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Abstract
Local parameters for climate modelling are highly dependent on crop types and their phenological growth stage. The land
cover change of agricultural areas during the growing season provides important information to distinguish crop types.
The presented progressive classification algorithm identifies crop types based on their phenological development and their
corresponding reflectance characteristics in multitemporal satellite images of the four sensors Landsat-7 and -8, Sentinel-2A
and RapidEye. It distinguishes crop types not only retrospectively, but progressively during the growing season starting in
early spring. Binary fuzzy c-means clustering differentiates seven crop types in eight decisions at particular time periods.
These decisions are based on expert knowledge about plant characteristics in different phenological stages. The unsupervised
classification approach and previously defined decisions enable the algorithm towork independently of training data. The fuzzy
approach provides certainties of crop-type existence and generates first results in early spring. The accuracy and reliability
of the classification results improve with increasing time. The method is developed at the German Durable Environmental
Multidisciplinary Monitoring Information Network (DEMMIN). The study area is an official test site of the Joint Experiment
of Crop Assessment and Monitoring (JECAM) and is located in an intensely agricultural used area in Northern Germany.
Classification results were produced for the growing seasons 2015 and 2016. The overall accuracy in 2015 amounted to
89.49%. A challenge remains the distinct separation of wheat and rye, whereas barley, rapeseed, potato, corn and sugar beet
are classified with high accuracies. The overall accuracy in 2016 was lower (77.19%) due to unfavourable weather conditions.

Keywords Agriculture · Phenology · Classification · Crop types · Fuzzy c-means clustering

Zusammenfassung
Eine progressive Klassifikation von Fruchtarten unter Verwendung von multitemporalen Fernerkundungsdaten und
phänologischen Informationen. Lokale Parameter für die Klimamodellierung sind stark von Fruchtarten und deren aktuellen
phänologischen Entwicklungsstadien abhängig. Die Bodenbedeckung landwirtschaftlicher Flächen verändert sich im Laufe
der Vegetationsperiode erheblich und liefert somit wichtige Informationen zur Unterscheidung verschiedener Fruchtarten.
Der vorgestellte fortschreitende Klassifikationsalgorithmus identifiziert Fruchtarten anhand ihrer phänologischen Entwick-
lung und ihrer entsprechenden charakteristischen Reflexionseigenschaften von multitemporalen optischen Satellitenbildern
der Sensoren Landsat-7 und -8, Sentinel-2 und RapidEye. Die Fruchtarten werden nicht am Ende der Vegetationsperiode
klassifiziert, sondern fortschreitend mit Beginn der Vegetationsperiode im Frühling. Mithilfe eines binären Fuzzy C-Means
Clustering können sieben Fruchtarten in acht Entscheidungsschritten zu bestimmten Zeiträumen unterschieden werden.
Diese Entscheidungen basieren auf Expertenwissen über Pflanzencharakteristiken in den verschiedenen phänologischen
Phasen. Die unüberwachte Klassifikationsmethode und die zuvor definierten Entscheidungen ermöglichen es dem Algorith-
mus, unabhängig von Trainingsdaten zu arbeiten. Die Verwendung von ”fuzzy” Entscheidungen erlaubt es, die Verlässlichkeit
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der Fruchtartenzuordnung anzugeben und liefert erste Ergebnisse bereits im Frühjahr. DieGenauigkeit und Zuverlässigkeit der
Klassifikationsergebnisse verbessern sich im Laufe der Zeit. Die Methode wurde am Kalibrierungs- und Validierungsstandort
DEMMIN (Durable EnvironmentalMultidisciplinaryMonitoring InformationNetwork) entwickelt. DasUntersuchungsgebiet
liegt in einem intensiv landwirtschaftlich genutzten Gebiet in Norddeutschland und ist außerdem offizieller Teststandort des
Joint Experiment of Crop Assessment and Monitoring (JECAM). Klassifikationsergebnisse wurden für die Vegetations-
perioden der Jahre 2015 und 2016 erstellt. Die Gesamtgenauigkeit im Jahr 2015 betrug 89,49%. Eine Herausforderung bleibt
die eindeutige Trennung von Weizen und Roggen, wohingegen Gerste, Raps, Kartoffeln, Mais und Zuckerrüben mit hohen
Genauigkeiten identifiziert werden konnten. Aufgrund ungünstiger Witterungsbedingungen war die Gesamtgenauigkeit für
das Jahr 2016 mit 77,19% etwas geringer.

1 Introduction

The monitoring of agricultural areas is of high importance in
the context of global challenges such as population growth,
increasing food demand and climate change. Around 38%
of the terrestrial surface of the Earth is already covered with
agricultural area and pasture (Foley et al. 2005). The global
potentially available cropland is limited and cropland expan-
sion is often connected with negative ecological impacts
like deforestation and biodiversity loss, particularly for sen-
sitive ecosystems (Eitelberg et al. 2015). Another strategy
to increase food production is the intensification of existing
croplands by improved and optimizedmanagement practices
to close yield gaps (Foley et al. 2005). The monitoring of
existing agricultural areas to understand and to adapt to pos-
sible climate changes is therefore crucial.

To describe, to understand and to predict the complex
processes of the terrestrial system, multiscale long-term
observations are essential. The project Terrestrial Environ-
mental Observatories (TERENO) aims to observe long-term
climate changes at the regional level and established a net-
work of several observatories in Germany (Bogena et al.
2006; Zacharias et al. 2011). The combination of in situ mea-
surements of multiple climate and soil moisture stations as
well as remote sensing data is used to provide extensive and
current climate data like evapotranspiration rates. Most local
climate parameters are dependent on respective land cover,
which is an important input parameter for climatological and
hydrological modelling. Existing land cover classifications
like CORINE Land Cover (CLC) include in fact agricultural
areas, but do not provide explicit and current information
about crop types (Bossard et al. 2000).

The appearance of active biomass on agricultural areas
varies between crop types and their individual phenological
stages. Consequently, the influence on climate parameters
also changes. To capture these differences, knowledge of
the currently cultivated crop type and its phenological stage
becomes relevant.

Using remote sensing data to identify crop types is com-
mon, since these data cover large areas in various temporal
and spatial scales. The classification of different crop types
is based on their varying reflectance characteristics in the

course of the year and hence considers nearly always the
temporal component. Previous studies on crop-type classifi-
cation differ concerning the applied method, the number and
type of data sets, the study area and thus the crop types to
differentiate, as well as the availability of field and training
data. There is consequently no consistent crop-type classi-
fication approach due to multiple regional conditions and
characteristics.

Since the early 1980s, crop types were distinguished
using temporal and spectral characteristics (Badhwar 1984;
Odenweller and Johnson 1984). Time periods with highest
differences between crop types are often previously identi-
fied (Bargiel 2017; Blaes et al. 2005; Conrad et al. 2014;
Foerster et al. 2012; Waldhoff et al. 2017). Also, hierarchi-
cal classification approaches are already effectively used for
crop-type mapping (De Wit and Clevers 2004; Forkuor et al.
2015; Villa et al. 2015; Wardlow and Egbert 2008) as well
as the integration of expert knowledge to establish classifi-
cation rules. For instance, Waldhoff et al. (2017) classified
crop types in a similar study area in Germany and applied a
knowledge-based approach in combination with supervised
methods such as maximum likelihood and support vector
machines. The classification of crop types in the early sea-
son has been examined in fewer studies (Conrad et al. 2013;
Inglada et al. 2016; Osman et al. 2015).

A common approach is the classification based on the nor-
malized difference vegetation index (NDVI) (Simonneaux
et al. 2008;Wardlowet al. 2007). Several studies have applied
machine learning techniques to classify crop types, such as
decision trees (Peña-Barragán et al. 2011), support vector
machines (Duro et al. 2012; Mathur and Foody 2008), ran-
dom forest (Conrad et al. 2014; Duro et al. 2012; Long et al.
2013; Ok et al. 2012) or hidden Markov models (Siachalou
et al. 2015). The combination of different sensors with vary-
ing spatial and temporal resolutions is frequently used to
increase data availability (Li et al. 2015; Liu et al. 2014;
Waldhoff et al. 2017). Also, radar sensors are successfully
used to differentiate crop types (Bargiel 2017; Blaes et al.
2005; Forkuor et al. 2014; McNairn et al. 2009; Skriver et al.
2011).

Most studies are obligatory dependent on ground refer-
ence data to calibrate the classification. Furthermore, crop
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types are often classified at the end of the growing season,
thus classification results are not available before summer.
We present a progressive algorithm to classify crop types
from the beginning of the growing season in early spring. It
was developed in the growing season 2015 and tested in the
growing seasons 2015 and 2016. Instead of classifying all
fields backwards, the classification results are updated when
a new satellite image is available. Current crop-type clas-
sifications with additional information about reliability and
stability are processed and iteratively improved and updated
during the course of the year. Seven different crop types are
to be distinguished based on fuzzy c-means clustering.

2 Study Area

The study area, located around the town Demmin in the
federal stateMecklenburg-West Pomerania inNortheastGer-
many, is intensely used for agriculture (Fig. 1). As part of the
North German Plain, it was formed by three glacial peri-
ods and periglacial processes. The contemporary young drift
morainic landscape is composed of numerous lakes, bogs and
water systems as well as of characteristic glacial landscape
elements such as flat, extensive sand regions, hills and sinks

(Ratzke and Mohr 2005). The streams Peene, Tollense and
Trebel with their up to 1.5 km broad valleys are used as grass-
lands and traverse the study area in ancient glacial valleys.
Besides agricultural lands and pastures, pine and deciduous
forests as well as wetlands spread over the area. The soils are
mainly sandy and loamy (Ratzke and Mohr 2005).

With a mean annual ground temperature of 8.8 ◦C and
a total annual precipitation of about 600 mm, the region is
located at the transition zone between continental and mar-
itime climate (Deutscher Wetterdienst 2017). In the course
of the climate change, a lower summer precipitation with
the risk of droughts as well as increasing temperatures is
expected (Zacharias et al. 2011).

Out of the 1.34million hectares of agricultural land,which
is 57% of the total area of Mecklenburg-West Pomerania, 80
and 20% are used as cropland and grassland, respectively
(Ministerium für Landwirtschaft 2015). The main cultivated
crop type is winter grain (winter wheat, winter barley and
winter rye), which is cultivated on 52.3% of the cropland.
Also, rapeseed (22.7%) and corn (around 8%) grow on large
areas. Root crops like potatoes and sugar beets are cul-
tivated on around 10% of the cropland (Ministerium für
Landwirtschaft 2015). Since 2017, DEMMIN is an official
German test site of the Joint Experiment of Crop Assessment

Fig. 1 Study area DEMMIN with validation fields and phenology stations
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and Monitoring (JECAM), which is an initiative developed
in the framework of GEO Global Agricultural Monitor-
ing (Emmerich 2017). The test site covers an area of over
1200 km2.

3 Data

3.1 Remote Sensing Data

Satellite imagery of four different multispectral sensors were
used for the crop-type classification. The NASA satellites
Landsat-7 and Landsat-8 provide images every 16 days with
a spatial resolution of 30 m. They are available free of
charge. The semi-commercial RapidEye satellite constella-
tion provides images with high spatial (6.5 m) and temporal
resolution. Images of the ESA satellite Sentinel-2A are avail-
able since late 2015. With a high spatial resolution of up to
10 m and a very high temporal resolution of 5 days, these
data are notably useful for crop-type classification and are
available at no charge (Immitzer et al. 2016).

In total, 36 satellite images were available from March
till end of August 2015, including 22 RapidEye images,
ten Landsat-8 images and four Landsat-7 images. In 2016,
47 satellite images from March till August were used for
the crop-type classification. Among them, 8 images were
acquired by Landsat-7, 4 images by Landsat-8, 19 by Rapid-
Eye and 16 by Sentinel-2A.Not every image covers the entire
area; furthermore, some images are disturbed by clouds.

The use of data from different sensors is appropriate for
crop analysis since the data availability is restricted in terms
of atmospheric effects like clouds and shadows as well as of
the repetition rate of the satellites over the study area. Since
the vegetation appearance changes quickly in the course of
the phenological cycle, a high observation density particu-
larly in keyphenological stagesmaybepromising tooptimize
the separation of crop types.

3.2 Phenological Data

The phenological categorization of the seven crop types is
carried out by phenological data provided by the German
Weather Service (DWD) (DeutscherWetterdienst 2016). The
data is available at no charge and the entry dates of selected
phenological growth stages for each crop type is reported
at numerous observation points in Germany. They are daily
updated by trained volunteers. The reported phenological
growth stages are comparable to the phenological growth
stages of the BBCH scales, which are well-known world-
wide and frequently used by research, administration and in
agricultural practice (Meier et al. 2009). Over 100 phenolog-
ical observation points in Northeast Germany were selected
to get phenological data for each crop type. They are assumed

to be representative for the study area. Since the number of
phenological observation points changes between crop type
and year, information from around 50 phenological stations
is available for each crop type in 2015 and 2016.

3.3 Field and Cultivation Data

The crop-type classification is object based; therefore, poly-
gons representing field borders are required. Borders of
large field units are provided by the ministry for agricul-
ture, environment and consumer protection of the federal
state Mecklenburg-West Pomerania. These polygons repre-
sent connected agricultural areas with nearly stable outer
borders, which are cultivated with one or more crop types by
one or more farmers. However, the locations of single culti-
vated crop types within these field units can change between
different years.

To validate the classification results, actual cultivation
data are needed. They are provided for selected fields by
local farmers. Additionally, they provide current field bor-
ders within field blocks for the appropriate year. The average
field size in the study area is around 45 ha. In 2015, 295
validation fields were available. They cover an area of over
150 km2. The classification for 2016 was performed using
the manually adjusted field borders of 2015, whereas only
57 fields of around 35 km2 were available for validation in
2016.

4 Method

The algorithm consists of three main parts: preprocessing,
classification and validation. These steps are executed when-
ever a new satellite image is available. Previous results are
meanwhile updated.

4.1 Phenological Data Preprocessing

The phenology stations report the entry date of a certain
phenological growth stage; therefore, the data have to be
temporally extended to obtain daily information. Once a phe-
nological stage is reported, this stage is assigned to every
following day until the entry of a new phenological stage
is reported. To avoid errors resulting from skipped pheno-
logical stages or paused reporting, the daily information is
verified via lookup tables with possible phenological stages
for each time period and crop type. After extending the phe-
nological data over time, the reported phenological stages of
all stations can be summarized for every day. Information
about all reported phenological stages, the average number
of days since the first occurrence of a stage, the absolute and
percentaged number of stations reporting a specific stage and
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the existence of a dominant stage is now available on a daily
basis.

The algorithm uses phenological data to decide whether
a crop-type separation is possible and if a decision will be
executed or not. Accurate phenological stages are therefore
crucial for a successful classification. The reliability of the
reported phenological stages was confirmed by a random
comparison with long-term local field observations.

4.2 Satellite Data Preprocessing

All satellite images are atmospherically and geometrically
corrected. The ATCOR software is used for the atmospheric
correction of the RapidEye images. Landsat images are
already downloaded as surface reflectance products. The
atmospheric correction of Sentinel-2A images and the geo-
metric correction of all images is done using an in-house
algorithm implemented in the GFZ GTS2 Sentinel-2 pro-
cessing system (Hollstein et al. 2016; Scheffler et al. 2017).

Since every satellite image is processed individually
during the classification and because of the object-based clas-
sification approach, no resampling of the different spatial
resolutions of the four sensors is necessary. Furthermore,
only the four bands, blue, green, red and near infrared, are
used since all sensors have these bands in common. The algo-
rithm is independent of absolute reflectance values except
for the first decision that possibly needs an absolute NDVI
value to separate soil and vegetation. The NDVI compares
reflectance values in the near infrared and visible red wave-
length ranges and is defined by:

NDVI = ρnir − ρred

ρnir + ρred
. (1)

To account for reflectance variations between different sen-
sors due to their individual bandwidths, a simple sensor
fusion method based on linear transfer functions for NDVI
values is applied. These functions were developed by com-
paring two datasets recorded by different sensors on the
same day. All NDVI values were transfered to the level of
Landsat-8.

In the course of the preprocessing, unusable cloud and
shadow pixels of the satellite images were identified and
masked out. Satellite images from Landsat already include
a cloud mask derived from the CFmask-algorithm (Zhu and
Woodcock 2012). The cloud and shadowdetection forRapid-
Eye and Sentinel-2A images is carried out based on their
characteristic reflection behaviour in certain spectral regions.
Pixels with a spectral reflectance greater than 20% in the blue
band or with a reflectance greater than 12% in the blue band
and 50% in the near infrared band are defined as pixels with
clouds. To exclude also diffuse cloud edges, a 30 m buffer is
built around all detected cloud pixels. An algorithm for cloud

detection in Sentinel-2A images is additionally used and
combined with the threshold-based cloud detection (Holl-
stein et al. 2016). Shadowpixels are identified similarly using
reflectance thresholds for images of all sensors. Reflectance
values lower than 6% in the green band and simultaneously
lower than 30% in the near infrared band indicate shadow
pixels and are masked out. However, there is no guarantee
that all cloud and shadow pixels are detected.

Fields with more than 50% usable pixels and more than
100 usable pixels in total are considered for the classification.

4.3 ClassificationMethod

Seven crop types are classified based on their different spec-
tral reflectance characteristics in the course of the year. Eight
crucial time periods in which specific crop types are most
different and most discriminable were previously defined.
As soon as a new satellite image is available, the prevailing
phenological stage for each crop type is determined based
on the acquisition date of the image. The phenology is taken
as a criterion for the decision, whether a separation between
crop types is possible and will be executed or not. Existing
results from earlier results are updated and the classification
result improves iteratively. The crop-type classification starts
with the first available satellite image in March and ends in
the end of August, when all winter crops are harvested and
summer crops are clearly classifiable.

The separation of crop types is carried out for each satel-
lite image by a binary fuzzy c-means clustering. The use of
clustering as an unsupervised classification method provides
an optimal way to avoid the collection of field and training
data. Compared to the widely used k-means clustering, fuzzy
c-means clustering does not only assign “hard” classes to an
object, but also rather assigns membership grades between
0 and 1 (Zadeh 1965). Both clustering algorithms split the
data in a previously determined number of classes based on
their similarity, for instance their similar spectral reflectance
in certain bands or vegetation indices. The data splitting aims
to minimize the distance from every data point to a cluster
centre by iteratively shifting these cluster centres (Jain 2010).
Whereas K-means assigns exactly one cluster centre to each
data point, fuzzy c-means accounts for the distance from each
data point to each cluster centre and assigns a membership
grade from 0 to 1 (Bezdek et al. 1984). The iterative shift-
ing of the cluster centres uses these membership grades as
weights and calculates the new centres on this base. The pre-
sented classification algorithm uses fuzzy c-means clustering
to assign membership grades for each field. The membership
of a field to a specific cluster determines the membership of
a field to a specific crop type. Because of the object-based
classification approach, entire fields instead of single pix-
els are classified, as for instance also done by De Wit and
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Fig. 2 Summary of all eight decisions and expected time periods of
decisions of the crop-type classification algorithm.Green boxes indicate
explicitly classified crop types, whereas grey boxes indicate superior

groups of crops. Continuous arrows point out crop-type separations,
and dotted arrows forward to further decisions

Clevers (2004), Löw et al. (2013) and Forkuor et al. (2015).
The clustering is based on averaged values for each field.

4.4 Decisions and Class Assignment

The application of fuzzy c-means clustering in the crop-
type classification algorithm is carried out binarily, and thus
it splits the data into two groups in eight steps (“deci-
sions”) (Fig. 2). These groups represent one or more crop
types and were previously determined based on their spec-
tral reflectance characteristics. Every decision is executed in
dependence of a specific phenological stage and separates
two crops or superior groups of crops. The phenological
criteria for decision execution refer to the percentage of
phenological observation points reporting a particular phe-
nological growth stage. As shown in Fig. 2 on the lower left
table, multiple decisions can be executed at the same time.

The separation is based on one-dimensional data, usu-
ally a specific band or a vegetation index as spectral input
feature, averaged for every field (Table 1). The develop-
ment of classification rules and phenological criteria for the
decision execution is based on long-lasting experience from
multiple field campaigns as well as phenological and remote

sensing knowledge of the authors. The specific phenological
execution criteria are investigated empirically based on the
validation fields and satellite data in 2015. They are tested
and iteratively improved in a smaller area and applied for all
fields afterwards.

After the data is split into two clusters, a crop type or a
group of crop types is assigned to each cluster by comparing
the cluster centres. Each decision is based on the assumption
that two groups of crop types are explicitly separable during
a specific phenological stage. It was previously investigated
which crop type can be associated with the higher or the
lower cluster centre. Since the clustering is carried out in a
fuzzyway, each field has a specificmembership grade to each
cluster,which sumsup to 1. The higher themembership grade
of a field to a cluster, the higher is the reliability that a field
belongs to a particular cluster and to the associated crop type.
After assigning a cluster to a field, the resulting membership
grade is used to calculate the certainty of afield to be a specific
crop type. These membership grades for every crop type are
updated after every decision by averaging the existing value
with the new one. The crop typewith the highestmembership
grade is defined to be the resulting crop type for each field.
As soon as a field is harvested, it is no longer considered
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for further classifications. This stop criterion is similar to the
first decision and checks for vegetation coverage based on
NDVI.

The membership grades for every field to every crop type
thus do not sum up to 1, since every decision affects only par-
ticular crop types and the updating proceeds independently. If
multiple satellite images meet a phenological criterion, the
decisions are executed for each image separately. Because
of the averaging with existing membership grades, possible
classification errors can be compensated in this way.

Example—separation of rapeseed and winter grain during
rapeseed flowering (decision 2b) According to the pheno-
logical criterion, decision 2b is executed as soon as more
than 50% of the observation stations report the phenolog-
ical growth stage “flowering” for rapeseed fields. At this
time around May, rapeseed flowers yellow, whereas winter
grains appear still green. The spectral reflectance in the green
wavelength range, which is near the yellowwavelength range
around 600 nm, is consequently significantly higher for rape-
seed fields. The fuzzy c-means clustering of the averaged
green reflectance values per field splits all fields planted with
winter crops into two clusters. It is assumed that rapeseed
fields will be assigned to the cluster with the higher cluster
centre and that winter grain fields will be assigned to the
cluster with the lower cluster centre. The appropriate mem-
bership grade of each field to both clusters determines the
membership value of a field to the corresponding crop type.

4.5 Validation of the Classification Result

To validate the classification results, the resulting crop type is
comparedwith the actual crop type of the validation data. The
assigned crop type can be correct, false or correct by trend.
Fields with a correct tendency are not definitely assigned to a
specific crop type, but to the correct superior group of crops,
e.g. winter crop, summer crop and winter grain. It occurs
when membership grades for two or more crop types are
equal.

To explore in detail which crop types are classified cor-
rectly or incorrectly and which confusions between crop
types may occur, the final classification results end of August
are further analysed using a confusionmatrix (Congalton and
Green 2009). The rows of the confusion matrix represent the
classification result, whereas its columns represent the val-
idation data. The producer’s accuracy (PA) indicates how
many fields are assigned to the correct crop type, and the
user’s accuracy (UA) represents the probability that a field
belongs to its assigned crop type.

5 Results

5.1 Progressive Results

The accuracy of intermediate classification results at the end
of each month in 2015 is shown in Fig. 3. Most of the fields

Fig. 3 Development of the classification result 2015
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Fig. 4 Progressive development of classification results 2015 (upper image) and 2016 (lower image)

were correctly separated in winter and summer crops at the
end of March. In the next few months, the percentage of
correctly classified fields increases, whereas the percentage
of fields with a correct tendency decreases.

The development of the classification results for 2015 and
2016 is shown in Fig. 4. The lines represent the portions of
classified fields. The green line indicates correctly classified
fields, the red line marks incorrectly classified fields and the
yellow line indicates fieldswith a correct tendency. The boxes
in the backgroundmark the time spanwhen a certain decision
took place. The vertical dotted lines show the existence of one
or more satellite images.

2015 In total, 89.49% of all 295 validation fields were cor-
rectly classified at the end of the growing season in 2015. 20
fields (6.78%) were classified incorrectly, whereas 11 fields
(3.78%) were at least correctly classified by trend.

At the beginning of the growing season 2015 in March,
already a large part of all fields was correctly classified by
trend. At the end of March, nearly all fields (95.93%) were
correctly assigned to summer or winter crops. With the initi-
ation of the decisions 2a and 4a, the first rapeseed and wheat
fields were explicitly classified and the number of correctly
classified fields increased remarkably. The portion of incor-
rectly classified fields increased simultaneously since the
possibility to make classification errors was higher than in
the first decision. From the beginning of June, the portion of
correctly classified fields exceeded the portion of correctly
classified fields by trend. At that time, decision 3a started
and summer crops were separated for the first time. A fur-
ther significant increase of correctly classified fields arose
with the beginning of decision 4b. Since numerous fields in

the study area were planted with winter grain, this decision
had an appropriate high impact on the classification result.

2016 In total, 44 out of 57fields (77.19%) are correctly classi-
fied, whereas eight fields (14.04%) are correctly classified by
trend and five fields (8.77%) are classified wrongly. The sep-
aration of fields into summer and winter crops takes longer
than in 2015 andmore than 80%of all fields are first correctly
separated at the beginning of April. The portion of correctly
classified fields does not increase as constantly as in 2015.
Instead, it drops slightly during the decisions 2b and 3a. As
in 2015, the accuracy clearly increases with the initiation of
step 4b, when winter grains are distinctively classified for the
first time.

5.2 Accuracy of Final Classification Results

Figure 5 shows the assigned crop type (left) and the cor-
rectness of the classification results (right) at the field level
received after the last run of the classification algorithm at the
end of the season. Green fields are correctly classified fields,
and red fields indicate incorrectly classified fields. Yellow
fields are classified with a correct tendency. The validation
of the final classification results with its producer’s (PA) and
user’s accuracies (UA) is shown in Tables 2 and 3.

2015 For the growing season 2015, the PA reaches high val-
ues for most of the crop types (Table 2). While all barley
fields are identified correctly, rapeseed and corn fields reach
accuracies above 90% as well. Potato, wheat and sugar beet
fields still reach values above 80%.Rye is the crop typewhich
is most difficult to assign with a PA of 59.09%. Furthermore,
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Fig. 5 Classification results 2015 and 2016 (left) and accuracy (right)

Table 2 Confusion matrix for classification result 2015

Potato Corn Rapeseed Barley Rye Wheat Sugar beet Total User’s accuracy (%)

Potato 7 0 0 0 0 0 0 7 100.00

Corn 0 32 0 0 0 0 1 33 96.97

Rapeseed 0 0 88 0 2 5 0 95 92.63

Barley 0 0 0 40 2 0 0 42 95.24

Rye 0 0 0 0 13 5 0 18 72.22

Wheat 0 0 1 0 0 76 0 77 98.70

Sugar beet 1 2 0 0 0 0 8 11 72.73

Correct trend 0 0 0 0 5 6 0 11

False trend 0 0 1 0 0 0 0 1

Total 8 34 90 40 22 92 9 295

Producer’s accuracy (%) 87.50 94.12 97.78 100.00 59.09 82.61 88.89 89.49
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Table 3 Confusion matrix for classification result 2016

Potato Corn Rapeseed Barley Rye Wheat Sugar beet Total User’s accuracy (%)

Potato 2 0 0 0 0 0 0 2 100.00

Corn 0 5 0 0 0 0 0 5 100.00

Rapeseed 0 0 13 1 1 3 0 18 72.22

Barley 0 0 0 3 0 0 0 3 100.00

Rye 0 0 0 0 2 0 0 2 100.00

Wheat 0 0 0 0 0 15 0 15 100.00

Sugar beet 0 0 0 0 0 0 4 4 100.00

Correct trend 0 0 0 0 6 2 0 8

False trend 0 0 0 0 0 0 0 0

Total 2 5 13 4 9 20 4 57

Producer’s accuracy (%) 100.00 100.00 100.00 75.00 22.22 75.00 100.00 77.19

five rye fields are just correct by trend and therefore not dis-
tinctively classified. Some wheat fields are misclassified, as
rapeseed and rye or are not distinctively classified. However,
the wheat class still reaches a PA over 80% since a high por-
tion of wheat fields is correctly classified. The UA is highest
for potato fields, since no other field is assigned to this crop
type by mistake. Corn, rapeseed, barley and wheat exceed
UA values of 90% as well. Rye and sugar beet fields have
lower values of around 72%, since five wheat fields are clas-
sified as rye and three sugar beet fields as potato or corn. 264
of 295 fields are classified correctly, which leads to an overall
accuracy of 89.49%.

2016 As in 2015, the UA is very high for most of the crop
types except for rapeseed, since severalwinter grains aremis-
classified as rapeseed. The tendency of a misclassification of
rye andwheat as rapeseed has already been observed in 2015,
although the higher number of fields mitigated the effect on
the UA value. Also, the PA is very high except for barley,
wheat and rye (Table 3). Rye reaches the lowest PA, since
six of the nine rye fields are only classified correctly by trend.
The same effect was observed in the year 2015, when some
wheat and rye fields were correctly classified by trend only.
The overall accuracy is with 77.19% lower than in 2015.

5.3 Reliability and Stability

Reliability and stability are two parameters to evaluate the
classification result for single fields. Both are possible indi-
cators for the classification accuracy in case of unavailable
validation data. This is mainly important for the evaluation of
classification results at the beginning of the growing season,
when crop-type information is usually not available.

The reliability indicates the level of themembership grade
of a crop type for a certain field. It equals themaximummem-
bership grade which is responsible for the class assignment.
The higher the membership grade, the higher is the reliabil-

ity. For most fields, the reliability is rather high with values
above 0.8 in both years (Fig. 6).

The stability measures the relative certainty of a class
assignment and indicates the difference between the maxi-
mummembership grade and the second highest membership
grade of a certain field. The higher the difference, the higher
is the stability. The stability values show a great variability
among the fields (Fig. 6).

Figure 7 shows the stability values of every crop type com-
pared to all other crop types in both years. Crop types, which
are commonly very similar (low difference between mem-
bership grades), and crop types, which are rather easy to
distinguish (high difference between membership grades),
become apparent. The combinations of wheat and rye as
well as sugar beet and corn have very low values and are
consequently rather unstable, whereas potato has constantly
high values and is consequently a more stable crop type. The
slightly lower difference of wheat and rye compared to all
other crop types is due to a generally lower averagemaximum
membership grade.

6 Discussion

6.1 Evaluation of the Final Classification Results

An overall accuracy of nearly 90% was reached for the
final classification result at the end of the vegetation period
in 2015. The accuracy level of the selected unsupervised
knowledge-based clustering approach resembles that of
comparable hierarchical classification approaches, e.g. by
Forkuor et al. (2015), Turker and Arikan (2005) or Van Niel
and McVicar (2004). The combined use of different sensors
and the high observation density of the selected classification
approach proves to be advantageous compared to previous
studies.
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Fig. 6 The reliability (left) and stability (right) of classification results 2015 and 2016

It is furthermore comparable to accuracies achieved by
supervised machine learning approaches or even exceeds
them. For instance, Siachalou et al. (2015) classified six crop
types using hidden Markov models with an overall accu-
racy of 89.7%. Peña-Barragán et al. (2011) classified 13
crop types using a decision tree with an overall accuracy
of 79%, whereas Conrad et al. (2014) reached 85.7% using
the random forest algorithm. Waldhoff et al. (2017) used a
knowledge-based classification approach as well but in com-
bination with supervised methods and reached a high overall
accuracy of 97.43%. The use of spectral bands and statistics
instead of the sole use of NDVI temporal profiles proves to
be advantageous and exceeds the overall accuracy achieved
in previous studies without using training data (Foerster et al.
2012).

Classification errors aremainly due to exceptional appear-
ances of single fields in consequence of varying meteorolog-
ical conditions like damages by drought, heavy rain or hail
or individual management strategies like fertilizing or irriga-
tion. Such aspects, influencing for instance NDVI profiles,
have been previously reported by other studies in similar
environmental conditions (Bargiel 2017; Foerster et al. 2012;
Löw et al. 2013). Additionally, the quality of the satellite
images plays a decisive role, since undetected clouds or shad-
ows influence the reflectance values (Whitcraft et al. 2015).

The high similarity of winter wheat and winter rye has
previously been observed, e.g. by Waldhoff et al. (2017).
The three winter crops wheat, barley and rye are very sim-
ilar in appearance and phenological development, which is
expressed in stability values lower than 0.2 and reliability
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Fig. 7 Stability values of all crop-type combinations. A value of 1
indicates a high stability, while a value of 0 stands for no stability

values lower than 0.6 (Fig. 6). It has to be considered that
even fields which are only correctly classified by trend still
provide useful information for climate modelling purposes.
Since these major groups of crops are usually similar in their
appearance, also their ecological and climatic effects should
be rather similar. Therefore, the missing of a distinct crop-
type assignment should not lead to serious modelling errors
at higher aggregation levels.

6.2 Evaluation of the Progressive Classification
Approach

Themajor disadvantage of previous supervised classification
approaches is the fact that results can only be obtained after
the cropping season due to the requirement of ground truth
data. In contrast, amain advantage of the presented classifica-
tion algorithm is the applicability and result generation with
the beginning of the growing season in spring. Early crop-
type classifications are useful for early yield forecasting and
fertilizing management (Basso et al. 2013; Mkhabela et al.
2005; Rembold et al. 2013) as well as for the early calcula-
tion of water requirements (Casa et al. 2009; Conrad et al.
2013; Smith et al. 1998). In this context, Allen et al. (1998)
points out the importance of the crop type for the calculation
of evapotranspiration rates.

The progressive classification results show similar ten-
dencies for both years, despite varying data availability and
slightly postponed decision execution dates (Fig. 4). In gen-
eral, the first decision, the separation of winter crops and
summer crops, is the most important one and is the basis
for all following decisions. It is dependent on the acquisi-
tion of the first cloud-free images in March. Till the end of
the first decision in May, nearly all fields are correctly dis-
tinguished in summer and winter crops. Rapeseed is the first

definitely classifiable crop type and can be detected already at
the end of April. The rapeseed flowering as a unique feature
guarantees a very reliable and stable classification. Wheat is
potentially separable from rye and barley after decision 4a,
but a clear differentiation of the winter grains is not possible
before decision 4b at the end of June.

6.3 Transferability

The algorithm is developed and tested in a subset of the study
area in the growing season 2015. It claims to be valid and
applicable also for further yearswith differentmeteorological
conditions. The algorithm uses current phenological stages
reported by DWD as a phenological criteria for decision exe-
cution and is therefore adjustable to every year.

To test the temporal transferability, the algorithm is
applied for the year 2016. The phenological criteria for
decision execution are slightly adapted. In the future, the
algorithm has to be adapted repeatedly to catch different
meteorological scenarios and to find optimal thresholds for
phenological criteria for decision execution.

Because of the limited number of validation fields, the
results of the year 2016 represent rather classification trends
than an adequate validation. Although most of the crop types
were classified completely correctly in 2016, the overall
accuracywas 77.19% lower than the overall accuracy in 2015
(Table 3). Two main problems become apparent. Most of the
rye fields are only correctly classified by trend and nearly
all wrong classified fields are assigned to rapeseed. The first
problem points out the already mentioned problem to dis-
tinguish wheat and rye because of their similar appearance
in all phenological stages and their mostly parallel develop-
ment during the growing season. Furthermore, decision 4b
is only executed with three cloudy images at the end of June
and only for some fields. Therefore, the separation of wheat,
barley and rye does not run for all fields.

The second problem shows the confusion between win-
ter grain and rapeseed during decision 2b. The problem also
becomes apparent in the progressive development of the clas-
sification results of 2016 (Fig. 4). At the beginning of May,
the percentage of correctly classified fields drops, whereas
the percentage of fields correctly classified by trend and
incorrectly classified fields increases again. This is due to
the discrepancy between phenological data of the DWD and
the actual phenological stage in the region. Whereas the phe-
nological data report the beginning of rapeseed flowering
at the end of April, the flowering is not visible on satellite
images before 9 May. Before the factual flowering starts,
fields formerly correctly classified as rapeseed were often
falsely reassigned to winter grain. After the factual flower-
ing, most fields are correctly classified as rapeseed again and
the percentage of correctly classified fields rises.
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Since only 57 fields are available for validation, already
small changes affect the portions of classified fields remark-
ably, which is an additional reason for the unsteady result
development in 2016. Furthermore, disadvantageousweather
led to a delayed cropdevelopment and incomplete crop cover-
age in 2016. After too high temperatures in December 2015,
a very cold period with temperatures permanently below
0 ◦C followed in January 2016. Afterwards, heavy rainfalls
occurred and a lot of cereal and rapeseed fields were frozen
or drowned to death. These effects were perceivable in satel-
lite images by incomplete or patchy crop cover until May.
Some winter grain fields were first detected as vegetation at
the end of April when decision 4a, the separation of wheat
and other winter grains, was already done. Consequently, no
separation between winter grains could bemade until the end
of the growing season.

The spatial transferability has not been tested in another
study area yet. However, the classification approach should
be also applicable in further study areas, as long as they
share a similar crop-type distribution, weather condition and
phenological development as the study area DEMMIN. Fur-
thermore, the spatial transferability is limited to regions,
where phenological data are available. The algorithm is
strongly designed for local conditions inDEMMIN and simi-
lar study areas in Germany and concentrates on annual crops.
Mapping crops that are harvestedmultiple timeswithin a year
like alfalfa (as included by Siachalou et al. 2015) or rice (as
mapped by Son et al. 2013) is not possible with the current
setup, i.e. because a field is no longer considered for the
classification as soon it is harvested. However, the general
classification approach with its knowledge-based classifica-
tion rules could be used in all types of study areas, but new
rules for the clustering would have to be defined.

6.4 Evaluation of the ClassificationMethod

Certain conditions must be met to get an optimal classifica-
tion result. First of all, the algorithm needs field boundaries
as vector data and fields need to be planted with only one
single crop type. As soon as a field consists of multiple crop
types, the result is possibly wrong since the algorithm uses
average values for the clustering. Therefore, a high quality
of the input vector field data is crucial. Furthermore, it is not
possible to classify single fields or only a small amount of
fields with the presented algorithm. For optimal crop-type
separation, every crop type has to occur frequently in the
study area.

The influence of single or multiple missing images was
tested during the algorithm development in the growing sea-
son 2015. For this purpose, the algorithm was executed
repeatedly, whereas single satellite images were removed in
each run to test the importance of every single image. The dif-
ferent classification results are compared subsequently. The

removal of single images has no or only marginal effects on
the classification result in the majority of cases. The absence
of one image fromMay affects the classification result most,
since this image shows the important phenological stage of
rapeseed flowering best. In two cases, the absence of a sin-
gle image leads to an increased overall accuracy. However,
the absence of a single image is usually compensated by the
remaining images, as long as every decision is covered at
least once.

The image acquisition time seems to be more important
than the absolute number of images. This confirms previ-
ous observations, e.g. by Conrad et al. (2014), Foerster et al.
(2012) and Murakami et al. (2001). Even if there is a large
number of usable images in one year, images representing
important phenological stages may be missing. This is most
likely for decisions that last only for a short time, e.g. decision
3a, 4a or 4b. To test the importance of every single decision,
it is analysed how the absence of all images concerning a
certain decision affects the final classification result. Since
some images are used for several decisions, their absence
consequently affects both decisions. The lowest influence on
the classification results has missing of decision 3a, since the
distinct separation of summer crops does also take place in
the decisions 3b and 3c. The absence of images during deci-
sions 3b, 3c and 4b affects the classification results most.
This is due to the almost parallel running of the decisions 3b
and 3c, and missing images consequently affect both deci-
sions and prevent the distinct separation of potato and sugar
beet. Secondly, barley and rye are only clearly classified in
decision 4b. Since both crop types occur frequently in the
study area, the missing of decision 4b affects a large number
of fields and reduces the overall accuracy remarkably.

6.5 Expandability

The presented algorithm offers numerous possibilities for
extensions, although a higher complexity may lead to higher
error rates, lower traceability and lower transferability. One
possible extension is the implementation of automated field
segmentation to generate field boundaries as input for the
algorithm. At the moment, the missing of yearly updated
field boundaries for the whole region is a main limitation of
the algorithm.

Another important extension is the inclusion of additional
crop types. Currently, a crop type that does not belong to one
of the already implemented crop types will be assigned to the
most similar one of the existing crop types. New decisions
have to be defined to separate new crop types from already
existing ones.

Additionally, the performance and ability of further veg-
etation indices to separate crop types could be tested. The
importance of the red-edge bands of Sentinel-2 for crop-type
mapping was for instance shown by Immitzer et al. (2016).
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To become independent of external phenological data, the
beginning of phenological stages could be derived directly
from the satellite images. This would prevent the execution
of a decision, although the phenological stage is not yet vis-
ible in the satellite images, as happened in year 2016 during
the rapeseed flowering. Another step to prevent such cases
would be to give less confidence to classifications made at
the beginning of a phenological stage and to weight them less
during the calculation of the final membership grade.

Furthermore, characteristic crop sequences of previous
years can give information about the probability of follow-
ing crop types (Osman et al. 2015). However, Waldhoff et al.
(2017) found out that actual crop rotations in the Rur catch-
ment in western Germany are often different from expected
crop rotations based on expert knowledge, which may also
be the case for the study area DEMMIN.

Some fields are only recognized as winter crops very late
in May, like in 2016. At this time, decision 4a is already exe-
cuted and no further separation of winter grains occurs. A
possible extension is the repetition of an appropriate deci-
sion in case of changing class assignments for summer and
winter crops in decision 1. Also, the inclusion of images from
autumn to separate rapeseed andwinter grains retrospectively
after they are definitively classified as winter crops in spring
is imaginable. However, the beginning of the classification
in autumn was discussed, but refused because of the possible
confusion with catch crops.

Until now, the algorithm was applied for 2015 and 2016
retrospectively, simulating a progressive execution. It is
planned to implement an automatic execution of the clas-
sification algorithm in the next few years.

7 Conclusion

We presented a crop-type classification algorithm that works
independently of training data and provides first results
already in spring. These results improve progressively in the
course of the growing season. The separation of crop types
is done with binary fuzzy c-means clustering in eight previ-
ously defined time periods. The final classification results at
the end of the growing season are very accurate. All required
input data are available for free, except of RapidEye data,
which can be replaced by Landsat and Sentinel-2 images.
Therefore, the algorithm is able to be applied by a broad
range of users. Limiting factors are though the existence of
current field boundaries and the availability of cloud-free
satellite images during important decisions. An operational
use is possible and desired in the near future to access current
crop-type information at any time.
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