
Computational Visual Media
https://doi.org/10.1007/s41095-019-0152-1 Vol. 5, No. 4, December 2019, 403–416

Research Article

A three-stage real-time detector for traffic signs in large panoramas

Yizhi Song1, Ruochen Fan2, Sharon Huang3, Zhe Zhu4, and Ruofeng Tong5 (�)

c© The Author(s) 2019.

Abstract Traffic sign detection is one of the key com-
ponents in autonomous driving. Advanced autonomous
vehicles armed with high quality sensors capture high
definition images for further analysis. Detecting
traffic signs, moving vehicles, and lanes is important
for localization and decision making. Traffic signs,
especially those that are far from the camera, are
small, and so are challenging to traditional object
detection methods. In this work, in order to reduce
computational cost and improve detection performance,
we split the large input images into small blocks and
then recognize traffic signs in the blocks using another
detection module. Therefore, this paper proposes
a three-stage traffic sign detector, which connects
a BlockNet with an RPN–RCNN detection network.
BlockNet, which is composed of a set of CNN layers, is
capable of performing block-level foreground detection,
making inferences in less than 1 ms. Then, the RPN–
RCNN two-stage detector is used to identify traffic sign
objects in each block; it is trained on a derived dataset
named TT100KPatch. Experiments show that our
framework can achieve both state-of-the-art accuracy
and recall; its fastest detection speed is 102 fps.

Keywords traffic sign; detection; real time

1 Department of Computer Science, Purdue University, 305
N. University Street, West Lafayette, IN 47907, USA.
E-mail: song630@purdue.edu.

2 Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China. E-mail:
frc16@mails.tsinghua.edu.cn.

3 College of Information Sciences and Technology, Penn
State University, University Park, PA 16802, USA. E-mail:
suh972@ist.psu.edu.

4 Department of Radiology, Duke University, Durham, NC
27705, USA. E-mail: zhe.zhu@duke.edu.

5 College of Computer Science and Technology,
Zhejiang University, Hangzhou 310007, China. E-mail:
trf@zju.edu.cn (�).

Manuscript received: 2019-02-12; accepted: 2019-06-28

1 Introduction
Recently, self-driving cars have drawn more and more
attention; they are expected to revolutionize the
automobile industry. Rapid advances in environment
sensing and navigation have led to significant
improvements in autonomous vehicles. As road
environment perception is a vital task for self-
driving cars, there has been intensive research into
traffic sign detection and classification. Traffic sign
detection is not a new problem, and hundreds of
methods have been proposed in the past decades.
Although convolutional neural networks (CNNs) have
shown their great power for general object detection,
there are still some evident obstacles in traffic sign
detection. In particular, in popular general object
detection datasets, the objects typically occupy a
large proportion of the image. In PASCAL VOC [1],
the bounding box of a target object fills on average
about 20% of the image. However, in contrast, traffic
signs usually occupy a small proportion of each image
in real-driving scenarios [2]. For autonomous driving,
traffic signs should be detected and classified while
still at a long distance, allowing decisions to be
made well in advance. Under such circumstances,
traffic signs in sensed images will be even smaller. In
computer vision, small object detection has always
been a challenge. Straightforward approaches such
as enlarging the feature map, and using more small
detection anchors, lead to huge computational costs.
To be useful in real-world scenarios, it is necessary
to develop a traffic sign detection approach that can
handle small traffic signs in real time.
In this paper, we propose a novel traffic sign

detection framework consisting of three detection
stages. In this framework, an input image is divided
into overlapping adjacent blocks. The first stage of
the framework, named BlockNet, consists of several

403

404 Y. Song, R. Fan, S. Huang, et al.

CNN layers to extract features from each block and
predict the probability that each block contains traffic
signs. In the second stage, patches that are considered
to contain targets are processed at a finer level by
the region proposal network (RPN), which generates
bounding box proposals. Finally, in the third stage,
regions corresponding to the bounding box proposals
are classified by the region-based CNN (R-CNN) and
traffic signs recognized.
Based on the Tsinghua–Tencent 100K traffic sign

dataset [2], we conduct a series of experiments to
verify the effectiveness of our proposed framework.
By changing key hyper-parameters of our network,
such as the number of region proposals, we can strike
a balance between detection speed and accuracy.
Our experiments demonstrate that our network is
able to achieve state-of-the-art detection accuracy
when using 300 region proposals. Meanwhile, the
proposed framework can process 100 frames per
second, significantly faster than the previously fastest
framework, yet having higher mAP.
The contributions of this paper are as follows:

• First, we propose a novel three-stage traffic sign
detection framework which achieves both state-of-
the-art detection accuracy and the fastest speed.

• Second, we address the challenge of detecting
small traffic signs in large panoramic images by
dividing them into smaller overlapping patches,
then use a traffic sign pre-detection network we
have designed, called BlockNet. This consists of a
stack of convolutional layers with a large receptive
field, so that it can efficiently and effectively classify
a patch as either foreground (containing traffic
signs) or background (containing no traffic sign).
The rest of the paper is organized as follows: in

Section 2 we discuss related work. Details of our
proposed framework are given in Section 3, including
a description of the network structure and the training
methodology. We give experimental results in Section
4, in which both accuracy and time efficiency are
discussed. Finally we make conclusions and discuss
our future work in Section 5.

2 Related work
2.1 Object detection and classification

Recent years have witnessed great advances in deep
learning. The deployment of neural networks has

shown promising performance for major computer
vision tasks such as segmentation, detection,
and classification. Neural networks of various
architectures have been elaborately designed and
implemented, adapted to particular situations. These
frameworks compete with each other for speed and
performance, and usually the leading method is
replaced by another better one in a very short period
of time.
Object detection methods can be divided into two

kinds: those which are proposal-based, and the others
which are proposal-free. The proposal-free methods
avoid generating proposal bounding boxes, and try
to locate and classify simultaneously, thus greatly
reducing the time consumed. Overfeat [3] utilizes
multi-scale sliding windows to perform the tasks
of detection, localization, and classification at the
same time within the same CNN framework. YOLO,
introduced by Redmon et al. [4], divides the input
image into grid cells. A grid cell is responsible
for detecting the object whose center falls into it.
This model predicts bounding-box coordinates and
confidence in one shot. SSD [5], based on YOLO,
replaces FC layers with a set of CNN layers for
computing outputs, and performs predictions on
multi-scale feature maps, giving comparable speed
while reaching higher performance. Similar to
SSD, RON [6] uses multi-scale feature maps for
detection. The main improvement of RON is the
reverse connection structure which integrates multi-
scale features. Lin et al. [7] propose RetinaNet, which
improves the detection performance by using focal loss
to relieve the foreground–background class imbalance
problem.
Among proposal-based methods, R-CNN [8],

proposed in 2014, made a significant contribution
to object detection, and provides a basic architecture
used by successive detectors. Other methods greatly
boost the performance as well as speed up the
pipeline. Girshick [9] uses Fast R-CNN to simplify
feature extraction with an RoI pooling layer. Ren
et al. [10] train RPN to construct Faster R-CNN,
which replaces selective search and provides faster
convergence than all previous approaches. Recently,
He et al. [11] proposed Mask R-CNN which replaces
the RoI pooling layer in Faster R-CNN with RoI
Align. This new operator can solve the misalignment
problem in feature map quantization.

A three-stage real-time detector for traffic signs in large panoramas 405

However, the detectors mentioned above are
designed for general objects, and evaluated on
datasets such as PASCAL VOC [12] and MS COCO
[13]. As noted in the introduction, general object
detection is different from traffic sign detection, so
applying these detectors to traffic sign scenes does
not lead to satisfactory results.

2.2 Traffic sign recognition

In the field of traffic sign recognition, it is necessary
to collect and build specific datasets of street views
which contain signs. Over the past few years many
datasets have been constructed and released to
the public. These datasets not only contribute to
development of the field of piloted driving, but also
offer standardized metrics for evaluation of works.
The German Traffic Sign Detection Benchmark

(GTSDB) [14] is one of the most well-known publicly
available traffic sign datasets; its images come from
video sequences recorded in different environments.
Another dataset named the German Traffic Sign
Recognition Benchmark (GTSRB) [15] is intended
for multi-category classification, and comprises more
than 50,000 images of traffic signs from 43 classes.
Timofte et al. [16] provided a dataset, BelgiumTS,
containing more than 145,000 images captured on
roads in Belgium, with 13,000 sign annotations
included. Following publication of the GTSDB,
numerous countries, including India [17], Sweden
[18], and Brazil, began to show interest in traffic
sign detection, collecting and releasing benchmarks
of their own.
As research on autonomous automobiles gathers

interest, several Chinese traffic sign datasets have
been published. The Chinese Traffic Sign Dataset
(CTSD) [19] is an image database with 1100 images
(700 for training and 400 for testing) with typical
sizes of 1024 × 768 and 1280 × 720. The signs are
divided into four categories according to their color
and shape. Zhu et al. [2] present a new challenging
dataset created from 100,000 street view panoramas
collected from city avenues and country roads all
over China. It provides 10,000 images at the high
resolution of 2048 × 2048, including sign instances
for training and testing. Typical signs cover as little
as 0.1% of the image area, and their instances come
from more than 200 categories, both increasing the
level of challenge.
Next, we introduce previous works that aim to

solve the traffic sign detection and classification task.
Although plenty of methods have been evaluated on
GTSDB and GTSRB, TT100K is considered more
challenging, since it captures tiny objects and they
vary largely in illumination and weather conditions.
A number of methods have been evaluated on this
dataset since its release in 2016. Its creators, Zhu
et al. [2], bring the branch of the network forward
to the end of the 6th layer, as well as terminating
the network in three streams, which enables their
architecture to simultaneously detect and classify
traffic signs, and outperform Fast R-CNN. Lu et al.
[27] design a two-stage attention model, which is
able to detect small objects from extracted attention
proposals. Their model takes 0.26 s to process
an image while achieving 87.0% mAP, close to the
method of Zhu et al. Meng et al. [20] utilize a Small-
Object-Sensitive-CNN (SOS-CNN) based on the
Single Shot Multibox Detector (SSD) with a VGG-16
network. In this work, images are broken into patches
and are firstly fed into an object-detection framework.
Their approach slightly boosts accuracy and recall
compared to previous ones. Yang et al. [21] introduce
an attention network (AN) which generates potential
regions of interest (RoIs) which are then filtered by a
Fine Region Proposal Network (FRPN), thus greatly
reducing the number of anchors. In the work of Pon et
al. [22], a hierarchical network is employed to identify
the class in a coarse-to-fine way, and they successfully
settled the issue of combination and overlapping of
datasets, which allows their architecture to detect
traffic signs and lights jointly. At the expense of
performance, the model is able to perform inference
at more than 60 fps, much faster than all previous
detectors evaluated on TT100K.

3 Approach

3.1 Preliminaries

Although many approaches have been proposed over
the years to deal with the problem of detecting small
objects, there is still difficulty in recognizing tiny
traffic signs in real-world scenes. Since traditional
proposal-based methods, for instance, Fast R-CNN
and Mask R-CNN, cannot directly achieve satisfactory
performance, many works try to design and add a
pre-detection network that acts as a detector for

406 Y. Song, R. Fan, S. Huang, et al.

extracting coarse-level features before sending the
results of such a network to another architecture
like R-CNN. Some insert a coarse-level classifier,
while others try to place a unit utilizing traditional
computer vision characteristics like color information.
However, none of the previous works can achieve a
high average precision with real-time performance.
The work of Pon et al. [22] consumes less time than all
other works proposed for TT100K, but it does so at
the cost of precision—its overall accuracy and recall
are 68% and 44%, respectively. In order to perform
real-time inference as well as reaching a competent
mAP (mean average precision), we introduce in
this paper a three-stage system that increases the
detection speed to more than 100 fps.
Since in a real-driving scenario, traffic signs

usually occupy a small proportion of the whole
view, most of each input image is irrelevant and the
targets are relatively too small to detect with ease.
Detecting tiny objects requires large feature maps and
many detection anchors, which significantly increases
computational cost. Therefore, it is reasonable to
predict block proposals containing traffic signs. We
divide the input images into overlapping blocks and
identify blocks possibly containing traffic signs for
further consideration. We next give an overview of our
framework, then discuss further details of BlockNet,
which functions as a coarse classifier for dividing
blocks into those containing signs or not, and a two-
shot detector for the fine stage which localizes and
categorizes traffic signs from more than 200 classes.

3.2 Network architecture

As shown in Fig. 1, the proposed small-object

sensitive network is composed of two modules,
BlockNet and a two-shot detector, with the latter
combining an RPN (region proposal network) and an
R-CNN for classification and coordinate regression,
so it can be viewed as a three-part system. The
first module is a CNN named BlockNet whose job
is to locate traffic signs at the patch level. It
divides the original 2048 × 2048 input image into
256 overlapping blocks, each of size 256 × 256, and
predicts the probability that each either contains
traffic signs or is merely background. This stage
outputs 16 × 16 probability scores. In the second
stage of the system, patches in the input image which
BlockNet predicts to contain traffic signs are cropped
and fed through a 101-layer ResNet [23] to extract
their features. The features are then input into the
RPN to generate region proposals from anchors. This
way of generating region proposals is much faster
than utilizing selective search as in the Fast R-CNN
method. The RoI pooling layer (or RoI Align layer),
located right after RPN, collects feature maps and
proposals to extract proposal feature maps, which
are finally passed through a network (R-CNN) to be
classified. We now proceed to present more details of
each stage of the overall network.

3.3 BlockNet for patch-level detection

The first network of CNN layers, BlockNet, is
responsible for coarsely confining traffic signs to
patches, to cut the recognition time spent by
successive networks.
As illustrated in Fig. 2, BlockNet altogether has 6

convolutional layers, four of which have 3× 3 kernels.
The fourth convolutional layer uses a 5× 5 filter with

Fig. 1 Pipeline of the proposed architecture. The first stage, BlockNet, divides the input image into 256 overlapping squares and extracts
features from each. After pushing these feature maps through a softmax layer, the network determines which blocks potentially include traffic
signs, before passing them to later modules. All modules after BlockNet belong to the second stage. Res101 is used to extract fine features.
RPN, at the side, covers the feature maps with anchors of various scales and ratios, and finally supplies region proposals back into the trunk.
The classification network combines these outputs and performs regression as well as predicting the confidence.

A three-stage real-time detector for traffic signs in large panoramas 407

Fig. 2 CNN layers of BlockNet. This network is designed so that every computation does not produce any offset to centers of 16 × 16
blocks, and all blocks are distributed evenly. The output of BlockNet has two channels: one represents background, and the other represents
foreground. Due to its simplicity, this network takes less than 1 ms to process an image. To boost the performance of the whole framework,
some modifications must be included in this stage, replacing the 8 × 8 pooling layer with another two convolution layers.

a stride of 1, and the last convolutional layer employs
1× 1 kernels. At the beginning of the network, the
input images go through an average pooling layer to
compress it by half. At the rear end, the outputs
are computed using a softmax layer to produce a
probability distribution.
BlockNet is simple but effectively and efficiently

classifies blocks. All input images in TT100K are
large photographs of size 2048× 2048; they are down-
sampled to 1024 × 1024 at the input to BlockNet.
After a set of convolutional layers, the feature map
has a resolution of 16 × 16 in two channels, with
down-sampling rate of 128. Assuming the input
image has been padded by 64 pixels for the first
two dimensions (corresponding to width and height),
each cell of the output feature can be mapped to
an area of 256 × 256 in the processed 2304 × 2304
image: (x1, y1) �→ (128x1, 128y1, 128x1+255, 128y1+
255), 0 � x1, y1 � 15 where the quadruple denotes a
square region. Figure 3 illustrates the distribution of
blocks. Since the computations of BlockNet do not
produce any offsets, the 256 blocks are located evenly
over the extended image, with an overlap of 128 both
in the vertical and horizontal directions; the distance
from the center of a marginal block to the nearest
boundary is 64 pixels. We build the new block-based
dataset from TT100K according to this mapping rule.
Our proposed BlockNet is able to produce a score

map indicating the probability for each block of
it containing traffic signs. Such score maps can
be seen in Fig. 4, showing that blocks containing
traffic signs are successfully recognized; they account
for a small proportion of the overall number of
blocks. Most blocks are identified as irrelevant and
the computational cost in the downstream detection

module is significantly reduced. Meanwhile, the
traffic signs occupy a larger relative area in the
identified blocks, which is beneficial to the further
detection module. A confidence threshold (adjusted
through numerous tests, in the range 0.50–0.70, to
give the best performance) is applied to the outputs
of the softmax layer. All cells scoring higher than
the threshold in the second channel are believed to
contain traffic signs. Due to the simple structure of
BlockNet, the time a batch of samples takes during
inferencing can almost be ignored comparing to that

Fig. 3 Production of 256 blocks. The black frame is padding of 64
pixels. Since there are overlaps, each 2× 2 green frame surrounds a
block. The area of a block is just 1/64 of the original input, which
greatly increases the proportion of traffic sign instances and cuts
down the difficulty for later stages, since the blocks can be rescaled to
600× 600 or even larger.

408 Y. Song, R. Fan, S. Huang, et al.

Fig. 4 Block score maps predicted by BlockNet. Blocks with deeper red coloring block with higher probability of containing traffic signs.
These results demonstrate that our BlockNet produces correct block proposals. A great many irrelevant areas are filtered out; traffic signs
occupy a relatively larger proportion of the block proposals.

required by the second stage, which is less than 1 ms.

3.4 Two-shot detector for fine localization
and classification

In the localization and classification module, we use a
two-stage network modified from the implementation
of Yang et al. [24] to produce fine-grained classifica-
tion of those foreground blocks output by BlockNet.
The network can be viewed as a combination of an
RPN and an R-CNNmodule, with the RPN generating
promising RoIs for the R-CNN to classify as one of
more than 200 classes of traffic sign. It outputs the
confidence for each class (221 classes in TT100K) as
well as coordinates of bounding boxes (up to 100 boxes
are produced during testing and inferencing) in every
category. This stage cuts the detection time in two
ways. First, the usage of RPN improves the efficiency
of selecting proposals; second, previous approaches
have computed on 600 × 600 images rescaled from
original ones, but after selection, the network only

deals with 128 × 128 inputs down-sampled from
the patches. Each image provides on average 6.17
patches through BlockNet, discarding the remainder.
Furthermore, since traffic signs cover a much larger
proportion of the blocks, it is simpler for the network
to detect these objects: an 80 × 80 object occupies
0.1% of the original image but as much as 10% of a
block cropped from it.

3.5 Training

Training of this framework can be divided into two
separate sections, respectively concerning BlockNet
and the two-shot network.
To train this three-part system, we built

TT100KPatch, a new dataset derived from TT100K.
After padding, each image generates 256 patches
(named using a composite index of image ID and
patch ID in the range 0–255) in the new dataset, and
a new file of ground truth labels is saved by adding
an offset to coordinates from the original annotation

A three-stage real-time detector for traffic signs in large panoramas 409

file. Since most traffic signs are included in more than
one patch, the number of ground truth annotations
grows to be far greater than the original number.
In the first stage, given that there are sufficient

blocks in the training set, images are only normalized
before entering the network, without further data
augmentation. The inputs then go through the
CNN layers to extract features for each block. A
batch-normalization layer is inserted after every
convolutional layer to accelerate training. Computa-
tions during the process ensure that each cell
in the output corresponds to the center of a
block. We employ Adam as the optimizer and the
learning rate is set to 0.001 which decays after 7
epochs out of 12 in total. The tensor output of
BlockNet has two channels: one for background
and the other for foreground objects. After every
iteration, another softmax layer is applied to the
tensor, computing probability along the dimension
of channels. BlockNet utilizes cross-entropy as the
loss function to measure and minimize the binary
classification loss, defined as follows:

E(x, l) = −wl log
exp(xl)∑N

j=1 exp(xj)
(1)

In Eq. (1), E is cross-entropy, x is the raw activation
value, N is the number of dimensions, l is a label
representing each target class, and w is a weight for
each class. Before this stage comes to an end, indexes
of promising patches whose confidence is above a pre-
defined threshold are written to file, and saved for
the next stage.
Training of the second stage is performed in several

steps: preprocessing, data augmentation, anchor
generation, training Fast R-CNN and RPN separately,
and then together.
During preprocessing, the input images are read

in and a mean vector ([102.98, 115.95, 122.77]) is
subtracted from the RGB channels. Then the
resulting images are rescaled to 128× 128, to simplify
the successive computations and thus accelerate
testing and inferencing. Down-sampling however
makes it harder for the network to extract features
from a shrunken map four times smaller than the
original one.
To help the model be more robust to changes in

shape and location of traffic signs, flipping is used as
the major data augmentation approach: it reverses
the image and doubles the RoI set. Training samples

are flipped and the corresponding RoI annotations
are computed at the same time, before addition to
the RoI database for training.
The anchor generation layer is responsible for

producing anchor boxes spread over the preprocessed
image. Two key parameters, anchor scales and anchor
ratios, help the RPN to apply to various sizes and
shapes of the target objects. To save time, the image
is shrunken to one-quarter of 256× 256, and scales
are also adjusted, which are Scale ∈ {4, 8, 16, 32}.
Three aspect ratios are chosen for the boxes, which
are Ratio ∈ {0.5, 1.0, 2.0}. Then 12 sliding windows
are generated by the following formula:{

h = sib
√

rj

w = sib/
√

rj

(2)

where si is scale, rj is ratio, h is height, w is width,
and b denotes length of the base window. Given
that stride length is set to 16 by default, the map is
divided into a mesh with spacing of 16. Generating
12 windows for every cell produces a total of more
than 3000 anchors. Those lying outside the map
are cropped. To train the RPN, a measure which
evaluates to what degree an anchor matches the
ground truth box must be defined. In this framework,
IoU (intersection over union) is employed. Among all
anchors produced by the proposal layer, those with
an IoU above 0.7 for some ground truth bounding
boxes are considered to be foreground samples,while
those with an IoU of all ground truths lower than 0.3
are judged to be background samples.
Then the metric which optimizes the RPN is the

one which measures the proportion of bounding
boxes that are correctly predicted as positive or
negative samples, as well as the distance between
the coordinates of the predicted box and the target.
The RPN loss function is defined as the sum of
classification loss and regression loss as shown below:

RPNLoss = LossC + LossR (3)
LossC is similar to that used in BlockNet:

LossC =
N∑

i=1
CrossEntropy(pi, p∗

i) (4)

where N is the total number of foreground anchors,
p is a predicted anchor, and p∗ denotes a target.
Regression loss takes the form:

LossR =
N∑

i=1

∑

j∈{x,y,w,h}
L1(uij − u∗

ij) (5)

410 Y. Song, R. Fan, S. Huang, et al.

L1(x) =
{

σ2x2/2, ||x|| < 1/σ2

||x|| − 0.5/σ2, otherwise
(6)

where {x, y, w, h} are not original coordinates in the
image, but regression coefficients instead, and L1
stands for smooth L1 loss. The computation of the
RPN loss function corresponds to the two branches
in the network architecture. The loss function in
the classification layer near the end of the framework
highly resembles that of RPN, the major difference
being that it has to deal with all object classes:

Loss =
−1
M

M∑

i

log
exp(x[i][ci])

N∑

j

exp(x[i][j])
(7)

where M is the number of samples, N is the number
of classes, and x is an M × N matrix of scores.
Given the loss functions above, the training of this

stage can be optimized. Following Ren et al. [10],
training begins by training the RPN and Fast R-CNN
alone, and ends by fine-tuning the two components.
During the training period, the model goes through

145,960 iterations in 10 epochs. The learning rate
is set to 0.001 and decays after 7 epochs. Due to
the large number of samples in TT100KPatch, and
an increased proportion of objects in the images, the
model converges rapidly and already reaches an mAP
as high as 89.60% after the first two epochs (with
resizing to 400× 400).
3.6 Testing

During the first stage, 3070 images, normalized using
a mean deviation of [0.485, 0.456, 0.406] and standard
deviation of [0.229, 0.224, 0.225], were fed into the
trained BlockNet. Near the output of the network, a
score threshold was set to filter blocks with objects.
Setting the threshold to 0.08 generates an average
of 6.17 blocks per image on average, while cutting it
down to 0.05 generates 6.29 blocks per image. This
provides a tradeoff between speed and performance,
since the detector will be less likely to miss targets
given a higher threshold, boosting recall of this stage,
but the second stage will take more time.
During the second stage, all promising blocks

returned by the first stage are rescaled and
normalized in the same way as in training to provide
corresponding results. Because of data imbalance, we
only evaluate 45 classes (out of 221) of traffic signs,
although instances of all classes are localized and
recognized during testing.

Two approaches are employed to accelerate testing
and inferencing. One is to rescale the original
256 × 256 blocks to 128 × 128, while the other is
to reduce the number of proposed anchors in the
proposal layer. More specifically, 1000 boxes are kept
before applying non-maximum suppression (NMS)
to all proposals, while only 6 top scoring boxes are
kept after NMS. This trades off performance for an
increase in efficiency. During testing, the model loads
pretrained weights for Res101 from ImageNet.

4 Results and discussion
4.1 Experiments

Using a GTX 1080 Ti GPU to evaluate the proposed
three-stage detector, we performed experiments on
the TT100K dataset, which comprises 6104 training
samples and 3070 test samples containing 221 classes.
As in Zhu et al. [2] and Pon et al. [22], 45 categories
having more than 100 instances were selected for
evaluation.
We combine our trained BlockNet model and two-

shot network for testing and inferencing. In the
first stage, the BlockNet model was trained with
a learning rate of 0.001, decay step of 8, and weight
decay of 0.0001, converging after 18,300 iterations.
In the second stage, the two-shot network model was
trained with a learning rate of 0.001, decay step of
8, and batch size of 4. In addition, a momentum of
0.9, weight decay of 0.0005, and stochastic gradient
descent were utilized. The model trained after
145,000 iterations was saved.
During evaluation, only bounding boxes with IoU

greater than 0.5 with target boxes were considered
correct predictions. When computing accuracy and
recall, boxes with confidence scores lower than 0.10
were discarded.
Apart from experiments on the proposed model,

we also evaluated other typical proposal-based and
proposal-free methods to assess the effectiveness of
our framework. These were YOLOv3 and Faster
R-CNN. The latter uses no auxiliary constructions or
front networks but directly feeds images at the original
scale into R-CNN. This experiment convincingly
confirmed the indispensable role of BlockNet.
We conducted both quantitative experiments and

visualization experiments. The output of BlockNet
can be seen in Fig. 4; detection results are depicted
in Fig. 5.

A three-stage real-time detector for traffic signs in large panoramas 411

Fig. 5 Detection results. Objects are surrounded by green boxes with red class captions next to them. In real-driving scenes, traffic signs are
very small from the perspective of a wide-angle lens, so are hard to be detected. The proposed framework is capable of recognizing multiple
very tiny target objects from more than 200 classes in 2048× 2048 images. Their changing and varied shapes, perspective, and illumination,
again well demonstrate the difficulty of this dataset. The detector is also relatively invariant to deformation caused by the panoramas.

4.2 Performance

In this section, we measure the detection performance
using the metric provided by TT100K to compute
accuracy and recall, and the metric of PASCAL VOC
2007 [12] to compute mAP (since it is not present in
TT100K).

Table 1 shows detection results with our approach,
as well as other methods, demonstrating that
our proposed framework achieves state-of-the-art
performance in both recall and accuracy. Among
these proposed frameworks, Meng et al. have achieved
the highest performance with accuracy of 0.90 and

412 Y. Song, R. Fan, S. Huang, et al.

Table 1 Detection results: performance of state-of-the-art works.
acc: accuracy. rec: recall. Results of only using Faster R-CNN for
the task are also shown. Ours†: proposed framework with few block
proposals for high speed. Ours‡: proposed framework adjusted for
best accuracy. Our proposed framework achieves the best recall and
accuracy. The proposed BlockNet significantly boosts detection recall
and accuracy with respect to a standard two-shot detection framework
(Faster R-CNN)

Work mAP acc rec
Zhu et al. — 0.88 0.91
Li et al. [25] — 0.89 0.91
Meng et al. — 0.90 0.93
Pon et al. 0.31 0.68 0.44
Yang et al. 0.80 — —
Faster R-CNN 0.38 0.64 0.37
Ours† 0.52 0.69 0.65
Ours‡ 0.90 0.92 0.93

recall of 0.93. Since the methods of Zhu et al. and
Meng et al. mainly focus on a precise recognition
of traffic signs, they do not offer any information on
the time consumed to deal with every single image.
Efficiency will be further discussed later.
We also conducted an ablation study to validate

the effectiveness of BlockNet, using a basic two-
shot model which only includes a Faster R-CNN.
The original images are sent into it without any
feature extraction in advance. Table 1 shows that
the standard two-shot model Faster R-CNN provides
lower recall and accuracy compared to the proposed
three-stage framework. This indicates that BlockNet
reduces the difficulty of detecting tiny traffic signs
and helps to reach a significantly higher mAP.
Compared to standard existing detectors, our

framework provides a better solution to the problem
of recognizing traffic signs in large images in real time.
As Table 3 shows, we firstly tested Faster R-CNN on
TT100K, and the result is far from our desired goal.
Our method makes two major modifications to it:
decreasing the number of proposals before and after
NMS, and shrinking the images the net consumes;
to enhance performance, we add a patch-level stage
before the net. Secondly we find out that fast as it is,
YOLO is not precise enough, as it selects candidates
in only one step. Though our detector extends to
three steps, the first does not cost much time, while
it greatly simplifies the job of the later stages.
To better analyse the sensitivity to objects of

various scales, the targets were divided into three
groups according to size: small instances, with area
less than 322, medium instances with area between 322

and 962, and large ones, bigger than 962. Detection
results are given in Table 2. Small and medium
targets, constitute 52% and 45% respectively, account-
ing for the majority. The difficulty in identifying small
objects leads to the drop in mAP.
There are two reasons for the insensitivity to tiny

objects. First, during the test, when the proposal
threshold of BlockNet has been set, experiments show
that accuracy and recall for classification are 0.990
and 0.903 separately. A very high pre-detection
performance is provided by BlockNet. Thus the
whole system suffers losses mainly in the second stage,
where the down-sampling of inputs (from 256 to 128)
and reduction of proposals after NMS undermine
the capability of the two-shot detector. Second, in
our experiments, for the whole TT100K dataset,
BlockNet produces as many as 5700 false positive
blocks which actually contain no signs or just parts
of them. All detection results predicted from these
false positive blocks in the second stage result in false
positives. Therefore, the performance of the BlockNet
affects the overall recall and accuracy of the whole
detection pipeline.
We also evaluated the performance for each class

in the TT100K database: see Table 4. The results
come from experiment “Test 5”, which can be seen
in Table 5.

4.3 Speed

Inference time is now discussed in this section. As
mentioned above, there are three approaches to

Table 2 Sensitivity to objects of different sizes. Small and medium
objects are dominant in the dataset, verifying the difficulty of TT100K.
gt: number of ground truth boxes whose area falls into the interval.
rec: recall. The model can readily identify objects larger than 322

Group gt ratio rec
Small 11,525 52% 0.5392
Medium 9,983 45% 0.9386
Large 702 3% 0.9316

Table 3 Efficiency of state-of-the-art methods. Our proposed
framework boosts the highest inference speed by 35%, while
outperforming the work of Pon et al.

Work mAP inf speed (s) fps
Li et al. — 0.6 1.7
Yang et al. 0.80 0.1282 7.8
Pon et al. 0.31 0.015 66.7
YOLOv3 [26] 0.33 0.030 33.3
Faster R-CNN 0.38 0.022 45.5
Ours 0.52 0.0098 102.0

A three-stage real-time detector for traffic signs in large panoramas 413

Table 4 Performance (using the fastest model trained) over 45 categories having more than 100 instances. mAP of different classes varies
greatly due to varying numbers of instances and difficulty of extracting features. Classes with distinct geometrical characteristics (for instance,
pne and pn), are easier to recognize, while triangular signs are harder to distinguish

Class i2 i4 i5 il100 il60 il80 io ip p10 p11 p12 p19 p23 p26 p27

mAP 0.468 0.674 0.747 0.624 0.708 0.552 0.537 0.607 0.525 0.529 0.346 0.523 0.620 0.542 0.504

Class p3 p5 p6 pg ph4 ph4.5 ph5 pl100 pl120 pl20 pl30 pl40 pl5 pl50 pl60

mAP 0.489 0.716 0.318 0.544 0.332 0.573 0.363 0.682 0.581 0.358 0.390 0.560 0.642 0.419 0.465

Class pl70 pl80 pm20 pm30 pm55 pn pne po pr40 w13 w32 w55 w57 w59 wo

mAP 0.364 0.490 0.401 0.346 0.651 0.698 0.763 0.393 0.721 0.361 0.599 0.289 0.566 0.548 0.249

Table 5 Timing and performance. pth/img: average number of patches produced by an image. Numbers of proposals before and after
NMS: PRE-NMS, POST-NMS. All inputs have a batch size of 24. The last three columns are inference time (in second) for BlockNet, the
two-shot network and the whole pipeline = pth/img × inf2/img + inf1/img. Decreasing the number of proposals after NMS and zooming
out the blocks result in a loss in performance, though earning more time. Increasing the sensitivity of BlockNet leads to a growth in the total
number of blocks selected, eventually causing the whole network to slow down

No. pth/img scale PRE-NMS POST-NMS mAP acc rec inf1/img inf2/img time/img

test1 4.44 600 6,000 300 0.7707 0.9211 0.8136 0.00090 0.02176 0.09749

test2 6.17 600 1,000 6 0.7437 0.9385 0.7715 0.00091 0.01876 0.11667

test3 4.44 256 1,000 6 0.6770 0.8658 0.7005 0.00091 0.00406 0.01894

test4 6.17 128 1,000 6 0.5141 0.6788 0.6523 0.00089 0.00142 0.00963

test5 6.29 128 1,000 6 0.5194 0.6908 0.6532 0.00089 0.00142 0.00980

test6 5.64 800 6,000 300 0.8989 0.9204 0.9327 0.00112 0.03541 0.20083

cutting the time consumed. Because of the simplicity
of the architecture of BlockNet, the time it takes
accounts for a very small proportion of the overall
inference time. Along with this are the reduced
numbers of proposals before and after NMS at the
target proposal layer.
In Table 3, we compare our model with state-of-

the-art methods. The work of Yang et al. with ZF
net takes 128 ms on a Tesla K20 GPU, while the
system designed by Pon et al. takes 15 ms on a GTX
1080 Ti GPU; it is 7.5 times faster, at the expense of
performance. We also tested a proposal-free detection
network YOLOv3 (with input size 256× 256); it is
also slower than our three-stage framework. Our
framework is not only able to perform inference at
102 fps, which exceeds all previous works on the same
benchmark, but also outperforms the hierarchical
detector of Pon et al.
Table 5 presents timing and performance of the

best model along with several baseline experiments.
Test 6 produces the best results with an mAP of
0.8989, which demonstrates the necessary role of
BlockNet and the influence of image scale. This
test also proves that the model is able to precisely
solve the task for identification of small objects. Test
4, the only difference from Test 2 being use of a much
smaller image scale, shows how down-sampling the

original image results in weakened features, and thus
a sharp drop in performance. The score threshold
of BlockNet in Test 4 was 0.08, while in Test 5
it was reduced to 0.05. This modification slightly
raises mAP by around 0.5%, but at the same time
slows the computation down by 0.2 ms, because
of the extra patches generated per image. Some
noticeable measures are taken in Test 6 to ensure the
highest performance: allowing more proposal boxes
to be passed to the next stage, enlarging the image
scale, adapting feature extraction to a greater extent.
Among them, resizing the scale to 800× 800 proves
to be the most effective, but also lengthens the time
consumed. Inserting another two 3× 3 convolution
layers near the end of BlockNet trades very little
time (less than 1 ms) for a considerable increase in
sensitivity. An additional timing test using YOLO
v3 on the basis of the implementation by Redmon et
al. [4] takes 30 ms for inference, with a lower mAP.
The experiments above reveal the factors affecting

speed and performance in our framework. Larger
input images (larger and more precise feature maps)
and more bounding box proposals lead to higher
performance but slower inferencing. Therefore, we
can regulate these two hyper parameters to strike
a balance between performance and speed. As
mentioned above, BlockNet’s accuracy and recall are

414 Y. Song, R. Fan, S. Huang, et al.

very high, and BlockNet’s inference process is very
fast, so adjusting BlockNet’s hyper parameters has
little influence.

5 Conclusions
This paper presents a three-stage detector for real-
time traffic sign recognition. Taking into account the
small proportion of targets in the TT100K dataset,
we designed a CNN named BlockNet as a front-end
module, and connected it to a two-shot network for
two-stage detection. The input images are divided
into overlapping blocks. BlockNet coarsely predicts
targets at a patch level, while the following two stages
finish the work at a fine-grained level. To train
this model, a derived dataset called TT100KPatch
was built which breaks every image into 256 blocks.
Without boosting approaches, the network achieves
an mAP of 0.7707. After acceleration, the model
can perform inferencing at a speed of 100 fps, faster
than the current state-of-the-art, while maintaining
an mAP of 0.5194.
In the future, we will seek a more precise model that

is sensitive to small objects and increases performance
on boxes smaller than 322. The two-shot detector we
employed needs to be fine-tuned. For the moment the
model is only suitable for images of fixed dimensions
of 2048× 2048, so the next goal is to upgrade it to a
scale-invariant framework. Another issue is that the
confidence with which foreground objects is predicted
is not strong enough, so a more robust front stage
needs to be trained.

Acknowledgements

We thank all anonymous reviewers for their valuable
comments and suggestions. This paper was supported
by the National Natural Science Foundation of China
(No. 61832016) and Science and Technology Project
of Zhejiang Province (No. 2018C01080).

References

[1] Everingham, M.; van Gool, L.; Williams, C. K. I.;
Winn, J.; Zisserman, A. The Pascal visual object classes
(VOC) challenge. International Journal of Computer
Vision Vol. 88, No. 2, 303–338, 2010.

[2] Zhu, Z.; Liang, D.; Zhang, S. H.; Huang, X. L.; Li, B.
L.; Hu, S. M. Traffic-sign detection and classification
in the wild. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2110–2118,
2016.

[3] Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.;
Fergus, R.; LeCun, Y. Overfeat: Integrated recognition,
localization and detection using convolutional networks.
arXiv preprint arXiv:1312.6229, 2013.

[4] Redmon, J.; Divvala, S.; Girshick, R.; Farhadi. A. You
only look once: Unified, real-time object detection.
In: Proceeding of the IEEE Conference on Computer
Vision and Pattern Recognition, 779–788, 2016.

[5] Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed,
S.; Fu, C. Y.; Berg, A. C. SSD: Single shot MultiBox
detector. In: Computer Vision–ECCV 2016. Lecture
Notes in Computer Science, Vol. 9905. Leibe, B.; Matas,
J.; Sebe, N.; Welling, M. Eds. Springer Cham, 21–37,
2016.

[6] Kong, T.; Sun, F. C.; Yao, A. B.; Liu, H. P.; Lu, M.;
Chen, Y. R. RON: Reverse connection with objectness
prior networks for object detection. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 5244–5252, 2017.

[7] Lin, T. Y.; Goyal, P.; Girshick, R.; He, K. M.;
Dollar, P. Focal loss for dense object detection.
IEEE Transactions on Pattern Analysis and Machine
Intelligence DOI: 10.1109/TPAMI.2018.2858826, 2018.

[8] Girshick, R.; Donahue, J.; Darrell, T.; Malik, J.
Rich feature hierarchies for accurate object detection
and semantic segmentation. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 580–587, 2014.

[9] Girshick, R. Fast R-CNN. In: Proceedings of the IEEE
International Conference on Computer Vision, 1440–
1448, 2015.

[10] Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN:
Towards real-time object detection with region proposal
networks In: Proceedings of the Advances in Neural
Information Processing Systems 28, 91–99, 2015.

[11] He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask
R-CNN. In: Proceedings of the IEEE International
Conference on Computer Vision, 2961–2969, 2017.

[12] Everingham, M.; van Gool, L.; Williams, C. K. I.;
Winn, J.; Zisserman, A. The Pascal visual object
classes challenge 2007 (voc2007) results. Available
at http://www.pascal-network.org/challenges/VOC/
voc2007/workshop/index.html.

[13] Lin, T. Y.; Maire, M.; Belongie, S.; Hays, J.; Perona,
P.; Ramanan, D.; Dollár, P.; Zitnick, C. L. Microsoft
COCO: Common objects in context. In: Computer
Vision–ECCV 2014. Lecture Notes in Computer Science,
Vol. 8693. Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars,
T. Eds. Springer Cham, 740–755, 2014.

A three-stage real-time detector for traffic signs in large panoramas 415

[14] Houben, S.; Stallkamp, J.; Salmen, J.; Schlipsing,
M.; Igel, C. Detection of traffic signs in real-world
images: The German traffic sign detection benchmark.
In: Proceedings of the International Joint Conference
on Neural Networks, 1–8, 2013.

[15] Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. The
German traffic sign recognition benchmark: A multi-
class classification competition. In: Proceedings of the
International Joint Conference on Neural Networks,
1453–1460, 2011.

[16] Timofte, R.; Zimmermann, K.; van Gool, L. Multi-view
traffic sign detection, recognition, and 3D localisation.
Machine Vision and Applications Vol. 25, No. 3, 633–
647, 2014.

[17] Hemadri, V. B.; Kulkarni, U. P. Recognition of traffic
sign based on support vector machine and creation
of the Indian traffic sign recognition benchmark.
In: Cognitive Computing and Information Processing.
Communications in Computer and Information Science,
Vol. 801. Nagabhushan, T.; Aradhya, V.; Jagadeesh, P.;
Shukla, S. Eds. Springer Singapore, 227–238, 2018.

[18] Larsson, F.; Felsberg, M. Using Fourier descriptors and
spatial models for traffic sign recognition. In: Image
Analysis. Lecture Notes in Computer Science, Vol. 6688.
Heyden, A.; Kahl, F. Eds. Springer Berlin Heidelberg,
238–249, 2011.

[19] Yang, Y.; Luo, H. L.; Xu, H. R.; Wu, F. C. Towards
real-time traffic sign detection and classification. IEEE
Transactions on Intelligent Transportation Systems Vol.
17, No. 7, 2022–2031, 2016.

[20] Meng, Z.; Fan, X.; Chen, X.; Chen, M.; Tong,
Y. Detecting small signs from large images. In:
Proceedings of the IEEE International Conference on
Information Reuse and Integration, 217–224, 2017.

[21] Yang, T. T.; Long, X.; Sangaiah, A. K.; Zheng, Z. G.;
Tong, C. Deep detection network for real-life traffic
sign in vehicular networks. Computer Networks Vol.
136, 95–104, 2018.

[22] Pon, A.; Adrienko, O.; Harakeh, A.; Waslander, S. L. A
hierarchical deep architecture and mini-batch selection
method for joint traffic sign and light detection. In:
Proceedings of the 15th Conference on Computer and
Robot Vision, 102–109, 2018.

[23] He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual
learning for image recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 770–778, 2015.

[24] Yang, J.; Lu, J.; Batra, D.; Parikh, D. A faster pytorch
implementation of faster R-CNN 2017. Available at
https://github.com/jwyang/faster-rcnn.pytorch.

[25] Li, J.; Liang, X.; Wei, Y.; Xu, T.; Feng, J.;
Yan, S. Perceptual generative adversarial networks
for small object detection. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 1222–1230, 2017.

[26] Redmon, J.; Farhadi, A. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018.

[27] Lu, Y.; Lu, J.; Zhang, S.; Hall, P. Traffic signal
detection and classification in street views using an
attention model. Computational Visual Media Vol. 4,
No. 3, 253–266, 2018.

Yizhi Song is a Ph.D. student in the
Department of Computer Science at
Purdue University. He received his B.E.
degree from the College of Computer
Science and Technology at Zhejiang
University. His research interests are in
the fields of computer vision, computer
graphics, and information visualization.

Ruochen Fan is a master candidate
in the Department of Computer
Science and Technology, Tsinghua
University. He received his bachelor
degree from Beijing University of Posts
and Telecommunications in 2016. His
research interest is computer vision.

Sharon Huang received her B.E.
degree in computer science from
Tsinghua University in 1999, and her
M.S. and Ph.D. degrees in computer
science from Rutgers University in 2001
and 2006, respectively. She is currently
an associate professor in the College of
Information Sciences and Technology

and a co-hire with Huck Institutes of the Life Sciences at
Penn State University, USA. Her research interests are in
the areas of biomedical image analysis, computer vision,
machine learning, and computer graphics, focusing on object
recognition, segmentation, registration, matching, real-time
tracking, skeletonization, and deformable (non-rigid) model
based methods.

Zhe Zhu is a postdoctoral associate
at Duke University, working with
Dr. Maciej A. Mazurowski. He
received his Ph.D. degree from the
Department of Computer Science and
Technology, Tsinghua University, under
the supervision of Prof. Shi-Min Hu. He
got his B.Sc. degree from the School of

416 Y. Song, R. Fan, S. Huang, et al.

Computing, Wuhan University, under the supervision of
Profs. Aiguo Yao and Zhiyong Yuan. In 2016, he worked
as a research intern with Drs. Brian Price and Scott Cohen
in Adobe Research, San Jose. His research interests are in
computer graphics, computer vision, and medical imaging.

Ruofeng Tong is a professor in
the Department of Computer Science,
Zhejiang University, China. He received
his B.S. degree from Fudan University,
China, in 1991, and Ph.D. degree
from Zhejiang University in 1996. His
research interests include image and
video processing, computer graphics, and

computer animation.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

