
International Journal of Data Science and Analytics (2019) 8:137–164
https://doi.org/10.1007/s41060-019-00186-0

REGULAR PAPER

dLSTM: a new approach for anomaly detection using deep learning
with delayed prediction

Shigeru Maya1 · Ken Ueno1 · Takeichiro Nishikawa1

Received: 24 May 2017 / Accepted: 27 April 2019 / Published online: 15 May 2019
© The Author(s) 2019

Abstract
In this paper, we propose delayed Long Short-Term Memory (dLSTM), an anomaly detection method for time-series data.
We first build a predictive model from normal (non-anomalous) training data, then perform anomaly detection based on the
prediction error for observed data. However, there are multiple states in the waveforms of normal data, which may lower
prediction accuracy. To deal with this problem, we utilize multiple prediction models based on LSTM for anomaly detection.
In this scheme, the prediction accuracy strongly depends on the method of selecting a proper predictive model from multiple
possible models. We propose a novel method to determine the proper predictive model for anomaly detection. Our approach
provides multiple predicted value candidates in advance and selects the one that is closest to the measured value. We delay
the model selection until the corresponding measured values are acquired. Using this concept for anomaly detection, dLSTM
selects the proper predictive model to enhance prediction accuracy. In our experimental evaluation using real and artificial
data, dLSTM detects anomalies more accurately than methods in comparison.

Keywords Anomaly detection · Deep learning · LSTM · Time-series data

1 Introduction

1.1 Background

For manufacturers, it is crucial to monitor production facili-
ties to continually ensure that they are working correctly. It is
therefore useful to automatically monitor the status of equip-
ments and detect any anomalies. However, there are many
kinds of failures, and it would be impractical to construct
anomaly detection models suited to all kinds of anomalies.

To address this problem, anomaly detection typically uses
models based only on normal (non-anomalous) data. In this
approach, a model is constructed for the normal state of
equipment. To detect anomalies, the degree of deviation

B Shigeru Maya
shigeru1.maya@toshiba.co.jp

Ken Ueno
ken.ueno@toshiba.co.jp

Takeichiro Nishikawa
takeichiro.nishikawa@toshiba.co.jp

1 System Engineering Lab., Corporate Research &
Development Center, Toshiba Corporation, Kawasaki-shi,
Japan

between observed data and the normal state is then com-
puted using this model. An advantage of this method is that
anomalous data are not needed to build the model.

In this paper, we measure deviation from the normal state
using the prediction error. If the prediction error is small,
it is highly probable that the current state is similar to the
normal state, while a large prediction error suggests that the
current state is abnormal. This assumption is schematically
illustrated in Fig. 1. Time-series data change its behavior
after an abnormal event occurs (see Fig. 1a). Figure 1b shows
the prediction errors at each timestamp, demonstrating that
prediction error increases immediately after an anomaly.

In practice, sensor data are often used to monitor the sta-
tus of equipment. Unfortunately, sensor data tend to contain
noise, such as electrical noise on electromagnetic wave-
signal lines. Also, sensor data waveforms are complicated
in that there are multiple states in the normal data. We call
the case in which there are multiple outputs for the same
inputmulti-mode. Figure 2 shows this situation, with normal
data in the training dataset. These normal data take one of
two values, 1.0 and 3.0. Let State A and State B to be nor-
mal states setting the value to be 1.0 and 3.0, respectively.
We study the learning behavior of this time-series data using
predictive models. In Fig. 2, the green box indicates input

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-019-00186-0&domain=pdf

138 International Journal of Data Science and Analytics (2019) 8:137–164

Fig. 1 Anomaly detection in
time-series data. a Time-series
data containing noise. b
Prediction error at each
timestamp

Fig. 2 An example of amulti-mode case. The input–output relationship
is not unique

data and the red box shows the output data to be predicted. In
this figure, we show two pairs of input–output relationships
(StateA–StateB andStateA–StateA).Although the two sub-
sequences in the green boxes are similar, the corresponding
output is different. In this case, the input-output relationship
is not unique. Therefore, precisely predicting the output is
challenging. Because these features can be seen even in nor-
mal data, the prediction error does not always decrease, thus
handling sensor data is a challenging task.

Time-series data often include seasonal or trend compo-
nents. The behavior itself is therefore different and easy to
distinguish. In contrast, multi-mode data are characterized
by having multiple outputs for the same input. Since input
and output data are not in one-to-one correspondence, it is
difficult to identify the proper behavior of the output andover-
coming this problemwould allowpractical use of thismethod
in many industrial fields. To build a precise predictive model,
it is important to represent the complicated input–output
relationship. Several previous papers [1,12] have used deep
learning for anomaly detection. Deep learning can handle
complicated data by embedding multiple nonlinear activa-
tion functions.

Recently, long short-term memory (LSTM) [7] has also
been used in anomaly detection [1,12]. LSTM has an advan-
tage over incorporating the context of the sequence data. If
we apply LSTM to time-series data, we can incorporate time
dependency.

Although deep learning is a powerful technique, sensor
data are often too complicated to capture using only one
predictive model due to their noise and multi-mode char-
acteristics. In this paper, we thus propose a new approach,

delayed Long Short-Term Memory (dLSTM), that uses mul-
tiple predictive models embedded in LSTM to address the
problem. A gating function [19] identifies a predictionmodel
for the input among a collection of models. Our aim is also
to select the proper prediction model like a gating function.
Although a gating function attempts to identify a prediction
model, it is difficult to select a proper one when we have sev-
eral outputs for the same input (multi-mode). In multi-kernel
learning for one-class classification, the aim is to obtain the
proper weight for each kernel to represent the output. How-
ever, it is still difficult to derive the proper weight if we have
multiple output for the same input.

If we can choose the proper model from among multiple
prediction models, we can more flexibly predict future states
and reduce prediction error, thereby clarifying the difference
in prediction error between normal and abnormal states.

When we have multiple outputs for the same input within
normal data, it is highly probable that prediction values of
normal data should be similar to at lease one of outputs. It
follows that the prediction values of abnormal data should be
different from any of the output. In our proposed method, we
select the prediction model with least prediction error. When
the prediction error is high even if we select the onewith least
prediction error, the data is different from any of the output
and it should be abnormal. We make use of this particular
problem of anomaly detection to select the proper predic-
tive model. Our approach uses prediction error to measure
deviation from the normal state. Prediction error is defined
as the difference between predicted and measured values.
Since measured values are necessary to compute prediction
error, we only need to obtain the predictive value by the time
we obtain the measured value. In other words, we can cal-
culate the predicted value as soon as we acquire a measured
value. By using this problem setting, we delay the timing of
determining the predicted value until measured values are
acquired, and we regard the predicted value as the output of
the predictive model whose output is nearest to the measured
value.

In our approach, the prediction error can be regarded as the
difference between themeasured value and the output nearest
to the measured value. To the best of our knowledge, this is

123

International Journal of Data Science and Analytics (2019) 8:137–164 139

the first approach of its kind in anomaly detection area. By
referring to the measured value, dLSTM switches the proper
predictive model quickly and can adapt to complicated time-
series data.

1.2 Novelty of this study

Wepropose anovel anomalydetectionmethod for time-series
data by utilizing LSTM. LSTM is a powerful tool for cap-
turing the context of sequential data, and is often used in
fields such as natural language processing and speech recog-
nition [17,22]. Previous papers [1,12] have used LSTM to
detect anomalies from prediction errors.

These papers show how LSTM can capture long-term
correlations in sequences and emphasize that one of the
advantages of LSTM is that prior knowledge such as window
size (w) is unnecessary. Therefore, LSTM is useful to obviate
the need for a pre-specified window size, thereby obtaining
competitive performance. To further improve performance,
we need to explicitly tackle “multi-mode” problems. Ensem-
ble learning is a good option for handlingmulti-mode output,
therefore we developed it to making use of the particular
problem of anomaly detection.

Our method is unique in that we consider the particular
problem setting of anomaly detection. We focus on the set-
ting in which we can delay the timing of prediction until
we obtain the corresponding measured value. By making use
of the measured value, we can select the proper predictive
model and enhance prediction accuracy. To the best of our
knowledge, this is a novel application of LSTM for anomaly
detection.Moreover, this paper empirically demonstrates that
our proposed method more clearly detects anomalies than do
existing methods.

1.3 Related works

This section summarizes application of the method to time-
series data for anomaly detection. The simple anomaly
detection method is to detect anomalies by comparing data
with known anomalies [4]. However, this method cannot
identify unknown abnormal patterns.

Recently, online anomaly detection has been proposed.
For example, Takeuchi et al. [23] proposed|Change Finder
to simultaneously detect anomalies and outliers. Hill et
al. [6] applied an autoregressive model to detecting anoma-
lies according to deviation from normal data, and it is
broadly assumed that anomaly scores rise sharply with gen-
eral anomaly detection. Miyaguchi et al. [14] proposed a
method that can be appliedwhen scores rise gradually.Online
anomaly detection is extremely fast, but the model for online
anomaly detection is relatively simple and does not deal well
with irregular and complicated waveforms.

To monitor manufacturing equipments, data are usually
acquired from sensor devices and a large amount of nor-
mal data are often recorded. In this type of approach, we
begin by learning a model from a large amount of normal
data, and then we perform anomaly detection by reference
to the model. The advantage of this approach, introduced
below, is that it can handle many anomaly types. Hayton et
al. [5] proposed amethod that uses a one-class support vector
machine that can represent nonlinear relations. Although the
one-class support vectormachine builds amodel fromnormal
data, it does not utilizemultiplemodels to handlemulti-mode
conditions.

Recently, deep learning has been widely applied to han-
dling the complex features of time-series data. In particular,
LSTM [7] is a well-known deep learning method based on
recurrent neural networks, and is embedded in many meth-
ods [1,12]. LSTMwas originally applied to natural language
processing [22] and speech recognition [17].

Anomaly detection methods using normal data can be
classified into methods based on prediction errors and those
based on reconstruction errors. When the prediction error
is used, a model is built to predict future values of time-
series data and to perform anomaly detection by checking
the prediction error from observed data [1,12]. When the
reconstruction error is used, a model is built to reconstruct
the time-series data, often using an autoencoder [11]. Then,
we perform anomaly detection by checking the reconstruc-
tion error for observed data. These deep learning methods
use only one predictive model, and it is difficult to apply to
multi-mode cases. We fundamentally improve this approach
by using multiple models.

The input–output relation is deterministic when deep
learning are applied to, which makes it difficult to deal with
multi-mode cases. One proposed approach extends anomaly
detection to use of a probabilistic model with deep learn-
ing [21]. Even in this approach, however, estimating accurate
output distributions from similar inputs is a challenging
task.

Another approach to dealing with multi-mode outputs is
the ensemble approach, such as the anomaly detection meth-
ods proposed by Rayana and Akoglu [15]. However, this
approach is best suited to network data. Maruyama et al. [13]
proposed an anomaly detection method that dynamically
selects models from data. Prediction errors are characterized
by the property that they cannot be computed until both mea-
sured and predicted values are acquired. The main advantage
of this property is that we can delay the timing of obtain-
ing predictive values until we obtain the measured values.
Ensemble approaches do not focus on this property of pre-
diction errors.

123

140 International Journal of Data Science and Analytics (2019) 8:137–164

1.4 Organization of this paper

The remainder of this paper is organized as follows. Section 2
introduces a framework for anomaly detection, and Sect. 3
describes our proposed method for time-series anomaly
detection. Section 4 introduces the setting for evaluation, and
Sect. 5 shows experimental results. Section 6 concludes this
paper.

2 Anomaly detection based on data from a
normal state

This section introduces a framework for building a model
based on only normal data for detecting anomalies in
observed data.

In this paper, we use a training dataset that contains only
normal data and an observed dataset. We assume that there
is only one anomaly occurrence and that all data after the
anomaly are abnormal. We consider univariate time-series
data here for simplicity, but multivariate time-series data can
be approached in the same way by vectorizing the data.
Our proposed method can be divided into three steps. In
Step 1 (Fig. 3, Step 1), we learn the behavior of normal
data from the training dataset using deep learning. Specif-
ically, we construct a prediction model that predicts normal
data as accurately as possible to learn its behavior. In Step 2
(Fig. 3, Step 2), we use the prediction model built in Step 1 to
sequentially predict values in the observed dataset. However,
since sensor data include noise, there is a high possibility
that this noise affects the prediction error. To mitigate the
influence of noise, in Step 3 (Fig. 3, Step 3) we apply a low-
pass filter and then calculate an anomaly score representing

Fig. 3 Overview of our proposed method. Step 1: Build models using
only normal data. Step 2: Obtain the prediction error for the observed
dataset. Step 3: Calculate the anomaly score from the prediction error

the degree of anomaly. Note that dLSTM is only related to
Step 1.

3 Predicting time-series data within the
normal state

This section describes dLSTM and its application to obtain-
ing the prediction error and anomaly score based on the
prediction error. Section 3.1 describes our proposed pre-
diction method, dLSTM. Section 3.2 describes the method
for obtaining the prediction error for the observed dataset.
Section 3.3 shows how to obtain an anomaly score for the
observed dataset.

3.1 Building dLSTMmodel: step 1

In this section, we sequentially predict training data of size
T1, which includes only normal data within a window size w

to capture the normal state. Here, we denote the time between
a and b (inclusive) as a : b.We consider the case of obtaining
the predicted values for time t + 1 : t + w.

Wefirst describe the procedure for obtaining theprediction
error, and then derive the objective function. Anomaly detec-
tion is generally performed based not on the predicted value,
but on the prediction error. Since we need both predicted and
measured values to derive the prediction error, it follows that
we can delay the timing for obtaining the predicted value until
the corresponding measured values are available. Figure 4
illustrates our approach. We predict the values sequentially,
considering the information of the predicted value at time i
(t + 1 ≤ i ≤ t + w). In previous approach, values between
t+1 and t+w are predicted deterministically at time t [1,12]
and green ones are predicted values. In contrast, our approach
provides candidate values denoted by gray circles at time t
and determines each predicted value denoted by blue circles
at the time that the correspondingmeasured value is obtained
(time i). Focusing on time i (t + 1 ≤ i ≤ t + w), the delay
period is the period between t and i , because our method and
the conventional method obtain the predicted value at times
i and t , respectively. Note that there are multiple candidate
values (gray circles) in dLSTM and single predicted value
(green circle) in previous approach at each time stamp. The
feature of our prediction error is that it includes the informa-
tion of a measured value when we determine the predicted
value. On the other hand, we do not include the informa-
tion of a measured value to derive the predicted value in the
previous approach.

Our approach presents candidates of predicted values at
time t from multiple predictive models at each timestamp
within t + 1 : t + w. Then, we determine the predicted
values at time i , with i ∈ [t + 1 : t + w] among candidates.

123

International Journal of Data Science and Analytics (2019) 8:137–164 141

Fig. 4 Schematic diagram of dLSTM compared with the previous
approach when obtaining the predicted value at time i . Red circles
indicate measured values, gray circles show candidate values, and blue
circles showvalues selected fromamong the candidates as predicted val-
ues for dLSTM. The green circles show predicted values by the previous
approach. Our approach determines predictive values from candidates
obtained at time t , where the period from t to i is the delay period.
See Fig. 5 for further details on our proposed prediction method (color
figure online)

We provide multiple predictive models and denote the
number of prediction models by N . We denote the measured
and predicted values for time t+1 : t+w by X t+1:t+w ∈ R

w

and Y t+1:t+w ∈ R
w. Let fn be the n th predictive model

and let the corresponding predicted values be Yn
t+1:t+w =

fn(X t−w+1:t), where Yn
t+1:t+w = [ynt+1, . . . , y

n
t+w]. In our

approach, we determine the predicted value (yi) at time i
from the candidates of the predicted value (yni). In this paper,
we use deep learning as a prediction model fn . Because
multiple nonlinear activation functions are used, complex
input–output relations can be captured using deep learning.
Analyses of sequential data in fields such as speech recog-
nition and natural language processing often embed LSTM.
In LSTM, cells store internal states and consider past infor-
mation by sequentially updating that internal state. It is thus
possible to consider time-dependent effects over long periods
of time, such as deterioration of devices as they age, through
incorporation into models using LSTM. Below, we show an
example of predicting time-series data through 5-layer deep
learning.

Zn
1,t = g1(Wn

1X t−w+1:t + bn1) (1)

Zn
2,t = LSTM(g2(Wn

2Z
n
1,t + bn2)) (2)

Zn
3,t = g3(Wn

3Z
n
2,t + bn3)) (3)

Yn
t+1:t+w = Wn

4Z
n
3,t + bn4 (4)

Note that g1, g2, and g3 are activation functions, such
as sigmoid functions or a rectified linear unit (ReLU). We
express Wn

j and bnj as the weight matrix and noise vector of
the j th layer, respectively. There are N output types based on
the prediction models described above, and we compare the
output of each prediction model (yni). These are candidates
for the final predicted value (yi). In our proposedmethod, the

Fig. 5 Schematic diagram of dLSTM with number of models N = 2
and window size w = 4

final predicted value at time i is determined as the prediction
model output that is closest to the corresponding measured
value (i.e., the output giving the smallest prediction error).
Let xt be the measured value at time t , that is, X t+1:t+w =
[xt+1, xt+2, . . . , xt+w]. Then the final predicted value yi at
time i is calculated as

yi = yn
∗

i , where n∗ = arg min
n

(yni − xi)
2, (5)

where Y t+1:t+w = [yt+1, yt+2, . . . , yt+w]. From Eq. (5), for
n ∈ {1, 2, . . . , N }, we obtain the inequality

(yn
∗

i − xi)
2 ≤ (yni − xi)

2. (6)

It can be seen that the prediction accuracy is improved by
using measured values. We repeat this procedure from time
t + 1 to time t + w to obtain the final predicted values
(Yn

t+1:t+w). Figure 5 illustrates our approach for N = 2.
The case where there are multiple outputs from the same
input is called the multi-mode case. If each of the predic-
tive models corresponds to the outputs, one of the prediction
errors should be small when applied to all predictive mod-
els. In other words, if predictive performance deteriorates
even when the model with the best prediction performance is
applied, it is certain that data deviates from the normal and is
thus abnormal. Therefore, we use the predictive model with
the least predictive error.

We next describe the objective function of our proposed
method. Even normal data sometimes include outliers, thus
it is conceivable that general performance will decrease if
we build a prediction model that is forced to respond to both
normal data and to outliers. We thus improve generalization
performance by deleting outliers from the training data. The
deep learning framework applies minibatch training. We set
the size of a minibatch to be B. It follows that Bw predicted
values are calculated in each minibatch training.

We express the mean and standard deviation of (yt − xt)
as μ and σ , respectively (1 ≤ t ≤ Bw). We regard the value

123

142 International Journal of Data Science and Analytics (2019) 8:137–164

at time t as an outlier when it does not satisfy

μ − 3σ < yt − xt < μ + 3σ. (7)

Therefore, we classify whether measured values in the train-
ing dataset are outliers when we obtain measured values, and
eliminate these outliers.

From the above, the prediction error for each minibatch
in this case is

loss(t) =
∑t+W

i=t+1 Iμ−3σ<(xi−yi)<μ+3σ × (xi − yi)2
∑t+W+1

i=t+1 Iμ−3σ<(xi−yi)<μ+3σ
, (8)

where I is an indicator function that returns 1 if the condition
is satisfied and 0 otherwise. The objective loss function is

Loss(t) =
B∑

j=1

loss(t + (j − 1)w). (9)

Note that Loss(t) corresponds to the prediction error between
time t and t + Bw. For each measured value, our proposed
method selects the model with the least prediction error, and
parameters of only the corresponding model are updated
using back propagation so that prediction error decreases.
As a result, it is possible to generate prediction models more
specific to the measured values.

Although LSTM can ideally incorporate all past time
dependencies into the model, in practice, available memory
limits the amount of past data that can be considered. There-
fore, truncated back propagation through time (tBPTT) is
often used to forget past information beyond a constant mul-
tiple of the window size. In this paper, we use Adam [8]
for the back propagation method and forget past information
beyond L window sizes.

The following summarizes Algorithm 1, corresponding to
Step 1. In lines 7–21 of Algorithm 1, we derive a loss value
and update parameters based on the loss in each minibatch.

3.2 Calculation of prediction error: step 2

This section describes the method of obtaining the predic-
tion error for observed data of size T2. When applying to the
observed data, we use the dLSTM built in Step 1. The pre-
diction error at time i is represented as (xi − yi)2, where yi is
from Eq. (5). For each window size w, we prepare N predic-
tive models and choose the one whose output is closest to the
corresponding measured value. We can thus determine the
prediction error as soon as we acquire the measured value.
We build the predictive models and adapt their parameters
in Step 1. However, as we sequentially read the observed
dataset, we can update the internal state of LSTM.Moreover,
whichmodelwe choose depends on the observed dataset, and

Algorithm 1 Algorithm for building the predictive model of
dLSTM (Step 1).

1: INPUT: Training dataset (normal data) for X ∈ R
T1 .

2: OUTPUT: Parameters for predictive dLSTM models.
3: • STEP 1
4: Initialize dLSTM parameters.
5: for m = 1 →# of iterations M . do
6: Set S = 0 (Initialize the cumulative loss function).
7: for j = 0 →int(T1/w)−1. do
8: Set t = w j .
9: for n = 1 → N . do
10: Obtain the nth candidate (Yn

t+1:t+w j) according to Eq. (4).
11: end for
12: for i = t + 1 → t + w j . do
13: Choose the predicted value yi at time i from candidates

according to Eq. (5).
14: end for
15: Set the loss value Loss(t) according to Eq. (9).
16: S ← S + Loss(t) (Update the cumulative loss function).
17: if j is a multiple of L then
18: Update the parameters of dLSTMusing tBPTT to decrease

the value of S.
19: S = 0 (Reset S).
20: end if
21: end for
22: end for

we dynamically switch the proper predictive model accord-
ing to themeasured value. This allows capturing complicated
time-series datasets. Algorithm 2 shows the algorithm for
Step 2.

3.3 Deriving the anomaly score: step 3

This section describes a method for deriving an anomaly
score based on the prediction error. Measured values from
sensors are often affectedbynoise.Therefore, low-passfilters
are often used to remove these effects. In this paper, we use a
popular type of low-pass filter called a median filter for each
filtering window size (l). The anomaly score S(t) at time t
is obtained as

S(t) = mediani∈[t−l+1,t−l+2,...,t](yi − xi)
2. (10)

When l is 10,000 and the data frequency is 10 Hz, a common
situation in manufacturing fields, S(t) is derived based on
data within the previous 1000 s (≈ 20 min). Most param-
eters for predictive models are learned from normal data
in the training dataset. Therefore, S(t) measures the devi-
ation of data from the normal state at time t even after the
occurrence of anomaly S(t). Setting a large filtering window
stabilizes performance by removing noise influences. How-
ever, small filtering windows are advantageous in that they
allow prompter detection of anomalies. Algorithm 2 shows
the algorithm for Step 3.

Generally, there are two error types: false positives, where
normal data are classified as abnormal, and false negatives,

123

International Journal of Data Science and Analytics (2019) 8:137–164 143

Algorithm 2 Algorithm for obtaining the anomaly score
(Steps 2, 3).
1: INPUT: dLSTM parameters; window size:w, filtering window size:

l, and observed dataset X ∈ R
T2 .

2: OUTPUT: Anomaly score at time t (S(t)).
3: • STEP 2
4: Load the dLSTM parameters learned in Step 1.
5: for i = 1 →int(T2/w) do
6: for j = 1 → w do
7: Obtain the predicted value ywi+ j at time wi + j according to

Eq. (5)
8: end for
9: end for
10: •STEP 3
11: for t = 1 → T2 do
12: Obtain anomaly score S(t) according to Eq. (10).
13: end for

where abnormal data are classified as normal In manufac-
turing, it is likely that false positives are more problematic
than false negatives. When the likelihood of false positives is
high, alarms are issued too often, increasing human resource
demands. Itmay cause the case thatwe are not afford to inves-
tigate the equipment when the true anomaly happens. On the
other hand, false negatives happen when setting a large fil-
tering window, because the anomaly score does not increase
rapidly until the period corresponding to the length of the fil-
teringwindow elapses after the occurrence of the anomaly. In
this case, the influence of false negatives are limited to prod-
ucts produced in this period and we can assess the impact of
false negative.

4 Experimental settings

This section introduces settings for comparing performances
using artificial and real data.

4.1 Model architecture of dLSTM

This section introduces the network architecture for our pro-
posed method. Our method uses multiple prediction models,
setting the number of models N to 2 or 10. Furthermore,
we ensure that part of the architecture is shared among N
predictive models. We can reduce the number of parame-
ters by partly sharing architectures and efficiently learning
the parameters. Each predictive model shares structures for
the first seven layers and independently updates the param-
eters for the last two layers. Note that the first layer is the
input layer and the last layer is the output layer. Therefore,
each predictive model is composed of nine layers with sizes
[w, � 3w

4 	, � 2w
3 	, �w

2 	, �w
3 	, �w

2 	, � 2w
3 	, � 3w

4 	, w]. LSTM is
embedded between the second and third layers and between
the third and fourth layers. For the activation function, we
embed ReLU between the layer pairs #2·#3, #3·#4, #6·#7,

Fig. 6 Schematic figure of dLSTMfor N = 2.The green line represents
embedding of ReLU and the blue layers are LSTM layers (color figure
online)

and #7·#8. For layers without embedded ReLU, we do not
embed any kind of activation function. To enhance general-
ization performance, we incorporate a regularization term for
the weight matrix W i for each layer with L2 regularization,
using a parameter λ = 0.05. Figure 6 shows an overview of
the network architecture.

4.2 Comparative methods

As described in Sect. 1.3, anomaly detection using deep
learning can be divided into two approaches: those based
on prediction error and those based on reconstruction error.
Our proposed method (dLSTM) is based on prediction error.
In this section, we introduce two comparative methods using
prediction error and threemethods using reconstruction error.

We first consider methods using prediction error. dLSTM
has two main features, use of multiple predictive models and
delayed prediction. To verify the effectiveness of multiple
models and delayed prediction, we provide two comparative
methods, Single and Predet. Single is essentially same as the
same as in [1,12] using one predictive model. In contrast,
Predet provides multiple predictive models. However, Pre-
det determines which model to choose before acquiring a
measured value.

We next deal with methods using reconstruction error.
Autoencoder is a neural network that reconstructs input as
accurately as possible.We capture waveforms of normal data
using autoencoder and derive an anomaly score based on the
reconstruction error. We thus assume a high probability that
anomalies occur when the reconstruction error is large.Many
autoencoders have been proposed.We introduce three typical
autoencoders as comparative methods, namely the stacked,
contractive, and variational autoencoders.

For all methods, we set the window sizew to 100, L (used
for tBPTT) to 15, and B (for minibatch) to 200. The number
of iterations is 350 unless otherwise noted.

123

144 International Journal of Data Science and Analytics (2019) 8:137–164

See Sect. 5.6 for a discussion of methods not based on
deep learning.

4.2.1 Single

Our proposed method utilizes multiple predictive mod-
els. The Single comparison model is a single predic-
tive model comprising eleven layers. The layer sizes are
[w, � 3w

4 	, � 2w
3 	, �w

2 	, �w
3 	, �w

4 	, �w
3 	, �w

2 	, � 2w
3 	, � 3w

4 	,
w]. LSTM is embedded between the second and third layers
and between the third and fourth layers. LSTM is multiply
embedded in [1,12], and ReLU is embedded between the
layer pairs #2·#3, #3·#4, #8·#9, and #9·#10.

4.2.2 Predet

One main feature of the proposed method is that the predic-
tion timing is delayed. The predetermined predictive model
(Predet) is a comparison method corresponding to the case
where multiple prediction models are used but prediction is
predetermined, not delayed. Let the output of the n th pre-
dictive model be V n

t = fn(X t−w+1:t), where fn(·) is deep
learning with the same architecture used in our proposed
method. We determine which model to choose according to
the variable H t = h(X t−w+1:t) ∈ [0, 1]w, which is obtained
by the deep learning embedded sigmoid function h(·) in the
last layer to constrain the output to within the range [0, 1].
The final predictive yi value at time i (t + 1 ≤ i ≤ t + w)

is then obtained by yi = yni , where n satisfies the inequality(
n−1
N < H i−t

t ≤ n
N

)
according to the variable H i−t

t , which

is the (i − t) th value of H t . This method is one example of
an ensemble approach.

4.2.3 CAE

Contractive autoencoders (CAE) [16] can enhance gen-
eralization performance by incorporating a penalty term
corresponding to the Frobenius norm of the Jacobian matrix
of an activation function. Let x ∈ R

dx , f (·) and h ∈ R
dh

respectively be the input, an activation function, and the out-
put resulting from applying the activation function to the
input. Its formulation is h = f (Wx + b). In [16], a sigmoid
function (f (z) = 1

1+exp−z) is used as an activation function
and the corresponding penalty term is

dh∑

i

(hi (1 − hi))
dx∑

j

W2
i, j . (11)

We set the regularization parameter to be 0.01. The sizes of
the layers are [w, � 3w

4 	, w] and use a sigmoid function as an
activation function between the #1 and #2 layers.

4.2.4 SAE

The stacked autoencoder (SAE) is a feed-forward multilayer
neural network. Embedding multiple nonlinear activation
functions allows capturing complex sensor data. Thismethod
was inspired by Sakurada and Yairia [18]. The layer sizes
are [w, �w

2 	, �w
4 	, �w

4 	, � 3w
4 	, w], and ReLU is embedded

between the layer pairs #2·#3, #3·#4, and #4·#5.

4.2.5 VAE

The variational autoencoder (VAE) [9] is a probabilistic
model. It first produces mean and logarithm-of-variance val-
ues. It then provides a random variable based on these values
and applies the nonlinear activation function to obtain the
desired output. Unlike CAE and SAE, VAE is not a deter-
ministic autoencoder. We first describe the architecture for
obtaining the mean and logarithm-of-variance values. The
layer sizes are [w, � 3w

4 	, � 2w
3 	, �w

2 	, �w
3 	, �w

4]. ReLU is
embedded between the layer pairs #2·#3, #3·#4, and #4·#5.
We next describe the network used to reconstruct the input
data. The layer sizes are [�w

4 	, �w
3 	, �w

2 	, � 2w
3 	, � 3w

4 	, w].
ReLU is embedded between the layer pairs #2·#3, #3·#4,
and #4·#5.

4.3 Artificial datasets

This section shows how artificial datasets are generated. Let
xt be the measured value at time t . As preprocessing, we
convert xt to

xt−μtrain
σtrain

, whereμtrain and σtrain are respectively
the mean and the standard deviation of the training data for
each dataset. For each dataset, there is only one occurrence of
anomaly and all the data after the occurrence of the anomaly
are abnormal data.

4.3.1 Sin-data

Sensor data exhibit periodicity with a slightly varying period.
We generate the first artificial dataset (sin-data) by slightly
changing the period T of a sine curve. For the normal state,
T is the integer part of the variable taken from the normal
distribution N (50, 5). We add noise from the normal distri-
butionN (0, 0.3) at each timestamp. Therefore, the value for
each period T at time t is

5sin

(
2π t

T

)

+ ε, (12)

where ε is a variable following N (0, 0.3).
For the abnormal state, the period T is the integer part

of the variable from the normal distribution N (40, 5), and
the other parts are identical to the normal state. The training
dataset is generated by repeatingEq. (12) 10,000 times for the

123

International Journal of Data Science and Analytics (2019) 8:137–164 145

Fig. 7 a ECG dataset. b Uwave
dataset

Fig. 8 Relations between
number of iterations and
prediction error (training error)
for a sin-data. b sincos-data, c
ECG, d Uwave, and e plant

normal state. The observed dataset is generated by repeating
Eq. (12) 5000 times for the normal state and then repeating
Eq. (12) 5000 times for the abnormal state.

4.3.2 Sincos-data

We next show the second artificial dataset (sincos-data).
Here, we assume a more complicated case by combining a

sine curve and a cosine curve and adding noise. The specific
generation method is as follows:

Asin

(
2π

T3
t

)

+ ε, 0 < t ≤ T3, (13)

Acos

(
2π

T4
t

)

+ ε, T3 < t ≤ T3 + T4, (14)

123

146 International Journal of Data Science and Analytics (2019) 8:137–164

Fig. 9 Sincos-data and prediction errors by dLSTM(2). Gray lines rep-
resent the window w

Fig. 10 Sincos-data and prediction errors by Single. Gray lines repre-
sent the window w

Bsin

(
2π

T5
t

)

+ ε, T3 + T4 < t ≤
5∑

j=3

Tj , (15)

Bcos

(
2π

T6
t

)

+ ε,

5∑

j=3

Tj < t ≤
6∑

j=3

Tj , (16)

where, ε is a variable independently following N (0, 0.3).
For the normal state, we respectively set A and B to 5 and

6, and T3, T4, T5, and T6 are the integer parts of the variable
independently taken from N (50, 5).

For the abnormal state, we respectively set A and B to 6
and 7, and T3, T4, T5, T6 are the integer parts of the variable
independently taken from N (40, 5).

To generate the training dataset, we repeat from Eq. (13)
to Eq. (16) 2500 times with normal state parameters. To gen-
erate the observed dataset, we repeat from Eqs. (13) to (16)
1250 times with normal state parameters, then repeat from
Eqs. (13) to (16) 1250 times with abnormal state parameters.

Fig. 11 Uwave data and prediction errors by dLSTM(10). Gray lines
represent the window w

Fig. 12 Uwave data and prediction errors by Single. Gray lines repre-
sent the window w

4.4 Real datasets

This section introduces the real datasets. Let xt be the mea-
sured value at time t . As preprocessing, we convert xt to
xt−μtrain

σtrain
, where μtrain and σtrain are respectively the mean

and standard deviation of the training data for each dataset.
For each dataset, there is only one anomaly occurrence, and
all data after the anomaly are abnormal.

4.4.1 ECG

The real dataset considered here is an ECG dataset provided
by PhysioBank.1 Among the many PhysioBank datasets, we
chose the 102nd record of theMIT-BiHArrhyhmia Database
(mitdb). The mitdb is widely used for testing anomaly detec-
tion [3,10,20].

1 https://physionet.org/cgi-bin/atm/ATM.

123

https://physionet.org/cgi-bin/atm/ATM

International Journal of Data Science and Analytics (2019) 8:137–164 147

Fig. 13 Anomaly score at each
time after normalization (R(t))
using the prediction error and
setting the size of the filtering
window l to 1 for a sin-data, b
sincos-data, c ECG, d Uwave,
and e plant. The red line
represents the time when the
anomaly occurred (color figure
online)

According to an annotation to this dataset, a pacemaker is
usedmost of the time, but from time29,276 to time62,531 the
dataset corresponds to regular heartbeats.We regard the pace-
maker heartbeat as the normal state and regular heartbeats as
the abnormal state, and aim to detect regular heartbeats.

We generate the training and observed datasets by extract-
ing data from the original dataset after time 63,001 and
before time 63,000, respectively. The observed dataset thus
includes both normal and abnormal states (see Fig. 7a). The
red line represents the timewhen the abnormal state occurred.
According to Fig. 7a, the amplitude greatly differs before and
after the anomaly.

4.4.2 Uwave

The Uwave dataset is generated by processing a dataset
provided by UCR2 [2]. Among the many UCR datasets,

2 http://www.cs.ucr.edu/~eamonn/time_series_data/.

we chose UWaveGestureLibraryALL, because this dataset
is relatively large and suited to deep learning. This dataset
was originally designed for classification tasks. In order to
adapt it to anomaly detection tasks, we generated the train-
ing dataset by concatenating all data with the label “7” from
UWaveGestureLibraryALL_TEST dataset. We also gener-
ated the observed dataset by first concatenating all data
with the label “7” and then concatenating all data with the
label “2” from UWaveGestureLibraryALL_TRAIN dataset.
Therefore, the training and observed datasets are univari-
ate datasets, and we regard the original data labeled “7” as
normal data and original data labeled “2” as abnormal data.
Figure 7b shows the observed dataset. The red line shows the
time when an anomaly occurred. In Fig. 7b, the amplitude
increases after the anomaly occurs.

123

http://www.cs.ucr.edu/~eamonn/time_series_data/

148 International Journal of Data Science and Analytics (2019) 8:137–164

Fig. 14 Anomaly score at each
time after normalization (R(t))
using the reconstruction error
setting the size of the filtering
window l to 1 for a sin-data, b
sincos-data, c ECG, d Uwave,
and e plant. The red line
represents the time when the
anomaly occurred (color figure
online)

4.4.3 Plant

This dataset contains sensor data frommonitoring the equip-
ment states. Only one failure occurred during measurements
with this device, at time 1,036,835. We generated training
and observed datasets based on the original dataset up to time
497,545 and after time 497,546, respectively. We must omit
further description of this dataset to maintain confidentiality.

5 Results

This section evaluates the performance of dLSTM using the
various datasets.Wedenote our proposedmethodwith N pre-
dictive models as dLSTM(N) and denote the Predet method
in a similar manner.

5.1 Prediction accuracy performance

As described in Sect. 1.1, sensor data contain noise and
multi-mode. Therefore, accurate predictions are challeng-
ing. dLSTM thus provides multiple predictive models with
delayed predictions. Figure 8 shows prediction errors for the
training dataset. This figure shows that the prediction error
for dLSTM is greatly small and that dLSTM captures train-
ing data more accurately than do the comparison methods
for all datasets.

We next check the effect of noise and multi-mode data.
Figures 9 and10 show rawdata for sincos-data and the predic-
tion error for the training dataset when dLSTM(2) and Single
were applied, respectively. From Fig. 9, sincos-data contains
noise, and prediction error from dLSTM(2) is consistently
low as compared with Single. Focusing on Fig. 10, although
raw data within windows a and b are similar, the following
subsequences seem to be dissimilar, especially within the

123

International Journal of Data Science and Analytics (2019) 8:137–164 149

Table 1 Median values for normalized anomaly score R(t) in the anomaly state (m-score)

Dataset dLSTM(2) dLSTM(10) Predet(2) Predet(10) Single CAE SAE VAE

sin-data 0.300 0.152 0.213 0.241 0.360 0.509 − 0.051 0.143

sincos-data 0.345 0.186 0.355 0.375 0.439 0.346 0.006 0.163

ECG − 0.148 − 0.114 − 0.16 − 0.128 − 0.113 − 0.134 − 0.094 − 0.044

Uwave − 0.114 − 0.256 − 0.011 − 0.03 0.021 − 0.13 − 0.109 − 0.136

Plant − 0.051 − 0.045 − 0.096 − 0.093 − 0.095 − 0.135 − 0.124 − 0.106

Filtering window l size is 1, and the number of iterations M is 350. The best performance is highlighted in bold

Fig. 15 Sorted normalized anomaly scores within training data from
Uwave dataset. The green and red lines respectively show the mean and
median (color figure online)

red boxes. Figures 11 and 12 illustrate raw data from Uwave
dataset and the prediction error for the training dataset when
dLSTM(10) and Single were applied. Similar observations
can be seen in this real dataset. Therefore, with the existence

of multi-mode large prediction errors occur within the red
boxes for these datasets. dLSTM performed well in the same
region by using multiple models with delayed prediction and
effectively handled multi-mode data.

5.2 Anomaly detection performance

This section introduces the results for performance of
anomaly detection. To compare the performance of different
methods, we normalized anomaly scores within the observed
dataset using the mean and standard deviation of anomaly
scores for normal data in each observed dataset and method.
We normalized the anomaly score S(t) at time t by con-

verting it to R(t) ≡ S(t)−μS(t)
σS(t)

, where μS(t) and σS(t) are
respectively the mean and standard deviation of S(t) in the
normal state. Note that while S(t) takes a positive value, R(t)
can be negative. Normalizing the R(t) values in the normal
state for all methods makes it easy to compare differences
between normal and abnormal anomaly scores. For example,
if R(t) = 3, then observed data at time t differs from the nor-

Table 2 Median values for normalized anomaly score R(t) in the anomaly state (m-score)

Dataset dLSTM(2) dLSTM(10) Predet(2) Predet(10) Single CAE SAE VAE

sin-data 22.091 93.6851st 12.846 15.390 18.805 26.2152nd 13.815 16.116

sincos-data 26.164 98.8451st 17.831 18.180 19.916 39.9982nd 38.472 34.865

ECG 4.100 1.863 1.434 6.4012nd 7.8321st 0.832 5.731 4.563

Uwave 4.0752nd 2.454 3.940 3.726 4.6731st 3.021 1.086 1.639

Plant 11.0391st 4.2642nd 1.691 1.732 1.932 0.668 2.127 1.632

Size of the filtering window l is 1000, number of iterations M is 350

Table 3 Median values for normalized anomaly score R(t) in the anomaly state (m-score). Size of the filtering window l is 10,000, number of
iterations M is 350

Dataset dLSTM(2) dLSTM(10) Predet(2) Predet(10) Single CAE SAE VAE

sin-data 72.764 1319.1631st 49.487 56.195 77.105 84.2462nd 47.687 52.432

sincos-data 95.246 352.5731st 66.227 59.976 62.515 126.617 129.8182nd 106.388

ECG 32.265 296.9421st 84.3532nd 57.349 74.054 2.604 15.878 11.396

Uwave 12.145 65.7581st 13.791 12.136 15.8702nd 9.971 6.914 8.575

Plant 15.7701st 4.584 7.137 7.209 7.102 3.167 9.3782nd 5.602

123

150 International Journal of Data Science and Analytics (2019) 8:137–164

Fig. 16 Anomaly score at each
time after normalization (R(t))
using the prediction error,
setting the size of the filtering
window l to 1000, for a
sin-data, b sincos-data, c ECG,
d Uwave, and e plant. The red
line represents the time when
the anomaly occurred (color
figure online)

mal state by 3σ . It follows that the anomaly detectionmethod
performs well if R(t) values are large following an anomaly.
To quantitatively evaluate R(t), we provide a performance
measure named the m-score ∈ R. The m-score value is the
median of normalized anomaly scores R(t)within the abnor-
mal state. When an anomaly occurs at time t1 and the size of
the observed dataset is T2, the corresponding value m-score
is

m-score = mediani∈[t1,t1+1,...,T2]R(i). (17)

If the m-score is large, the method clearly distinguishes
between abnormal and normal states.

We next evaluated the performance in terms of the filter-
ing window size (l). As described in Sect. 3.3, the filtering
window size is crucial for anomaly detection.

We first show the results when setting the filtering size
window to 1, which is equivalent to executing only Steps 1
and 2. Figures 13 and 14 illustrate the performance of each

method when setting the size of the filtering window l to 1.
Table 1 describes the median value of normalized anomaly
scores within the abnormal state (m-score), setting the size
of the filtering window l to 1. Note that elements in Table 1
can take negative values.

In Figs. 13 and 14, we can visually identify the change
to anomalous scores in sin-data and sincos-data. However,
from Table 1, the median values in sin-data and sincos-data
are greatly small (generally less than 0.5), and there is a high
possibility that the anomaly cannot be detected. This implies
that Step 3 is necessary for anomaly detection.

Several median values in Table 1 were negative values.
To consider the cause of these negative values, we derive the
m-score by two procedures, normalizing the anomaly score
R(t) and calculating the median of R(t). We focus on the
second procedure. If the distribution of the anomaly score is
symmetric, the mean and the median values should be the
same. Figure 15 shows the sorted normalized anomaly score
R(t) for Uwave in the training data. The scores have a long-

123

International Journal of Data Science and Analytics (2019) 8:137–164 151

Fig. 17 Anomaly score at each
time after normalization (R(t))
using the reconstruction error,
setting the size of the filtering
window l to be 1000, for a
sin-data, b sincos-data, c ECG,
d Uwave, and e plant. The red
line represents the time when
the anomaly occurred (color
figure online)

tail distribution with mean and median values of 0.00 and
− 0.38, respectively. This distribution is asymmetric with a
smaller median than mean, causing some values in Table 1
to take negative values. This also implies that there are out-
liers even in the training dataset from the perspective of deep
learning. Because the median is generally a more robust and
conservativemeasure than themean, we adoptmedian values
as a performance measure of R(t).

5.3 Evaluation of step 3 effects

We evaluated the performance when setting a large filtering
window size (1000 or 10,000).

Tables 2 and 3 describe the median normalized anomaly
score R(t) for each method, setting the filtering window l
to 1000 and 10,000. Values marked 1st and 2nd respectively
represent the largest and second-largest values in the dataset.

5.3.1 Filtering window: 1000

This section describes the results when setting the filtering
window size to be 1000. According to Table 2, our proposed
approaches (dLSTM(2) and dLSTM(10)) worked better than
did the comparative methods for the artificial and Plant
datasets. For the artificial datasets (sin-data and sincos-data),
dLSTM(10) was significantly better, and dLSTM(2) showed
the best performance for the Plant dataset. Meanwhile, Sin-
gle produced the best performance for the ECG and Uwave
datasets. However, the difference in m-score between Single
and dLSTM is at most about 4 (7.832 (Single ECG) − 4.100
(dLSTM(2) ECG)), and this difference is sufficiently small as
comparedwith the caseswhen the artificial and Plant datasets
are applied. This implies that there is no significant differ-
ence in performance among methods when ECG and Uwave
are applied.

123

152 International Journal of Data Science and Analytics (2019) 8:137–164

Fig. 18 Anomaly score at each
time after normalization (R(t))
using the prediction error,
setting the size of the filtering
window l to be 10,000, for a
sin-data, b sincos-data, c ECG,
d Uwave, and e plant. The red
line represents the time when
the anomaly occurred (color
figure online)

Figures 16 and 17 compare the performances of the meth-
ods. These figures correspond to Table 2. Although there is
no obvious difference between the methods as in the case of
ECG andUwave, we find that dLSTM is superior, as for other
datasets. This is because both ECG and Uwave are biologi-
cal data, and thus subject to noise. Removing the impact of
noise is necessary to obtain positive performance, and setting
a large filtering window is a workable alternative. Although
waveforms for sincos-data are discontinuous according to
Eqs. (13) to (16), and despite Plant being a real dataset thus
potentially complex, the impact of noise is not as large as in
the biological data. Therefore, dLSTM outperformed meth-
ods in comparison when setting the filtering window to be
only 1000.

5.3.2 Filtering window: 10,000

This section shows the results when setting the filtering
window size to 10,000. According to Table 3, dLSTM(10)

worked better than the comparative methods for all datasets
except for Plant, where dLSTM(2) showed the best perfor-
mance. Because setting a large filteringwindow size in Step 3
effectively mitigates the impact of noise, the m-score values
improved for every method and dataset pair. In real oper-
ations, we set the threshold and alarm if R(t) exceeds the
threshold. Because there is a clear difference in R(t) between
the normal and abnormal state, dLSTM is advantageous and
the detection performance does not change significantly even
when thresholds are slightly changed.We refer to amethod as
being robust if its performance does not significantly change
when the threshold is slightly changed.

Figures 18 and 19 compare the performances of the meth-
ods. These figures correspond to Table 3. The behavior of
R(t) is stable as compared with the case when the filtering
window size is 1000, and dLSTM outperformed other meth-
ods in terms of m-score.

Our approach generally outperformed the comparative
methods. As Tables 2 and 3 show, dLSTM(10) showed the

123

International Journal of Data Science and Analytics (2019) 8:137–164 153

Fig. 19 Anomaly score at each
time after normalization (R(t))
using the reconstruction error
setting the size of the filtering
window l to be 10,000, for a
sin-data, b sincos-data, c ECG,
d Uwave, and e plant. The red
line represents the time when
the anomaly occurred (color
figure online)

best performance for 6 out of 10 measures, while either
dLSTM(2) or dLSTM(10) showed the best performance for
8 out of 10 measures, when separately counting different
values of l.

5.3.3 The effect of filtering window size

We next consider the effect of large value for the filtering
window size. Figure 20 shows an enlarged view of Figs. 16
and18, and21 shows an enlargedviewofFigs. 17 and19.Red
lines represent times when an anomaly occurred, and orange
lines represent 1000 timestamps after an anomaly occurred.
A large filtering window is helpful in removing the negative
impact of noise, and anomaly score values are stable when
the filtering window size is 10,000. Note that R(t) grows
gradually after an anomaly, since we take the median of the
latest l values of the prediction error.

One side effect of setting a large filtering window size is
that it takes longer to increase the anomaly score. Except for

the (e) Plant data, anomalies can be recognized within 1000
timestamps after their occurrence when setting the filtering
window size to be 1000, because the anomaly score grows
within this period. However, we cannot recognize changes
in anomaly score indicated by the orange lines when setting
the filtering window size to be 10,000.

Although the small filtering window size is helpful in
promptly detecting anomalies, its performance can be high,
depending on the threshold. This is because the m-score is
small when the filtering window size is 1000, making it more
sensitive to the threshold. To aim for stable operation and to
reduce false-positive alarms, setting a large filtering window
is a powerful option.

5.4 Evaluation of threshold robustness

This section quantitatively evaluates the threshold effects for
anomaly score R(t).We prepared six performancemeasures:

123

154 International Journal of Data Science and Analytics (2019) 8:137–164

Fig. 20 Enlarged view of
anomaly scores at each time
after normalization using
prediction error (R(t)). Left and
right figures respectively
correspond to filtering window l
sizes of 1000 and 10,000 for a
sin-data, b sincos-data, c ECG,
d Uwave, and e plant. The red
and orange lines respectively
represent times when the
anomaly occurred and 1000
timestamps after (color figure
online)

123

International Journal of Data Science and Analytics (2019) 8:137–164 155

Fig. 21 Enlarged view of
anomaly score at each time after
normalization using
reconstruction error (R(t)). The
left and right figures correspond
to setting the size of the filtering
window l to 1000 and 10000,
respectively. a sin-data, b
sincos-data, c ECG, d Uwave,
and e plant. The red and orange
lines respectively represent
times when the anomaly
occurred and 1000 timestamps
after (color figure online)

123

156 International Journal of Data Science and Analytics (2019) 8:137–164

Fig. 22 Values for precision
setting the filtering window l
size to 1000

Precision, Recall, F-measure, False Positive Number (FPN),
Overlooking Period (OP), and Confidence Margin (CM).

Wefirst varied the threshold from0 to 100 and obtained the
resulting values for Precision, Recall, and F-measure based
on R(t) and the threshold. If R(t) exceeds the threshold, we
classify the data at time t as abnormal. We regard an abnor-
mal data point as a positive sample and a normal data point
as a negative one. Under a small threshold, most data are
classified as abnormal and the value of Recall is high. Fig-
ures 22, 23, 24, 25, 26 and 27 show values for Precision,
Recall, and F-measure setting the filtering window size as
1000 or 10,000 against the threshold. According to Figs. 22
and 23, a large filtering window size helps stabilize the per-
formance of Precision by mitigating the impact of noise. The
behavior of Precision is similar to that of other methods, and
there are only small differences in performance. In contrast,
Figs. 24, 25, 26 and 27 show that both of our proposed meth-
ods (dLSTM(2) and dLSTM(10)) produced high values for
Recall andF-measure inmost cases. For example, in Fig. 27e,

dLSTM(10) performed best among allmethods in terms of F-
measure. If the threshold is between 5 and 10, the F-measure
is over 0.9, supporting the results in Table 2 showing the
effectiveness of our proposed methods. Since the F-measure
considers the trade-off between Precision and Recall, it is
an important practical indicator and our proposed method
achieved the stable performance by varying threshold value.

We next introduce FPN and OP. FPN represents the num-
ber of timestamps exceeding the threshold for normal data
within the observed dataset. A lower FPN value denotes
fewer false positives, and OP represents how rapidly we
detect anomalies. The definition of OP is the time period
between the occurrence of an anomaly and the first time after
the anomalywhen the anomaly score exceeds the threshold in
the observed data.A lowerOPvalue denotes prompt anomaly
detection. Let T2, t1, and C ∈ R respectively be the size of
the observed dataset, the time when the anomaly happened,
and the threshold. Mathematical definitions of FPN and OP
are

123

International Journal of Data Science and Analytics (2019) 8:137–164 157

Fig. 23 Values for precision
setting the filtering window l
size to 10,000

FPN =
t1∑

t=1

IR(t)>C , (18)

OP = min
k

{k|k > t1 ∧ R(k) > C} . (19)

We varied the threshold from 3 to 99 and calculated mean
FPN and OP values for each method and dataset. Tables 4, 5,
6 and 7 summarize the results. Values marked 1st represent
the smallest values in the dataset.

Tables 4 and 6 show that either dLSTM(2) or dLSTM(10)
detected anomalies in most cases, regardless of the size
of the filtering window. Although the corresponding mean
FPN values are larger than in the comparison methods
(Tables 5 and 7), the difference is at most about 110
(110.082 (Plant dSLTM(2)) −0.000 (Plant VAE)) and this
value is significantly small considering the size of the nor-
mal data within the observed dataset (539289 = 1036835−
49746). dLSTM thus promptly detects anomalies while

maintaining a low false-positive rate for each filtering win-
dow size.

We next consider valid threshold ranges. CM is themargin
between normal and abnormal data when 1% false positives
and false negatives are allowed.

Let Percentile(x, q), t1, x ∈ R
T2 , and l respectively be

the function to compute the q% percentile, the time when
the anomaly occurred, the observed dataset with size T2, and
the filtering window size. The definition of CM is

CM = Percentile(xt2+l:T2 , 1) − Percentile(x1:t1−l , 99).
(20)

The method is robust against the threshold as the value of
CM is large. If CM takes a negative value, it follows that it
is impossible to maintain false positives and negatives below
1%, regardless of the threshold.

Tables 8 and 9 summarize the CM for each method and
dataset. Table 8 shows that all CM values are below 0 for

123

158 International Journal of Data Science and Analytics (2019) 8:137–164

Fig. 24 Values for recall setting
the filtering window l size to
1000

ECG and Uwave when the filtering window size is 1000.
It is thus impossible to set a proper threshold. This result
also suggests that a large filtering window size is necessary.
dLSTM showed the positive performance for other datasets.
Focusing on Plant, only dLSTM(2) took a positive value and
achieved acceptable levels (false positives and negative were
both below 1%).

dLSTM produced the best results when setting the filter-
ing window size to 10,000. Therefore, dLSTM is superior in
that it shows positive results in many cases, even when the
threshold value is changed.

From the viewpoint of FPN, OP, and CM, dLSTM
promptly detects anomalies while maintaining a low num-
ber of false positives, and its performance is robust against
thresholds.

5.5 Computation time

This section considers computation times. We implemented
all methods in Chainer and computed two computation times
on a single GPU (Nvidia M40). The first computation time
is that required for building the model for each iteration,
corresponding to Step 1. The second computation time is
that required to obtain the prediction (or reconstruction)
error for each window size w, corresponding to Step 2. We
respectively refer these as the “building time” and the “infer-
ence time.” Table 10 summarizes the results when applying
sin-data. For building times, methods that do not embed
LSTM (CAE, SAE, and VAE) are computationally efficient.
GPUs are inherently efficient at parallel processing. How-

123

International Journal of Data Science and Analytics (2019) 8:137–164 159

Fig. 25 Values for recall setting
the filtering window l size to
10,000

ever, LSTM requires sequential processing of time-series
data to perform back propagation, and GPUs are not suited
to this task. This suggests that methods using LSTM, includ-
ing dLSTM, are time-consuming. However, once we build a
precise model, we can constantly utilize this model until an
abnormality occurs. Creating accurate models is thus a top
priority, even if creating accurate models takes a long time.

Next, we focus on the inference time. The table also shows
that between dLSTMand othermethods, differences in infer-
ence time are at most about five times. There is no need to
perform back propagation to calculate the inference times.

Therefore, the performance of inference time for dLSTM did
not decrease as much as compared with CAE, SAE, or VAE.
Since the observed dataset is continuously acquired, process-
ing speed is important. This poses no particular problem so
long as the speed for obtaining the prediction error is faster
than that needed to acquire the observed dataset. The pro-
posed method can process data with w = 100 timestamps in
0.133 s, which is sufficient for manufacturing companies in
most cases.

123

160 International Journal of Data Science and Analytics (2019) 8:137–164

Fig. 26 Values for F-measure
setting the filtering window l
size to 1000

5.6 Results on non-deep learningmethods

The methods considered so far are based on deep learning.
This section thus addresses a non-deep learning method.
Online change point detection methods such as Change
Finder [23] are widely used for anomaly detection. The AR
model is embedded in this model to capture the behavior
of time-series data. Figures 28 and 29 show the results of
applying Change Finder to the Plant dataset. The values
suggest that we cannot detect the occurrence of anomalies.
One reason for this is that online methods such as Change

Finder should activate only when the state of time-series data
changes. In the problem setting, there was only one time
when the state changed, corresponding to the time when the
anomaly happened. In contrast,methods based on deep learn-
ing obtain anomaly scores that measure data deviation from
the normal state. Therefore, these methods should continu-
ously activate so long as the state remains abnormal following
anomaly occurrence, making anomaly detection easy. Fur-
thermore, ARmodels can capture only linear relations. Since
real data contains noise and periodicity is not constant, real
data is more varied. Figure 30 shows raw data and predic-

123

International Journal of Data Science and Analytics (2019) 8:137–164 161

Fig. 27 Values for F-measure
setting the filtering window l to
10,000

Table 4 Mean OP values with filtering window l size 1000

Dataset dLSTM(2) dLSTM(10) Predet(2) Predet(10) Single CAE SAE VAE

sin-data 91166.227 664.6911st 137052.072 120031.309 106726.515 83884.959 108036.093 41155.175

sincos-data 76314.258 868.1241st 131125.598 138563.474 125136.216 74744.67 14434.041 15755.052

ECG 27118.742 23956.155 28755.402 27412.34 21861.4741st 33035.515 26466.866 29395.34

Uwave 90424.371 53161.1751st 93958.598 94098.588 90561.052 94672.897 95177.34 94672.041

Plant 211960.2991st 250608.062 244954.454 234232.629 241073.959 254073.907 243577.948 249700.175

tion error when a linear model (y = Wx + b) is applied to
sincos-data. Comparing Fig. 30 with Figs. 9 and 10, the pre-
diction error becomes too large to capture such complicated
relationships using only linear transformations, this method
is not suited to this problem setting.

6 Conclusions

In this paper, we proposed dLSTM as an anomaly detec-
tion method based on prediction error for time-series data.
Time-series data are often corrupted by noise and havemulti-
mode, deteriorating the prediction error. It is thus difficult to
correctly perform anomaly detection. The proposed method
providesmultiple predictionmodels with delayed prediction.
Since we can delay the timing for obtaining predictive values

123

162 International Journal of Data Science and Analytics (2019) 8:137–164

Table 5 Mean FPN values with filtering window l size 1000

Dataset dLSTM(2) dLSTM(10) Predet(2) Predet(10) Single CAE SAE VAE

sin-data 60.814 160.062 76.577 65.928 44.289 21.598 9.3201st 28.835

sincos-data 38.062 70.423 43.443 70.670 52.381 15.639 13.1131st 27.546

ECG 20.866 20.691 24.608 23.206 19.093 0.9691st 14.773 1.866

Uwave 26.361 78.495 14.567 18.722 9.2681st 24.320 27.072 25.753

Plant 107.680 114.01 177.588 197.000 132.072 59.7841st 100.247 84.093

Table 6 Mean FPN values with filtering window l size 10,000

Dataset dLSTM(2) dLSTM(10) Predet(2) Predet(10) Single CAE SAE VAE

sin-data 19710.299 4178.6191st 75579.062 56905.412 13743.351 12650.000 72940.918 65043.567

sincos-data 7205.598 5850.7631st 21533.082 61789.588 51561.536 6273.536 6111.340 7162.763

ECG 21416.093 3080.6191st 4405.062 15552.670 7674.505 33304.649 26438.619 29929.155

Uwave 88199.897 8059.6491st 87416.969 89694.979 84333.371 91852.031 95093.68 91943.134

Plant 221745.7011st 253332.474 238183.701 242677.000 243789.247 254046.814 236747.351 248515.000

Table 7 Mean FPN values with filtering window l size 10,000

Dataset dLSTM(2) dLSTM(10) Predet(2) Predet(10) Single CAE SAE VAE

sin-data 0.0001st 21.691 17.186 4.165 0.0001st 16.381 0.0001st 3.351

sincos-data 3.340 22.227 0.0001st 18.258 0.0001st 17.66 0.0001st 0.0001st

ECG 0.041 4.474 4.928 3.567 3.588 0.0001st 0.0001st 0.0001st

Uwave 16.062 5.845 0.0001st 0.0001st 0.0001st 0.0001st 0.0001st 0.0001st

Plant 186.196 110.082 19.062 83.784 45.938 9.577 55.948 0.0001st

Table 8 CM with filtering window l size of 1000

Dataset dLSTM(2) dLSTM(10) Predet(2) Predet(10) Single CAE SAE VAE

sin-data 3.572 8.4321st 0.436 0.550 1.650 7.662 1.898 1.441

sincos-data 8.857 26.6361st 4.135 5.349 5.128 23.715 12.808 8.777

ECG −1.107 −0.05 − 0.271 − 1.335 − 2.109 − 4.174 − 2.736 − 4.329

Uwave −3.217 −5.863 − 2.556 − 2.870 − 2.084 − 3.359 − 3.958 − 4.019

Plant 3.5461st −0.370 − 3.245 − 3.476 − 3.112 − 3.496 − 3.080 − 3.249

Table 9 CM with filtering window l size of 10,000

Dataset dLSTM(2) dLSTM(10) Predet(2) Predet(10) Single CAE SAE VAE

sin-data 54.799 1005.5181st 34.492 38.126 58.884 68.342 31.557 36.416

sincos-data 77.713 261.4921st 55.075 49.344 48.66 112.531 101.551 79.588

ECG 23.940 150.5941st 50.799 29.697 37.485 0.255 10.659 7.361

Uwave 5.267 21.6381st 7.240 7.923 10.370 4.342 1.883 2.078

Plant 8.8171st 1.060 1.785 1.484 1.122 − 0.600 4.000 1.050

123

International Journal of Data Science and Analytics (2019) 8:137–164 163

Table 10 Computation times for each model [s]

dLSTM(2) dLSTM(10) Predet(2) Predet(10) Single CAE SAE VAE

Building time 97 235 109 255 89 0.187 0.157 0.339

Inference time 0.133 0.118 0.101 0.117 0.0774 0.0404 0.0367 0.0317

Fig. 28 Anomaly score of Change Finder setting the smoothing param-
eter to 1000. The red line represents the timestamp where the anomaly
occurred (color figure online)

Fig. 29 Anomaly score of Change Finder setting the smoothing param-
eter to be 10,000. The red line represents the timestamp where the
anomaly occurred (color figure online)

Fig. 30 Sincos-data and prediction errors in a linear model. Gray lines
represent the window w

until the correspondingmeasured values are acquired accord-
ing to the particular problem setting for anomaly detection,
we make use of measured values to select the most suited
prediction model. Our approach provides multiple predicted
value candidates in advance and selects that closest to the
measured value as the predicted value. By using themeasured
values, we made prediction errors small and clearly indi-
cated differences in anomaly scores for normal and abnormal
states.

In experiments using artificial and real datasets, the
proposed method performed well and was robust against
thresholds. The proposed method can be flexibly combined
with many other predictive models for time-series data.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Chauhan, S., Vig, L.: Anomaly detection in ECG time signals via
deep long short-term memory networks. In: Proceedings of IEEE
InternationalConference onDataScience andAdvancedAnalytics,
pp. 1–7 (2015)

2. Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A.,
Batista,G.: Theucr time series classification archive (2015). https://
www.cs.ucr.edu/~eamonn/time_series_data/

3. Chuah, M.C., Fu, F.: ECG anomaly detection via time series anal-
ysis. In: Proceedings of International Workshops on Frontiers
of High Performance Computing and Networking, pp. 123–135
(2007)

4. Gaddam, S.R., Phoha, V.V., Balagani, K.S.: K-means+ ID3: a novel
method for supervised anomaly detection by cascading k-means
clustering and ID3 decision tree learning methods. IEEE Trans.
Knowl. Data Eng. 19(3), 345–354 (2007)

5. Hayton, P., Utete, S., King, D., King, S., Anuzis, P., Tarassenko,
L.: Static and dynamic novelty detection methods for jet engine
health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
365, 493–514 (2007)

6. Hill, D.J., Minsker, B.S.: Anomaly detection in streaming envi-
ronmental sensor data: a data-driven modeling approach. Environ.
Model. Softw. 25(9), 1014–1022 (2010)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9(8), 1735–1780 (1997)

8. Kingma, D., Ba, J.: Adam: a method for stochastic optimization
(2014). arXiv preprint arXiv:1412.6980

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.cs.ucr.edu/~eamonn/time_series_data/
https://www.cs.ucr.edu/~eamonn/time_series_data/
http://arxiv.org/abs/1412.6980

164 International Journal of Data Science and Analytics (2019) 8:137–164

9. Kingma, D., Welling, M.: Auto-encoding variational Bayes. In:
Proceedings of the 2nd International Conference on Learning Rep-
resentations(ICLR) (2014)

10. Ma, J., Sun, L., Wang, H., Zhang, Y., Aickelin, U.: Supervised
anomaly detection in uncertain pseudoperiodic data streams. ACM
Trans. Internet Technol. 16(1), 1–20 (2016)

11. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P.,
Shrof, G.: LSTM-based encoder-decoder formulti-sensor anomaly
detection. In: Presented at ICML 2016 Anomaly Detection Work-
shop (2016). arXiv preprint arXiv:1607.00148

12. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term
memory networks for anomaly detection in time series. Proc. Eur.
Symp. Artif. Neural Netw. 23, 89–94 (2015)

13. Maruyama, Y., Yamanishi, K.: Dynamic model selection with
its applications to computer security. In: Information Theory
Workshop, pp. 82–87 (2004). https://doi.org/10.1109/ITW.2004.
1405279

14. Miyaguchi, K., Yamanishi, K.: Online detection of continuous
changes in stochastic processes. Int. J. Data Sci. Anal. 3(3), 213–
229 (2017)

15. Rayana, S., Akoglu, L.: Less is more: building selective anomaly
ensembles. ACM Trans. Knowl. Discov. Data (TKDD) 10(4), 42
(2016)

16. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contrac-
tive auto-encoders: explicit invariance during feature extraction.
In: Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pp. 833–840 (2011)

17. Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory
recurrent neural network architectures for large scale acousticmod-
eling. In: Proceedings of the Annual Conference of International
Speech Communication Association, pp. 338–342 (2014)

18. Sakurada, M., Yairia, T.: Anomaly detection using autoencoders
with nonlinear dimensionality reduction. In: Proceedings of the
MLSDA 2014 2nd Workshop on Machine Learning for Sensory
Data Analysis, p. 4. ACM (2014)

19. Saligrama, F.N.V.: Dynamic model selection for prediction under
a budget (2017). arXiv preprint arXiv:1704.07505

20. Sivaraks, H., Ratanamahatana, C.A.: Robust and accurate anomaly
detection in ECG artifacts using time series motif discovery. Com-
put. Math. Methods Med. 2015, 1–20 (2015)

21. Söelch, M., Bayer, J., Ludersdorfer, M., van der Smagt, P.: Varia-
tional inference for on-line anomaly detection in high-dimensional
time series (2016). arXiv preprint arXiv:1602.07109

22. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning
with neural networks. In: Advances in Neural Information Process-
ing Systems, pp. 3104–3112 (2014)

23. Takeuchi, J., Yamanishi, K.: a unifying framework for detecting
outliers and change points from non-stationary time series data.
IEEE Trans. Knowl. Data Eng. 18(4), 482–492 (2006)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1607.00148
https://doi.org/10.1109/ITW.2004.1405279
https://doi.org/10.1109/ITW.2004.1405279
http://arxiv.org/abs/1704.07505
http://arxiv.org/abs/1602.07109

	dLSTM: a new approach for anomaly detection using deep learning with delayed prediction
	Abstract
	1 Introduction
	1.1 Background
	1.2 Novelty of this study
	1.3 Related works
	1.4 Organization of this paper

	2 Anomaly detection based on data from a normal state
	3 Predicting time-series data within the normal state
	3.1 Building dLSTM model: step 1
	3.2 Calculation of prediction error: step 2
	3.3 Deriving the anomaly score: step 3

	4 Experimental settings
	4.1 Model architecture of dLSTM
	4.2 Comparative methods
	4.2.1 Single
	4.2.2 Predet
	4.2.3 CAE
	4.2.4 SAE
	4.2.5 VAE

	4.3 Artificial datasets
	4.3.1 Sin-data
	4.3.2 Sincos-data

	4.4 Real datasets
	4.4.1 ECG
	4.4.2 Uwave
	4.4.3 Plant

	5 Results
	5.1 Prediction accuracy performance
	5.2 Anomaly detection performance
	5.3 Evaluation of step 3 effects
	5.3.1 Filtering window: 1000
	5.3.2 Filtering window: 10,000
	5.3.3 The effect of filtering window size

	5.4 Evaluation of threshold robustness
	5.5 Computation time
	5.6 Results on non-deep learning methods

	6 Conclusions
	References

