, mean bias and highest CC values. 
Similar to the Pacific Ocean, CM in the Atlantic Ocean also 
has moderate SD, CC and RMSE which lie between CORE-
II and TropFlux (Table 3). These results are not seasonally 
dependent, since the statistical values are consistent in 
all seasons with no major changes (S2 and S3). QL has the 
dominant seasonal cycle over the western Atlantic Ocean 
and prominent ISO over the eastern Atlantic Ocean. All 
products are able to capture the observed daily variation 
for QL in the Atlantic Ocean. CORE-II overestimated the var-
iability with larger SD compared to observations (Fig. 11, 
Table 4). Like in the Pacific Ocean, QL from CM in the Atlan-
tic Ocean also has least RMSE and highest CC compared 
to CORE-II and TropFlux and also shows the observed vari-
ability (Table 3).

The  Indian Ocean is dominated by the presence of 
prominent ISO in contrast to the Pacific and the Atlantic 
Oceans where the seasonal cycle is dominant. All the prod-
ucts captured this ISO. CM shows observed large variations 
of QS particularly over the central Bay of Bengal (Fig. 13a) 
and the eastern equatorial Indian Ocean (Fig. 13b, c). Simi-
lar to the Pacific Ocean and the Atlantic Oceans, all the 
products underestimated the variability over Indian Ocean 
with SD values lower by 6–10 Wm−2 in the individual prod-
ucts. QS variability in the TropFlux is more closely aligned 
with the observation but has the large bias (− 9 Wm−2) 
and least RMSE (Fig. 13, Table 4). CM performance lies 
in between CORE-II and TropFlux. All the products show 
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large deviations in daily QL variations over the central Bay 
of Bengal (Fig. 14a). QL has high values ranging up to 450 
Wm−2 in the Indian Ocean during summer monsoon. None 
of the buoy locations in PIRATA or TRITON has shown this 
high QL values (Fig. 8, Fig. 11). CORE-II and TropFlux over-
estimated the observed variability in the Indian Ocean. CM 
has better QL estimations compared to CORE-II and Trop-
Flux, and also has least RMSE, highest CC and SD values 
close to RAMA observations. In summary, QS in TropFlux 
has better performance in terms of least RMSE and highest 
CC but QL in CM outplayed all other products.

Apart from the time series variations, we also show the 
seasonal spatial mean and variability in all the products. 
QS shows large values over the subtropical region in all 
seasons and is mainly due to the presence of low cloudi-
ness over this region. Except the south pacific convergence 
zone (SPCZ) and the western equatorial Indian Ocean, the 
entire southern hemisphere receives uniform QS with an 
average between 300 and 340 Wm−2 range in the winter. 
These values are lower than 300 Wm−2 (Fig. 2) in the equa-
torial Pacific and the Atlantic Oceans. All the products 
show similar mean spatial distribution pattern over most 
of the domain. However, TropFlux shows low QS values 
over the northern Pacific and the Atlantic Oceans com-
pared to CM and CORE-II. But, the daily variability is less in 
CORE-II as compared to other two products (Fig. 3). Equa-
torial region shows large QS in the spring and summer. 
But, these values are low (200–220 Wm−2) in the northern 
ITCZ, west coast of the North America and in the SPCZ dur-
ing the same time. QS values over west coast of the South 
America and the Africa show lower values in the summer 
as compared to the adjacent regions of the same lati-
tudes. This is due to the presence of large cloud amounts 
(~ 80%) over these regions. The Indian Ocean shows low 
QS compared to the Pacific and the Atlantic during sum-
mer and mainly due to persistent cloud cover during the 
Indian Summer Monsoon. CM shows highest mean values 
in all seasons, followed by CORE-II. The regions with low QS 
values show more variability with high SD values (Fig. 3). 
QL in the tropical oceans shows seasonal spatial pattern 
determined by ITCZ positions and does not change signifi-
cantly over the Pacific and the Atlantic Oceans. But, QL in 
the Indian Ocean has intraseasonal variability determined 
by the features like monsoons, MJO and enhanced intra-
seasonal convection. Thus, QL in the Indian Ocean shows 
highest value during summer as compared to the Pacific 
and Atlantic Oceans and is mainly due to the presence of 
deep clouds [76]. Hence, spatial pattern of QL over Indian 
Ocean changes with the summer and winter monsoon 
(Fig. 4). Opposite to QS, large QL values in the Indian Ocean 
are associated with the least QL variability (Fig. 5).

The SST variability is mainly determined by the net heat 
flux on seasonal and ISO time scale over the north Indian 

Ocean and in the western Pacific Ocean [47, 98]. Errors 
associated with the QS and QL will affect the net heat flux 
computation and hence the SST. Assuming net heat fluxes 
are solely responsible for the SST change and using heat 
budget equation, we estimated the errors in SST associ-
ated with the QS and QL errors. The assumption is that, the 
maximum possible errors involved in SST tendency due 
to RMSE in QS and QL. Four representative locations, i.e., 
0°N,80.5°E in Indian Ocean, 0°N,23°W in the central Atlan-
tic Ocean and 0°N,110°W (east) and 0°N,165°E (west), in 
the Pacific Ocean are used in this study. We computed the 
monthly RMSE error for all the products and estimated 
the MLD using temperature profiles for all corresponding 
locations (Table 5). Monthly SST error can be as large as 
0.2–0.3 (0.1–0.2) °C associated with error in QS (QL). These 
results stress the need to improve the radiative flux data 
products in the tropics with better reanalysis methods and 
algorithms. Furthermore, these results also emphasize 
the necessity to produce enhanced, alternative and more 
accurate flux products. On the other hand, radiative fluxes 
from satellite products like CM have better agreement with 
the observations. Both QS and QL from CM can be used as 
an alternative to the existing reanalysis products in all the 
tropical oceans. In the present study, the QS from TropFlux 
shows better CC values than CM compared with observa-
tions. But, caution is that the TropFlux is developed and 
corrected using ISCCP and GTMBA observations, respec-
tively. But the ISCCP data are not available from 2009 and 
the TropFlux developed using other alternative methods 
like using OLR could enhance the errors in the OGCMs. 
Furthermore, QS from CM also closely follows the TropFlux 
data in all three tropical oceans. Thus, given the best CC 
values in QL from CM in all the three tropical oceans and 
considering its real-time availability, radiative fluxes from 
CM can be used as an alternative to the fluxes from rea-
nalysis and hybrid products.
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