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Abstract It is essential to monitor urban evolution at

spatial and temporal scales to improve our understanding

of the changes in cities and their impact on natural

resources and environmental systems. Various aspects of

remote sensing are routinely used to detect and map fea-

tures and changes on land and sea surfaces, and in the

atmosphere that affect urban sustainability. We provide a

critical and comprehensive review of the characteristics of

remote sensing systems, and in particular the trade-offs

between various system parameters, as well as their use in

two key research areas: (a) issues resulting from the

expansion of urban environments, and (b) sustainable

urban development. The analysis identifies three key trends

in the existing literature: (a) the integration of heteroge-

neous remote sensing data, primarily for investigating or

modelling urban environments as a complex system, (b) the

development of new algorithms for effective extraction of

urban features, and (c) the improvement in the accuracy of

traditional spectral-based classification algorithms for

addressing the spectral heterogeneity within urban areas.

Growing interests in renewable energy have also resulted

in the increased use of remote sensing—for planning,

operation, and maintenance of energy infrastructures, in

particular the ones with spatial variability, such as solar,

wind, and geothermal energy. The proliferation of sus-

tainability thinking in all facets of urban development and

management also acts as a catalyst for the increased use of,

and advances in, remote sensing for urban applications.

Keywords Remote sensing systems � Remote sensing

applications � Environmental sustainability � Urban
environments � Sustainable cities

Introduction

Cities are engines of economic prosperity and social

development that arise from the concentration of people

and economic activities but often manifests in unsustain-

able urban environments [57]. Economic opportunities in

cities act as a catalyst for rapid urbanisation across the

globe. Urbanisation rates are uneven and are much faster in

developing countries [7]. By 2030, the annual average rate

of urban growth is expected to be 0.04 % in Europe, 1.5 %

in the USA, 2.2 % in East Asia and the Pacific, 2.7 % in

South Asia, 2.3 % in the Middle East and North Africa, and

3.6 % in Sub-Saharan Africa [80]. Increased urban

migration has contributed to the unplanned or poorly

planned and implemented growth and expansion of cities.

The latter is a critical factor for urban stakeholders as

unplanned urban growth can have a long-term negative

impact on urban sustainability on a range of scales—local,

regional, national, and potentially inter-governmental [75].

Impacts include detrimental economic consequences such

as the reduction in the productivity of key economic sectors

[18]; environmental degradation such as poor air quality,

and increased urban temperatures and surface run-off
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[53, 85, 87]; and negative societal impacts such as

increased morbidity and mortality, negative impacts on

quality of life, and the fragmentation of neighbourhoods

and related communities [29].

The effective management of the risks arising from the

reformation of urban landscapes and related environmental

systems requires evidence-based approaches for mitigating

and adapting to the undesirable changes. Gathering evi-

dence of urban change is typically a time and resource

intensive process that needs the application of appropriate

technologies to identify arising risks. Recent advances in

satellite remote sensing offer opportunities to cost-effec-

tively monitor urban change and its impact on the complex

urban socio-technical systems and enable stakeholders to

make informed decisions to reduce negative impacts on the

environment. Remotely sensed data are an important and

powerful source of information on urban morphology and

changes over time [64]. In contrast, conventional obser-

vation techniques are often logistically constrained in that

they require a great deal of effort, cost, and time to obtain

information over a large spatial expanse in a consistent

manner [52]. The lower cost and availability of data have

facilitated the way researchers accomplish research

objectives, and have fostered public engagement with

remote sensing science.

There is a growing body of literature on the application

of urban remote sensing—from the investigation on land-

cover and land-use changes to the monitoring of micro-

climatic parameters and the assessment of renewable

energy potential. Increased vulnerabilities from the impacts

of climate change and disaster risks, and urban growth

resulting from rapid urbanisation have influenced recent

developments on integrated risk modelling that combine

remote sense analysis with social and economic data for

urban sustainability assessment [57]. Collaboration

between expert stakeholders is essential to realise the full

potential offered by remote sensing for urban sustainability

[64]. Yet, there is a lack of understanding among urban

professionals of the technical characteristics of remotely

sensed data and their suitability for analysis, limitations,

and potential for application. We aim to address the gaps in

understanding by critically reviewing the technical char-

acteristics of available remote sense sources and their

applications for urban sustainability. The findings will act

as a comprehensive resource on the state-of-the-art, and

provide directions for future research.

Following the introduction, the paper is divided into

three sections. First, existing remote sensing systems and

available satellite data resources are reviewed and cate-

gorised to provide the context for subsequent discussions.

The information will also act as an indispensable resource

for urban professionals in identifying appropriate remote

sensing data for specific applications. Second, a state-of-

the-art review is presented on the applications of remote

sensing in urban sustainability. Third, the limitations of the

reviewed applications are highlighted with a discussion on

future directions for research and development.

Remote sensing systems and satellite data
resources

Three distinct stages of the development of remote sensing

(RS) instruments are illustrated in Fig. 1. The first generation

RS instruments were of low spatial resolution, 1 km–100 m,

increasing to 30–10 m in the second generation. The third

generation instruments are more capable in observing the

Earth’s surface with a very high spatial resolution, 5–0.5 m

and less, enabling the acquisition of further spatial details—

resulting in more accurate feature recognition. To enable the

reader to gain a high-level overview of RS characteristics, we

categorised the satellites based on their orbit; sensormode and

instrument; resolution; and wavelength of electromagnetic

radiation (EMR), as shown in Fig. 2.

Orbit

RS satellites roam in the two kinds of orbits: sun-syn-

chronous and geostationary. Most RS platforms, such as

Landsat, SPOT and IKONOS, operate in a near-polar (i.e.

sun-synchronous) orbit at low altitudes and pass over each

area before noon, at 10:30 am local time [62], allowing the

acquisition of clearer images of the Earth’s surface over a

particular area on a series of days in similar illumination

conditions; i.e. when the sun position is optimal, between

9.30 and 11.30 am local time [13]. In contrast, geostationary

satellites are ideal for some communication and meteoro-

logical applications because of their very high altitudes

allowing continuous coverage of a large area of the Earth’s

surface, with the trade-off being low spatial resolution.

Sensor mode and instrument

Spatial resolution is based on pixel size and is said to be

low when it is greater than 100 m, medium when between

10 and 100 m, and high when it is less than 10 m [66].

Depending on the on-board sensor’s spatial resolution, RS

systems can be classified into two groups: low and med-

ium, and high and very high. Existing low–medium, and

high–very high RS systems and their potential applications

are given in Tables 1 and 2, respectively. Most of the data

are available at a low cost, and often free to download on

the Internet. A summary of selected websites for down-

loading satellite imagery, radar, LiDAR, hyperspectral,

aerial orthoimagery and digital spectral library data are

presented in Table 3.
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1970s 1980s-1990s 2000s-Onwards

Pixel size 80*80 m,
e.g., Landsat – MSS

Pixel size from 30*30 m to 10*10 m, 
e.g., Landsat – TM and SPOT-1, 2, and 3

Pixel size from 5*5 m to 0.5*0.5 m,
e.g., SPOT-5, IKONOS and Quickbird
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Fig. 1 A comparison of satellite generations in terms of detail,

feature recognition and planning requirements. The red square

represents the spatial resolution of the adjacent RS image. An image

with a pixel size of 80 m (Landsat-MSS) cannot recognise an object,

such as a house but its features can be effectively recognised with a

pixel size of 0.6 m (QuickBird)
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Fig. 2 Classification of remote sensing sensors based on their characteristics
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Resolution

The trade-off between spatial and temporal resolution need

to be reconciled for the selection of satellite images for a

particular application, as illustrated in Fig. 3. For instance,

a high temporal resolution is essential for emergency sit-

uations, such as landfall due to hurricanes, because emer-

gency situations change rapidly and require frequent

observations on the day. In contrast, urban infrastructure

planning applications require spatial understanding over a

longer period, for which annual observations are often

sufficient. However, both use cases sometimes require high

spatial resolution images to observe their processes com-

prehensively. On the other hand, high temporal resolution

is required for applications such as weather that changes

rapidly. Operational weather forecast, therefore, requires

satellite observations with high temporal resolution often at

the cost of spatial resolution. Each RS application, thus,

has its own unique resolution requirements which need to

be appreciated.

Remote sensing of urban environments

Cities are unique because of the existence of dense artificial

structures. The increasing urbanisation rate will eventually

lead to the expedited consumption of non-renewable land

resources such as water (on- and under-ground) and food

[49], and energy resources such as oil, coal and gas—with

environmental, social and economic impact on developing

and developed countries alike [3]. Thus, the growth of

urban areas can result in substantial land-cover and land-

use changes—an ideal sustainability use case for the use of

remote sensing. The next sections are devoted to review of

remote sensing applications within urban environments,

focussing on urban growth, sprawl and change; environ-

mental impacts of urban growth; and sustainable energy

applications.

Urban growth, sprawl and change

Urban growth refers to the transformation of the landscape

from undeveloped to developed land [7]. More specifically,

the growth away from central urban areas into homoge-

neous, low-density and typically car-dependent communi-

ties is often referred to as urban/suburban sprawl. In

developing countries, urban sprawl can be unplanned and

uncontrolled [9]. Consequently, urban growth leads to the

loss of farmland, gives rise to economic and social issues,

and increases water and energy consumption, and associ-

ated greenhouse gas emissions [25]. From stakeholders’

point of view, the expansion of cities is a crucial change inT
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Table 3 Remote sensing and geospatial data resources and providers

Provider Source and typea Comment

Non-

commercial

Commercial

RS G RS ? G

USGS Global Visualisation Viewer (GloVis)—http://glovis.

usgs.gov/

4 Various satellite and land characteristics datasets

including the free Landsat archive

USGS Earth Explorer—http://earthexplorer.usgs.gov/ 4 Aerial photography, DEM, and various satellite

datasets including the free Landsat archive

Global Land-cover Facility (GLCF)—http://glcf.umd.edu/

data/

4 Various satellite and DEM datasets including the

free Landsat archive

USGS LP DAAC Global Data Explorer—http://gdex.cr.

usgs.gov

4 4 ASTER Global DEM V2, SRTM, GTOPO30 and

Blue Marble data

USGS Earth Resources Observation and Science (EROS)

Centre—https://eros.usgs.gov/find-data

4 4 A collection of data sources

Sentinel Data Hub—https://senthub.esa.int 4 Data from the ESA GMES/Copernicus Sentinel

satellites

NASA EOSDIS Reverb|ECHO—http://reverb.echo.nasa.

gov/

4 4 A wide variety of satellite and DEM datasets

including ASTER Global DEM (G-DEM)

ESA Landsat 8 Web Portal—https://landsat8portal.eo.esa.

int

4 Landsat 8 datasets hosted by the European Space

Agency (ESA)

Canadian Geospatial Data Infrastructure (CGDI)

GeoGratis—http://geogratis.gc.ca/

4 4 Various RS, DEM and thematic data

Canadian Geospatial Data Infrastructure (CGDI)

GeoConnections Discovery Portal—http://geodiscover.

cgdi.ca/

4 4 Various RS, aerial photography and topographic

data

Canadian Council on Geomatics (CCOG) GeoBase—http://

www.geobase.ca/

4 4 DEM, SPOT, Landsat and RADARSAT-1

Brazil National Institute for Space Research—http://www.

dgi.inpe.br/CDSR/

4 CBERS-2 and CBERS-2B

CGIAR-CSI GeoPortal SRTM—http://srtm.csi.cgiar.org/

SELECTION/inputCoord.asp

4 90 m DEM data

ERSDAC—http://www.jspacesystems.or.jp/ersdac/GDEM/

E/index.html

4 ASTER Global DEM (G-DEM) with 30 m DEM

data

USGS Global Multiresolution Terrain Elevation Data 2010

(GMTED2010)—http://topotools.cr.usgs.gov/

4 Global DEM

USGS National Map Viewer—http://viewer.nationalmap.

gov/

4 4 Orthoimagery, elevation, land-cover, US Topo,

scanned historic topographic maps

USDA NRCS Geospatial Data Gateway—http://

datagateway.nrcs.usda.gov/

4 4 Aerial orthoimagery and other geospatial data

Oregon State University HICO—http://hico.coas.

oregonstate.edu/

4 4 Hyperspectral imager

USGS EROS Hazards Data Distribution System (HDDS)—

http://hddsexplorer.usgs.gov/

4 Hazards related imagery

USGS Land-cover Institute (LCI)—http://landcover.usgs.

gov/landcoverdata.php

4 Wide variety of land-cover datasets

Esri ArcGIS Online—http://www.esri.com/software/arcgis/

arcgisonline/features

4 4 A wide variety of raster and vector geospatial

datasets

Esri ArcGIS Online Image Services—http://www.arcgis.

com/home/gallery.html

4 4 Providing multispectral, temporal, and event

imagery, Basemaps

GIS Data Depot—http://data.geocomm.com/ 4 4 A wide variety of raster and vector geospatial

datasets

Dundee Satellite Receiving Station—http://www.sat.

dundee.ac.uk/

4 Images from NOAA, SeaStar, Terra and Aqua polar

orbiting satellites

Landmap—http://www.landmap.ac.uk/ 4 4 Providing a combination of remotely sensed imagery

and a high quality spatial data
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terms of landscape transformation processes and urban

sustainability. Continuous spatial and temporal monitoring

is required to evaluate and understand such changes. The

capabilities of RS satellites make them a robust and reli-

able source of data for monitoring the expansion of cities at

different spatiotemporal scales [7, 19].

In a recent study, Cockx et al. [12] reported that land-

cover and land-use information from remote sensing data is

a key component in the calibration of many urban growth

models. Van de Voorde et al. [81] noted that there is a

strong relationship between the change of form in land-

cover and the functional change in land-use through the

analysis of satellite imageries. Classification-based

approaches are routinely used to detect the expansion of

cities by investigating land-cover and land-use changes

[14, 20, 50, 73, 88, 92, 93, 97], and the analysis of urban

sprawl [8, 26, 30, 32, 47, 96]. A comparison of environ-

mental considerations and critical requirements between

optical and non-optical sensors for urban change detection

and monitoring the expansion of cities is provided in

Fig. 4.

Medium-resolution satellite Landsat imagery has been

widely used for urban change detection. Yang and Liu [95]

derived urban impervious surfaces to characterise urban

spatial growth. Ji et al. [35] characterised the long-term

trends and patterns of urban sprawl using multi-stage

Landsat Multi-Spectral Scanner (MSS), Thematic Mapper

(TM) and Extended Thematic Mapper (ETM?) images

based on landscape metrics. Similarly, Du et al. [16] used a

time-series of multi-temporal Landsat TM images to derive

the overall trend of changes through normalised difference

vegetation index (NDVI) based classification. Taubenböck

Table 3 continued

Provider Source and typea Comment

Non-

commercial

Commercial

RS G RS ? G

ASTER Spectral Library—http://speclib.jpl.nasa.gov/ Digital spectral libraries

ASU Thermal Emission Spectroscopy Laboratory Spectral

Library—http://tes.asu.edu/spectral/library/

USGS View_SPECPR—Software for Plotting Spectra—

http://pubs.usgs.gov/of/2008/1183/

Reflectance Experiment Laboratory (RELAB) at Brown

University—http://www.planetary.brown.edu/

AVIRIS (Jet Propulsion Laboratory, Pasadena, CA)—http://

aviris.jpl.nasa.gov/

4 Hyperspectral data

Airbus Defence and Space—http://www.astrium-geo.com/ 4 A wide variety of remote sensing data products

including SOPT-7 and providing sample imageryAlaska Satellite Facility—https://www.asf.alaska.edu/ 4

Apollo Mapping—https://apollomapping.com/ 4

DigitalGlobe—http://www.digitalglobe.com/ 4

LAND INFO Worldwide Mapping—http://www.landinfo.

com/

4

MapMart—http://www.mapmart.com 4

Satellite Imaging Corporation—http://www.satimagingcorp.

com/

4

Spatial Energy—http://www.spatialenergy.com/ 4

Penobscot Corporation—http://www.penobscotcorp.com/ 4

MDA Geospatial Services—http://gs.mdacorporation.com/ 4 RS, RADARSAT-1 and RADARSAT-2

Infoterra—http://terrasar-x-archive.infoterra.de/ 4 TerraSAR-X Archive

ImageSat International—http://www.imagesatintl.com/ 4 EROS A data

i-cubed—http://www.i3.com/ 4 Various geospatial data

German Aerospace Centre—http://www.dlr.de/hr/en/ 4 E-SAR data

eMap International—http://www.emap-int.com/ 4 Various geospatial data

Aero-Graphics—http://www.aero-graphics.com/ 4 Aerial orthoimagery, hyperspectral, LiDAR & Radar

Aerial Services—http://www.aerialservicesinc.com/ 4

a RS remote sensing, G geospatial
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et al. [78] detected temporal and spatial urban sprawl while

Abd El-Kawy et al. [1] demonstrated that human activities

were responsible for land degradation processes. Pham

et al. [65] and Schneider [69] had shown that RS time-

series data can be effectively used to determine long-term

trends of urban changes. However, the mapping of some

inner city areas for the observation of urban growth or

detection of subtle changes is challenging at this level of

spatial resolution.

Satellite images at medium spatial resolution

(10–100 m) cover a large area, often making the urban

landscape appear homogeneous, as different attributes of

land within one pixel are combined into one. Researchers

have, therefore, attempted to fuse multi-source (RS, socio-

economic, vector) data with medium-resolution images to

improve the overall resolution, increase model accuracy,

and make change detection more perceptible. Jia et al. [36]

proposed a method to improve land-cover classification by

Fig. 3 An overview of spectral, spatial, temporal and radiometric

resolution of different optical satellite systems. Spatial and temporal

resolution requirements vary widely for monitoring terrestrial,

oceanic, and atmospheric features and processes. Each application

of remote sensing sensors has its own unique resolution requirements

and, thus, there are trade-offs between spatial resolution and

coverage, spectral bands and signal-to-noise ratios. Notes and

symbols: Bs—the number of spectral bands, which include visible

light spectrum (VLS), near-infrared (NIR), mid-infrared (MIR), and

thermal infrared (TIR) portion of the electromagnetic spectrum;

RGB—a colour digital image; and PAN—a panchromatic image

Adapted from Jensen [34] and Purkis and Klemas [66]
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fusing Landsat 8 Operational Land Imager (OLI) NDVI at

30 m with MODIS NDVI at 250 m, resulting in a 4 %

improvement in the overall classification accuracy, com-

pared to a single temporal Landsat data. On the other hand,

Singh et al. [73] showed that the fusion of LiDAR and

Landsat data can lead to increased accuracy in distin-

guishing heterogeneous land-cover over large urban

regions. In another study, land-use change was inferred

from Landsat ETM? images integrated with aerial photos

and population census data to reveal urban growth and

sprawl by Martinuzzi et al. [51]. Change detection of urban

land-use from low- and medium-resolution imagery with-

out any improvement by applying other high-resolution RS

data or integration with supplementary data, such as census

data, is error-prone. The inaccuracy is attributed to mixed

pixels that present a spectral mixture from the diverse built-

up materials, eventually leading to greater uncertainties in

land-cover/land-use classification.

The issue of mixed pixels can be resolved by obtaining

more detailed information on urban morphology using high

spatial resolution sensors. IKONOS pan-sharpened and

SPOT images were combined with different vector maps

by Noor and Rosni [61] to analyse the geospatial indicators

based on spatial factors. Nassar et al. [59] identified the

spatial evolution, urban expansion and growth patterns

based on a hybrid classification method and landscape

metrics using different datasets to derive suburban classes

(e.g. residential, commercial and industrial). Further,

Kuffer and Barrosb [45] proposed an approach to monitor

unplanned settlements in residential areas by identifying

the morphology (size, density, and layout pattern) of urban

areas. The mapping of urban land-cover and land-use from

high spatial resolution images often faces the issue of

spectral variability within one-class and the shadows of

buildings and trees that reduce class separability and

classification accuracy. Nevertheless, NASA [58] reports

that the progression in the RS-based urban area mapping is

contributing to the creation of more accurate and detailed

maps of cities, enabling an unprecedented understanding of

the dynamics of urban growth and sprawl.

Environmental impacts of urban growth

At a time when informal settlements are emerging as a

result of population growth, the likelihood of increasing the

occupation of spaces inside and outside cities will be

higher, as is the risk of inappropriate urbanisation. The

occupation of land as an uncoordinated form is motivated

by several factors, namely: limited income of urban

dwellers; increased housing demand; the lack of sustain-

able long-term urban planning; and the insufficiency of

legal buildable land. These factors have led to the improper

development of cities/urban areas, even in areas considered

Conducting quality assurance and accuracy assessment

Outputs

Critical 
requirements

Environmental 
considerations

Optical Sensor (Passive System)

Multi-band
Imagery

Multi-date
Imagery

Non-Optical Sensor (Active System)

Spaceborne
Radar

Airborne

LiDAR
Laser

• Discrepancies in reflectance
• Sun angle differences
• Atmospheric conditions
• Local precipitation
• Temperature and tidal stage
• Soil moisture
• Seasonal vegetation changes
• Appropriate dates for the image acquisition

• Air conditions: fog, smoke or high levels of 
moisture (rain, snow, clouds, etc.).

• Standing water
• Ground conditions
• Day or night flights
• Appropriate dates for the data acquisition

• Unhindered by poor weather (working 
through cloud cover, haze, dust, and the 
heaviest rainfall, and night flights)

• Reflectance and primary interaction of 
radar bands with forest canopies and 
penetrating the dry or wet soil surface

• The effects of topography 
• Appropriate dates for the data acquisition

• Radiometric correction
• Multi-date registration
• Geometric Correction
• Mosaicking 
• Sub-setting
• Masking out clouds & irrelevant feature

Image/data pre-processing 

Selecting appropriate change detection method

Testing detector/algorithm performance

• Sensor measurements calibration
• Images co-register to a sub-pixel level
• Wavelengths, azimuth and ground range 

resolution, a pair of images, separated in 
time

• Specialised interpretation skills

• Calibration processes and Co-registration
• Post-processing
• Points density, accuracy and change 

detection level
• The availability of data and costly surveys

• Detect & map global/regional man-made 
changes, change rate, Spatial distribution of 
changed types, change/growth trajectories of 
land cove types and accuracy assessment

• Analyse urban change and growth
• Predict long-term trends of urban growth
• Predict global/regional/local temperature 

trends

• SAR-Detect surface movements with an 
accuracy of a few millimetres per year and 
monitoring of land subsidence, structural 
damage and underground construction

• InSAR-Construct 3D city models and
detecting subsidence and urban mapping

• DInSAR-Monitor the deformation of Earth’s 
surface, a contour map, land subsidence  

• DSM, DEM and 3D  information/model for 
urban monitoring

• Detect changes of buildings & estimate 
urban growth, and urban vertical 
growth/change

• Elucidate similarities/differences in human–
environment interactions and in trajectories 
of growth, decline, and collapseFusion

An improvement in terms of
best detection accuracy and
reinforce common interpretation
of the outputs.

Detection process

- Iden�fying urban 
changes    & 
- Monitoring the 
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Fig. 4 A comparison of environmental considerations and critical requirements between optical and non-optical sensors for urban change

detection and monitoring of the expansion of cities
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at high risk from natural disasters such as landslide and

flooding. The negative effects of the expansion of cities

and urban growth are more motivational as a research

agenda than the positive ones. One such application is the

assessment of the quality of life and socio-economic con-

ditions in urban slums, as for every three city dwellers

worldwide one lives in a slum [63]. Many authors applied

RS techniques to identify slum locations and classify slums

from other land-use types [42–44, 67, 77, 83]. Graesser

et al. [23] distinguished the boundaries between formal and

informal settlements using an image classification

approach. Weeks et al. [89] identified the location of slums

and quantified their area using a vegetation-impervious-soil

(VIS) model, image texturing, and census data to deduce

land-use effects and to produce a slum index map.

According to Hagenlocher et al. [24], a clear link between

increasing new temporary settlements of population and

decreasing natural resources in the vicinity of these set-

tlements was revealed using a time-series of VHR optical

satellite imagery.

Other research includes the identification of slum core

and its impacts on the environment by Kit et al. [43], and

slum area change patterns by Kit and Lüdeke [42]. Despite

the progress made in slum detection, there is a need to

develop methods that consider the interrelationships

between the spatial distribution of slums and socio-eco-

nomic variables. Moreover, the spatial patterns of slums

with the texture of a land-cover type must also be inves-

tigated within the urban environment in a consistent man-

ner to improve the understanding of the interrelated land

surfaces. In particular, exploiting textural differences

between urban land-uses can be beneficial for improving

urban mapping with regards to spectral heterogeneity

within urban landscapes, as illustrated in Fig. 5, which

shows the degree of spatial autocorrelation in the slums

(informal) compared to the residential areas (formal).

Urban differentiation in terms of similarity and dissimi-

larity of pixel values within a moving window was asses-

sed using Moran’s I in Eq. (1).

I ¼ n

so

Pn
i¼1

Pn
j¼1 wi;jzizj

Pn
i¼1 z

2
i

ð1Þ

where zi is the deviation of an attribute for feature i from its

mean ðxi � XÞ, wi,j is spatial weight between features i and

j, n is equal to the number of features, and so is the

aggregate of all the spatial weights in Eq. (2).

So ¼
Xn

i¼1

Xn

j¼1

wi;j ð2Þ

The zi-score for the statistic is computed as:

zi ¼
I � E I½ �

ffiffiffiffiffiffiffiffi
V I½ �

p ð3Þ

Fig. 5 Moran’s I for high-resolution satellite images using a 3 9 3

pixel moving window. a A QuickBird scene of informal residential

area (slums). b A GeoEye-1 scene of formal residential area. c and

d Moran’s I measuring spatial autocorrelation based on both feature

locations and feature values simultaneously. e and f The difference in

the texture in the binary form. g and h The XBAR control chart of

c and d to analyse the greatest similarity between the pixel values in

each subgroup and the greatest difference between the pixel values in

different subgroups
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where:

E I½ � ¼ 1=ðN � 1Þ ð4Þ

V I½ � ¼ E I2
� �

� E I½ �2 ð5Þ

Regarding other negative impacts, the increase in city size

combined with an increasing number of dwellers cause a

corresponding rise in urban air and surface temperatures,

known as urban heat island (UHI), as shown in Fig. 6. A

positive correlation has been deduced between impervious

surfaces and land surface temperature (LST) in the sprawled

areas [87, 90], where impervious surface areas become

warmer than the surrounding areas. Two main factors cause

the UHI effect. First, heat is absorbed from sunlight and

subsequently released as thermal infrared radiation by dark

surfaces such as pavements, roads and rooftops. The tem-

perature of these surfaces can reach 28–39 �Chigher than the

surrounding air [7]. Second, there is a relative lack of veg-

etation cover in urban areas, especially trees, which work to

cool air and balance the components of the environment.

Li and Yin [48] developed an approach to calculate

urban heat island effect ratio (UHIER) that suggests urban

areas have relatively higher temperature than the neigh-

bourhoods surrounding the city. Senanayake et al. [70]

identified UHIs and the distribution of LST by analysing

vegetation cover using NDVI. Le-Xiang et al. [46] assessed

the impacts of land-use and land-cover on LST, suggesting

around 4.56 �C higher surface temperature in newly

developed urban areas due to decreased vegetation caused

by urban expansion.

Several studies have illustrated the use of RS data in

analysing air pollution and its quality. Numerical simula-

tions based on satellite data were performed to evaluate the

effect of urban sprawl on air quality, surface temperature

and their effects on people by De Ridder et al. [15]. In a

recent study, Bechle et al. [5] evaluated the extent of the

satellite data’s ability to resolve urban-scale gradients in

ground-level nitrogen dioxide (NO2) within a large urban

area. Wang et al. [85] derived high resolution aerosol

optical thickness (AOT) from Terra-MODIS data by cre-

ating four models to analyse the relationship between AOT

and PM2.5. Data from the same satellite were used by

Nichol et al. [60] to assess 3D air quality over an urban

landscape. Sifakis et al. [72] developed an approach to

quantify AOT over urban areas by fusing different spectral

bands of satellite imageries based on image processing

techniques.

With regards to the evaluation of water quality and

quantity, Chawira et al. [11] proposed a semi-empirical

band ratio model to derive and quantify water quality

parameters in two polluted lakes. They also identified the

causes of pollution: domestic waste and raw industrial

sewage, poor garbage collection, agriculture, and some

mining activities, among others. Jay and Guillaume [33]

used hyperspectral data for mapping depth and water

quality. Trochta et al. [79] presented the identification of

water types with different biogeochemical properties and

drivers through an optical classification scheme based on

RS data. Hunink et al. [27] studied the relationships

between groundwater usage and crop type in irrigated

100,000.00

1,000,000.00

10,000,000.00

6°C 8°C 10°C

Habitants
City size

Increasing maximum 
temperature in cities

Urbanisation

Fig. 6 Increasing temperature

due to increased city size and

the number of city dwellers

Modified after Bhatta [7]
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areas. The realistic spatial distribution of air and water

quality can help to define the urban landscape quality

(ULQ). The use of census data alone to quantify ULQ can

result in unreliable estimates as census data do not ade-

quately capture the environmental factors such as water-

borne diseases and various types of pollution (air, water,

toxic chemicals, etc.). Satellite RS data can fill this gap and

improve our understanding of the relationships between

environmental factors and the urban landscape. Table 4

summarises the potential and shortcomings of remote

sensing data for investigating the impacts of urban

expansion.

Table 4 Consequences of expansion of cities against observation variables, impacts, potential and limitations of urban remote sensing

applications

Consequences of the expansion of cities

Temperature Air quality Water quality

Observation variables or

parameters

Dark surfaces (low albedo)

The lack of vegetation

Ozone

Nitrogen dioxide

Sulphur dioxide

PM2.5 and PM10

Carbon dioxide

Dust aerosol

Turbidity

Total suspended sediment

Volatile suspended solids

Polychlorinated biphenyls

Chlorophyll

Impacts Increased energy

consumption & cost

Elevated emissions of air

pollutants (SO2, CO and

PM) and greenhouse gases

(CO2)—global warming

Compromised human health

and comfort

Impaired water quality

Serious human health problems

Inhibited plant growth

Smog and acid rain

Climate change

Change in colour

More total runoff volume and flooded

land, untreated or poorly treated

sewage

Surface water pollution

Groundwater pollution

Reduced storage capacity, flood control,

light penetration in water—

minimising fish yield

Human health

Potential Observe & map the surface

urban heat island (SUHI)

Identify the spatial patterns

of upwelling thermal

radiance

Identify urban construction

materials

Time synchronised dense

grid of temperature over a

large area.

Monitor and map the compositions of air

over the globe with high spatial and

temporal coverage

The combination of satellite

observations with ground-based in situ

for monitoring, modelling, simulating

and forecasting the air quality and

climate change

Improve the quantification of air

compositions

Assess surface water, subsurface water,

soil moisture and groundwater with

reasonable accuracy

Assess pollutants spectrally and

suspended sediments using regression

based optical models

Monitoring the vast spatial coverage

and long-term, remotely recognition

concentrations of both sediments &

chlorophyll and detecting the presence

of water beneath vegetation using the

microwave spectrum

Limitations/considerations Clouds (thermal imageries)

Surface radiative properties

Spectral wavelength

Cloud (the accuracy of air quality

models)

The lower levels of the atmosphere

where exposure to pollution occurs

Chemical and physical measurements

through the atmosphere

Properties of scattering and absorption

of suspended sediments and dissolved

organic matter make it difficult to

determine the intensity of reflected

light

Demand repeated monitoring on short

time-scale

Demand in situ measurements for

calibration the estimation of water

quality

Poor retrieval of water constituents due

to shadows cast on water bodies

Correction for atmospheric influence on

remote sensors is necessary to

differentiate the patterns of water

quality
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Sustainable urban environments

Urban sustainability must be taken into account for planned

urban growth to minimise our reliance on natural resources

and non-renewable energy. City growth can mitigate the

impacts of climate change by minimising ecological foot-

print, reducing pollution, increasing land-use efficiency,

recycling waste, and increasing the use of sustainable

materials, and by maximising renewable energy use. In

essence, the aim of urban sustainability is to manage

resources and to provide services through effective design

and implementation of policies, which require access to

detailed information on urban indicators. Remote sensing

can offer cost-effective solutions for collecting vast

amounts of data compared to resource-intensive conven-

tional approaches such as survey and field monitoring.

Figure 7 provides an overview of key urban sustainability

applications of remote sensing when integrated with the

available environmental, economic and social data.

Renewable energy resources in urban areas are highly

sensitive to site and surroundings [55] and micro-climate

[56], and are dependent on geographical constraints on

development and regional economic policies [10]. Remote

sensing is particularly suited to the geospatial assessment

of the potential of renewable energy technologies (RET)

such as wind, solar, wave, biomass and geothermal.

Gooding et al. [22] estimated the physical and socio-eco-

nomic potential for generating electricity from roof-

mounted PV using digital surface models (DSMs) from

LiDAR. Sun et al. [76] developed a regional model of solar

PV generation potential with its economic feasibility using

digital elevation model (DEM). LiDAR data was used by

Jakubiec and Reinhart [31] to create a map of solar pho-

tovoltaic (PV) potential of individual buildings.

Remote sensing can offer cost-effective means of identi-

fying urban surfaces where solar PV can be installed. Kabir

et al. [38] used QuickBird scenes to determine bright roof-

tops of Dhaka for PV applications by applying an object

based image analysis (OBIA) approach. Wang and Koch

[86] investigated the optimal locations of PV and the base

electricity prices resulting from solar energy. Bergamasco

and Asinari [6] computed the actual roof surface available

for PV installations by classifying roof typologies. Baluyan

et al. [4] discriminated rooftops from non-rooftops based on

colour/grey level during image segmentation, support vector

machine (SVM) classification, and the histogram method.

Jiang et al. [37] analysed the spatiotemporal properties of

the wind field using the QuikSCAT satellite data to produce a

wind resource map. Walsh-Thomas et al. [84] extended the

use of satellite RS data to provide insights into the impacts of

large scale wind farms on land surface temperature (LST). An

extensive reviewof the potential of remote sensing techniques

in examining geothermal resourceswas published byVanDer

Meer et al. [82]. Ahamed et al. [2] reviewed the biophysical

characteristics of biomass for managing energy crops at given

sites. Rusu and Onea [68] evaluated wind and wave energy

resources along the Caspian Sea.Based on the fused data from

multiple satellites, Kaiser and Ahmed [41] derived the spatial

distribution of hot springs, lineaments and geothermal local-

ities for RET applications.

Economic 
Development

Social 
Development

Environmental 
Development

• Monitoring urban land cover and land use 
changes

• Determining the actual population 
dynamics and population density 
distribution

• Identifying and mapping urban growth 
patterns and urban expansion trajectories 

• Assessment of urban settings and 
impervious surfaces

• Assessment of urban air quality / air 
pollution and water quality

• Assessment of land surface temperature 
in urban areas

• Evalua�ng energy landscape / region 
within ci�es 

• Renewable energy poten�al assessment 

• Slum detection
• Evaluating the quality of life of the urban 

population
• Housing value estimation
• Population estimation 
• Social vulnerability assessment

• Assessment of spatial distribution of land resources
• Monitoring Urban/Rural infrastructure
• Availability of usable land
• Future planning for better land management for socio-

economic development
• Identifying damaged building density, collapsed 

buildings and damaged infrastructure
• Estimating Gross Domestic Product (GDP) distribution
• Forecasting and estimation the crop production timely

Sustainable
cities 

Fig. 7 Key urban sustainability applications of remote sensing
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Trends and future research

Studies discussed in the previous sections demonstrate the

significant potential of remote sensing in the assessment,

monitoring and planning for urban sustainability. Figure 8

summarises the reviewed literature on urban growth, sprawl,

and land-cover and land-use changeswhile Fig. 9 summarises

previous work on slums, air and water quality, temperature

assessment, and renewable energy. In addition, Table 5 pre-

sents the state-of-the-art in taxonomy, detection, extraction

and pattern recognition in urban applications, focussing on

machine learning algorithms such as neural network, decision

tree, random forest, etc. The algorithmic aspects of data

analysis for various urban applications are also summarised.

In the context of constrained resources, increasing

urbanisation, rising vulnerabilities to climate change

impacts, and ageing population, cities need to be sustainable,

adaptable, smart and resilient [57]. Decisions need to be

made based on the contextual evidence of performance of the

urban environment, which needs to be collected at a higher

resolution in a cost-effective manner. On the other hand,

expanding urban areas affect the environment primarily by

increasing energy consumption from buildings, transport

and industry sectors [66], and by reducing albedo through

land-cover change from vegetation to built-up, resulting in

increased LST [74]. Both can further reinforce the climate

change drivers and act as a positive feedback loop; i.e.

increased LST may result in more energy consumption,

therefore, more warming, which in turn will result in further

increases in LST. The potential of the use of remote sensing

in tackling these urban challenges is summarised in Fig. 10.

In Table 6, we present the challenges and/or opportu-

nities in three key research trends: (a) the integration of

heterogeneous remote sensing data; (b) algorithms for

extracting urban features; and (c) accuracy of urban land-

cover and land-use classification. We highlighted the main

benefits and limitations in each research trend for further

investigations in the future.

Discussion and concluding remarks

We presented a review of the key applications of remote

sensing in urban sustainability, and highlighted their

potential to address problems associated with the expan-

sion of cities. Nonetheless, there are still challenges and

limitations in using remote sensing technology in urban

studies. Challenges are related to the remote sensing data
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Fig. 8 Previous work on urban growth and sprawl, and land-cover and land-use changes
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itself, as well as its methods of calibration, such as those

for dealing with the complex and heterogeneous urban

environments. Although the accuracy of the extracted

information in RS-based studies has improved, obtaining

an accurate thematic map from RS-based classifications

remains a challenge, due to: (a) the complexity of the urban

landscape; (b) limitations of selected computer vision and

image processing techniques; and (c) the complexities and

nuances in integrating or fusing multi-source data. Spectral

uncertainty still exists between the separated classes of the

urban land-cover and land-use, such as bare soil and/or dry

mud with impervious surfaces. Furthermore, the concen-

tration of diverse built-up materials in a small area results

in pixel generalisation, eventually leading to classification

errors, which can be particularly problematic when work-

ing with low-resolution images.

The key advantage of remote sensing technology

arises from the capability to integrate data from multiple

sensors with similar or dissimilar spatial, spectral, or

temporal resolutions to collate information on a common

theme. However, there is a need for robust algorithms

for fully automating the registration of data captured

with many sensors, such as optical and radar, hyper-

spectral imagery and LiDAR data, which operate at

disparate resolutions and use diverse acquisition

approaches. Although the derived information from such

sensors are potentially very useful for urban sustain-

ability assessment, fusing their data is a real challenge

using the conventional approaches of data processing.

Additionally, techniques for object recognition, classifi-

cation, segmentation, and change detection from the

outputs of data fusion are still in their infancy. There-

fore, to take full advantage of the diversity of remote

sensing data within the urban environment, there is a

need to develop new strategies and further refine existing

techniques and approaches.
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Fig. 9 Previous work on slums, air and water quality, temperature assessment, and renewable energy
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Table 5 The state-of-the-art in taxonomy, detection, extraction and pattern recognition in urban applications

Application Taxonomy/

quantification

algorithms

Merits Limitations Example

Seismic building structural

types (SBSTs)

Support vector

machine (SVM) and

random forest (RF)

Classify the combination of different

remote sensing data

Derive sets of valuable features to

characterise the urban environment

Model an effective earthquake loss and

spatial distribution

ABTSVM classifier outperforms other

multi-class SVM classifiers

Hierarchical supervised

classification scheme has

uncertainties in separating

SBSTs

Performance depends on

the ranked features

Accuracy is subject to the

addition of further

features and subset based

categories

Geiß et al. [21]

Urban change detection:

land-use transitions

Scene classification

with a bag-of-

visual-words

(BOVW)

Obtain semantic scene classes

Effectively analyse land-use changes

Satisfactory accuracy

Time-consuming

Very difficult to achieve the

direct selection of the

‘‘from-to’’ samples from

the dataset

Classification performance

in certain cases is

negatively affected by the

redundancy of

information

Wu et al. [91]

Urban land-cover and land-

use classification

Binary tree SVM

based on JM

distance

Improve classification accuracy.

Classify hyperspectral images

adequately

Ease of interpretation of urban classes

Confusion between road

and bare soil classes

Instability and complexity

in the structure and

parameters of the binary

tree SVM

Du et al. [17]

Monitoring changes in

impervious surfaces

MRGU Integrate multiple endmember spectral

mixture analysis (MESMA), analysis

of regression residuals, spatial

statistics (Getis Ord) with Moran’s I,

and urban growth theories in an

effective manner

Quantify and identify the magnitude of

impervious surface changes and their

spatial distribution.

Not universally applicable

due to specific behaviour

of maximum noise

fraction (MNF)

Difficult to use for

quantifying changes in

urban centres

Performance (regression

residuals) is subject to the

structure of urban regions

Shahtahmassebi

et al. [71]

Change detection Unsupervised Neural

network and feature

transformation

Deep architecture (SDAE) for better

representation of the relationships

between feature- and pixel-pair

Mapping based FCA and function

learning to highlight change in a

robust manner

Denoising autoencoder

Uncertainty in the feature-

pair

High computational cost

Complexity structures of

stacked denoising

autoencoders (SDAE)

Many constraints are

required to extract useful

features

Zhang et al. [99]

Water quality, and

sustainable water

resources management

Integrated data fusion

and mining (IDFM)

and artificial neural

network (ANN)

A near real-time monitoring and the

early warning system

Efficiency

Forecasting reliability

Potential for local adoption

Prediction accuracy may be

effected by uncertainties

in the fused data

A large number of variables

is required to overcome

the uncertainty

Not applicable for regional

meteorology parameters

Imen et al. [28]
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Apart from the challenges in the assimilation and inte-

gration of data, the methods and algorithms for extracting

features and related information need to be considered for

observing city growth and its environmental impacts. Some

of these challenges relate to the information extraction

from image texture; inference of contextual and semantic

information using computer vision techniques; extraction

of the geometric attributes of urban features such as 3D

objects, and the enhancement of the degree of automation

in accelerating the deduction of useful information from

satellite images.

One of the goals of our research is to highlight the

potential of remote sensing for tackling emerging envi-

ronmental issues in countries without the vast environ-

mental and land monitoring infrastructure typically found

in Europe and the west. Countries and regions on the

northern and southern shores of the Mediterranean are

characterised by rapid urbanisation and environmental

degradation, but are not well presented in the literature in

terms of the development and applications of urban sus-

tainability. The concern is that the region has experienced

significant environmental changes in the past, and is

Table 5 continued

Application Taxonomy/

quantification

algorithms

Merits Limitations Example

Air temperature estimation SVM Fully automated method

SVM regression is robust

Regression errors can be modelled at

the pixel level, improving accuracy

estimation

Requires expert users to

apply SVM

Does not work well under

non cloud-free conditions

and require in situ

measurements

Regression error

distribution is insufficient

Moser et al. [54]

Fine-scale population

estimation for urban

management, emergency

response and

epidemiological

RF and

Linear regression

modelling

Able to classify building types and

extract their footprints in the

heterogeneous urban areas

Improved classification accuracy

Ease of adoption

Subject to the accuracy of

the selected morphology

filter

Use of large numbers of

metrics and variables for

building type

classification

Building background

metrics do not show its

advantage in the block

classification

Classification uncertainty

for non-residential

buildings

Xie et al. [94]

Renewable energy and

urban feature extraction

Shadow detection and

building geometry

identification

Easy to apply

Sufficient to generate 3D model of

urban buildings

Reliable analysis of the solar energy

potential

Identify the availability of 3D surfaces

Flexibility and feasibility

Not fully automated

Not suitable for dense

urban areas

Sensitive to the quality of

satellite images

Kadhim et al.

[39, 40]

Impervious surfaces

estimation

SVM and RF Increased classification accuracy

Does not depend on combinations of

features

Data can be fused to optimise

parameters efficiently

Ease of application

Needs many texture

matrices

Inability to handle the

confusion in shaded areas

and bare soil

Over-fitting

Zhang and Lin

[98]
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The irreversible environmental 
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Non effective

Degradation can be detected at an early stage through 
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Fig. 10 The hypothetical

deterioration of environmental

systems and the potential of the

use of remote sensing in their

restoration Modified after

Purkis and Klemas [66]

Table 6 Directions of future research

Integration of heterogeneous data Algorithms to identify urban features Improve accuracy for spectral

classification algorithms

Objective Improve the spatial and spectral resolution

Improve the classification accuracy

Enhance the ability of features detection and
display

Promote the geometric precision

Increase the capability of the change detection

Refine, replace or repair the defect of image data

Handle multi-source remote sensing data at the
pixel, feature and decision of level fusion

Accelerate future processing and improve
classification accuracy

Automated processes for detecting,
extracting, simulating, classifying and
modelling urban features

Capability of handling and fusing the large
number of datasets

Improve image objects segmentation

Increase the reliability and precision of the
feature extraction

Mitigate the ambiguous and uncertainty

Capability of separating urban land-
cover and land-use classes in an
adequate manner.

For a better visualisation and
interpretation of urban landscape

Performing a change detection analysis
and pattern recognition

Accurately characterise the model
parameters for different urban remote
sensing applications

Problems
requiring
solutions

A rescaling of multisource data of divers EO
instruments

Assessing the distortion of the spatial and
spectral resolution

Time-consuming and subjective

The complexity and/or availability of a large
training datasets for the deep learning features

Manual or semi-automated the post-processing
process

Computation efficiency and effectiveness

The quality of the distinguishing features

With the fusion schemes, the optimal combining
strategy of the current fusion algorithms is a
challenging task and promising research that
requires further investigations in the near future

Further developments for fusing LiDAR
data with thermal, multispectral and
hyperspectral imagery

Reliable determination of the boundaries of
urban objects in an automated manner

Further improvements for addressing
different characteristics of EO data

Ability to cope with
unpredictable environmental and
illumination factors of diverse datasets

Similarity in the characteristics of spectral,
textural and geometrical-based between
the urban objects and their background

The problems in the occlusions and relief
distortions

Computational time to perform a task

Mixed pixels

Uncertainty in the urban land-cover and
land-use classes

Mixed objects

Promote pixel-based and object-based
classification using contextual
information

Over-fitting can cause speckled results
that are difficult to interpret

An automatic labelling strategy is
required for actual label sets in several
applications

Further refinements for the fusion of
diverse data sources

Integrate the derived urban features (e.g.
building shadows) and/or spatial
matrices with various classifier
schemes

Investigate the recent computer vision
techniques for improving the accuracy
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projected to be exposed to significant risks from climate

change and increasing human impacts to its natural

resources and ecosystems. Reviews on advances in remote

sensing presented here are envisaged to encourage further

adoption in urban sustainability applications, in particular

in the countries and regions most affected by global envi-

ronmental change.
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