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Abstract
Septin GTPases are morphogenetic proteins that are widely conserved in eukaryotic organisms fulfilling diverse roles in cell 
division, differentiation and development. In the filamentous fungal pathogen Magnaporthe oryzae, the causal agent of the 
devastating blast diseases of rice and wheat, septins have been shown to be essential for plant infection. The blast fungus 
elaborates a specialised infection structure called an appressorium with which it mechanically ruptures the plant cuticle. 
Septin aggregation and generation of a hetero-oligomeric ring structure at the base of the infection cell is indispensable 
for plant infection. Furthermore, once the fungus enters host tissue it develops another infection structure, the transpres-
sorium, enabling it to move between living host plant cells, which also requires septins for its function. Specific inhibition 
of septin aggregation—either genetically or with chemical inhibitors—prevents plant infection. Significantly, by screening 
for inhibitors of septin aggregation, broad spectrum anti-fungal compounds have been identified that prevent rice blast and 
a number of other cereal diseases in field trials. We review the recent advances in our understanding of septin biology and 
their potential as targets for crop disease control.
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Introduction

The rice blast fungus Magnaporthe oryzae (synonym of 
Pyricularia oryzae) causes the most devastating disease of 
rice worldwide (Zhang et al. 2016; Wang et al. 2009), with 
losses estimated at $66 billion (Pennisi 2010). In the USA 
alone—a country responsible for only 1–2% of global rice 
production—fungicides worth $70 million are needed each 
year to control rice blast disease (Nalley et al. 2016; Cruz 
and Valent 2017). However, an even greater threat to the 
global food security is presented by the entire M. oryzae 
disease complex, because different host-specific forms of 
M. oryzae can cause blast disease on millets, barley, oats 
and wheat (Gladieux et al. 2018; Valent et al. 2019; Kato 
et al. 1977). Outbreaks of finger millet blast affect small-
holder farmers in southern Asia and eastern Africa, causing 

hardship to resource-poor communities (Takan et al. 2012). 
Wheat blast outbreaks were until recently restricted to South 
America, but since 2016 have spread into Bangladesh and 
from 2020 into Zambia, potentially threatening major wheat-
producing regions in South Asia and Africa (Singh et al. 
2021, Mbinda et al. 2021, Latorre et al. 2023).

Rice-infecting strains of M. oryzae cause disease symp-
toms on leaves, necks, and panicles of rice plants (Valent et al. 
1991). Disease is initiated by development of a dome-shaped 
infection structure called the appressorium, which generates 
turgor that is exerted onto the leaf surface to rupture the rice 
cuticle. The fungus sends a rigid penetration hypha into the 
epidermis and this further develops into specialised intra-
cellular invasive hyphae, which enter and feed in living host 
cells (Valent 2021; Cruz-Mireles et al. 2021a, b; Ryder et al. 
2022). The fungus moves to new rice cells via pit field sites 
where plasmodesmata accumulate, using a specialised struc-
ture termed a transpressorium (Cruz-Mireles et al. 2021a, b). 
The hyphal tip swells and then undergoes severe hyphal con-
striction to enable the fungus to move into new cells, whilst 
maintaining rice cellular integrity (Sakulkoo et al. 2018). To 
facilitate infection, the fungus also secretes a battery of effec-
tor proteins that suppress plant immunity and enable rapid 
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proliferation of fungal hyphae in living plant tissue (Yan et al. 
2023). The fungus then develops aerial conidiophores from 
the centre of necrotic disease lesions, which produce conidia 
to infect new plants (Ryder et al. 2022). The precise develop-
mental transitions involved in the biology of plant infection by 
M. oryzae suggest key roles for septins both during the early 
stages of infection and invasive growth.

Septins are guanosine triphosphatases (GTPases) that 
function in many distinct cellular processes such as polar-
ity determination, secretion, cytokinesis and endocytosis. 
Septins were first reported in 1971 in Saccharomyces cerevi-
siae, where it was shown that septins play a role during cell 
division, forming a ring at the bud site prior to budding of a 
new yeast cell. Like actin and microtubules, septins form a 
further component of the cytoskeleton and are expressed in 
all eukaryotes except plants (Van Ngo et al. 2019; Hartwell 
et al. 1974; Spiliotis et al. 2006; Douglas et al. 2005). Sep-
tins possess a specific domain structure. The central GTP-
binding domain is flanked by N- and C-terminal regions. A 
polybasic region (PBR) is responsible for interaction with 
the membrane as it binds to negatively charged phospho-
lipids and is located between the N-terminal region and 
the GTP-binding domain. A septin unique element (SUE) 
downstream of the GTP-binding domain is proposed to be 
involved in septin polymerisation and is located before the 
C-terminal region. The C-terminal region itself is involved 
in septin-protein interactions (Van Ngo et al. 2019; Sirajud-
din et al. 2009; Versele et al. 2004).

Septins assemble into dynamic hetero-oligomeric com-
plexes and form higher-order structures such as bars, gauzes, 
rods, discs, and rings by interacting with themselves and 
with other septins (Sirajuddin et al. 2007; Dagdas et al. 
2012; Bridges and Gladelter 2015). M. oryzae possesses six 
septins of which the four septin genes SEP3, SEP4, SEP5 
and SEP6 are homologs of the S. cerevisiae core spetin genes 
CDC3, CDC10, CDC11 and CDC12 which are involved in 
cytokinesis (Dagdas et al. 2012). The two non-core septins 
SEP7 and SEP8 belong to the class 5 group of septins, which 
is absent in humans and yeasts and found predominantly in 
filamentous fungi (Shuman and Momany 2022; Eisermann 
et al. 2023). During the early stages of infection, the four 
core septins Sep3, Sep4, Sep5 and Sep6 form a large hetero-
oligomeric disc- and later a ring-structure at the base of the 
appressorium surrounding the penetration pore (see Fig. 1A) 
(Dagdas et al. 2012; Dulal et al. 2020).

The function of septins during the early 
stages of plant infection

Septins have been implicated in appressorium function, 
serving a vital role in the ability of these cells to rupture 
the host plant cuticle. The dome-shaped, melanin-pigmented 

appressorium attaches tightly to the leaf surface and expands 
due to an increase in turgor pressure (Wilson and Talbot 
2009; Ryder et al. 2019). Appressorium development is reg-
ulated by activation of the Pmk1 MAP kinase pathway (Xu 
and Hamer 1996). Recognition of surface signals and Pmk1 
phosphorylation leads to large changes in phosphorylation 
of the M. oryzae proteome (Cruz-Mireles et al. 2023), and 
a hierarchical transcriptional network is then activated to 
control appressorium morphogenesis. The conidium, from 
which the appressorium develops, undergoes autophagic cell 
death, which is also a Pmk1-dependent process and is nec-
essary for transfer of the contents of the three-celled spore 
to the appressorium to allow generation of the enormous 
turgor pressure of up to 8.0 MPa (Veneault-Fourrey et al. 
2006; Osés-Ruiz et al. 2021). The process of appressorium 
formation is also tightly linked to cell cycle progression. 
An S-phase checkpoint is necessary for appressorium devel-
opment (Saunders et al. 2010) and a second checkpoint is 
required for maturation of the appressorium (Osés-Ruiz et al. 
2017).

As the appressorium matures and becomes melanised, 
the four core septins Sep3, Sep4, Sep5 and Sep6 form a 
large hetero-oligomeric disc at the appressorium base, which 
then develops into a ring structure at the appressorium pore, 
surrounding the point of penetration peg emergence (see 
Fig. 1A). This acts to recruit a F-actin network to the appres-
sorium base, re-modelling the cytoskeleton to facilitate re-
polarisation of the infection cell (Dulal et al. 2020; Dagdas 
et al. 2012; Eisermann et al. 2023). Both, septin and F-actin 
ring assembly requires the regulated generation of ROS via 
an NADPH oxidase complex (Egan et al. 2007; Ryder et al. 
2013). Septin assembly reqires the Sln1-dependent turgor 
sensing pathway, which monitors sufficient turgor generation 
as well as progression of the appressorial nucleus through 
the S-phase (Ryder et al. 2019; Osés-Ruiz et al. 2017). Sln1 
regulates septin ring formation by activating the Nox2-NoxR 
NADPH oxidase complex via the Pkc1-dependent cell-integ-
rity pathway, which leads to initiation of polarised growth 
of the penetration peg, where Nox1 is then required for the 
elongation of the penetration peg and Nox2/NoxR are neces-
sary for the peg to be formed (Ryder et al. 2013). Septin ring 
assembly is a complex process involving many components 
(see Fig. 1B). The small Rho GTPase Cdc42, for example, 
is one of those components and acts as a polarity deter-
minant required for septin ring assembly. In addition the 
p21-activated kinase Chm1 (an ortholog of Cla4) is likely 
to phosphorylate septins at the appressorium pore (Dagdas 
et al. 2012). It is also an important regulator of conidiogen-
esis (Chen et al. 2008). In addition, the Ras GTPase activat-
ing protein Smo1 is indispensable for septin recruitment. 
Smo1 negatively regulates the Ras2 signalling complex 
and interacts with the autophagy proteins Atg3, Atg4, Atg5 
and Atg7, but also directly with the four core septins and 
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components of the exocyst complex (Kershaw et al. 2019). 
Smo1 mutants are non-pathogenic, affected in appresso-
rium morphogenesis and also produce aberrant round, two 
celled-conidia (Kershaw et al. 2019). Collectively, these 
components are essential to enable septin organisation and 
re-modelling of the F-actin network at the appressorial base 
by building phosphoinositide linkages with the plasma mem-
brane and facilitating F-actin plasma membrane linkages via 
ezrin-radixin-moesin (ERM) proteins, such as Tea1, which 
is also regulated by the cyclic AMP (cAMP) protein kinase 
A (PKA) and Pmk1 MAPK pathways during appressorium 
formation (Qu et al. 2022; Dagdas et al. 2012). In this con-
text, deletion of the F-actin cross-linker fimbrin, affects 
polarity of the actin cytoskeleton and disrupts F-actin ring 
aformation at the base of the appressorium which also affects 
assembly of the exocyst (Zhang et al. 2022; Li et al. 2020). 
Microtubules also become arranged in a perpendicular way 

to the F-actin network, which is also a septin-dependent pro-
cess (Dulal et al. 2020).

In addition to its role in scaffolding and re-organising 
F-actin, the septin ring also functions as a lateral diffusion 
barrier for correct positioning of specific actin-associated 
proteins, such as Las17 which polymerises F-actin via the 
Arp2/3 complex, gelsolin an actin-severing protein neces-
sary for correct dynamic assembly of F-actin, coronin which 
promotes F-actin remodelling, and Rvs167, associated with 
endocytosis (see Fig. 1B) (Dagdas et al. 2012; Dulal et al. 
2021). Interestingly the endocytic protein Pal1, which func-
tions upstream of the cAMP and the Pmk1 MAPK path-
way, also influences the distribution of Sep5 and Sep6 at 
the base of the appressorium (Chen et al. 2022). The sep-
tin lateral diffusion barrier also secures localisation of the 
octameric exocyst complex to the appressorium pore, which 
is necessary for polarised exocytosis and the emergence of 

Fig. 1   Core septins oligomerise and assemble into a disc-like struc-
ture that subsequently contracts, shaping into a ring around the 
appressorium pore. A Cellular localisation of Sep4-GFP at the 
appressorium pore. Visualisation by laser scanning confocal micros-
copy and processed with Airyscan joint deconvolution at 4 and 
24  h post inoculation. The Sep4-containing septin disc reaches its 

biggest volume at 4 h to then contract until it starts forming a ring 
from which then later rays emanate. The later structure is especially 
observed on plant surfaces. Scale bar indicate 5 μm. B Scheme of the 
septin ring formation at the appressorium pore with known septin-
interacting proteins at the point of rice cuticle penetration
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the penetration peg. Co-immunoprecipitation experiments 
have revealed an interaction between the exocyst proteins 
Sec6 and Exo84 with all four core septins, as well as with 
Rho1 and Rac1 (Rho GTPases), fimbrin, and Pmk1 (Gupta 
et al. 2015). Interestingly, it has recently been shown that 
some effector proteins, implicated in suppression of plant 
immunity, are expressed prior to plant infection and may be 
secreted at the base of the appressorium prior to penetration 
peg development which is likely to be septin-dependent (Yan 
et al. 2023).

Determinnig the function of septins 
during invasive growth of the blast fungus

Once M. oryzae has ruptured the rice cuticle and is growing 
within the first epidermal rice cell, the penetration hypha 
differentiates into specialised invasive hypha and the fun-
gus undergoes major changes in its primary metabolism, 
switching to growth that is dependent on sequestration of 
nutrients from the host rather than storage products in the 
spore (Fernandez et al. 2014). A plant membrane-rich cap 
called the biotrophic interfacial complex (BIC) develops at 
the tip of the penetration hypha and remains in place as the 
invasive hypha undergoes pseudohyphal growth. An emerg-
ing body of evidence suggests that the BIC is likely to be 
the site of effector secretion and delivery into plant cells 
(Kankanala et al. 2007; Khang et al. 2010). Recent evidence 
has, for example, shown the BIC to be the site of clathrin-
mediated endocytosis of effector-containing membranous 
bodies into rice cells (Oliveira-Garcia et al. 2023). M. ory-
zae differentiates into multiple bulbous, branched hyphae, 
which fill the epidermal cell almost completely, and then 
invade neighbouring cells by crossing through pit fields. As 
the fungus moves to the next living neighbour plant cells, 
the initially colonised plant cells lose viability (Valent 2021; 
Oliveira-Garcia et al. 2023). Live-cell imaging has revealed 
that hyphal tips swell and can reach a diameter of ~ 5.0 µm, 
before constricting to 0.3–0.8 µm in diameter as they pass 
through pit fields into adjacent cells (Sakulkoo et al. 2018).

Because of the similarity in development of the appresso-
rium, Liese and Schmid were the first in 1964 to name fun-
gal cell-to-cell invasive structures “transpressoria”. It now 
seems likely that appressorium and transpressorium devel-
opment are morphogenetically-related because formation of 
both structures involves initial isotropic expansion of a swol-
len germ tube tip, followed by re-polarisation and formation 
of a much narrower penetration peg, or penetration hypha, 
respectively (Liese et al. 1964; Cruz-Mireles et al. 2021a, b). 
However, the transpressorium is not melanised in the same 
way as the appressorium, as the turgor required for cell-to-
cell movement is unlikely to be as great as that necessary 
for cuticle rupture. However, it will be interesting in future 

to apply new methods that enable membrane tension to be 
directly measured (Ryder et al. 2023) to see if turgor does 
play a role at the pit field sites in enabling fungal invasion, 
in the same way as observed in appressoria.

Interestingly, transpressorium-mediated penetration in M. 
oryzae also appears to be septin-mediated because septin 
rings localise at the rice cell crossing points (Sakulkoo et al. 
2018). Moreover, septin-deficient mutants are impaired in 
their ability to carry out invasive growth in the rare instances 
when invasive hyphae are formed (Sakulkoo et al. 2018). 
By using an analogue-sensitive mutant of Pmk1, inhibition 
of the MAPK pathway was also shown to prevent cell-to-
cell movement in M. oryzae, and pmk1AS mutants become 
trapped within infected plant cells when the MAPK is inhib-
ited. Given the role of the transpressorium in penetrating a 
structural barrier in the same way as an appressorium, it is 
likely that many septin-dependent components are conserved 
in both processes (Sakulkoo et al. 2018). How septins aggre-
gate at hyphal tips that encounter pit fields, however, is not 
known. Septins have been shown to sense membrane curva-
ture and interact with other proteins, such as BAR domain 
protein, which are capable of sensing even lower membrane 
curvatures (Bridges et al. 2016). It is possible that a specific 
change in fungal membrane curvature could occur when 
invasive hyphae undertake cortical scanning and locate a 
pit field indentation, perhaps leading to septin aggregation 
and assembly of the re-polarisation apparatus. Furthermore, 
it was shown that the organisation of septins in M.oryzae 
appressoria requires synthesis of very long chain fatty acids 
(VLCFAs) that may act as mediators of septin interactions at 
membrane interfaces, a process that could also be important 
for cell-to-cell movement (He et al. 2020). Transpressorium 
function also requires septin-mediated remodelling of actin 
and perhaps also remodelling of microtubule organisation 
(Sakulkoo et al. 2018). Septins may also provide cortical 
rigidification at the site of cell-to-cell movement and act as 
a diffusion barrier to deploy polarity and virulence determi-
nants at the correct position for invasion of new host cells. 
The parallels between appressorium and transporessorium 
morphogenesis are therefore striking and the role of septins 
is pivotal in both developmental processes.

Septins as a target for antifungal plant 
protection strategies

As septins are absent in plants but play a crucial role in plant 
infection by a plant pathogenic fungus, septins could provide 
an ideal target for antifungal plant protection approaches. 
Specific inhibitors blocking septin assembly might provide 
an effective means to prevent host penetration and disease.

Evidence in support of the potential of septins as fun-
gicide targets was provided in a study that showed how 
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inhibition of very-long-chain fatty acid (VLCFA) biosyn-
thesis can prevent rice blast disease (He et al. 2020). It was 
shown that the specific VLCFA biosynthesis inhibitors 
metazachlor, cafenstrole and diallate were able to inhibit 
septin aggregation at the appressorium pore, preventing 
rice leaf infection by M. oryzae. This was validated in a 
field trial experiment showing highly effective rice blast 
disease control. Importantly, the inhibition of VLCFA 
biosynthesis not only prevents rice blast disease, but also 
infection by other fungal pathogens such as Bipolaris maydis 
(which causes southern-corn leaf blight disease of maize), 
Blumeria graminis (which causes wheat powdery mildew 
disease) and Metarhizium acridum (an entomopathogenic 
fungus that infects locusts), suggesting that broad spectrum 
fungicides targeting septin aggregation in fungal pathogens 
could be developed (He et al. 2020). The inhibitors tested 
to date, metazachlor, cafenstrole and diallate, are all her-
bicides and so unlikely to be effective candidates, but they 
provide a proof of concept of the approach and the likely 
value in screening for septin aggregation inhibitors. Another 
compound that inhibits septin ring formation in M. oryzae, 
when applied to appressoria, is melatonin. Melatonin binds 
to the Mps1 MAPK and inhibits its phosphorylation, which 
was shown to inhibit plant infection by 13 plant pathogens 
including fungi and oomycetes. If systematic modifications 
of melatonin could be made so that it would not have an 
effect on humans, it might provide a low-cost alternative to 
combat plant pathogens (Li et al. 2023). Furthermore, chi-
tosan application to appressoria also prevents septin aggre-
gation and re-polarisation of the appressorium by affecting 
NADPH oxidase-dependent synthesis of ROS (Lopez-Moya 
et al. 2021). Chitosan application might therefore also pro-
vide a potential antifungal compound as it not only inhibits 
fungal penetration of the leaf, but also improves physiologi-
cal properties of the plant and is completely biodegradable 
(Lopez-Moya et al. 2021; Malerba and Cerana 2016; Sharif 
et al. 2018).

In summary, septins are important for fungal pathogenesis 
serving specific roles associated with the cell shape changes 
that occur during plant infection. In M. oryzae, septin aggre-
gation in appressoria and transpressoria is essential for 
their function. Inhibition of septin aggregation genetically 
or using VLCFA biosynthesis inhibitors can, furthermore, 
prevent blat disease and a range of other important crop dis-
eases, as well as insect infection by entomopathogenic fungi. 
The broad spectrum nature of this control provides further 
evidence of the pivotal role of septins in fungal developmen-
tal biology and their potential as a target for development of 
first-in-class new anti-fungal compounds.
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