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Abstract Main global environment and ecological func-

tions and structure affected by land use/cover changes

(LUCC). Analysis of the dynamic LUCC can be very

useful in biosphere reserves (BRs) management. The Land

use and cover (LULC) spatio-temporal changes in the

Arasbaran BR were classified (as Agricultural, Forest and

Barren/Range lands), and compared with future spatial

pattern (simulated using the CA-Markov model) to evalu-

ate qualitative and quantitative changes of this BR LULC

over time (1989, 2000 and 2013 with 2037). This analysis

consisted of the whole area and also in respect to each of

the zones within the Arasbaran BR (as a new approach to

assess BR management quality). Based on this approach,

the LUCC monitoring alongside the future simulation

offers an early warning system that also shows us trends

and consequences of the changes for the whole BR as well

as for each zone (including the core zone) of BR sepa-

rately. The results show a downward trend for forestland at

the expense of increasing agricultural and barren/range

land surface areas. Furthermore this loss of remnant forest

vegetation is not only true for the whole BR (; including its

buffer and transitional zones) but is happening within the

core zone where it will probably continue more severely in

the near future. The results demonstrate the priority need

for more severe regulations regarding protection of this BR

against LUCCs and for its valuable core zone forest LULC

in particular.

Keywords Biosphere reserve � Deforestation � Landscape
dynamic � CA–Markov model

Introduction

Protected areas under the surveillance of the Departments

of Environment (DOE) or Environmental Protection

Agencies (EPAs) or Organizations all around the world are

established to maintain and protect valuable biodiversity

needed by human being for different reasons. But if LUCC

occur within or in close surrounding of these protected

areas, their usefulness regarding conservation of biodiver-

sity for the future generations will be severely threatened

(Kharouba and Kerr 2010; Montesino Pouzols et al. 2014;

Overmars and Verburg 2005; Verburg et al. 2006). BR is

an area with terrestrial and coastal ecosystems and is

designed to promote solutions to reconcile conservation of

biodiversity with its sustainable use. BR is composed of

and also organized into 3 interrelated zones; the core area,

the buffer zone and transition area (Kušová et al. 2008;

Saricam and Erdem 2012). According to the BR model,

core zones consist of areas designated to be strictly

reserved and protected by surrounding buffer zones where

traditional (low impact) land use practices are allowed and

then with transition zones where more intensive land use

practices are gradually permitted (Lourival et al. 2011;

Saricam and Erdem 2012). Based on this model of BR

sustainable development is achieved while protection and

conservation of natural resources also maintained; includ-

ing biodiversity as well as land (Kušová et al. 2008; Lange

& Vahid Amini Parsa

aminiparsa@ut.ac.ir

Ahmadreza Yavari

ayavari@ut.ac.ir

Athare Nejadi

nejadiathareh@gmail.com

1 Department of Environmental Planning, Faculty of

Environment, University of Tehran, Qods Street, Enghelab

Avenue, Tehran, Iran

123

Model. Earth Syst. Environ. (2016) 2:178

DOI 10.1007/s40808-016-0227-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s40808-016-0227-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40808-016-0227-2&amp;domain=pdf


2011). Management measures are then based on a dynamic

approaches to LUCC constantly being monitored and

evaluated. Unfortunately, despite its potential for sustain-

able land use management practices, the BR model in Iran

has only been used for a primary zoning of landscapes with

exceptional natural resources followed by a static (more

often) unsuccessful management. The simple zoning and

delineation of the boundaries are often not sufficient to

preserve and maintain ecosystems and the biodiversity

(Bates and Rudel 2010; Verburg et al. 2006). All LUCC

issues are related to or within a human-environment system

where interactions of various drivers with different feed-

backs and consequent interactions affect the development

patterns (Lambin et al. 2001; Verburg et al. 2004). LUCC

identifies all kinds of human modification on the Earth’s

surface (Jokar Arsanjani et al. 2013; Lambin and Geist

2006) and is a complicated process caused by various

social and environmental factors in different spatial and

temporal scales (Rindfuss et al. 2004; Valbuena et al.

2008). LUCC influence main ecological functions and

critical issues of global environment (de Chazal and

Rounsevell 2009; Dong et al. 2009).

Thus, future LUCC simulation makes predictions of

changes in the landscape pattern or structure. It is now

feasible to evaluate trends and changes with given quan-

tities (amount), in specific locations and time of most

probable changes. Regarding the results more proper

planning and more effective recommendations are

achieved and on-time policy-making meeting obligations

for a sustainable development may become available.

This research was attempted to provide information on

the present LULC pattern of Arasbaran BR harboring

valuable genetic resources. Analysis of changes in the trend

of landscape pattern was aimed using the past LULC pre-

sented by RS data, its present landscape cover condition

and finally the future LULC using simulation modeling for

the whole BR as well as for each zone.

Materials and methods

Study area

Considering (national and global) importance of Iranian

BRs containing important wild remnants and relic vegeta-

tion (belonging to before the ice age era) and also the

important wild relatives of main crops (grains and forages)

as local land races the Arasbaran BR in the northeastern

region of Iran may be considered to be worth of preser-

vation in particular. The Arasbaran BR is located in the

north of the Eastern Azerbaijan province, Iran. It is about

160 km away from the capital city Tabriz and lies within

between the 38� 430 4100 N to 39� 80 1100 N and 46� 390 5000

E to 47� 10 4800 E (Fig. 1). Biogeographically, this area is

called the Hirakano-vasini region or Arasbaranian region.

It is in a highly mountainous region rising from 256 to

2896 m above sea level (highest peak Keshish-Qelbisii).

The diversity of vegetation and habitats in the core area

proves the importance of having a well-defined land use

plan and resource use policy within this whole region and

for the Arasbaran BR specifically. Until 2011 total popu-

lation living in this area was about 7911 persons living in

79 villages (4 of them abandoned today) (Implementation

of the 2011 Iranian Population and Housing Census 2011).

In the core zone there are 4 villages with a total population

of 120 people (in the buffer zone and transition areas there

are 59 and 16 villages with a total population of 4345 and

3446 persons respectively). The livelihood of people in

these villages is basically an agrarian economy with self-

sufficiency based on local supply of the natural resources.

One of their unique characteristics is that they tend to obey

the ecosystem supply carrying capacity in correlation to the

seasonal (calendar) resource availability.

Data collection

Remotely sensed data have been widely used as a very cost

effective mean to obtain geo-referred data and maps for

evaluation and monitoring of LULC. Land use change

models are increasingly used for prediction and analysis of

LULC and its consequent impacts (Koomen and Beurden

2011; Lambin et al. 2001) in decision-making and for

planning support systems aiming at sustainable land use

and development patterns.

Following the literature review appropriate LULC maps

with acceptable temporal ranges were provided to analyze

LUCC trend in Arasbaran BR. Considering suitability of

cloud-free spatial coverage with a relatively high spatial

and spectral resolution of several multi-date satellite ima-

ges were necessary. These were to be taken at the same

time of the year (same plant growing seasons). RS images

of Landsat satellites were selected to be used because it

affords an investigation of long-term variation in LULC

types in the study area (Table 1). Once limitations and

constraints regarding acquisition of data were taken into

account a 24-years period or time-span was found poten-

tially possible for monitoring and evaluation of LULC

dynamic. The research was undertaken through the steps

shown in Fig. 2.

Data (pre-) processing and image classification

Pre-processing of satellite images is essential and aims at

the unique goal of establishing a more direct linkage

between the data and biophysical phenomena it represents

(Abd El-Kawy et al. 2011; Coppin et al. 2004). Geometric
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correction was done using GPS data during field surveys.

Image enhancement was used to adjust and improve

specific visual qualities of the image using Histogram

Equalization that was applied by ERDAS Imagine soft-

ware. Map derivation from the images was done by unsu-

pervised and supervised classification in Erdas Imagine 9.1

environment. The goal of the unsupervised classification is

to achieve a general knowledge about the available LULC

classes in the area as a result it proceeds without any choice

of specific information about the features contained in any

image (Giri et al. 2005; Giri 2012). The outputs of this

stage will be used as a helpful aid in training samples. The

ground referenced data required for image classification

gathered by combining Google-earth and GPS points dur-

ing the field survey. A signature file generated from ground

reference data using the Signature Editor in ERDAS

imagine 9.1. The Supervised Classification by contrast was

done using the Maximum Likelihood Classifier (MLC) for

each of the images separately. So multiband classes were

derived statistically and each unknown pixel was assigned

to the class determined by the MLC. The MLC tool con-

siders both the variances and covariances of the class sig-

natures when assigning each cell to one of the classes

represented in the signature file (liu and Yetik 2010). The

output of this stage is the LULC map of each image. Three

LULC categories were extracted from TM, ETM?, and

OLI images including those of agricultural land, barren/

range land and forest land types.

Following image classification stage an accuracy

assessment was performed for each image based on 260

points selected by stratified random method in ERDAS

imagine 9.1 environment. Stratified random sampling

techniques were readily accepted as the most appropriate

Fig. 1 Location of Arsbaran BR (with its management zones)

Table 1 Landsat data sources

Satellite Sensor Acquisition Band combination

Landsat 4–5 TM 16 July 1989 1,2,3,4,5,7

Landsat 7 ETM? 14 July 2000 1,2,3,4,5,7

Landsat 8 OLI 10 July 2013 1,2,3,4,5,6,7
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method of sampling for resource evaluation studies that use

remote sensing imagery data. This is because important

minor categories are also satisfactorily represented (Gen-

deren et al. 1978). Classification products were finally

compared with reference data (GPS points, topographic

maps and Google earth software) using Error Matrix before

being used for evaluation.

Prediction of future LULC

A large diversity of land usemodelling (including simulation

models in time and locations) based on various methods and

using different applications are contested by recent literature

reviews i.e.: (Heistermann et al. 2006; Koomen and Beurden

2011; Verburg et al. 2004). There are several conceptual

approaches to land use change modelling. These include:

models based on Cellular Automata, or those using Statis-

tical Analysis for modelling, models using Markov chain

approach, or Artificial Neural Network and finally those of

Agent BasedModelling (Koomen andBeurden 2011; Subedi

et al. 2013). Integration of Markov chains and Cellular

Automata approaches to modelling (C-A Markov model) is

used in advantage for this case study in order to predict the

future LULC of Arasbaran BR.

Markov chain

Markov chain presented by a Russian mathematician

named Andrei A. Markov in 1970 but in land use model-

ing, it was first used by Burnham (Burnham 1973). Markov

chains are stochastic processes (Balzter 2000) and uses the

matrices that show changes between

land-use categories (based on the basic core principle of

continuation of historical development) (Koomen and

Beurden 2011) and widely used in modeling and simulat-

ing changes and trends of LULC (Balzter 2000; Coppedge

et al. 2007; Hathout 2002; Luo et al. 2008; Muller and

Middleton 1994; Weng 2002). The homogeneous Markov

model for prediction of land use change can be mathe-

matically presented as (Subedi et al. 2013):

L tþ1ð Þ ¼ Pij � L tð Þ and

Pij ¼

P11 P12 . . . P1m

P21 P22 . . . P2m

..

. ..
. ..

. ..
.

Pm1 P1m21 . . . Pmm

2
6664

3
7775

ð1Þ

where L(t) and L(t?1) represent land use statuts at time t and

t ? 1 respectively. And
Pm

j¼1 Pij ¼ 1(i, j = 1, 1, 2,…,

m) is the transition probability matrix in a given state. A

disadvantage of this type of analysis is that it is not spatial,

requiring additional assumptions to allocate spatial char-

acteristics to LULC types (Araya and Cabral 2010; Koo-

men and Beurden 2011).

Cellular automata (CA)

The most well-known land use change conceptual concept

is called CA developed by Ulam in 1940 (Singh 2003).

This was first used by Tobler in geographical modelling

(Tobler 1979). CA is probably the simplest dynamic spatial

model (Ward et al. 2000) for simulation of future land use.

It consists of a grid or a raster space, a set of states char-

acterizing the grid cells and a definition for the neighbor-

hood arrangement of cells, a set of transition rules

determine the state transitions for each of the cells as a

function of the position of neighbouring cells and a

sequence of discrete time steps then updates composition

and configuration of all the cells simultaneously (White

and Engelen 2000). The basic principle of CA is that land

use change for any location (cell) can be explained by its

current state and changes in its neighboring cells. It is, thus,

based on the core principles of continuation of the histor-

ical development and result of neighborhood interaction

(Koomen and Beurden 2011).

Landsat image
1889, 2000, 2013

Image preprocessing

Unsupervised 
classification

Supervised classification

Training 
samples

Classified data
(Land use maps 1989, 

200, 2013)

Accuracy assessment

Change detection

CA-Markov Model

Future Land use 
2037

Model 
validation

Fig. 2 Demonstration of the

research methodology as a

flowchart
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CA–Markov model

Both the ‘‘Cellular Automa’’ and the ‘‘Markov Chain’’

models are considered to be discrete dynamicmodels in time

and state (Ye and Bai 2007). Combination of Markov Chain

and Cellular Automata used together present considerable

advantages for modeling land use changes (Guan et al. 2011;

Pontius and Malanson 2005). The inherent problem with

Markov chain model is lack of providing spatially referred

output and despite the fact that transition probabilities may

be accurate on per category basis, but there is no specification

on spatial distribution of each land use category occurrence

(Ye and Bai 2007). Cellular automa adds intoMarkovmodel

not only spatial contiguity but also the probable spatial

transitions occurring in particular area over a time (Subedi

et al. 2013). In fact, it retrieves the quantity of change from

the Markov Chain model and makes it geo-referred and

spatial through a cellular automata (Jokar Arsanjani et al.

2013). CA–Markov model use Markov Chain Analysis

outputs particularly its Transition Area file to apply a con-

tiguity filter to grow out land use characteristics from time

two into a later time period. In essence, the CA develops a

spatially explicit weighting that is more in areas proximate to

the existing land uses. This ensures that land use change

occurs proximate to existing like land use classes, and not

wholly random (Zubair 2006). Series of studies applied CA–

Markov in LULC modelling and simulation (Gong et al.

2015; Guan et al. 2011; Halmy et al. 2015; Jokar Arsanjani

et al. 2013; Kamusoko et al. 2009; Memarian et al. 2012;

Nejadi et al. 2012;Yang et al. 2014). TheCA–Markovmodel

is considered a robust approach because of its quantitative

estimation and the spatial and temporal dynamic it has for

modelling LULC dynamic (Koomen and Beurden 2011;

Sang et al. 2011; Subedi et al. 2013). Furthermore, both GIS

and RS data may be easily incorporated in C-A Markov

modelling (JokarArsanjani et al. 2013;Yeqiao andXinsheng

2001) to facilitate tasks and to reduce the cost and the time

needed.The algorithms available in the IDRISI Andis envi-

ronment used to predict the future LULC of the study area

based on CA–Markov model.

Validating the LULC prediction model

In order to investigate similarities between actual image

and the simulated image, model’s output was compared to

the present or actual land use (composition and configu-

ration) map. Comparing simulated or predicted LULC map

representing the 2013 LULC with actual LULC (map of

2013) was based on KIA (Kappa Agreement Index)

approach, a method widely used to validate LCLU change

predictions (see (Ahmed et al. 2013; Jiang et al. 2015; Jr.

et al. 2001; Vliet 2009)). The VALIDATE module in

IDRISI Andes was used for this purpose.

LULC changes detection

Cross tabulations used to determine and present the

quantity of conversions occurred regarding each partic-

ular LULC to other types replacing them (Pontius et al.

2004). LULC maps for pairs of consecutive years com-

pared LULC types using cross-tabulation in Idrisi Andes

software package specifically for quantification of

changes rather than having spatially referred location of

changes during 1989–2000, 2000–2013, 1989–2013 and

2013–2037. This is important for determination of trends

and consequential land use types appearing or disap-

pearing in order to calculate costs and benefits and later

impacts of land use on local economy as well as their

impacts on the regional environment (Forman and

Godron 1986).

Results and discussion

LULC maps and precision assessment

Following the finding was obtained by data analysis. It

should be noted here that the limitations in selection of

satellite images did not permit selecting and using data for

identical time spans (serial or equal dates in between two

dates when images could be acquired). Only by assuming

similarity of conditions and changes comparisons involved

may be correct. Before using RS data their accuracy is

analyzed for robust classification results. In thematic maps

obtained from RS data the term accuracy is typically used

to express the degree of ‘correctness’ of a map or a clas-

sification (Foody 2002; Pontius and Millones 2011). The

overall classification accuracy (the percentage of correctly

classified pixels (Liu and Zhou 2004)) of each LULC

classification map for 1989, 2000 and 2013 was estimated

to be 85.4, 86.03 and 88.9 % respectively. The overall

statistical Kappa values were also 0.8233, 0.8445 and

86.765 respectively.

The percentage and coverage of major LULC types in

Arasbaran BR were derived from three satellite images for

1989, 2000, 2013 (see Fig. 3 and Table 2).

Image classification (of 1989, 2000 and 2013) results

show three distinct LULC classes; Agricultural, Forest, and

Barren/Range land cover types. The main types of LULC

are barren/range land with 56.91, 61.39 and 60.81 % of

BR’s total surface area in 1989, 2000 and 2013 respec-

tively. Results show that a continuous intense trend of

reducing or decreasing forestland from 1989 to 2000

existed but that this trend became relatively less intensive

(from 40.21 to 34.95 %) by 2000–2013 and then was even

further reduced to about 33.34 % during 2007–2013

(Fig. 4).
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Agricultural lands increased from 2.86 % in 1989 to

3.65 % by 2000 and then to 5.754 % for 2013 due to the

fact that the traditional livelihood remains farming.

Agricultural lands are mainly located close to the northern

edge and north-eastern limits of the BR where alluvial

lands close to the Aras River are found. Also Table 3

Fig. 3 LULCs maps; actual

(1989, 2000, to 2013) and

simulated (2013 and 2037)
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shows the percentage and coverage of major LULC types

in respect to each of the zones within the Arasbaran BR.

The forest area of 4726.154 ha in 1989 was reduced to

3375.083 ha in 2013. The calculation of the forest land

area in the buffer zone and transition area will reduce to

23340.24 and 248.7871 ha by 2013 respectively.

Prediction of future LUCCs and validating LULC

prediction model

To predict future LULC types, Markov model was applied

to estimate Markovian probability transition area and

Matrix using LULC maps of 1989 and 2013 and finally the

output was used to predict LULC pattern changes in 2037

based on 2013 as the initial state (basic land cover image).

Assuming that the present management and current land

use change trends will continue in future, through CA–

Markov model the future LULC (for the year 2037) were

predicted to be as given by Fig. 3 and Table 2. Indicating

an incremental trend of agricultural and barren/range lands

at the expense of deforestation until 2037 (Fig. 4).

Estimates regarding forest surface area within the core

zone, buffer zone and the transition area reaches 27.73,

33.72 and 1.56 % of this zone by 2037 (Table 3). Unfor-

tunately forecasts show a constant decline of forest surface

area as it has been during the past 24 years (from 1989)

(Fig. 5).

In order to validate the LULC prediction given by

models, the simulated land use areas were compared with

those actually present. The LULC for 2013 was predicted

through the model and was then compared with the actual

LULC map of 2013. Comparison of the simulated map

prepared for the year 2013 and that of the classified map is

Table 2 Area (ha) of LULC type in Arasbaran BR; 1989–2037

LULC type Year

1989 2000 2013 2037

A 2313.462 2949.49 4641.12 6863.81

BR 45898.04 49530.75 49041.06 50366.20

F 32428.79 28198.74 26964.11 23419.75

A Agricultural land, BR barren/range land, F forestland

0

20

40

60

AR BR F

Ar
ea

 (1
00

0h
a)

LULC type

1989 2000 2013 2037

Fig. 4 LUCCs in Arsbaran BR during 1989–2037

Table 3 Area (ha) of LULC

type within each Arasbaran BR

zones; 1989–2037

BR zones LULC type Year

1989 2000 2013 2037

Core zone A 0.337695 4.208937 3.518966 26.40944

BR 5656.414 6290.855 7004.472 7476.916

F 4726.154 4090.191 3375.083 2879.751

Buffer zone A 277.2378 507.9412 1180.824 2197.404

BR 32868.49 36198.37 35924.5 37864.27

F 27294.52 23762.47 23340.24 20385.7

Transition area A 2051.601 2452.8 3479.518 4667.818

BR 7393.979 7061.354 6125.909 5033.753

F 408.1182 347.459 248.7871 154.2993

0
10
20
30
40
50
60
70
80

1989 2000 2013 2037

A
re

a 
(%

)

Year
*A: Agricultural land, F: Forest land, B: Barren/range lan, 

cz: core zone, bz: buffer zone, ta: transition area

Acz Abz Ata Fcz Fbz

Fta Bcz Bbz Bta

Fig. 5 Area changes of LULCs in each BR zones during the study

period
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shown by Table 4. Visual analysis indicates that simulated

LULC map and actual map have relatively close

resemblances.

As shown in Table 4 agricultural land has the best

agreement where the simulated area is 4596.2905 ha

(5.700 %), while the actual area 4641.119 ha (5.754 %).

It clearly illustrates that in the simulated LULC map,

barren/range land and agricultural land areas are under-

estimated but the predicted amount of forestland is

overestimated. Yet more detail statistical analysis (based

on the Kappa coefficient) measuring the overall agree-

ment of the matrix, the ratio of diagonal values sum-

mation versus the total number of pixel counts within the

matrix, as well as the non-diagonal elements, would

probably better assess the model accuracy (Jokar

Arsanjani et al. 2013).

Kappa value of 0 illustrates agreement between actual

and reference map (equals chance agreement), the upper

and lower limit of kappa is ?1.00 (occurs when there is

total agreement) and -1.00 (represents agreement which is

less than chance) (Congalton 1991; Lakide 2009; R. Gil

Pontius 2000). The accuracy assessment process was done

using VALIDATE module existing in the IDRISI Andis

environment. Resulting K values (Kno = 0.968, Kstan-

dard = 0.963, KlocationStrata = 0.983 and Kloca-

tion = 0.983) were all well above 0.9 showing a

satisfactory level of accuracy. If the result were greater

than 0.80 for each kappa index agreement, K statistics were

accurate (Viera and Garrett 2005). The model validation

indicates that the 2013 simulation has a good agreement

with the 2013 reference map. It is therefore concluded that

CA–Markov modeling is suitable for accurate prediction of

future LUCCs and it may be very useful for environmental

management decision making and planning regarding

management of protected areas of biosphere reserves.

LULCs

Overall LUCC of all LULC type categories during various

periods are given by Table 5. A deforestation of

6010.74 ha existed between 1989 and 2000 resulting to

increased agricultural land (112.68 ha) and barren/range

land (5898.06 ha). At the same time 1777.05 ha of barren/

range lands were converted into forest which means

4233.69 ha of forest land was lost.

The amount of deforestation during second time period

(2000-2-13) was 5912.73 ha (transformed (deforestation)

to barren/range lands and farmland). Rigorous protection

during 2000 to 2013 period resulted to reduced net loss of

forests (1260.9 ha), Yet by 1989 to 200, 4233.69 ha of

forests was degraded. Finding regarding deforestation from

2013 to 2037 period is alarming especially if this trend is

going to continue. Accordingly when deforestation has

been 11923.47 ha during 1989 to 2013 then by 2037, 92.16

and 4444.11 ha of forest is projected to be converted into

agricultural land and barren/range lands respectively.

Statistics demonstrate an increase of total LULC change

through the time; more in the second period compared to

the first. The annual average of overall Arasbaran LUCCs

amount between 1989 and 2013 was 539/68 ha per year,

meaning that 12952.35 ha of the 80654.8 ha (total area of

the study area) changed during past 24 years. Figure 6

designated to show which categories the forests converted

into and shows conversions into Barren/range land was the

most common.

Changes in each zone are also given by Table 6. Total

amount of degradation has increased in all three zones

during the second time period (2000-2013) compared to the

first (1989-2000); while based on forecasting it is predicted

that this trend will hopefully decrease during the third

period (2013-2037) in all zones due to more rigorous

protective measures already adopted from the last decade.

Total loss of the core zone forests is estimated equal to

755.46 ha by 2037 with 1233.63 and 5675.13 ha of forest

loss for the buffer zone and the transition areas

Table 4 Comparison of actual and projected LULC types in 2013

LULC type Area (ha)

Actual map Simulated map

A 4641.12 4596.29

BR 49041.06 4731.05

F 26964.11 2872.97

Table 5 Area (ha) of LULC

conversions in during the study

period

LULC conversions Times pan

1989–2000 2000–2013 1989–2013 2013–2037

F to A 112.68 54.27 226.8 92.16

F to BR 5898.06 5858.46 9305.73 4444.11

A to BR 235.35 347.04 177.03 11.61

BR to F 1777.05 4651.83 6.5094 6.5094

BR to A 745.29 2040.75 2296.17 2112.12

Total 8768.43 12952.35 12012.24 6666.509
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respectively. Despite the increasing deforestation every-

where within BR, it is particularly in the core zone which

degradation and deforestation is most regrettable. Between

1989–2013 the core zone has experienced deforestation of

1862.1 ha and will face another 614.61 ha of deforestation

by 2013.

The calculation indicates the loss of forest area at 396.92

and 55.24 ha per year in the whole area and the core zone

between 1989–2013 respectively. The rate of gain in

agricultural land will be lower in 2013–2014 compared to

1989–2013 (see Table 7, 8).

Unfortunately forestland underwent declines over the

studied period and the downward trend continues in the

near future. Gains of Barren/range land from forestland

was about 77.57 ha per year while in the contrast only

22.35 ha per year gained from it to forestland (the only

gains source for forest land) in 1989–2013. Table 8 shows

Forestland

Barren/range land Agricultural land

177.03

2296.1

Fig. 6 Transitions to and from LULC types during 1989–2013 (in ha)

Table 6 Area (ha) of LUCCs in

Arasbaran BR zones by the time
BR zones LULCs Time span

1989–2000 2000–2013 1989–2013 2013–2037

Core zone F to A 0 0.27 0.27 4.68

F to BR 837.09 1024.74 1861.83 609.93

A to BR 0.9 1.35 2.25 0.36

BR to F 210.42 325.98 536.4 119.16

BR to A 3.87 3.96 7.83 21.33

Total 1052.28 1356.3 2408.58 755.46

Buffer zone F to A 10.98 7.2 18.18 6.3

F to BR 123.39 144 267.39 101.25

A to BR 189.99 204.66 394.65 5.22

BR to F 66.96 50.04 117 9.27

BR to A 583.02 1197.27 1780.29 1111.59

Total 974.34 1603.17 2577.51 1233.63

Transition area F to A 101.7 46.8 148.5 81.45

F to BR 4929.21 4687.02 9616.23 3726.81

A to BR 46.89 139.59 186.48 5.94

BR to F 1497.51 4264.83 5762.34 883.71

BR to A 154.8 841.5 996.3 977.22

Total 6730.11 9979.74 16709.85 5675.13

Table 7 Rate of losses, gains

and net changes of LULC areas

(ha per year)

LULC type 1989–2013 2013–2037

Losses Gains Net changes Losses Gains Net changes

F -397.19 0.27 -396.92 -189.01 0.27 -188.74

A -7.38 105.12 97.75 -0.48 91.85 91.36

BR -95.94 395.12 299.17 -88.28 185.66 97.38

Total -500.51 500.51 0 -277.77 277.77 0
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that the core zone lost about 1351.07 of its forests in the

period 1989–2013; it is also predicted we are losing about

the 20.64 ha each year by 2037. The highest amounts of

change were generally in the core zone with degradation

forestland to Barren/range land during 1989–2013 and then

also will maintain its highest conversion amount in future

24 years. A net forest loss of 1325.7 ha during 1989 to

2013 where presumably very limited human intervention is

allowed is surprising!. Most valuable forest reserves and

wild species (plants and animals) with genetic resources

are presumably protected and conserved in situ by the

presence of the same core zone which is severely

threatened.

Conclusions

This study showed the important role of LUCCS for bio-

sphere reserves planning and management where modeling

can provide proper information in time for decision making

against BRs degradation. The above mentioned method for

extraction of LULC maps (1989, 2000, and 2013), and the

simulation used to predict the future LULC (2037) aided by

the CA–Markov modeling, have allowed us an analysis of

LUCCs in respect to both the type and the extent of each

LULC while also illustrating LULC conversions for the

whole Arasbaran BR as well as for each of the BR zones

separately.

The LULC modelling provided accurate forecasting

(comparatively verified) regarding the composition and the

configuration of LUCCs. In addition the results of this

study indicate that the integrating unsupervised classifica-

tion and visual interpretation with supervised classification

of remote sensing images can create a robust mean of

extracting appropriate LULC maps. The predictive ability

of the simulation model proved to be good and CA–Mar-

kov as a useful tool for (quantitative and qualitative)

LUCCs prediction. This is why we believe that the CA–

Markov model can be useful in land use policy design and

we can effectively achieve various land use planning goals

and objectives within the framework of sustainable land

use development and management policy recommenda-

tions as general and particularly BR stewardship objec-

tives. Results gained from similar studies also (i.e. (Gong

et al. 2015; Jokar Arsanjani et al. 2013; Nejadi et al. 2012))

confirmed that CA–Markov model has considerable

advantages and can be used as a robust tool to land use

planning.

Planning is done for the future, so it is necessary for the

land use planners and policy makers to obtain information

about the past, the present and the future in order to

establish goals and to make appropriate decisions regarding

policies needed to deal with future land use challenges.

This method using LULC simulation along with statistical

analysis is convenient for responding to this need by pro-

viding dynamic LULC change prediction (analyzing pre-

vious and current LULC maps and predicting future

LULC). Analyzing the land use change dynamic within

biosphere reserve zones makes it possible to find out the

plausible and potential future threats for the whole reserve

as well as for each zone separately. According to the

concept of BRs, the main mission of the biosphere reserve

is to strengthen general awareness of mutual interrelations

between humankind and the biosphere natural environ-

ment, improve monitoring, education and participation in

biosphere reserves management (Lange 2011; Lourival

et al. 2011); so increasing the awareness and capacity

building of people should go hand in hand with effective

protection and then to reclaim the lost forest areas fol-

lowing successful conservation of remaining valuable land

Table 8 Rate of losses, gains

and net changes of LULC areas

(ha per year) within each

Arasbaran BR zones

BR zones LULC type 1989–2013 2013–2037

Losses Gains Net changes Losses Gains Net changes

Core zone F -77.59 22.35 -55.24 -25.61 4.97 -20.64

A -0.09 0.34 0.24 -0.02 1.08 1.07

BR -22.68 77.67 54.99 -5.85 25.43 19.58

Total -100.36 100.36 0 -31.48 31.48 0

Buffer zone F -11.90 4.88 -7.02 -4.48 0.39 -4.10

A -16.44 74.94 58.49 -0.22 46.58 46.36

BR -79.05 27.59 -51.47 -46.70 4.44 -42.27

Total -107.40 107.40 0 -51.40 51.40 0

Transition area F -406.86 240.10 -166.77 -158.68 36.82 -121.86

A -7.77 47.70 39.93 -0.25 44.11 43.86

BR -281.61 408.45 126.84 -77.54 155.53 77.99

Total -696.24 696.24 0 -236.46 236.46 0
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covers. Therefore, considering the dominant trend of

deforesting it is vital to design and define different sce-

narios of land use changes. Conservation strategies based

on spatially explicit land use allocation models to over-

come threats and regressive tendencies.

Unfortunately, land degradation is not restricted to the

Arasbaran buffer zone or its transition area, but it also

includes the BR’s core zone. As mentioned core zone has

experienced major LUCCs. If the core zone of BRs

encounters land use change such as deforestation, it is a

priority to consider and engage resources for remediation

and corrective action plan at all the scales seemingly

necessary and appropriate.

Ecosystem degradation and landscape damage or

alterations in Arasbaran BR zones is more significant

within its core zone. The core zone at the heart of the

Arasbaran BR is transformed by human activity, espe-

cially by logging and agriculture operation. Deforestation

and human intervention are important threats to the highly

rated biodiversity resources within the study area. Future

land use change maps may be used as early warning

system for conservation of this core zone reserve which

consists of excellent natural resources but also as a lab-

oratory where ecosystems are represented in their natural,

undisturbed state as well as are not transformed by human

activities (Lange 2011).

These LULCs may affect important species, biodiver-

sity, natural habitat of fauna and flora and provision of

ecosystem services (Martı́nez et al. 2009; Newbold et al.

2015; Zebisch et al. 2004). Meanwhile it is highly rec-

ommended to establish new zones and to extend the core

zone as well as to arrange new buffer zones to improve

protection of the core zone landscapes more effectively.

This is a main priority task and even better if this is

accomplished by engagement of local beneficiaries.
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