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Abstract In this paper, we present a new fuzzy symbol-

ization technique for energy load forecasting with neural

networks, FPLS-Sym. Symbolization techniques transform

a numerical time series into a smaller string of symbols,

providing a high-level representation of time series by

combining segmentation, aggregation and discretization.

The dimensional reduction obtained with symbolization

can speed up substantially the time required to train neural

networks, however, it can also lead to considerable infor-

mation losses that could lead to a less accurate forecast.

FPLS-Sym introduces the use of fuzzy logic in the dis-

cretization process, maintaining more information about

each segment of the neural network at the expense of

requiring more space in memory. Extensive experimenta-

tion was made to evaluate FPLS-Sym with various neural-

network-based models, including different neural network

architectures and activation functions. The evaluation was

done with energy demand data from Spain taken from 2009

to 2019. Results show that FPLS-Sym provides better

quality metrics than other symbolization techniques and

outperforms the use of the standard numerical time series

representation in both quality metrics and training time.

Keywords Time series forecasting � Fuzzy logic �
Symbolic representation � Energy demand � Artificial
neural networks

1 Introduction

With all the technological advances in the last few decades,

many real-life sectors generate massive amounts of tem-

poral data daily, such as healthcare, finance, or energy. In

the energy sector, accurately forecasting energy demand is

critical in planning energy production and distribution.

Processing this massive amount of data is not a trivial task.

Therefore, it is frequent to use high-performance compu-

tational resources, such as clusters or GPUs; or to generate

and use high-level representations of this data that allow

for faster computations, such as symbolization.

Symbolization techniques provide a lower-length sym-

bolic representation of time series using aggregation and

discretization. The main challenge for a symbolization

technique is to reduce the time series length as much as

possible while not losing any relevant information. The

first proposal of a symbolization technique is Symbolic

Aggregate approXimation (SAX) [1], and it is still the most

widely used symbolization technique. SAX splits the time

series into equidistant segments using Piecewise Approxi-

mate Aggregation (PAA) [2] and transforms the mean

value of each segment to a symbol. Each symbol in SAX

represents an equiprobable interval assuming a normal

distribution. Many other variants of the SAX idea have

been proposed to specialize this technique for different
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fields or to address some of its main drawbacks. ESAX [3]

was created to be used in the finance field and also pre-

serves the maximum and minimum from each segment, as

the authors considered that only preserving the mean value

when working with financial data was insufficient. Adap-

tive SAX (aSAX) [4] was created to remove the time series

normality assumption from SAX. In the energy field, it is

common to use symbolization techniques for pattern-re-

lated tasks such as pattern extraction [5] and anomaly

detection based on patterns [6, 7]. Still, they are not

commonly used for the forecasting task [8].

Many different forecasting models have been used for

energy forecasting over the last few decades. While clas-

sical models such as ARIMA have been used to forecast

energy in various studies [9, 10], most recent works use

neural networks and hybrid models [11]. Several different

neural network architectures have been previously evalu-

ated under different circumstances. Bagnasco et al. [12]

used a multi-layer perceptron neural network to forecast

energy consumption in a hospital in 2015. Naji et al. [13]

used an extreme learning machine to predict energy con-

sumption in buildings in 2016. In 2019 [14], a methodol-

ogy to create ensembles of wavenets was proposed. The

methodology was evaluated with hourly load datasets from

Italy and the US. In 2020, Sajjad et al. [15] used a com-

bination of Convolutional Neural Networks (CNN) and

Gated Recurrent Unit (GRU) layers to forecast residential

loads. In 2021, Zhang et al. [16], proposed a multi-layer

model with CNN and Seq2Seq to simultaneously predict

three different loads (cooling, heating, and electricity) of a

Chinese industrial park. Hybrid approaches in the energy

field mainly use combinations of clustering and other

methods and ensembles. In 2011 [17], a hybrid model with

K-means and pattern-based search forecasting was pre-

sented with remarkable results while forecasting energy

data. In 2020 [18], a model using clustering and ARIMA

was proposed to predict energy in buildings. Furthermore,

an improved version of the K-means pattern-based fore-

casting model was presented for distributed computation

with Spark the same year [19]. In 2022 [20], a hybrid

model combining singular spectrum analysis and parallel

long short term memory neural networks presented great

results in building energy forecasting in comparison with

other models. In 2023 [21], a theory-guided deep neural

network using Attention, Long-Short Term Memory

(LSTM) layers and CNN layers was presented for solar

power forecasting. The theory-guided module of the

framework consists of expert-provided photovoltaic power

generation constraints that penalize the loss function of the

neural network when they are not met. Results show that

this approach outperformed several other deep learning

alternatives to predict solar power generation in Asia.

However, even though the most accurate results are

usually provided by neural network models, they can still

be challenging to use due to the large amount of data and

time required to train them. This can be a significant issue

in real-time decision-making, where the model may need to

be retrained frequently to provide the most accurate

forecasts.

In order to address this issue, we found out in our pre-

vious study [8] that symbolization techniques were a

powerful alternative time series representation, capable of

providing faster training times although not yielding the

same level of accuracy. Thus, in this study, we have

developed and evaluated a new fuzzy symbolic time series

representation to preserve more information about each

segment to provide more accurate forecasts while still

being faster than models that use the original time series

without any dimensionality reduction. More specifically,

this work provides the following contributions to the field:

1. We present a new symbolization technique, the first

one that uses a fuzzy representation to preserve more

information.

2. We provide a detailed analysis with statistical tests to

evaluate whether our proposal is consistently better

than previous symbolization techniques regardless of

the neural network configuration used.

3. We evaluate the effect of using three different

symbolization techniques in four neural network

architectures using a publicly available big data

dataset.

This manuscript is structured as follows: Sect. 2 provides

the theoretical background for the methods used in this

paper. Section 3 presents our fuzzy symbolization tech-

nique. Section 4 describes the experiments done to evalu-

ate the performance of the proposed method. Section 5

analyzes the results obtained in those experiments and,

lastly, Sect. 6 draws the most relevant accomplishments of

our work and proposes future lines of research.

2 Background

2.1 Symbolization Techniques

Numerosity reduction techniques reduce data volume by

using alternative smaller data representations. In the case

of univariate time series, the use of this kind of technique

would result in a new time series with the same number of

variables but fewer observations.

Time series symbolization is a numerosity reduction

technique that transforms a raw numerical time series T ¼
½T0; T1; T2; . . .; Tn� to a sequence of symbols of lower length

S ¼ ½S0; S1; S2; . . .; Sm�, usually combining aggregation and
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discretization. Any symbolization technique can be divided

into the following components:

1. How to reduce the length of the time series. This step

is usually done by splitting the time series into multiple

segments [1, 3, 4, 22, 23].

2. Which information must be preserved from each

segment. It may be a simple statistical value such as

mean [1, 4], maximum or minimum, multiple statis-

tical values [3] or something more sophisticated such

as the linear regression of the segment [22, 23].

3. How to transform the preserved values into a symbolic

string. This may be obtained via expert knowledge

[22], some specific criteria such as probability distri-

bution [1, 3, 22] or even optimization algorithms [4].

4. How long and how many symbols can be used for the

symbolic representation. Most symbolization tech-

niques provide this as a parameter that the user must

decide [1, 3, 4, 22, 23].

SAX [1] was the first symbolization technique published

and is still the most widely used. Segmentation in SAX is

done using Piecewise Approximate Aggregation (PAA),

splitting the time series into equidistant segments. The

mean value from each segment is preserved and the dis-

cretization is made assuming the time series follows a

normal distribution and each symbol of the symbols covers

an equiprobable interval of values for the mean of the

segments. The size of the segments and the number of

symbols are provided by the user.

Many other symbolization techniques have been pro-

posed based on the idea of SAX. Many authors claim that

SAX does not preserve enough information as it just uses

the mean value [3, 22, 23]. Extended SAX (ESAX) [3] uses

three symbols per segment in order to preserve the mean,

maximum and minimum of each segment. Trend-based

SAX (TSAX) [22] and TFSAX [23] are different alterna-

tives to add an extra symbol that represents the trend of the

segments. Adaptive SAX (aSAX) [4] uses the Lloyd

algorithm to find a new set of breakpoints that should better

resemble the original data distribution than the assumption

of normality from SAX. Since we want to use symboliza-

tion to forecast time series we will only make use of

symbolization techniques that make use of one symbol:

SAX and aSAX. This is made to create an experimental

scenario where all techniques can be compared. This is due

to the fact that, in the first place, it is not easy to decide

whether they should be compared by making use of equal

size segments or the same amount of symbols (if even

possible) and, in the second place, many of this techniques,

as they were intended for other tasks such as indexing or

classification don’t propose a way to transform the extra

information hold on the new symbols into a numerical

value (required for the forecasting task).

2.2 Artificial Neural Networks (ANN)

Artificial Neural Networks are machine learning models

inspired by the human’s brain neural system. ANNs are

structured in multiple layers of neurons where each neuron

can be connected to one or more neurons of another layer.

Each neuron computes a weighted sum of the inputs and

applies a usually nonlinear function chosen by the user

named activation function. The learning process of a neural

network consists of optimizing those weights to minimize

the difference between the output layer and the desired

output. In our experimentation, we compared four ANN

architectures.

Multilayer perceptrons (MLP) [24] are one of the most

simple and widely used feed-forward artificial neural net-

works. Due to lower complexity, they are easier to train

and perform fast operations. Nevertheless, previous work

has shown that classic feed-forward neural networks may

outperform many modern architectures. Its architecture

consists of at least three sequential fully connected layers:

one input layer, one or more hidden layers and the output

layer. In this architecture, the output of each layer y is a

vector computed according to Eq. 1, where W is a matrix

that contains all of the weights of the connections between

the neurons from the previous layer and the current one, x

is the input to the current layer and b is a vector of biases

and g is the activation function. The biases b and weights

W are learnable parameters that are optimized during the

learning process.

y ¼ gðWxþ bÞ ð1Þ

Elman’s Simple Recurrent Network [25] incorporates a

feedback loop on each hidden layer neuron, allowing it to

manage sequences with variable lengths and to take into

account the hidden output from the previous time-step t �
1 of the sequence in the computation of the current one.

This feedback loop is portrayed by an additional layer

denominated context layer. The connection from the hid-

den neurons to the context neurons always has a fixed

weight of 1, indicating that they will hold a copy of the

current hidden output ht. However, the connection from the

context neuron to the hidden neuron will have a new set of

weights U that will be used to consider the effect of pre-

vious elements of the sequence in the computation of the

next time-step. Mathematically, the output of a hidden

layer for a time-step t can be computed as follows.

ht ¼ gðWxt þ Uht�1 þ bÞ ð2Þ

Long-Short Term Memory neural networks were proposed

by Hochreiter [26] and changed the simple feedback loop

present in the previous architecture for a more complex one

in an attempt to address the exploding gradient and
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vanishing gradient problems [27]. In this architecture, two

different feedback loops are present in each neuron, one for

short-term memory (hidden state) ht and one for long-term

memory (cell state) ct. Furthermore, three different gates

are used to control the information flow between the inputs

and outputs of the neuron. The input gate it is used to

control the impact of the short-term memory in the creation

of the new states, the forget gate ft is used to control how

much of the long-term memory is forgotten and the output

gate ott is used to create the relationship between the short-

term memory and the long-term memory. The more com-

plex architecture of the LSTM neural networks allows

them to solve more complex problems at the expense of a

slower training speed, as each hidden neuron will have four

independent sets of weights W, recurrent weights U and

biases b. Mathematically, the LSTM hidden layer works as

follows (� represents the element-wise product for the

remainder of the paper).

it ¼ rðWixt þ Uiht�1 þ biÞ ð3Þ

ft ¼ rðWf xt þ Uf ht�1 þ bf Þ ð4Þ

ot ¼ rðWoxt þ Uoht�1 þ boÞ ð5Þ

ct ¼ ft � ct�1 þ it � gðWcxt þ Ucht�1 þ bcÞ ð6Þ

ht ¼ ot � gðctÞ ð7Þ

Lastly, GRU [28] neural networks follow a similar idea to

LSTM neural networks with a lower complexity as they

don’t use the memory cell and make use of only two gates

to control the information flow. The reset gate rt decides

how much of the past information needs to be forgotten to

create the new intermediate state for the current time-step

ĥt, acting as a short-term memory. The update gate zt
determines how much of the new state ht should be created

from the intermediate state ĥt and the previous hidden state

ht�1. Mathematically, this is expressed as follows:

zt ¼ rðWzxt þ Uzht�1 þ bzÞ ð8Þ

rt ¼ rðWrxt þ Urht�1 þ brÞ ð9Þ

ĥt ¼ gðWhxt þ Uhðrt � ht�1Þ þ bhÞ ð10Þ

ht ¼ð1� ztÞ � ht�1 þ zt � ĥt ð11Þ

2.3 Training Artificial Neural Networks

The process of training any neural network consists of

updating all the learnable parameters of the model (weights

and biases) to optimize a specific loss function between the

outputs of the neural network and their expected values.

This process is usually done via a gradient-based optimizer,

although any other optimization algorithms, such as

metaheuristics, can be used. For this task, we chose to use

the Adam [29] optimizer, as it is computationally efficient,

has little memory requirements and has been the most

widely used optimizer in neural network applications over

the past years. A detailed pseudocode of the Adam opti-

mizer can be found in Algorithm 1.

Algorithm 1: Adam

3 Fuzzy Piecewise Linear Segments
for Symbolization (FPLS-Sym)

FPLS-Sym is our proposal for a new symbolic time series

representation based on the linguist description technique

Fuzzy Piecewise Linear Segments [30]. A general over-

view of the steps required to obtain the representation can

be found in Fig. 1 and its pseudocode can be found in

Algorithm 2. The key novelty introduced in this repre-

sentation is the use of a fuzzy set with a triangular mem-

bership function to withhold more information about each

segment, while still maintaining most of the advantages of

other symbolization techniques. This use of fuzzy logic

will make it slightly slower than other symbolization

techniques, such as SAX or aSAX, as they only use the

mean of the segment. However, it should remain faster than

the original time series, thanks to the segmentation process

involved. The FPLS-Sym representation requires the user

to provide the three hyperparameters specified in Table 1.
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Algorithm 2: FPLS-Sym

In the first step, FPLS-Sym uses a similar approach to

the aSAX symbolization technique, splitting the time series

into equidistant segments S of a fixed-sized n. Afterwards,

the mean of the observations of each segment is computed

and all of the means are clustered with the Lloyd algorithm.

The desired number of clusters a will be provided by the

user and it will also be the alphabet size of the symbolic

representation (number of symbols used). Thus, there will

be a direct relationship between each cluster and symbol,

where each symbol represents the mean of its cluster

observations. These values will also be the universe of

discourse of the fuzzy set.

pi ¼
Xn

k¼1

jmi � k þ ci � yi;kj
yk � n

ð12Þ

Afterward, a piecewise linear approximation of each seg-

ment si is computed. This is done through the use of the

Least Square Method for linear regression, where we pre-

serve the slope mi and intercept ci. Additionally, we

compute the mean error ratio pi between the regression

residuals and each original observation yi;k of the segment

(Eq. 12). At last, a triangular membership function is

applied to create a fuzzy relationship between each seg-

ment’s linear approximation and each symbol of the

alphabet. The membership function for the entire segment

will be the mean of the membership function for all

observations within that segment. Equation 13 defines the

triangular membership function between the point k of the

segment Si and one of the elements of the universe of

discourse gj, where ri;k ¼ jmi � k þ ci � gj (distance

between an element of fuzzy set and the linear approxi-

mation) and b is a tunable hyperparameter that controls the

level of overlap between the elements of the fuzzy set and

pi.

lðsi;jÞ ¼

0 if ri;k � pi þ b

1 if ri;k ¼ 0

1� ri;k
pi þ b

if ri;k � pi þ b

8
>><

>>:
ð13Þ

Thus, the FPLS-Sym time series representation requires

storing a vector of membership degrees for each segment

instead of only the mean value used in other symbolization

techniques, such as SAX or aSAX. Thus, the neural net-

work model may take into account three different factors

while using the proposed representation. First, thanks to the

use of the triangular membership function, the model can

take into account how close each value is to each symbol’s

mean. Second, thanks to the use of the error rate of the

linear regression pi as a penalization, lower membership

degrees will usually indicate a worse linear approximation.

Lastly, since the vector of membership degrees of the

segment is the mean of its equivalent for each of the

observations, the model can take into account the trend of

the segment as the membership degree for a symbol will be

0 if no part of the linear approximation is nearby. Thus, the

FPLS-Sym contains a lot more information than the other

classical symbolization techniques, that only use the mean

of the segment and assign a symbol based on a Gaussian

distribution (SAX) or a previous clustering process

(aSAX). Figure 2 shows the computation of the FPLS-Sym

representation for the segment displayed in the plot.

4 Experimentation

4.1 Data Description and Preprocessing

All the models compared in this work were trained and

tested with energy demand data from the Spanish national

electricity grid (Fig. 3), scrapped from the official website

of the partly state-owned corporation that operates the grid,

REE (Spanish Electricity Network) [31].

Their website provides information about the expected

demand, the actual demand, and various other variables
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related to gas emissions and energy production. Each

observation on the dataset is made every 10 min and it

provides information about energy demand from 2007 to

the current date. However, emissions and energy produc-

tion were not recorded until much later. For this paper, we

only used the actual demand value from 2009 to 2019. The

dataset did not present any missing values and the only

preprocessing step was fixing the daylight saving time

(DST) so every day had 24 h. This was done by adding an

extra hour with the mean of the previous and the next one if

the clock is advanced or by keeping the mean of the

repeated hour if the clock is turned back to standard time.

The dataset was divided into three partitions preserving

chronological order: 70% training data, 10% validation

data, and 20% test.

4.2 Selection of Hyper-parameters

for Symbolization Techniques

In order to use the symbolization techniques we are com-

paring (SAX, aSAX and FPLS-Sym) we need to provide an

alphabet size (total amount of symbols available for the

discretization process) and a segment size. Selecting any of

these parameters is not trivial and there is no way to find an

optimal value without doing trial and error.

Fig. 1 A general overview of the steps required to obtain the FPLS-Sym representation

Table 1 Hyperparameters of FPLS-Sym

Hyperparameter Meaning

a Alphabet size

n Segment size

b Overlap of the membership function
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In the case of the alphabet size, the use of larger

alphabet sizes would provide more symbols, but each

symbol would cover a smaller interval. As we have a high

number of symbols, it is more likely to fail the symbolic

forecast, but, whenever we predict the expected symbol,

the difference between the expected numerical value and

the numerical value provided by the symbol should be

smaller in most cases. This would be further accentuated if

models take into account some notion of order between

symbols as it would reduce the number of times a predicted

symbol represents an interval far away from the expected

one. The exact opposite situation would happen for low

alphabet sizes.

In the case of the segment size, the selection of a larger

segment size will provide better training times, as they will

provide a smaller sample size to train; however, it will

provide worse numerical approximations to the original

time series, as we would to need to repeat more times the

numerical value used to represent the symbol.

Another important factor to take into account from using

a symbolic representation is how easy they are to interpret.

This approach is particularly useful when experts provide

reasonable intervals for each symbol that represents

something meaningful for posterior decision-making. In

our experimentation, we have led more towards the inter-

pretation approach for the selection of hyper-parameters.

We selected the segment size and alphabet size, making

use of the same criteria of our previous study [8]. As such,

we studied the use of a segment size of 6 and alphabet sizes

of 7 and 13.

4.2.1 Sample Extraction with Sliding Windows

Training a neural network with time series data requires a

previous step in which we create samples with an input and

its desired output. In order to create these samples, we

made use of a sliding window that covers the number of

observations corresponding to two consecutive days (the

first for the input and the second for the output). This

results in the use of a sliding window of size 144 when

training models with the original time series and a sliding

window of size 24 when training models with symbolic

representations with the hyper-parameters we chose. Since

the objective is to create models that predict energy

demand always from 0:00 to 23:50 we took into account

two alternative steps to move the sliding window. The use

of a sliding window step of 1 creates models trained with

more samples, capable of doing forecasts from any hour of

the day but that requires more time to train while the use of

a daily window step creates models trained with fewer

samples, thus, they are trained faster but they are always

limited to make forecasts from observations starting at

0:00.

Fig. 2 An example of the computation of FPLS-Sym for a segment using an overlap b ¼ 0:75 and the symbol centers G ¼ f0:5; 1:5; 2:5; 3:5g
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4.3 Experiment Description and Setup

All the experiments done in this work are done to compare

how well neural network models perform with and without

symbolization and how well they perform in comparison

with other machine learning models. More specifically, we

will evaluate the optimal way to integrate the proposed

symbolization in the neural network, compare how accu-

rately each symbolization technique is capable of predict-

ing the next symbol and compare how accurately all of the

models are capable of forecasting the energy consumption

in its numerical representation.

In order to do so, extensive experimentation will be

conducted with all neural network models using a trial-and-

error approach to make the comparison as fair as possible.

For reproducibility purposes, we provide all the hyperpa-

rameters evaluated in this section. Any unmentioned

parameters were kept to the default value of the Ten-

sorFlow [32] framework, which was used for all experi-

mentation. We tested topologies between 5 and 60 hidden

neurons (increasing by 5) of the MLP, ELman, LSTM and

GRU neural network architectures. Furthermore, in all of

them, three different hidden activation functions were

evaluated: hyperbolic tangent (tanh), sigmoid and ReLU.

The random seed used to initialize the weights was 1996.

After several preliminary experiments, the value of the

overlap of the triangular membership function b was set to

3.5. All models were trained during up to 75 epochs with

early stopping if the results did not improve for 10 epochs.

We used the cross-entropy loss function for the symbolic

time series and the mean squared error for the numeric time

series. The learning rate (Adam’s stepsize) when working

with the symbolic representation was raised to 0.005 since

with the default value of 0.001 it was not converging. The

computer used to execute all the experiments had 32 GB of

RAM and an AMD Ryzen 5 2600X running at 3.6 GHz.

Additionally, since we are working with time series

data, we will also evaluate the optimal way to extract

samples with a sliding window in the case of each symbolic

representation and the numerical representation. More

specifically, we will evaluate whether it is more interesting

to use a window step of 1, in which we will create a new

sample after each observation/simple or whether it is more

useful to do a daily step, in which a sample is only created

when the first observation/symbol happens at 0:00.

4.3.1 Integrating FPLS-Sym: Representation Encoding

as Input and Output

Artificial neural networks require a numerical representa-

tion in order to make all the computations required in the

architecture. While the proposed representation has a

numerical representation that provides richer information

than other symbolization techniques (the membership

degrees) it is unclear if the use of that encoding will be

optimal in the output layer. Thus, we will evaluate three

different ways in which our symbolic representation can be

encoded in the output layer.

In the first one, ‘‘membership’’, the neural network will

try to forecast the next values for the membership function.

In this case, the neural network does not learn anything

about the defuzzification process, which will be done

through the use of the argmax function. This should

notably lead to more complex architectures and accurately

forecasting the fuzzy membership will be a harder task than

the other two alternatives.

Fig. 3 Two weeks of demand data from REE
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The second alternative, ‘‘one-hot encoding’’ consists in

transforming the a symbols of the alphabet into an output

vector in f0; 1ga where the symbol gi is represented with

the vector that only has a value of 1 in position i. This

would be the simplest encoding that can be used but will

also remove any notion of order during the training pro-

cess. Thus, the neural network will value in the same way

errors that are close or far away from the expected value.

The third and last alternative, ‘‘ordinal’’, is an ordinal

regression representation for neural network proposed in

[33]. This encoding solves the issue of the second one, as it

makes the neural network aware of the order between

symbols during the training process. In this case, the rep-

resentation of a symbol gi of the alphabet is a vector in

f0; 1ga � 1, where the symbol i is represented as a vector

of ones until the i� 1 position, and the remaining elements

set to 0. Additionally, this encoding requires the use of the

sigmoid activation function in the output layer and the use

of the mean squared error loss as the objective function.

5 Results

5.1 Statistical Tests

Some of the results obtained in the experiments are sup-

ported by statistical tests performed with a significance

level a ¼ 0:05. Particularly, for each comparison made,

using a Shapiro-Wilk test, we could reject the normality

assumption for at least one of the samples being compared.

As such, we use a Wilcoxon signed-rank test to compare

paired samples of the performance metrics. A pair is any

case in which we use the exact same methodology steps

(architecture, topology, activation, sliding window step,

symbolization technique and encoding) except one step

that defines the groups. There are multiple ways to for-

mulate the hypothesis of the Wilcoxon signed-rank test. In

our experimentation, we will consistently use the same

hypothesis formulation. The null hypothesis will be that the

pseudomedian of the differences between samples is neg-

ative. A p-value inferior to the significance level would

lead us to reject the hypothesis, in which case, we could

claim with confidence of 1� a that the metric in the first

sample usually has a greater value than the second sample.

Table 2 shows the results of all Wilcoxon signed-rank tests

conducted. These results will be discussed later in their

corresponding sections.

5.2 Forecasting Performance Metrics

Since we want to evaluate our models under two different

situations (accurately predicting the next symbol or

approximating the original time series) we have two sets of

performance metrics.

In order to evaluate symbolization metrics, we consid-

ered the rooted mean squared error (RMSE, Eq. 14) and

the accuracy. In order to calculate the symbolic RMSE (the

RMSE while using a symbolic representation), each sym-

bol is replaced with an integer that represents its position

on the alphabet. We will refer to the symbolic RMSE as

RMSE-Sym for the remainder of this paper. The best

topology was always selected based on the lowest RMSE-

Sym as it will also penalize wrong symbols that represent

intervals far away from the expected value. The accuracy is

the percentage of predicted symbols that correspond with

their expected symbol.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðŷi � yiÞ2

N

s
ð14Þ

where ŷi is the predicted value, yi is the expected value and

N is the sample size.

In the case of predictions with a numerical representa-

tion, we used the RMSE metric (defined previously in

Eq. 14) and the mean absolute percentage error (MAPE,

Eq. 15)

MAPE ¼ 1

N

Xn

i¼1

j y� ŷ

y
j ð15Þ

5.3 Impact of the Encoding Used in the Symbolization

Techniques

One of the most important aspects of the proposed exper-

imentation, was to identify what was the optimal way to

integrate the symbolic representations in the neural net-

works, as they require numerical input and output. Thus,

we evaluated the use of two types of encoding for all

symbolization techniques as well as the use of the mem-

bership degrees for FPLS-Sym.

The results obtained, displayed in the statistical tests

(Table 2—rows 1 and 2) prove that the use of ordinal

encoding in all symbolization techniques (SAX, aSAX and

FPLS-Sym) improves both metrics (provides a lower

RMSE-Sym and a higher accuracy). Additionally, the use

of the membership representation in the output layer pro-

vided some interesting results for FPLS-Sym. When it was

used with a feed-forward neural network the best results

were provided, however, when working with recurrent

neural networks the use of the membership function was

usually more beneficial. However, the overall best models

found (as can be seen in Table 3) still made use of the

ordinal encoding.
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5.4 Impact of the Sliding Window’s Sample

Generation

Another relevant factor before the application of the neural

network architecture is how to prepare and feed the sam-

ples used to train the neural network given the nature of the

time series data. Particularly, we evaluated two different

ways of extracting the samples: one in which we only feed

samples starting at the first hour of the day (daily) and one

in which we feed as many samples as possible creating a

new sample in every time-step (1-step). Table 4 shows the

best models found while forecasting the time series in its

symbolic form.

As expected, the use of the daily-step window signifi-

cantly reduces the required training time since it provides

less sample for training. However, it did provide signifi-

cantly better performance metrics too (Table 2—rows 3

and 4). This behaviour is most likely caused by the creation

of too many incoherent samples due to the daily seasonality

of energy data. We define as incoherent samples any two or

more training samples that force the model to always fail

the forecast of at least one of them since they share the

same input but require different outputs. Since energy

consumption is highly correlated with human and industrial

activity, we found the same symbolic string starting at

different hours and it will usually require different outputs.

Therefore, due to the nature of our data, objective and

methodology, using a daily-step window should always be

preferred although it restricts our model to make forecasts

with inputs that always have to start at midnight, which is

the most common use case of day-ahead forecasting

models.

5.5 Symbolization Techniques Comparison

The last alternative in the proposed methodology is the

selection of the symbolization technique. Particularly, we

want to check whether any symbolization technique pro-

vides better quality metrics than the others when the neural

network is used to forecast the next 24 symbols. A com-

parison of all of them using alphabets with 7 and 13

symbols is provided in Table 4. The result show that FPLS-

Sym outperformed both SAX and aSAX independently of

the other hyperparameters evaluated in our methodology.

This is the expected behaviour as FPLS-Sym is capable of

providing more accurate information to the input layer of

the neural network at the expense of more space to be

stored and some additional computational power, that

explains the slightly slower training time required when

using this symbolization technique. The best models for

each of the alphabet sizes used the previously discussed

optimal training methodology for our data: a MLP archi-

tecture with ordinal encoding and a daily-step sliding

window to provide the training samples.The only differ-

ence between them is the number of neurons on their

hidden layer and the activation function used. Another

important factor to highlight is that even FPLS-Sym

models that don’t use ordinal encoding (Table 3) or use a

daily-step sliding window with recurrent neural networks

provide better results than the best models found for the

other symbolization techniques. Therefore, also taking into

account the results of the statistical tests conducted

(Table 2—last 5 rows) we can conclude that the use of

FPLS-Sym will provide a significant improvement on

RMSE-Sym and accuracy over the other symbolization

techniques used at the expense of a small increase in

calculations.

5.6 Forecasting the Time Series in Its Numerical

Form

At last, we will compare the performance of symbolization

techniques with the same neural network architectures

trained with the numerical representation as well as other

machine learning models. Symbolic forecasts are trans-

formed into numerical forecasts by replacing each symbol

with its center value and repeating that value as many times

as long is its corresponding segment. Figure 4 displays

how the best model for aSAX, FPLS-Sym and the

numerical representation prediction in one week of the test

dataset. Table 5 compares the performance of the numer-

ical forecast between the best models found for each

symbolization technique, the best models obtained with the

numerical representation and other regression algorithms.

Among all the methods evaluated, FPLS-Sym provided

the best forecast, improving the results of all symbolization

techniques and the other algorithms that used a numerical

representation. The best model with FPL-Sym provided a

RMSE of 1.1655 and a MAPE of 3.29%, obtaining a rea-

sonable improvement over the second-best performant

model and being capable of training in just under 7 s. The

second-best performant model was the best neural-net-

work-based model that provided better performance met-

rics than the other symbolization techniques at the expense

of a much higher training time. This high training time is

easily explainable due to the higher dimensionality of the

numerical representation, the use of more training samples

through a one-step sliding window and the complexity of

the recurrent LSTM units. The third-best performant model

was the neural network trained with aSAX with a daily

window and 13 symbols, providing quality metrics slightly

worse than the numerical LSTM but also training much

faster. Lastly, most neural-network-based models provided

better quality metrics than the other machine learning

algorithms evaluated in Table 5.
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5.7 Uses Cases and Limitations of the Proposed

Approach

As can be observed in the results displayed in this section,

the use of the FPLS-Sym technique provides more accurate

results in a faster time than the models trained with the

numerical representation. Furthermore, even though it is a

more complex symbolization technique, the time required

to train the neural network still remains competitive,

especially when using the MLP architecture. This partially

thank to the fact that after taking into account the encod-

ings used, the FPLS-Sym representation only requires an

additional neuron in the input layer in comparison with the

ordinal input from SAX and aSAX. In general, there are

three main use cases of the proposed symbolization tech-

nique. The first one would be to train quickly an initial

model that may be used as a baseline to compare other

models. A second use would be for better interpretation of

the results. In that instance, the forecast is provided in its

symbolic form, helping experts in the field make decisions

and learn frequent patterns in the studied time series. A

third extremely useful use case of the proposed approach

would be instances in which a model needs to be retrained

frequently. For example, in the energy sector, major

Table 2 Wilcoxon signed-rank

test
Metric X1 X2 T p value

RMSE-Sym One-hot Ordinal 961660.0 1:41� 10�173

Accuracy Ordinal One-hot 971110.5 7:48� 10�183

RMSE-Sym 1-step window Daily window 969941.0 4:85� 10�180

Accuracy Daily window 1-step window 972253.0 7:24� 10�182

RMSE-Sym (MLP?FPLS) Membership Ordinal 350.0 0.0078

Accuracy (MLP?FPLS) Ordinal Membership 450. 0.0002

RMSE-Sym (RNN?FPLS) Ordinal Membership 3061.0 2:27� 10�5

Accuracy (RNN?FPLS) Membership Ordinal 2927.0 0.0002

RMSE-Sym SAX aSAX 222294.0 5:65� 10�62

Accuracy SAX aSAX 231280.5 3:68� 10�74

RMSE-Sym aSAX FPLS-Sym 434728.0 5:50� 10�125

Accuracy FPLS-Sym SAX 244789.0 0.0498

Training time (s) FPLS-Sym SAX 292600.0 2:79� 10�13

H0 : X1 � X2 are symmetric about l\0

Table 3 Comparative of FPLS-

Sym neural network training

defuzzification strategies

making use of daily-step sliding

window and ordinal encoding

Alphabet size ANN output Architecture Activation Neurons RMSE (Sym) Accuracy

7 Membership MLP sigmoid 45 0.5337 0.7113

7 Membership Elman tanh 25 0.6000 0.6634

7 Membership LSTM tanh 60 0.5430 0.7103

7 Membership GRU ReLU 55 0.5382 0.7151

7 Ordinal MLP tanh 50 0.5047 0.7489

7 Ordinal Elman ReLU 50 0.5924 0.6701

7 Ordinal LSTM ReLU 35 0.5594 0.7067

7 Ordinal GRU ReLU 25 0.5768 0.6862

13 Membership MLP sigmoid 55 0.8585 0.5295

13 Membership Elman tanh 55 0.9595 0.4900

13 Membership LSTM tanh 50 0.8766 0.5111

13 Membership GRU tanh 40 0.8773 0.5233

13 Ordinal MLP tanh 55 0.8077 0.5620

13 Ordinal Elman ReLU 25 0.9654 0.4631

13 Ordinal LSTM ReLU 45 0.9320 0.5117

13 Ordinal GRU ReLU 45 0.9123 0.4990

Best metrics per alphabet size in bold
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changes to energy policies or the infrastructure used will

most likely lead to a major change in the time series

behavior. In those cases, using this type of model can be

extremely useful, as it can be retrained much faster than

other complex models that will require a much larger

training time and many more observations until it can learn

properly the new behavior. Additionally, thanks to the

lower complexity of models trained with FPLS-Sym, they

may also be deployed in edge devices at the consumer

household, reducing the cost of frequent and large com-

munication between sensors and data centers and helping

to preserve the privacy of the consumer (federated

learning).

Nevertheless, the main limitation is the kind of data used

to train the models. Since the symbolization process will

inevitably compact the information of the numerical rep-

resentation, the use of the proposed technique in time series

with low granularity or trivial problems will most likely

yield underwhelming results.

6 Conclusion

In this paper, we applied symbolization techniques to

forecast the energy demand in Spain in a fast and precise

manner and presented a new algorithm, FPLS-Sym, that

outperformed the other techniques for the forecasting task.

The proposed symbolization technique was evaluated with

Spanish energy demand data from 2009 to 2019 with

observations gathered every 10 min. Extensive experi-

mentation was done on this dataset comparing different

input encodings, window size, neural network architectures

and topologies, symbolization techniques and other fore-

casting algorithms with three main objectives in mind.

First, we wanted to evaluate how valuable would be to

integrate a fuzzy representation in symbolization tech-

niques. Second, we wanted to apply the proper statistical

tests to verify the optimal way to incorporate the symbolic

representations in a neural network model. Third, we

wanted to do everything in a publicly available big data

Table 4 Best topologies for all models trained with ordinal encoding

Representation (alphabet size) Window step Architecture Neurons Activation Symbolic RMSE Accuracy Training time (s)

SAX (7 symbols) Daily MLP [Ordinal] 60 sigmoid 0.6366 0.6888 4.9495

aSAX (7 symbols) Daily MLP [Ordinal] 45 ReLU 0.6181 0.6664 3.4701

FPLS-Sym (7 symbols) Daily MLP [Ordinal] 50 tanh 0.5047 0.7436 6.6461

SAX (7 symbols) 1 GRU [Ordinal] 55 sigmoid 0.7269 0.6470 459.7355

aSAX (7 symbols) 1 LSTM [Ordinal] 45 ReLU 0.6578 0.6371 590.4094

FPLS-Sym (7 symbols) 1 LSTM [Ordinal] 45 tanh 0.5654 0.6940 806.4591

SAX (13 symbols) Daily MLP [Ordinal] 60 ReLU 0.9893 0.5584 5.0936

aSAX (13 symbols) Daily MLP [Ordinal] 25 ReLU 0.9548 0.5250 6.8402

FPLS-Sym (13 symbols) Daily MLP [Ordinal] 45 ReLU 0.8077 0.5585 6.9993

SAX (13 symbols) 1 GRU [Ordinal] 60 tanh 1.1634 0.4823 419.7400

aSAX (13 symbols) 1 GRU [Ordinal] 25 sigmoid 1.0421 0.4919 1054.4451

FPLS-Sym (13 symbols) 1 LSTM [Ordinal] 55 ReLU 0.8701 0.5298 1406.6871

Best metric per alphabet size in bold

Fig. 4 Predictions of the best model for aSAX (on the left), FPLS-Sym (on the middle) and the numeric representation (on the right) over the

span of a week of the test partition
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dataset, verifying the usefulness of the approach with large

amounts of data and allowing easy reproduction of our

findings in future research. The results from the experi-

mentation done in this paper showed that the use of the

proposed fuzzy technique clearly outperformed the other

classic symbolization techniques, pointing out how useful

it is the use of the fuzzy representation to improve the

accuracy of the model. Secondly, thanks to the multiple

Wilcoxon signed-rank test applied, we saw that FPLS-Sym

consistently outperform the other alternatives and it should

ideally be used with an MLP architecture, ordinal encoding

and a daily sliding window. Lastly, the results showed that

our best FPLS-Sym model did not only outperform the

other symbolization techniques but was also capable of

providing better metrics to forecast the original time series

representation and required much less training time than

the models trained with the numerical representation.

Future lines of work may study the inclusion of

exogenous variables, different machine learning models,

other fuzzy representations, i.e. using other membership

functions; or accelerating the selection of all the parameters

evaluated using the GPU.
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Table 5 Original/numerical time series forecast and training time for the best numeric and symbolic models

Representation (alphabet size) Window step Architecture Neurons Activation RMSE MAPE Training time (s)

SAX (7 symbols) Daily MLP [Ordinal] 60 sigmoid 1.6291 0.0475 4.9495

SAX (13 symbols) Daily MLP [Ordinal] 60 ReLU 1.4307 0.0408 5.0936

aSAX (7 symbols) Daily MLP [Ordinal] 45 ReLU 1.6618 0.0484 3.4701

aSAX (13 symbols) Daily MLP [Ordinal] 25 ReLU 1.3655 0.0390 6.8402

FPLS-Sym (7 symbols) Daily MLP [Ordinal] 50 tanh 1.8401 0.0502 6.6461

FPLS-Sym (13 symbols) Daily MLP [Ordinal] 55 tanh 1.1655 0.0329 6.9993

SAX (7 symbols) 1 LSTM [Ordinal] 60 ReLU 1.8391 0.0532 667.5387

SAX (13 symbols) 1 LSTM [Ordinal] 60 ReLU 1.5903 0.0454 584.8650

aSAX (7 symbols) 1 LSTM [Ordinal] 45 ReLU 1.8402 0.0531 441.6372

aSAX (13 symbols) 1 GRU [Ordinal] 25 sigmoid 1.5306 0.0439 1054.4451

FPLS-Sym (7 symbols) 1 LSTM [Ordinal] 45 tanh 2.9634 0.0829 575.4878

FPLS-Sym (13 symbols) 1 LSTM [Ordinal] 55 ReLU 1.3884 0.0391 1406.6871

Numeric Daily MLP 60 ReLU 1.5542 0.0434 8.5964

Numeric 1 LSTM 55 tanh 1.2889 0.0363 40,959.7513

Representation Window step Prediction model Optimal parameters RMSE MAPE Training time (s)

Numeric 1 Decision Tree max_depth: 15 2.6410 0.0733 87.4397

Numeric 1 Random Forest max_depth:20

n_estimators: 150

1.7465 0.0492 15,484.5837

Numeric 1 Gradient Boosting Trees max_depth: 20

n_estimators: 150

learning_rate: 0.1

1.4900 0.0422 22,284.1009

Parameters evaluated: max depth 2 ½10; 15; 20; 25; 30�; n_estimators 2 ½50; 100; 150; 200�; learning_rate 2 ½0:05; 0:1; 0:15; 0:2; 0:3�
Any other parameter not mentioned corresponds to scikit-learn default values. Multi-step forecast is done recursively
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indicated otherwise in a credit line to the material. If material is not
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Troncoso, A.: Big data time series forecasting based on pattern

sequence similarity and its application to the electricity demand.

Inf. Sci. 540, 160–174 (2020). https://doi.org/10.1016/j.ins.2020.

06.014

20. Jin, N., Yang, F., Mo, Y., Zeng, Y., Zhou, X., Yan, K., Ma, X.:

Highly accurate energy consumption forecasting model based on

parallel LSTM neural networks. Adv. Eng. Inf. 51, 101442

(2022). https://doi.org/10.1016/j.aei.2021.101442

21. Du, J., Zheng, J., Liang, Y., Liao, Q., Wang, B., Sun, X., Zhang,

H., Azaza, M., Yan, J.: A theory-guided deep-learning method for

predicting power generation of multi-region photovoltaic plants.

Eng. Appl. Artif. Intell. 118, 105647 (2023). https://doi.org/10.

1016/j.engappai.2022.105647

22. Zhang, K., Li, Y., Chai, Y., Huang, L.: Trend-based symbolic

aggregate approximation for time series representation. In: 2018

Chinese Control And Decision Conference (CCDC),

pp. 2234–2240 (2018). https://doi.org/10.1109/CCDC.2018.

8407498

23. Yu, Y., Zhu, Y., Wan, D., Liu, H., Zhao, Q.: A novel symbolic

aggregate approximation for time series. In: Proceedings of the

13th International Conference on Ubiquitous Information Man-

agement and Communication (IMCOM) 2019, pp. 805–822

(2019). https://doi.org/10.1007/978-3-030-19063-7_65

24. Almeida, L.B.: Multilayer Perceptrons. IOP Publishing Ltd and

Oxford University Press, Bristol (1997)

25. Elman, J.: Finding structure in time. Cogn. Sci. 14, 179–211
(1990). https://doi.org/10.1016/0364-0213(90)90002-E

26. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural

Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.

1997.9.8.1735

27. Hochreiter, S.: The vanishing gradient problem during learning

recurrent neural nets and problem solutions. Int. J. Uncertain.

Fuzz. 06(02), 107–116 (1998). https://doi.org/10.1142/

S0218488598000094
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