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Abstract Professional dance is characterized by
high impulsiveness, elegance, and aesthetic beauty. In
order to reach the desired professionalism, it requires
years of long and exhausting practice, good physical
condition, musicality, but also, a good understanding of
choreography. Capturing dance motions and transferring
them to digital avatars is commonly used in the film
and entertainment industries. However, so far, access
to high-quality dance data is very limited, mainly
due to the many practical difficulties in capturing the
movements of dancers, making it prohibitive for large-
scale data acquisition. In this paper, we present a model
that enhances the professionalism of amateur dance
movements, allowing movement quality to be improved in
both spatial and temporal domains. Our model consists
of a dance-to-music alignment stage responsible for
learning the optimal temporal alignment path between
dance and music, and a dance-enhancement stage that
injects features of professionalism in both spatial and
temporal domains. To learn a homogeneous distribution
and credible mapping between the heterogeneous
professional and amateur datasets, we generate amateur
data from professional dances taken from the AIST++
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dataset. We demonstrate the effectiveness of our
method by comparing it with two baseline motion
transfer methods via thorough qualitative visual controls,
quantitative metrics, and a perceptual study. We also
provide temporal and spatial module analysis to examine
the mechanisms and necessity of key components of our
framework.
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dance motion enhancement; dance motion
analysis

1 Introduction

Dance is a performing art form that consists of
purposeful, rhythmical, and well-patterned sequences
of body movement; it has aesthetic and often symbolic
value [1]. Capturing dance motions and transferring
them to avatars not only facilitates expressive film or
animation production process, but also contributes
to the conservation of cultural heritage and dance
education. However, so far, access to high-quality
dance data has been limited. Most currently available
motion capture repositories typically contain basic
human movements, while only a limited number
of dance-specific databases comprise prime dance
movements performed by professionals [2, 3]. This
is because professional dance is characterized by
dynamic body language, high impulsiveness, elegance,
smoothness, fluidity, and aesthetic beauty that
usually require the performer to have long-term
dance experience and skills, followed by extensive
practice sessions, excellent physical condition, and
acquaintance with years of dance studies. This poses
a practical challenge when capturing realistic and
high-quality dance motions, which is restrictive for
large-scale acquisitions, or regular acquisition [4].
To perform a professional dance, the performer
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should be familiar with the content and rhythm of
the choreography, and achieve the specific physical
amplitude of the choreography with the appropriate
energy and balance [5]. On top of that, in order
to achieve a satisfactory dance quality during the
motion capture process, dancers have to repeat the
performance many times to avoid mistakes.

In this paper, we present a technique that
enhances professionalism of dance moves, allowing
the movement quality to be improved in both the
spatial and temporal domains, meeting the following
key constraints: (i) production of flowing and smooth
dance moves, (ii) expansion of the anatomical and
physical amplitude of human movements, to meet the
demanding restrictions of the choreography, and (iii)
good synchronization of movements to the rhythm
of the music. In this way, our method reduces
the need to hire professional dancers, facilitates the
process of obtaining high-quality dance movements
even from amateurs, enriches existing databases with
professional data to enable better training of deep
networks, and finally aligns dance motion data to a
given audio file.

One obvious approach to deal with the challenge
of enhancing professionalism of dance movements
is to leverage a deep style-transfer framework [6–
10], by considering amateur dances as the source
style and professional dances as the reference style.
However, while style transfer algorithms provide a
possible way to handle this problem, they do not
address exactly the same problem. Professionalism

is not a specific style, but closer to an evaluation
metric. Dances with different styles might be seen
as professional. Professional dance preparation,
whatever the style, not only has specific anatomical
and physical demands, but also requires artistic
qualities, such as musicality, expression, and distinct
communication skills. On top of that, existing
style-transfer methods face two technical challenges.
Firstly, they mainly focus on motions with well-
defined styles, while different styles of motions
have explicit changes over the whole sequence. In
contrast, dances often contain highly-dynamic and
heterogeneous movements, and the professional and
non-professional dances may share a large number
of similar poses but with a limited number of local
changes: see Fig. 1. Therefore, it is difficult to learn
mappings between unpaired professional and non-
professional dances, as state-of-the-art motion style
transfer methods do [8, 9]. Secondly, they mainly
focus on music-free motions, with no explicit and
deterministic control over the correlations between
motion content and other external factors, such as
musical rhythm. Even though existing methods may
cause timing changes in motion based on the style
differences hidden in the data, such changes are
uniformly distributed over the temporal domain.

In this work, we propose a two-stage dance
enhancement model that adds professionalism to
existing dance motions, and release a new dataset
with paired professional and amateur dances that
enables the training on the model. We define

Fig. 1 Our approach enhances the professionalism of dances performed by non-professional dancers. Top: input amateur dance sequence.
Second row: our enhanced dance motion. Third row: corresponding ground-truth professional dance. Note that our results have similar
temporal and spatial features to the ground-truth dance sequence.
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dance professionalism term, and describe how it can
be evaluated through various attributes, e.g., flow,
amplitude, and rhythm of a dance. In particular, we
improve the quality of dance motions in both spatial
and temporal domains, focusing on the following three
professional properties: (i) the production of fluent
and smooth movements; (ii) the physical amplitude
of intense movements that is restricted by the poor
physical condition of the amateur dancer; and (iii)
the temporal alignment of the dance movements to a
given musical rhythm. Firstly, our model estimates
temporal correlations between dance motions and
musical rhythm, followed by a temporal alignment
and spatial motion enhancement process, under the
guidance of the proposed professionalism metrics.
The dance-to-music alignment stage consists of a
network that learns the affinity matrix between
dance and music with attention mechanisms, and
a classic dynamic time-warping module to infer an
optimal temporal alignment path matrix. Secondly,
the dance-enhancement-stage enables adjustment of
the dance motion in both temporal and spatial
domains, under the guidance of the optimal alignment
path, a reconstruction loss, and a consistency loss.
The reconstruction loss constraints the network to
preserve the original motion content of the amateur
dance, while adjusting it to be similar to the
corresponding professional dance. The consistency
loss preserves the temporal continuity of the enhanced
dance motion and decreases temporal noise.

One of the most critical challenges we faced in
this project was the lack of data for training our
network. Professional and corresponding amateur
dances may differ in various combinations of the above
professionalism properties. Since the professionalism
of a dance is independent of its choreography or style,
the dances in a professional or amateur dance dataset
may contain highly dynamic and heterogeneous
movements. This makes it difficult to learn a
homogeneous distribution for the professional or
amateur dataset using existing methods, let alone
a credible mapping between the two heterogeneous
datasets. In addition, the mappings between pro-
fessional dances and amateur ones are not
deterministic. Therefore, before designing our net-
work, we first introduce a key-pose based data
augmentation scheme to generate amateur data
from professional dances, taken from the AIST++

dataset [3]. The data augmentation scheme modifies
the movements in all three professionalism metrics,
and the constructed dataset contains many-to-one
paired amateur and professional dances.

We demonstrate the effectiveness of our method
by comparing it to two state-of-the-art motion
transfer methods [6, 8] via thorough qualitative visual
controls, quantitative metrics, and a perceptual study.
Apart from using our synthesized amateur data,
we additionally captured several dance sequences
performed by amateur dancers, to further examine
the generalizability of our method. User responses
indicate that our method enhances amateur motion
so that it cannot be easily distinguished from actual
professional dance. In addition, we provide temporal
and spatial module analysis via an ablation study
to evaluate the mechanisms and necessity of key
components of our framework.

The main scientific contributions of the paper are:
• The concept of enhancing professionalism in

dance movements: we give a first definition
of what dance professionalism is, and how a
professional dance can be distinguished from an
amateur one.

• A novel two-stage deep learning framework that
extracts meaningful features from motion inputs,
in terms of the newly defined professionalism
criteria, to improve the quality of dance motions.
It integrates a reconstruction loss, to preserve the
original content of the dance, and a consistency
loss, to maintain the temporal coherency of the
reconstructed motion.

• A novel model designed to synchronize 3D dance
motions with reference audio in the face of non-
uniform and irregular misalignment.

• Thorough evaluation, and an ablation study
to examine the efficiency and necessity of our
methods.

2 Related work

2.1 Dance evaluation

Dance is an expressive form of performing art that
consists of aesthetic movements of the body in a
rhythmic way, usually to music, for the purpose of
expressing an idea or emotion, releasing energy, or
simply taking delight in the movement itself [5]. To
professionally perform dance, performers regularly
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attend long routine training, and have extensive
experience in dance studies, choreography, and
musicality, along with excellent physical condition,
which enables them to perform complex movements
with extreme physical amplitude demands in some
instances [11, 12]. Only a few works in the dance
research community have identified qualitative
indicators of professional dances. For example,
Neave et al. [13] and Torrents et al. [14] have reported
qualitative experiments showing that kinematic
parameters related to the amplitude of movement
are highly associated with perceived dance beauty
and aesthetics, while Park [15] investigated the
correlation between dance professionalism and motion
smoothness (using jerk-based quantitative measures).
However, no explicit quantitative metrics have
been proposed so far to completely evaluate dance
professionalism.

In computer graphics, several interactive dance
systems have been proposed to enhance dance
learning and teaching [16–18]. Basically, these methods
export dance movement features to enable com-
parisons between dances performed by professional
dancers (teachers) and amateurs (students). For
example, Chan et al. [19] implemented a self-learning
dance system by visually comparing motion accuracy
through Euclidean distance between professional
and amateur motions. Aristidou et al. [20] leve-
raged the well-known Laban movement analysis
(LMA) theories [21] to introduce quantitative feature
components that measure quality characteristics
relating two dance motions. Although these move-
ment measurements can be used to understand
motion qualities and to compare similarities between
dance motions, no metrics have been developed so far
that explicitly measure the professionalism of dance
motions.
2.2 Motion style transfer
One obvious way to add professionalism to existing
motion sequences is to use methods based on the
concept of motion style transfer. These methods aim
to transform the style of a reference motion to a source
motion, while simultaneously preserving the original
source motion content. Several approaches [22, 23]
have been proposed in the literature to infer styles
of motions using hand-crafted features. For example,
Tenenbaum and Freeman [22] explicitly separated
style and content using asymmetric bilinear models.

Aristidou et al. [23] built statistical correlations
between LMA features and emotions, and used such
correlations to support interactive emotion-based
motion transfer. However, those methods explicitly
construct common mappings between hand-crafted
features and motions, which are hard to generalize to
heterogeneous or large-scale datasets.

Machine learning based techniques. To avoid
the disadvantages of selecting hand-crafted features,
researchers started to extract style information
from large-scale paired data using machine learning
techniques [24–26]. Brand and Hertzmann [24]
introduced a style hidden Markov model (HMM)
and minimized information entropies to separate
structure, style, and accidental properties. Following
their work, Hsu et al. [25] built dense correspondences
between different motions with an iterative motion
warping algorithm, and then proposed a linear time-
invariant model to translate motion styles, while
Xia et al. [26] proposed to learn local regression
models. However, machine learning-based methods
require explicit or implicit motion registration
between the input and output motions, and are
therefore limited to styles and content that exist in the
training dataset; as a result, they do not generalize
well to new styles of motion.

Deep learning based techniques. In recent
years, deep learning techniques have been widely
adopted to transfer motion styles [6–10, 27–29],
enabling more efficient and effective results for
complex and even unpaired motions. For instance,
Holden et al. [6] leveraged convolutional autoen-
coders [30] to learn hidden motion representations
with paired input and output motions. The same
authors in Ref. [7] further improved this model
with an additional feed-forward neural network, and
transformed motion style in the hidden motion space
under the constraint of a Gram matrix [31]. Later,
Aberman et al. [8] proposed a neural network to
disentangle latent style and content codes, where
the latent style code is used to modify the decoded
motion content through an AdaIN [32] operator.
By using a multi-style discriminator, this method
can handle unpaired motions. Following their work,
Wen et al. [10] recently proposed an unpaired and
unsupervised motion style transfer method using a
generative flow model. Despite their great progress,
existing deep-learning-based methods mainly focus
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on locomotions with a limited number of motion
structures, and have no explicit control over musical
correlations. Unlike locomotions, dance performed
by professional dancers may contain heterogeneous
motions with various choreographies (e.g., different
motion poses and ordering of poses) and are well-
synchronized to temporal rhythmic patterns. Our
method deals with these challenges by simultaneously
learning the intrinsic motion attributes and the
motion-rhythm correlations that commonly appear
in professional dance.

2.3 Music-driven motion synthesis

Many scholars have worked on methods for music-
driven dance synthesis. Typical solutions leverage
a graph-based framework [33–36]. In pioneering
work, Kim et al. [34] constructed a movement
transition graph based on extracted motion beats
and synthesized new motions under kinematic and
rhythmic constraints. More recently, the use of
machine learning to synthesize music-driven dance
motions has witnessed impressive progress [4, 37–
41]. For instance, Lee et al. [38] proposed a
decomposition-to-composition framework to generate
2D movements conditioned on a given piece of music,
under the guidance of learned correlations between
musical beat and dance units. Chen et al. [4]
proposed a choreomusical embedding module to learn
stylistic and rhythmic music-dance correspondences,
and incorporated the embedding distances into the
traditional graph-based dance synthesis framework.
More recently, Aristidou et al. [41] introduced
a music-driven neural framework that generates
rich and diverse dance motions that respect the
overall choreographic structure of a dance genre.
However, music-driven dance synthesis learning
methods heavily rely on high-quality dance motion
data synchronized to given audio for adequate
training. Since access to dance data made by
professionals is not always possible, our method can
be used to enrich databases using data from amateurs
that have been artificially enhanced to look more
visually appealing; our work simultaneously learns
music-to-dance correspondences and leverages them
to learn dance-to-dance correlations.

2.4 Audio alignment

To enhance non-professional dances, an essential
goal is to align dance motions to reference audio.

Motion-audio synchronization aims to temporally
align human motion dynamics to audio rhythms,
which is fundamental to synthesis of rhythmic human
motions. Traditional motion-audio synchronization
methods leverage hand-crafted 2D motion and
rhythmic features, determine their correspondences,
and warp motions under the guidance of motion-
rhythm matches [35, 42–44]. Over the years, more
attention has been devoted to the video–audio timing
alignment problem. A common basic idea is to
find optimal video-to-audio correspondences and use
them to guide warping between visual and audio
features, either using hand-crafted features [45, 46]
or deep multi-modal features [47, 48]. Among
such methods, Wang et al. [49] introduced two
attention modules before the feature extraction stage
to highlight important spatial and temporal regions.
In contrast, instead of emphasizing specific features,
we introduce an integrated attention module to map
correspondences between spatial and temporal motion
features, and audio rhythms, without hand-crafted
elements or post-processing. Our model is the first to
synchronize 3D dance motions with reference audio
under irregular and non-uniform misalignment.

3 Data augmentation

An important challenge that needs to be addressed
in this work is the lack of training data. The
limited existing dance motion datasets [2, 3, 39]
typically contain high-quality professional dances,
but lack corresponding non-professional ones. As
a result, it is difficult to build correlations between
paired professional and non-professional movements.
Capturing realistic non-professional dances requires
amateur dancers to learn the original professional
choreography, which can be challenging and requires
practice, and it may be difficult to cover the large
variability of the movements of professional dancers.
Instead, we propose a data augmentation scheme
that artificially synthesizes random non-professional
dances, by altering professional ones taken from the
AIST++ dataset [3], both in the spatial and temporal
domains.
3.1 Definition of dance professionalism

Before we present our data augmentation schema, it is
important to define first the criteria that distinguish
a professional dance movement from an amateur one.
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In that matter, we consulted expert choreographers,
experienced dancers, and dance teachers, who pointed
out the following key criteria:
• Sense of rhythm. Professional dancers can

perfectly follow the beat of the music, while
amateur dancers often lose synchronization and
have difficulty in following the rhythm of the
music.

• Physical amplitude. Professional dancers have
excellent physical condition, which allows them
to perform complex and dynamic movements, in
some cases reaching the limits of the body. In
contrast, non-professional dancers usually have
difficulties in completing certain dance moves as
they have limitations due to their poor physical
condition (to extend their body to the limits, to
perform the splits, etc.).

• Motion quality. The movements of a pro-
fessional dancer are elegant, smooth, and the
movement cycle is nicely completed. In contrast,
the movements of an amateur dancer are
often not in balance, they abruptly start and
end movements without fully completing the
movement cycle (sharp movements), and may
be shaky, lacking smoothness. All these result in
amateurs requiring more effort than professionals
because they do not control their movements as
experts do.

• Concentration and consistency. Amateur
dancers usually focus on one part of the body (e.g.,
legs or arms) and may neglect the consistency of
movements of other parts of the body (such as the
head, and overall style). Note that our method
does not take this feature into account.

• Choreography. Professionals have a richer cho-
reography in terms of the diversity of movements,
compared to amateurs who usually repeat the
same movements multiple times. Again note that
changing dance choreography is outside the scope
of this paper.

3.2 Generating amateur dance movements

Amateur dancers have, in general, difficulties in
synchronizing their movements to the musical
beat, to achieve certain physical amplitudes, and
to perform controlled and smooth movements.
Therefore, to enrich our database, we introduce a
method that artificially alters professional dance
movements, through random disturbances, to

generate corresponding amateur counterparts. It
is important to note that our approach needs to
meet the following three conditions: (a) to keep the
choreography of the professional dances unchanged,
(b) temporal disturbance: to alter the temporal
alignment between motion, and music and rhythm;
(c) spatial disturbance: to change the physical ampli-
tudes of motions.

In this manner, we propose a key-pose-based
scheme that first extracts key poses based on the
motion beat; then, it randomly generates spatial
disturbance factors to limit or exaggerate the physical
amplitudes of movements, and temporal disturbance
factors to disrupt the music-motion synchronization.
Finally, it computes the spatial and temporal
disturbances in between those key-poses using piece-
wise linear interpolation [50]. These are later used to
modify the professional dances. Figure 2 overviews
our data augmentation method.

Motion representation. We represent a dance
motion M as a sequence of T skeleton poses. Each
skeleton pose P is represented by J = 21 joint
rotations that are organized in a hierarchical order
and depicted by unit local positions [51] between
parent-child joints, denoted as P ∈ R(J−1)×3.
Therefore, a dance motion can be represented by
M ∈ RT×(J−1)×3, where T = 426 to 2878 frames
without being trimmed into short clips. Poses are
then translated back to rotations via a Jacobian-
based inverse kinematics solver [52]. Note that the
root rotations and translations are discarded in the
motion representation to avoid significant changes to
the choreography.

Key-pose extraction. When learning to dance,
it is usually easier for students to identify prominent
changes of movements (such as pausing and turning).
Based on this observation, we define the repre-
sentative poses to be those with changes of velocity
direction [46]. To facilitate key-pose extraction, we
first uniformly sample several poses over a certain
time duration t. The time duration t is set to three
seconds in our implementation. We then search for
the nearest motion beats as the corresponding key-
poses, where the motion beat is found using the
minimum of all joint speeds in a certain frame. Since
some neighboring key-poses may bring about rapid
direction changes, we filter out key-poses that have
neighboring motion beats within 1 s.
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Fig. 2 Data augmentation: the process for generating amateur dance movements. (a) Key-poses rendered on a girl’s avatar. Our skeleton
structure (top left) is highlighted within a dashed rectangle. (b) The key-poses are spatially modified based on the spatial disturbance curves.
We highlight one curve for a specific joint with the spatial factors on key-poses (indicated by yellow dots). (c) The temporally modified key-poses
and accompanying temporal disturbance curves.

Spatial disturbance. The spatial disturbance
aims to disrupt physical amplitudes of the movements,
limiting or exaggerating their intensity. Thus, we
define the spatial factor S′ ∈ RN×J for the N selected
key-poses to control the spatial disturbance of all
skeleton joints, and randomly generate corresponding
values through an approximately inverse normal
distribution:

S′n = tanh(s′nd)α+ β (1)
where s′n is the randomly generated spatial
disturbance value for key-pose n. α and β are
used to control the shape of the inverse normal
distribution; in our implementation they equal 1.1
and 1.3 respectively. d is a randomly generated binary
parameter that enables (d = 1) or disables (d = 0)
exaggeration of the pose. All joints in a specific frame
share the same d value. S′n is then propagated to each
frame of the entire sequence as S ∈ RT×J (T > N)
via linear interpolation.

A straightforward way to apply the aforementioned
spatial factor for motion disturbance is to directly
multiply the rotations or positions of each joint by
it. However, this may produce infeasible poses that
violate physical or bone constraints. Instead, we

interpolate the new pose (local position) between the
current and a standard standing pose, guided by the
spatial factor, as Eq. (2):

p′t,j = |pt,j |
[

pt,j

|pt,j |
St,j + uj(1− St,j)

]
(2)

where pt,j denotes the local position of the j-th
joint in the t-th frame, and uj is the pre-defined
direction for joint j of the standard standing pose. To
simplify the process, we define three key interpolation
directions for the standing pose: up (uj = (0, 0, 1))
for joints on the spine, no modification for the
shoulder and waist joints, and down (uj = (0, 0,−1))
for the other joints.

Temporal disturbance. The temporal disturbance
aims to disrupt the mappings between the dance
motion and the corresponding musical rhythm. We
define the temporal factor Q ∈ RN to control
the temporal disturbance at the N key-poses, and
randomly generate values to warp the original
dance motion sequence according to Eq. (1). The
parameters α and β are set to 50 and 0 respectively.
We then move the key-poses to new positions by
shifting them Q frames, where negative Qn means
shifting backward and positive Qn indicates shifting
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forward. Note that in this process we need to check
time crossings between key-poses and preserve motion
monotonicity. Finally we calculate the movements of
the intermediate poses between adjacent key-poses
by linear interpolation.

Augmented data. Using the above approach, we
constructed a large, highly variable, non-professional
dataset of dances paired to professional ones. We
repeated the temporal and spatial disturbance four
times, creating many-to-one paired amateur and
professional dances, in a dataset 4 times the size
of the original AIST++ database.

4 Dance professionalism framework

Our framework, by taking as input a dance motion
sequence performed by an amateur dancer, and
its corresponding audio file, aims to enhance
professionalism by considering the following three
conditions: retention of the original choreographic
content, generation of fluid movements, and
amplification of physical amplitudes. Enhancement
is made in both temporal and spatial domains. In
the temporal domain, our framework aligns the
amateur dance motion to music to achieve fluid
and consistent motions, while in the spatial domain,
it increases the physical amplitudes of the input
motions to match those of a professional dancer,
while preserving the original content of the dance’s
choreography. To do so, we have designed a two-stage
deep framework: a dance-to-music alignment stage,
and a dance enhancement stage. The dance-to-music
alignment stage estimates the temporal mapping of
the amateur dance required to match the input music;
these estimates are later integrated into the dance

enhancement stage to enable temporal warping of
the encoded dance content features, which are later
decoded to reconstruct a professional dance with the
same choreographic content. Figure 3 shows the two-
stage architecture of our framework, whose details
will be described in the following sections.
4.1 Dance-to-music alignment stage

The main goal of the dance-to-music alignment stage
is to find the optimal alignment between the input
music and dance sequences. Taking into account
the highly complex correspondences between a dance
motion and music, we use auto-encoders to learn
the cross-modal frame-to-frame mapping between the
high-level motion and the music features extracted
from the raw data.

High-level feature extractor. For an input
music signal with T frames, we compute the mel-
scaled spectrogram using the well-known librosa [53]
audio analysis library, depicted as G ∈ RT×B

where B is the number of frequency bins. For the
input T -frame dance motion given by position offset
vectors M ∈ RT×(J−1)×3, we first calculate the
corresponding joint positions, and then estimate the
velocities and accelerations of each joint in x, y, z

directions per frame, denoted K ∈ RT×C ; C =
J×(3+3) where J = 21 joints in the human skeleton.

Dance-to-music alignment network. The
dance-to-music alignment network is composed of
two encoders, MusicEnc and MotionEnc, to map
the music feature G and dance motion feature K

to the corresponding latent feature sequences fG

and fK , respectively. The two encoders share the
same network architecture but have different weights.
Following the two encoders, we compute the

Fig. 3 Our two-stage dance professionalism architecture. The dance-to-music alignment stage learns the temporal alignment of the input
dance motion to the corresponding music, through a dynamic-time-warping operation on the encoded deep features of dance motion and music.
In the dance enhancement stage, we first extract the hidden dance motion features to express the original motion content, which are then
modified under the guidance of the temporal alignment matrix, and further decoded into the enhanced dance motion under the constraints of a
reconstruction and consistency loss.



Let’s all dance: Enhancing amateur dance motions 539

Euclidean distance between the frames of the two
latent feature sequences to form a T × T affinity
matrix, defined as

F (i, j) = ‖fG(i)− fK(j)‖2
2 (3)

where i is the index of the music frame, and j is that
of the motion frame. Figure 4 shows the structure of
our dance-to-music alignment network.

Specifically, for each encoder, the input sequence
is first processed by three temporal 1D-convolution
layers sequentially, and each is followed by batch
normalization and a ReLU layer. Considering the
complex correlations between dance choreographies
and their musical correspondences, we use the
attention mechanisms in a transformer network
to learn contextualized dance-to-music information,
providing adaptive local neighbors for both the dance
and music encoders. In particular, we add a shallow
transformer with two multi-head self-attention and
feed-forward layers on the basis of the 1D-convolution
layers, and thus obtain latent feature sequences fG

or fK encoding temporal context information. Note
that the self-attention layers in the transformer are
biased towards the local neighbors of each frame by
setting the attention mask matrix Ba as Eq. (4):

Ba(i, j) =
{

0, |i− j| < δ

−∞, otherwise
(4)

where δ is a parameter to control the neighborhood
size and is set to 50 in our implementation.

Dynamic time warping. The target now is
to find the optimal alignment between the input
dance and music, so that each dance frame can be
matched to the music frame with minimal alignment
distance. Under the guidance of the affinity matrix
deduced from the dance-to-music alignment network,
we perform dynamic programming [54, 55] to obtain

Fig. 4 Network architecture of the MusicEnc. The input music
feature sequence is processed by three temporal convolution blocks,
each containing a 1D-convolution layer, batch normalization, and
ReLu layer. Then it goes through two transformer blocks containing
the multi-head self-attention and feed-forward layers to obtain the
encoded feature sequence. The MotionEnc and DanceEnc share the
same network architecture.

an optimal alignment path matrix W between the
latent dance and music features.

4.2 Dance enhancement network

The enhancement stage aims to modify amateur
dances so as to look more professional in terms
of physical amplitudes and dance-to-music syn-
chronization. To achieve this goal, we leverage an
auto-encoder network to modify the non-professional
dances in latent feature space. Specifically, the
non-professional dance sequence given by unit
local positions is used to extract corresponding
latent features via an encoder, DanceEnc. The
latent dance features are then temporally warped
under the guidance of the optimal dance-to-music
alignment path, followed by a decoder to output the
corresponding professional dance sequence.

DanceEnc has similar implementation details to
the MusicEnc and MotionEnc networks. We warp the
encoded feature sequence fD by calculating the dot-
product between fD and the alignment path matrix
W obtained from the dynamic time warping module.
The decoder is implemented as a three-layer MLP
network to project the feature sequence to the final
enhanced dance.

4.3 Training and loss

The two stages in our framework are trained
separately with different loss functions. In particular,
the dance-to-music alignment network is trained using
an alignment loss, while the dance enhancement
network is trained with a reconstruction and a
consistency loss. In this process, we leverage the
optimal alignment path as a condition to modify
the latent dance features; we use the ground-truth
alignment path as an initial warping condition,
and then fine-tune the network with the estimated
alignment path. Note that the lengths of the input
dance motions during training and testing can be
arbitrary.

Alignment loss. We assume that the dance
sequences and their corresponding music sequence are
well-synchronized: a motion frame is well matched
with its paired music frame. Therefore, we design the
temporal alignment loss on the affinity matrix in a
contrastive learning manner. To be more specific, for
each music frame, we select the corresponding dance
frame as the positive sample and a randomly selected
frame as the negative one. Then, we compute the



540 Q. Zhou, M. Li, Q. Zeng, et al.

triplet loss on the latent features of the three frames
as the alignment loss:

Ltriplet =
T∑
t

[ ∥∥∥fG(t)− fK(φ̂(t))
∥∥∥2

2
−

‖fG(t)− fK(r)‖2
2 + a

]
+

(5)

where fG, fK are the music feature and dance feature
respectively, r is a randomly sampled frame index,
and φ̂(t) is the index of the corresponding dance
frame for the music frame t.

Reconstruction loss. To improve the physical
amplitudes of the movements in amateur dances so
that they look more professional, we trained our
network using paired amateur and professional data; our
target is to force the enhanced amateur movements to
be as close as possible to the corresponding professional
ones. Therefore, we define a reconstruction loss that
minimizes the local position error between the enhanced
motion and the ground truth, given by Eq. (6):

Lrecon =
T∑
t

J∑
j

|pt,j − p̂t,j | (6)

where pt,j is the local position of joint j at frame
t in the enhanced dance motion, and p̂t,j is the
corresponding local position in the ground-truth
professional dance motion.

Consistency loss. To enforce temporal coherence
in the enhanced dance, we introduce a consistency
loss by measuring the error between the velocity of
the enhanced dance and that of the corresponding
ground-truth. Our consistency loss is

Lcons =
T∑
t

J∑
j

|vt,j − v̂t,j | (7)

where v and v̂ are the velocities of the enhanced and
ground-truth dance motion, respectively.

5 Results and discussion

In this section, we present the dataset used for
training and testing our method, implementation
details, and evaluation metrics. We also demonstrate
the efficiency of our framework in several experiments,
a perceptual survey that evaluates its performance in
terms of professionalism, realism, and dance-to-music
synchronization, and an ablation study. Figure 1
shows a gallery of selected frames extracted from the
input amateur motion (yellow), our result (red), and
the ground-truth professional dance (blue). It can be

observed that our method enhances professionalism so
that the input’s temporal and spatial features better
match those of the ground-truth dance sequence.
The quality of our enhanced dance animations may
be examined in the supplementary video in the
Electronic Supplementary Material (ESM).

Dataset. The original AIST++ dataset [3] con-
tains 1408 sequences of 3D human dance motion
represented as joint rotations along with root
trajectories. Each sequence of dance motion is
accompanied by corresponding music well-synch-
ronized to the animation. Overall, the dataset
includes 10 dance genres with hundreds of different
choreographies, providing rich and varied dance
content. We follow the music-choreography data
splits used in the original paper [3] for network
training and testing/validation. For each professional
music-dance pair in the AIST++ dataset, we
produced multiple amateur dance counterparts using
our key-pose based dance synthesis algorithm (see
Section 3), by controlling their temporal and spatial
disturbance factors. In total, we generated 3680 non-
professional dances for training, 80 for testing, and
80 for validation.

Implementation details. We implemented our
framework in PyTorch and tested it on a 6-core PC
with a 3.7 GHz Intel i7 CPU, 16 GB RAM, and
an NVIDIA Tesla P100 GPU. All networks in our
framework were trained with a batch size of 64 and
learning rate of 10−4, and optimized by the Adam
optimizer [56]. In total, it took about 12 training
hours for the dance-to-music alignment network and
6 training hours for the dance enhancement network,
on 4 NVIDIA Tesla P100 GPUs.

Evaluation metrics. To the best of our know-
ledge, no quantitative metrics currently exist to
evaluate the professionalism of dances. Therefore,
we used the temporal alignment error (time error),
the pose error (PE), and the Fréchet inception
distance (FID), as evaluation metrics, and observed
the temporal and spatial differences between
the input motions, our enhanced dance motions,
and the corresponding ground-truth professional
dances. The three evaluation metrics are defined
as follows:
• Temporal alignment error is the average distance

between the indices of motion poses per music
frame, in the optimal dance-to-music alignment
path and the ground-truth alignment path.
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• Pose error measures the average Euclidean
distance between joint positions for specific poses
in two motions sequences to be compared.

• Fréchet inception distance measures how far the
distribution of the enhanced dance is to that of
the ground-truth professional one [4, 57]. We
calculate FID based on the extracted kinematic
features [3] of the enhanced and ground-truth
professional dances.

5.1 Evaluation
In this section, we evaluate the performance of our
method with two baseline methods – the Holden
et al.’s [7] and the Aberman et al.’s [8] methods –
using the three aforementioned evaluation metrics.
In addition, we conducted three perceptual studies
to qualitatively evaluate: (a) the quality and realism
of our artificially generated amateur dance motions;
the quality and realism of our experimental results
in enhancing professionalism on amateur movements
using (b) our synthetically generated amateur dataset,
and (c) real, motion-captured amateur dances. More
details about our perceptual study can be found in
our supplementary material in the ESM.
5.1.1 Comparisons
Baseline methods. As far as we know, there are
no other methods in the literature that deal with
the dance enhancement problem. Thus, we compare

the results of our approach with two state-of-the-art
motion style transfer methods due to Holden et al. [7]
and Aberman et al. [8], which also use auto-encoders
as a backbone network. Unlike our problem, these
methods take a content motion and a target style
motion as input, and then generate an output motion
by preserving the same but desired style of input
content with the target motion. Note that, these
methods do not take music into consideration.

To adapt the two baseline methods to our problem,
we made the following modifications. (1) Since they
require motions to have the same length, we down-
sampled our dataset to the same length (400 frames).
(2) We used our synthesized amateur dance together
with the accompanying music as the input, and
randomly selected another professional dance of the
same genre as the target motion style for their
network. (3) As Aberman et al.’s [8] network is
trained using unpaired motion data with a consistency
loss, minimizing a reconstruction error between the
input and output content when the input content
sequence and the style sequence have the same
style. To make their method applicable to paired
motion data, we use the consistency loss to calculate
the reconstruction error between the output of the
network and the ground-truth professional dance.
Holden et al.’s [7] method was trained with its original
loss functions.

Fig. 5 Qualitative comparison of our method to baseline methods [7, 8]. Each row shows a set of frames selected from the same music beat.
It can be observed that our results are closer to the ground-truth than the two alternatives, in terms of dance-to-music alignment and pose
reconstruction. For an animated version, please refer to our supplementary video in the ESM.
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Qualitative comparison. Figure 5 illustrates
selected poses from the input dance motion sequence
(yellow), our method (red), Aberman et al.’s method
(green), Holden et al.’s method (gray), and the
ground truth (blue). The music beat [53] is marked
with a gray dotted line to indicate the temporal
coherence. It can be observed that our method
successfully produces good correspondences to the
professional dance sequences, with satisfactory
temporal alignment and spatial amplitudes. In
contrast to our method, the two alternatives are not
synchronized to the beat (since they are not designed
for aligning dance-to-music), and their reconstructed
poses are further than ours from the ground-truth
movement.

Quantitative comparison. Table 1 quantita-
tively reports the pose error and the FID metric.
These metrics confirm our observations; the two
baseline methods produce worse results than our
method, having larger pose error and FID score.
Since they are not designed to compute an explicit
temporal alignment between dance and music, we do
not consider the time error metric in this evaluation.

In addition, we use a professional dance sequence
as input to the network to further evaluate the
naturalness and realism of the output motion. As
Fig. 6 shows, the results confirm the ability of our
method to generate natural movements, returning a

Table 1 Quantitative evaluation of our results and the motion style
transfer methods on the test set

Method Pose error↓ FID ↓
Holden et al. [7] 4.323 322.327
Aberman et al. [8] 3.156 36.456
Ours 1.951 14.817

Fig. 6 In this example, we tested our network by inputting a dance
sequence performed by a professional dancer. It can be observed that
the output motion remains natural and realistic, and similar to the
input.

movement that is realistic and well aligned to the
music beat.
5.1.2 Perceptual study
Evaluation of our synthetic amateur dance
dataset. We first conducted a perceptual study to
evaluate the quality and realism of our synthetic
amateur motions, and whether they resemble true
amateur dances. For this task, we recruited, in
total, 20 participants, 11 female and 9 male. Each
participant watched 28 pairs of side-by-side dance
motions; on the right side, we showed amateur
motions, which were either selected from our synthetic
dataset (16 samples), or captured by amateur dancers
who imitated professional dance moves (12 samples);
on the left side of the video, we showed the
corresponding ground-truth dance expert motions,
so that the participants could use the professional
motion as a reference to examine the quality of the
amateur and synthetic motions.

The participants were asked to rate on a Likert
scale whether the presented motion on the right side
was captured from an amateur dancer, or generated
by a computer algorithm. The scale was 0: the
motion was not performed by an amateur, there is
too much computer-generated noise; 2: it is hard
to decide; 4: the participant is strongly confident
that the motion was performed by an amateur
dancer. The scores were statistically analyzed to
compare our synthetic motions and the true amateur
motions. Figure 7 shows box-plots of the average
score for the synthetic and true amateur motions.
Both cases have an average score between two and
three, which indicates that it is hard for participants
to discriminate whether the motions are computer-
generated or not. However, it is important to mention
here that our synthetic dataset may have some
differences compared to the true, motion-captured
data. Our synthetic amateur motions are generated
by randomly setting disturbances in spatial and
temporal spaces to imitate the amplitude and music
synchronization of amateur dances, so some motions
may exist with too exaggerated or limited movements.
In addition, dances performed by amateurs may have
lower consistency of the body parts and contain
different choreographies compared to those performed
by experts; these differences have not been considered
in our synthetic data generation process. Therefore,
as expected, our synthetic amateur motions got a
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Fig. 7 Average scores evaluating whether dance motions were
captured from amateur dancers or algorithmically synthesized. Red:
score for all synthetic amateur motions. Green: score for real, motion-
captured, amateur motions.

slightly lower score than the true amateur motions.
Professionalism evaluation on synthetic

data. We conducted a perceptual survey to evaluate
the quality of our results when the synthetic dataset
was used. We compared the results of our method
with two baselines [7, 8], the input and the ground
truth, considering the following three aspects of
professionalism: (i) the smoothness and fluency of
the dance motions; (ii) the naturalism of the dance
physical amplitudes; and (iii) the dance-to-music
synchronization. For this evaluation, we randomly
selected seven motions, each from a different dance
genre.

We recruited 20 participants, 15 amateur dancers
with less than one year of dance experience and
5 expert dancers with more than eight years of
experience. Each participant was shown, in total,
28 pairs of dance motions; each pair included one
generated by our approach, and the other from the
ground-truth dataset or generated using one of the
two baselines. For each pair, in three independent
questions, the participants were asked to select the
dance motion that: (i) is smoother and more fluid,
(ii) has more natural physical amplitudes, and (iii) is
better synchronized to the music. All experimental
dance motions were randomly ordered to avoid
learning effects.

The answers were gathered to quantify the overall
professionalism of the dance motions. Results of the
perceptual study are shown in Fig. 8, which lists the
average percentage of participants who preferred our
results over the results of the two baseline methods,
the input and the ground-truth. It can be observed
that our method received higher scores than the
two baselines and the input for all three aspects of
professionalism, in the votes of both amateur and
expert participants. Apart from smoother and more
natural motion, we believe that the better dance-

Fig. 8 Professionalism evaluation for synthetic dance motions. Each
group of bars indicates the average percentage of participants that
preferred our results, with 95% confidence intervals. Blue bars: motion
fluidity, yellow bars: naturalness of amplitudes, green bars: dance-to-
music synchronization. Bars higher than the red dotted line indicate
cases when our results were preferred by a majority of users.

to-music alignment plays an important role in these
results. As expected, both the amateur and dance
expert participants gave higher scores to the ground-
truth motions than to ours.

Professionalism evaluation on real motions.
Finally, we used the 12 motion-captured dance
sequences performed by amateur dancers to further
evaluate our method on real amateur data. The
motion-captured dances were performed by amateur
dancers, who imitated 12 ground-truth professional
dances chosen from our testing dataset.

In this survey, we recruited 20 participants, 15
amateur dancers and 5 expert dancers. As in the
previous study, each participant was shown pairs
in random order of true amateur motions and our
enhanced results, and asked to select the motion
that: (i) is smoother and more fluid, (ii) has more
natural physical amplitudes, and (iii) has better
synchronization to the given music. Figure 9 presents
the results of this study. Compared to the input
amateur dances, our enhanced results were preferred
by most amateur and expert participants; our results
scored significantly higher with respect to motion
fluency and music synchronization. As expected, our
method performs worse on the true amateur dataset
than the synthetic dataset, because our network
has been explicitly trained using synthetic amateur
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Fig. 9 Professionalism evaluation on true amateur dance motions.
Each group of bars indicates the average percentage of participants
that preferred our results, with 95% confidence intervals. Gray bars:
votes of amateur users, orange bars: votes of expert users.

data. An interesting future problem is to enrich
our training dataset with true amateur dances or to
better simulate synthetic data so that they can better
execute real amateur dance motions.

5.2 Ablation study

To evaluate the contribution of the dance-to-music
alignment stage and the necessity of each of its
components, we conducted an ablation study which
evaluated several variations of the proposed network,
by removing or replacing key components with other
alternatives. In detail, we assessed our network:
(i) without integrating the dynamic time warping
module (W/O DTW); and (ii) without combining the
dance-to-music alignment stage (W/O Alignment).
Table 2 reports the results of the ablation study; for
visual comparisons, please refer to our supplementary
material in the ESM.

Temporal-alignment stage. If the temporal
alignment stage is not integrated into our framework
(W/O Alignment), we concatenate the input music
and amateur dance, and provide them as input to the
dance encoder during the dance enhancement stage.

Table 2 Temporal alignment analysis and spatial enhancement
analysis results

Method Time error↓ Pose error ↓ FID↓

Input 24.433 3.081 29.973
W/O Alignment — 2.479 31.324
W/O DTW 21.177 2.366 20.392
ConvNet 18.547 1.998 13.595
Transformer 18.547 3.371 77.317
Conv.+Trans. (ours) 18.547 1.951 14.817

The encoded latent features are directly fed into the
decoder without warping. Table 2 lists results using
this setup; we can easily observe the necessity of
having the temporal alignment stage: the network
cannot implicitly learn the temporal warping from
the convolutional layers.

Dynamic-time-warping component. To eva-
luate the effect of the dynamic-time-warping
component, we use temporal attention mechanisms
as an alternative to our learning alignment method.
Without the dynamic-time-warping component, we
built the optimal temporal alignment path for
each music frame by selecting the motion frame
with the maximum attention value in the affinity
matrix. More details of how we have built and
trained the affinity matrix can be found in the
supplementary material in the ESM. The results in
Table 2 confirm that the performance of the attention-
based implementation (W/O DTW) is worse than
the original implementation. To better demonstrate
the results, we show alignment results of our method
and the attention-based implementation in Fig. 10.
In each case, the blue background gives the T × T
temporal affinity matrix (rows are motion frames,
and columns are music frames), and it is overdrawn

Fig. 10 Visualization of temporal alignment results. The temporal affinity matrix is encoded by a Blue colormap with white as low values and
blue as high values. The optimal alignment path is illustrated as a yellow curve.
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by the optimal alignment path (yellow curve). The
white color indicates low alignment correspondence
between the motion and music frame. It can be
observed that the optimal alignment path produced
by the W/O DTW approach is scattered: aligned
poses between neighboring frames may have large
changes, causing motion jitters. Instead, our optimal
alignment path is continuous and monotonic. This
validates the necessity for a separate dynamic time
warping component to give temporal alignment.

Dance enhancement stage. To examine the
impact of our deep neural architectures, we reim-
plemented the dance enhancement network with
two baseline structures, ConvNet and Transformer.
The ConvNet encoder is composed of three Conv-
BN-ReLU blocks. The encoder of Transformer is
implemented as a shallow network with two attention-
forward blocks, while our method (ConvNet with
a Transformer) concatenates three Conv-BN-ReLU
blocks and two attention-forward blocks. The decoder
for all three structures is implemented as the three-
layer MLP. In this experiment we kept the same
parameters, for the dance-to-music alignment stage,
for all three structures.

The last three rows in Table 2 show that our
network’s structure performs better than Trans-
former. Compared to ConvNet, our performance
is slightly better in pose error, but a little worse
in FID. Since pose error measures pose similarity
to the ground-truth per frame while FID measures
overall kinematic feature distribution, we believe
that the pose error metric is more important when
evaluating visual effects. As Fig. 11 shows, the
enhanced poses produced by our structure are visually
closer to the ground-truth than when using ConvNet
or Transformer alone. This evaluation indicates that
the convolution layers are essential for encoding dance
features with temporal contextual information.

5.3 Application: Dance-to-music synchroni-
zation

One of the main features of our method is that it
aligns 3D motion data with audio files in the presence
of non-uniform and irregular misalignment. This
feature enables some very interesting applications,
where the same dance can be reused with audio files
with different beats. Figure 12 shows an example
of such dance-to-music synchronization. It can be

Fig. 11 Ablation study: visual comparison between our final configuration, and when using only ConvNet or Transformer. Our final structure
produces dance poses closest to the ground-truth.
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Fig. 12 Synchronizing the same dance to different audio files. Above: the dance and its original music rhythm. Below: dance motion
synchronized to a new audio file. Our method can align a dance motion to audio files with different rhythms and beats, enabling data reuse.
See our supplementary video in the ESM for animated results.

observed that the input and output dance sequences
share similar poses, but are temporally misaligned
since they are artificially synchronized to music
files played at different beats. To the best of our
knowledge, there are no other works in the literature
that do dance-to-music synchronization in 3D motion.
Our approach enables data reuse, and puts the
foundations to facilitate future development in this
important application area.

6 Limitations and future work

Our study mainly focuses on two attributes of
dance professionalism, extending specific physical
amplitudes via spatial amplitude enhancement, and
making dances fluid by temporal motion-rhythm
synchronization. However, dance professionalism is
also correlated with other semantic attributes, such as
smoothness, energy, balance, and aesthetics. In future
work, it would be interesting to investigate these
attributes, and design algorithms that emphasize
semantics in dances, e.g., to enhance the aesthetics
of the input dance. Furthermore, our framework
modifies input amateur dances based on their
original content. No additional constraints have been
considered for adding or deleting poses in the original
amateur dances. Therefore, when choreographic
errors exist in the input amateur dances, or their
choreography is not rich or diverse enough, our
method cannot improve it. A possible future direction
is to use motion motifs [58] to learn fine-grained
mappings between professional and non-professional

dances, and to build a knowledge code-book for dance
enhancement, similar to the concept of Ref. [41].
Last but not least, our framework is built on a
paired professional and synthetic non-professional
dance motion dataset. When the input amateur
dance contains poses far away from the distribution
of dances in the dataset, our method may produce
unsatisfactory results. A future improvement would
be to enrich the synthetic non-professional dataset
with real captured amateur dance motions, or to
design an unpaired dance enhancement approach by
leveraging characteristics of different dance genres.
We would also like to experiment with other pose
representations, e.g., see Refs. [59, 60], to avoid the
use of inverse kinematics to restore joint rotations,
and avert potential rotation discontinuities caused
by the network. Finally, our method can be used to
improve e-learning applications, e.g., for XR systems
when users try to learn dance with a virtual avatar.

7 Conclusions

In this paper, we have presented a deep learning
framework that enhances professionalism of amateur
dances, satisfying three main professionalism pro-
perties: fluid dance movements, physical amplitudes,
and temporal alignment of dance and music, without
changing the content of the original choreography.
The framework consists of a dance-to-music alignment
stage and a dance-enhancement-stage, the first
learning an optimal temporal alignment path between
the input dance and the accompanying music, and the
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second enhancing the dance motion in both spatial
and temporal domains. We have also presented
a key-pose based dance augmentation scheme that
artificially generates non-professional dance data
from the AIST++ [3] dataset. We demonstrate
the effectiveness of our framework by comparing it
to two baseline style transfer methods [7, 8] via a
qualitative visual survey, quantitative metrics, and
a perceptual study. We have also presented a useful
application that reuses existing dance motion files by
synchronizing them with audio files with a different
rhythm.
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