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Abstract Over the years, urban growth models have proven

to be effective in describing and estimating urban develop-

ment and have consequently proven to be valuable for

informed urban planning decision. Therefore, this paper

investigates the implementation of an urban growth Cellular

automata (CA) model using a GIS platform as a support tool

for city planners, economists, urban ecologists and resource

managers to help them establish decision making strategies

and planning towards urban sustainable development. The

area used as a test case is the River Shannon Basin in Ireland.

This paper investigates the spatio-temporally varying effects

of urbanization using a combined method of CA and GIS

rasterization. The results generated from Cellular automata

model indicated that the historical urban growth patterns in

the River Shannon Basin area, in considerable part, be

affected by distance to district centres, distance to roads,

slope, neighbourhood effect, population density, and envi-

ronmental factors with relatively high levels of explanation

of the spatial variability. The optimal factors and the relative

importance of the driving factors varied over time, thus,

providing a valuable insight into the urban growth process.

The developed model for Shannon catchment has been cal-

ibrated, validated, and used for predicting the future land use

scenarios for the future time intervals 2020, 2050 and 2080.

By involving natural and socioeconomic variables, the

developed Cellular automata (CA) model had proved to be

able to reproduce the historical urban growth process and

assess the consequence of future urban growth. This paper

presented as a novel application to the integrated CA-GIS

model using a complicated land use dynamic system for

Shannon catchment. The major conclusion from this paper

was that land use simulation and projection without GIS

rasterization formats cannot perform a multi-class, multi

factors analysis which makes high accuracy simulation is

impossible.

Keywords Land use � GIS � Cellular automata �
Algorithms � Projections

Introduction

Urbanization, land cover and land use transformation have

been universal and important socioeconomic phenomena

around the world. Urban growth has been accelerating with

the significant increase in urban population (Cohen 2004;

DeFries et al. 2010; Preston 1979). Although urbanization

promotes socioeconomic development and improves qual-

ity of life, it is the most powerful and visible anthropogenic

force that has caused the fundamental conversion from

natural to artificial land cover in the cities around the world

(Clarke et al. 1997; Cohen 2004; DeFries et al. 2010;

Preston 1979).
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Rapid urban expansion has marked effects on environ-

ment and socio-economy, it usually happens at the expense

of prime agricultural land, with the destruction of natural

landscape and public open space such as: displacement of

agriculture and forest (Kueppers et al. 2004; Sim and

Balamurugan 1991; Simmie and Martin 2010; Chen et al.

2010); decline in wetlands and wildlife habitats (Serneels

and Lambin 2001); local impact on hydrology, degradation

of ecosystem compositions and global impact of changes in

atmospheric compositions (Foley et al. 2005).The spatio-

temporal process of urban development and the social–

environmental consequences of such development deserve

meticulous study by urban geographers, planners, and

policy makers because of the direct and profound impacts

on human beings (Sim and Balamurugan 1991; Simmie

and Martin 2010; Chen et al. 2010; Cohen 2004; DeFries

et al. 2010; Preston 1979; Evans 2006).

In order to obtain better understanding of urban growth

process, recent issues related to urban growth have

attracted increasing attention in literature, ranging from

spatial and temporal land cover patterns, the factors

affecting the urban growth, to urban growth scenarios by

using Land Cover maps, Geographic Information Systems

(GIS) and different modelling techniques (Li 2014; Pija-

nowski et al. 2002; Lambin 1997; Liu et al. 2005; Herold

et al. 2003, 2005).

Land use/cover models have been proven to be effec-

tive in describing and estimating urban development and

have consequently proven to be valuable for informed

urban planning decisions (Munshi et al. 2014; Herold

et al. 2003; Sim and Balamurugan 1991; Cohen 2004).

Cellular automata (CA) have gained popularity as mod-

elling tools for urban process simulation. Since the

pioneering work of Tobler (1979), several approaches

have been proposed for modifying standard Cellular

automata (CA) in order to make them suitable for urban

simulations (White et al. 1997, 1999; Itami 1994; White

and Engelen 1993). Cellular automata based models are a

powerful tool for representing and simulating spatial

processes underlying the spatial decisions due to their

accuracy, simplicity, flexibility and intuitiveness. This

paper investigates the implementation of an urban growth

Cellular automata (CA) model in the River Shannon

Basin area (Gharbia et al. 2015, 2016a, b) in order to

produce future land cover scenarios to be used in the

dynamic water balance simulation for the Shannon

catchment, which can be extremely helpful for hydrolo-

gist and water planners. The focus is on the investigation

of spatio-temporal dynamics of land cover change pattern

from land cover maps and simulation of the urban growth.

The main objectives are to: (1) extract and compare the

historical land cover information for the investigation area

through the interpretation of land cover maps and the

using of quantitative measures; (2) identify any strategies

currently formulated by government to manage the extent

and nature of urban growth in Ireland; (3) implement and

evaluate the performance of the proposed integrated

model between CA and GIS to predict future urban

expansion; (4) quantify the future urban expansion in the

River Shannon Basin area and investigating the spatio-

temporal dynamics effects of the factors on urban growth

to provide insight into how driving factors contribute to

the urban growth.

Materials and methods

The River Shannon, the focus of this study, is the largest

transboundary river system and catchment in the island of

Ireland and one of the most important water and power

resources in the Republic of Ireland.

Cellular automata (CA)

Cellular automaton can be defined as a self-operating

machine that ‘‘processes information, proceeding logically,

inexorably performing its next action after applying data

received from outside itself in light of instructions pro-

grammed within itself’’ (Liu and He 2009). However

Cellular automata (CA) are models that simulate complex

systems, they have been defined as very simple dynamic

spatial systems (Torrens 2000; Reinau 2006; Liu and He

2009). In CA the state of each cell in an array depends on

the previous state of the cells within a neighbourhood,

according to a set of transition rules (White et al. 1999;

White and Engelen 1993; White et al. 1997). Despite their

simplicity some classes of CA are capable of ‘‘universal

computation’’(Wolfram 1984), which means that some

types of CA can have reproducing behaviours with high

level of complexity, such as of physical, biological or

social complex systems. CA has a remarkable potential for

modelling complex spatio-temporal processes (Deutsch

and Dormann 2007; Barredo et al. 2003), and some simple

CA have the ability to produce complex forms through

simple set of rules (Deutsch and Dormann 2007; Barredo

et al. 2003).

Many processes in nature and in social systems are

somehow complicated process to be modeled through lin-

ear equations, therefore non-linear differential equations

are needed in such cases. In these kinds of equations, a

magnitude (X) in a time (t ? 1) is the consequence of the

magnitude in the preceding time (t). This configuration

defines a basic non-linear differential equation (Barredo

et al. 2003):

X tþ1ð Þ ¼ f Xtð Þ: ð1Þ
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These equations, although fully deterministic, can produce

a very dynamic behaviour, from stable points and limit

cycles to chaotic regimes (strange attractors) (Wolfram

1984; May 1976). Moreover, the behaviour of non-linear

differential equations may be indistinguishable from the

one produced by a random process.

Wolfram (1984) stated that Cellular automata have been

considered as spatial idealizations of partially differential

equations with discrete space and time, thus it is not

strange that CA show behaviours analogous to non-linear

ordinary differential equations. Therefore, it is not sur-

prising that CA is capable of producing and simulating

complex spatial processes showing non-linear dynamics

such as some socio-spatial processes (i.e. spatial segrega-

tion of socio-economic groups), and moreover CA produce

spatial patterns that show chaotic behaviour in the sense of

irregular dynamics in a deterministic system. In these kinds

of systems the behaviour depends on its own internal logic

(Barredo et al. 2003).

In CA, cells are the basic and smallest spatial unit in a

cellular space which must manifest some adjacency or

proximity (Li and Yeh 2000). They are typically repre-

sented by a regular two-dimensions grid usually composed

of square cells, although some researchers have proposed

hexagonal cells to obtain a more homogeneous neigh-

bourhood (Iovine et al. 2005). Moreover, the regular cell

can be modified by using irregular tessellations such as

Voronoi polygons (Shi and Pang 2000). The cells are

characterised by the following:

• Size the cell size is the area of the landscape each cell

will cover. The use of cell resolution is either based on

the availability of data or on the convenience for

computation. Different researcher used different cell

size in their studies, which can be related to the

different conditions of the study area (White and

Engelen 1993; Cho and Swartzlander 2007; Chen and

Mynett 2003). In this study, a 100 m 9 100 m cell size

has been used.

• State the cell state defines the attributes of the system.

Each cell can take only one state from a set of states at

any one time. In urban-based cellular automata models,

the states of cells may represent the types of land use or

land cover, such as urban or rural, or any specific type

of land use; or it may be used to represent other features

of the urban area, such as social categories of popu-

lations as was proposed by (Portugali and Benenson

1995).

• Neighbourhood a cell’s neighbourhood is the region

that serves as an input to assess the neighbourhood

effect in the transition rules. This effect is calculated as

a function of a cell’s own state and the state of the cells

within its neighbourhood (M‘nard and Marceau 2005;

Balzter et al. 1998; Wolfram 1983). The traditional

neighbourhood types for two-dimensional raster based

Cellar automata (CA) models are: Von Neumann

neighbourhood and rectangular (Moore) neighbourhood

(Flache and Hegselmann 2001; Vezhnevets and

Konouchine 2005). The Von Neumann neighbourhood

consists of four cells which include the North, South,

East, and West neighbours of a cell in question. The

Moore neighbourhood consists of eight cells which

include the cells defined in the von Neumann neigh-

bourhood as well as cells in the North-west, North-east,

South-east, and South-west directions, which are com-

monly used in CA model applications (Wu 1998; Lau

and Kam 2005; Flache and Hegselmann 2001; Vezh-

nevets and Konouchine 2005). Neighbourhood size

defines the extent of interactions between land use and

the dynamics of the system (Caruso et al. 2005). In

general, the effect of neighbourhood cells decreases

with the increasing distance to the central cell (Barredo

et al. 2003).

The definition of the transition rules of a CA model is

the most important part to achieve realistic simulations of

land use and land cover change (Verburg et al. 2004b).

This is the key component of CA because these rules

represent the process of the system being modelled, and are

thus essential to the success of a good modelling practice

(White 1998). The traditional transition rules are dependent

on the current cell state and its neighbourhood effects

(Jenerette and Wu 2001; Li et al. 1990; Liu et al. 2008). In

the context of urban growth, however, a variety of factors

have significant impacts on urban growth, such as physical

suitability for a specific land use, accessibility, socioeco-

nomic factors, urban planning factors, and stochastic dis-

turbance related to the complexity of human system.

Consequently, the transition rules should consider various

factors to allow for more realistic simulation (Jokar

Arsanjani et al. 2013; Li et al. 1990; Liu et al. 2008). In

addition, traditional CA models employ only one uniform

transition rule for different periods and sub-regions, while

the urban growth process may vary over time and space, so

it is necessary to apply different transition rules to the

specific characteristics of each period and area. Spatial and

temporal varying transition rules can be obtained by cali-

bration (Geertman et al. 2007; Li et al. 1990; Liu et al.

2008).

Urban development resembles the behaviour of a cel-

lular automaton in many aspects. The space of an urban

area can be regarded as a combination of a number of cells,

each cell taking a finite set of possible states representing

the extent of its urban development. The state of each cell

evolves in discrete time steps according to some local

rules.
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Data setup

This section describes the details of preparation the data

sets that are used in feeding the fuzzy constrained cellular

automata model of urban development through GIS plat-

form, which means cellular automata model of land use

simulation uses fuzzy-sets and fuzzy logic approaches. The

model assigns membership of land uses to multiple states

of model’s parameters are applied to represent the nonde-

terministic status of land use development controls.

The CORINE (Co-Ordinated Information on the Envi-

ronment) data series was established by the European

Community (EC) as a means of compiling geo-spatial

environmental information in a standardized and compa-

rable manner across the European continent. The CORINE

Land Cover is a vector map with a scale of 1:100,000, a

minimum cartographic unit (MCU) of 25 ha and a geo-

metric accuracy better than 100 m. It maps homogeneous

landscape patterns, i.e. more than 75 % of the pattern has

the characteristics of a given class from the nomenclature

(EPA 2012). In Ireland, this nomenclature is a 3-level

hierarchical classification system and has 34 classes at the

third and most detailed level, as detailed in (EPA 2015).

The first iteration of the data series covered the reference

year of 1990 with subsequent releases covering the years

2000, 2006 and 2012. The first dataset in 1990 provided a

‘snapshot’ baseline of the geographical distribution of

natural and built environments across Europe. Through this

baseline and subsequent updating of changes, CORINE has

become a key data source for informing environmental and

planning policy on a national and European level.

The land use modelling especially urban growth is a

complex process which involves the interaction influence

of various factors. According to data availability, the fol-

lowing set of variables representing natural, socioeco-

nomic, spatial policies and neighbourhood factors were

selected to design this study (Table 1):

• Physical factor a Digital Elevation Model (DEM)

obtained from Eurosat at a spatial resolution of 25 m of

the study areas was used to represent topography. Slope

gradient was derived from the elevation surface using

3D analyst package toolbox in ArcMap.

• Socioeconomic factors The influence of the socioeco-

nomic conditions in the region can be best character-

ized by the accessibility of that location to

socioeconomic centres, which has a significant effect

on urban growth pattern (Li et al. 2013; Verburg et al.

2004b). Transportation is an important factor in accel-

erating urban development and attracting new devel-

opment. A good transportation network increases the

accessibility of land (Miller 1999; Couclelis 2000).

Consequently, areas with good accessibility are more

easily selected for urban development. Major roads

(motorways and national primary roads) and minor

roads (national secondary roads and regional roads)

were considered in this study. Because of the infras-

tructure construction, the traffic system changes all the

time, therefore, in this study it was assumed that the

roads dataset remained unchanged during one period

(2000–2012). Population are one of the main drivers of

urban growth. More urban land will be required to

satisfy further growth of urban population in the future.

Table 1 List of the used datasets in this study

Variable Year Description Sources

Physical factor

Slope It was derived from Digital Elevation map (DEM), resolution of

25 m

European Statistics, Eurostat

Socioeconomic factor

Dist2Majr 2010 Distance to major road Irish Environmental Protection Agency

(Irish EPA)

Dist2Minr 2005 Distance to minor road Irish EPA

Dist2Town 2006 Distance to towns/cities Central Statistics Office Ireland (CSO)

PopDen 2002 Population density collected using electoral divisions units Central Statistics Office Ireland (CSO)

Spatial Policy factor

Environmental Published

2013

Updated

2015

Special protection areas, special areas of conservation and natural

heritage areas

The National Parks and Wildlife Service

(NPWS)

Neighborhood factor

Dist2Urban 2000 Distance to existing urban area Extracted from Land Cover Map (Irish

EPA)

151 Page 4 of 20 Model. Earth Syst. Environ. (2016) 2:151

123



The population variable was represented by the popu-

lation density of Electoral Divisions (EDs) administra-

tive units.

• Spatial Policy factor Policy variables affect the urban

growth by acting as constraints or incentives to

development (Buss 2001; Jantz et al. 2004). Develop-

ment Plans constitute the basic policy document of the

land use and development system in Ireland. Land use

development policy is primarily articulated through the

designation of land use objectives specific to particular

lands within the planning authority’s jurisdiction. In

this study, initial attempts were made to apply direct

translation of the development plans into zoning maps

for the CA model. The used spatial datasets were

sampled to the same cell size of 100 m 9 100 m,

which was sufficient to capture the detailed information

about urban dynamics while keeping the volume of

computation manageable.

Model setup and the integration with GIS platform

Modelling geographical phenomena and processes using

CA simulations is based on constructing regular spatial

tessellation models. These models are naturally related to

raster-based GIS, thus leading to the main advantage

arising from the integration of GIS and CA models, which

is the use of the GIS geo-processors (Wagner 1997;

Takeyama and Couclelis 1997; Batty et al. 1999; Clarke

and Gaydos 1998; Li and Yeh 2000). The application of

cellular automata in modelling urban development is

‘‘virtually impossible without the data management capa-

bilities of GIS’’ (Clarke and Gaydos 1998). Therefore,

applications of CA in geography are mostly integrated with

a GIS, and consequently it can work at high spatial reso-

lution with computational efficiency.

In this study, a cellular automata GIS based algorithm

has been implemented in the GIS environment using raster

data forms in order to simulate the urban expansion and

land use trends in the Shannon River catchment, then the

calibrated model has been used to produce future land use

scenarios. CA model expects all input maps to be strictly

comparable; they must cover the same area and have the

same resolution, various spatial analysis techniques in

ArcGIS were applied to process the raw data and verify the

quality and consistency of data collected from different

sources. CORINE Land use maps of 2000, 2006 and 2012

were used in this study (EPA 2012, 2015). For input into

the CA model, the 34 classes in the land use maps were

reduced to five by aggregating related classes from the

initial land use layer. This was required because it would

be too computationally intensive to model each individual

land use class separately. The main five land cover classes

were water bodies, wetlands, urban area, agricultural and

forest (Li 2014) as detailed in Table 2.

The CA model requires the Land Cover maps to be in

raster format. Using ArcGIS 10.1 conversion tool, the Land

Cover maps were converted from vector to raster grid

according to the maximum area principle which assigns the

cell type parameter to set to Maximum area, the single

feature with the largest area within the cell yields the

attribute to assign to the cell. The final modelling area

maps were converted into ASCII raster format. Following

the maps classification, the spatial patterns and trends over

time were examined using the Land Cover data, Continual

and historical, information about the land cover change is

essential for urban growth analysis, in which land cover

information serves as one of the major input criteria for the

model.

Change detection analysis was used to analyses pat-

terns of Land Cover change during the study period.

Change detection can be defined as the process of iden-

tifying differences in the states of an object by observing

it at different times (Singh 1989). There are several

methods can be used for change detection, like Image

differencing, principal component analysis and post clas-

sification detection (Lu and Weng 2004). In this study

post classification was selected as a change detection

method to identify the changes in land covers over

Table 2 Land cover classes used in the simulation

Land cover

classes

Description

Water bodies Stream courses, Water bodies, Coastal lagoons, Estuaries, Sea and ocean

Wetlands Inland marshes, Peat bogs, Salt marshes, Salines, Intertidal flats

Urban area Road and rail networks and associated land, airports, mineral extraction sites, dump, green urban areas, sport and leisure

facilities, continuous urban fabric, discontinuous urban fabric, sea port, industrial and commercial, construction site

Agricultural

areas

Non-irrigated arable land, pastures, complex cultivation patterns, land principally occupied by agriculture with significant

areas of natural vegetation

Forest Broad leafed forest, coniferous forests, mixed forest, natural grassland, moors and heathlands, transitional woodland-scrub,

beaches, dunes, sand, bare rocks, sparsely vegetated areas
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different time intervals for the River Shannon Basin Area.

The method involves independent classification results for

each end of the time interval of interest, followed by a

pixel by pixel comparison to detect land cover changes

(Coppin et al. 2004). The post classification method

generated a two-way cross matrix, providing ‘‘from-to’’

land cover conversion information (Tables 3, 4). The

change detection analysis was conducted primarily

through the use of ArcGIS by using the overlay tool. A

new thematic map containing different combination of

‘‘from-to’’ change information was also produced for each

period. GIS has been applied widely to visualize the

spatio-temporal process of physical changes (Batty 1998;

Clarke and Gaydos 1998).The main advantage of this

method lies in the fact that each land use map is classified

separately; moreover, the Land Cover matrix produced

was also used to get the conversion rate from one land

use to another between two periods.

The overall trend analysis and visualization of the data

in ArcGIS demonstrate that the urban areas of River

Shannon Basin area had significantly increased from

1.36 % in 2000 to 1.55 % in 2006, the overall change

percentage from 2000 to 2006 is 14.4 %, which is 35.94

Km2 increase in the urban area. The analysis showed that

urban area cover increased at the expense of agricultural

and forest cover. Whereas forest cover increased at the

expense of wetlands and agricultural covers, as the trend

toward forest regeneration on abandoned land continued.

The analysis showed the forest cover had increased from

11.81 % in 2000 to 12.20 % in 2006 with an overall

increase of 3.3 % which is 70.81 km2. Moreover, the

agricultural cover had been increased as well from 72.79 %

in 2000 to 73.93 % in 2006 at the expense of wetlands,

water bodies and forest cover mainly, with an overall

increase of 209.12 km2, i.e. 1.56 %. The wetlands had been

reduced severally with a percentage of 11.5 % in 2000 to

9.93 % in 2006, that is a reduction of 288.55 km2, with the

overall reduction of -13.7 %.

On the other hand, the urban area increased from 1.55 %

in 2006 to 1.59 % in 2012 at the expense of agricultural

and forest covers mainly, with an overall increase of 2.5 %

which is 7.13 km2. The recession from 2007 to 2012 had

highlighted the major impacts on the environment and

society of a contraction in economic activities and devel-

opment decisions, this might be one of the reasons that the

urban expansion from 2006 to 2012 is less than urban

expansion during 2000–2006. The forest area had been

slightly increased from 12.20 % in 2006 % to 12.37 % in

2012 at the expense of wetlands and agricultural area, with

an overall increase of 1.36 %, i.e. 30.55 km2. The agri-

cultural cover had been reduced slightly from 73.92 %in

2006 to 73.79 % in 2012; the overall reduction land was

Table 3 Transition matrix for Shannon catchment based on land cover data for 2000 and 2006, units in kilometre square

Land cover categories 2006 Land Cover categories 2000

Water bodies Wetlands Urban area Agricultural Forest Total 2006 % 2006

Water bodies 427.08 2.31 0.14 7.75 1.93 439.21 2.4

Wetlands 9.43 1531.54 1.25 114.05 167.25 1823.52 9.9

Urban area 0.6 0.92 229.84 48.3 5.95 285.61 1.6

Agricultural 24.98 270.61 17.79 12,838.66 429.82 13,581.86 73.9

Forest 4.44 306.69 0.65 363.98 1565.3 2241.06 12.2

Total 2000 466.53 2112.07 249.67 13,372.74 2170.3 18,371.26 100.0

% 2000 2.5 11.5 1.4 72.8 11.8 100.0

Table 4 Transition matrix for Shannon catchment based land cover data for 2006 and 2012, units in kilometre square

Land cover categories 2012 Land Cover categories 2006

Water bodies Wetlands Urban area Agricultural Forest Total 2012 % 2012

Water bodies 406.62 5.24 0.83 22.5 4.47 439.66 2.39

Wetlands 5.22 1637.13 0.86 112.73 54.36 1810.3 9.85

Urban area 0.83 1.15 243.1 45.62 2.04 292.74 1.59

Agricultural 22.37 114.29 39.46 13,202.12 178.71 13,556.95 73.79

Forest 4.17 65.71 1.36 198.89 2001.48 2271.61 12.37

Total 2006 439.21 1823.52 285.61 13,581.86 2241.06 18,371.26 100

% 2006 2.39 9.93 1.55 73.93 12.20 100
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24.91 km2 which is -0.18 %. Also, the wetlands had

witnessed a small reduction from 9.93 % in 2006 to 9.85 %

in 2012 with an overall reduction of 13.22 km2, which is

equivalent to -0.72 %. Figures 1–3 show the Land Cover

classification for the periods of 2000, 2006 and 2012.

Simulation driving factors

One of the main input for CA urban expansion simulation

is land suitability map. Land suitability map overlay gen-

erated by the mechanism overlaying the driving-factor

maps as well as several restrictions, such as zoning, pro-

tected areas, slope, hazards, etc. In order to prepare the

suitability map, driving factors maps, distance to major and

minor roads, population density, distance to towns/cities

and distance to existing urban area, should be prepared

first. Secondly, constrain maps should be prepared which

are slope and protected areas in this study.

Transportation Network Transportation plays an impor-

tant part in urban growth because a good transportation

increases the accessibility of land and decreases the cost of

construction (Reilly et al. 2009; Du and Mulley 2006;

Rietveld and Bruinsma 2012; Geurs and Van Wee 2004).

Consequently, areas with good accessibility are more easily

selected for urban development. Major roads (motorways

and national primary roads) and minor roads (national

secondary roads and regional roads) were considered in this

study. The data map used for the major roads was for 2010

and for the minor roads was for 2005. Because of the

infrastructure construction, the traffic system changes all

the time, therefore, in this study it was assumed that the

roads dataset remained unchanged; therefore, these

transportation maps were entered for Land Cover 2000

assuming the transportation network were similar during

that period. The accessibilities were calculated as the

Euclidean distance using the Spatial Analyst geo-proces-

sor. The Euclidean distance tools gives the distance from

each cell in the raster to the closest source based on the

straight-line distance. Figures 4 and 5 show the Euclidean

distance from major and minor road respectively.

Population density Population is one of the main drivers

of urban growth (Liu et al. 2005; Meyer and Turner 1992).

The population variable was represented by the population

density of Electoral Divisions (EDs) administrative units.

The data was obtained by Central Statistics Office Ireland

(CSO), which has been the official body in charge of the

collection of the last five censuses in the Republic of Ire-

land in 1986, 1991, 1996, 2002, 2006 and 2011.

For the Shannon River Basin area model population data

for 2000 was required to use it as a factor in order to

simulate the baseline period land use. The population data

for year 200 was not available, so the population for year

2002 was used instead. To prepare the population density

map to be input into the CA model, first the population

density was calculated for all the Electoral Divisions for

the year 2002, and then the data were extracted into three

maps: small population, medium population and high

population maps, in order to present the population data in

the form of fuzzy data. Using this method the weighting

parameter for the high population map would be higher

than the medium population map, and the medium popu-

lation map will have higher weighting parameter than the

small population map, which basically means that the

probability of the urban land expansion is higher around

Fig. 1–3 Re-classed land cover maps for 2000, 2006 and 2012
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the highly populated area than it is in the area with medium

population, also the probability of the urban expansion

around the area with medium population is higher than the

area with small population. Figures 6–8 show the distance

to the different pupation categories.

Distance to towns/cities and existing communities The

influence of the socioeconomic conditions in the region can

be best characterized by the access that a location has to

socioeconomic centres, which has a significant effect on

urban growth pattern (Verburg et al. 2004b; Li et al. 2013).

It is logical to think that new residential areas usually

grow near or adjacent to existent residential areas, i.e. there

is high probability that the urban growth would happen

closer to the town/cities centres or to the existing urban

areas due to the neighbourhood effect. These centres can

reflect the accessibility effect on land use development at

different levels.

Distance raster maps were prepared to the town/city

centres to be input into the CA model. Figures 9 and 10

show the distance raster maps to the existing communities.

Simulation constrain factors

Topographic Data Suitability represents the degree of

relevance of each cell to each land use type, according to a

set of predefined criteria (Wu and Webster 1998; Roun-

sevell et al. 2006; Malczewski 2004). Thus, land use suit-

ability displays locations that fulfil suitability criteria

defined for each land use class, therefore the slope was

used as one of the constraints to the River Shannon Basin

Area development, as the slope has been used as a con-

strain for the Greater Dublin Region project (Shahumyan

et al. 2009).

In the study of (Shahumyan et al. 2009) to stimulate

the future urban growth for the Greater Dublin Region,

the values of the slope suitability were obtained from

researchers at the European Commission Joint Research

Centre (EC-JRC). During the researching period the EC-

JRC was contacted in order to get the slope suitability

values for the River Shannon Basin Area, but no response

received. Therefore, the same slope suitability values of

the Greater Dublin Region were used, because the study

is based in an Irish area and the topography might be

similar.

The Digital Elevation Map (DEM) was obtained from

EUROSAT, the slope value in degree was calculated from

the DEM data using Spatial Analyst Tools. The slope

values were divided into two categories, suitable and non-

suitable for the urban development. The CA understand

these divisions in terms of 0 and 1, so 0 means the land use

is not suitable for development and 1 is suitable. The slope

Fig. 4 Driving factor of distance to major roads Fig. 5 Driving factor of distance to minor roads
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map used in the model was as follow: 1 = for the slope

between 0� and 25�, and 0 = for slope above 25�, i.e. the
urban development is not possible above 25�.

The slope map was initially converted into raster and

then using the reclassify tool in spatial analyst tools in

ArcGIS the divisions of 0 and 1 was created. The slope

constraint was then merged with the constraint from zoning

calculated in the following section to create the constraint

map in Fig. 11.

Fig. 6–8 Distance (m) to small, medium and high populated electoral divisions

Fig. 9 Distance to towns/cities raster map
Fig. 10 Distance to existing urban areas raster map
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Zoning maps This study initial attempts were made to

apply direct translation of the development plans into

zoning maps for the CA model. This process was however

time consuming, therefore an alternative approach was

implemented to avoid this problem, whereby a zoning map

was developed which included Special Areas of Conser-

vation (SACs), protected as Special Protection Areas

(SPAs) and Natural Heritage Areas (NHAs). These areas

were defined as constraints, where the development was

limited. The three maps were converted into raster format

and then using the reclassify tool in spatial analyst tools in

ArcGIS the divisions of 0 and 1 was created. Where 0

represent all protected areas in which the development is

restricted.

The CA model used in this study accept only one

constraint map, therefore all the four maps, slope, SACs,

SPAs and NHAs, were combined together into one

constraint map using the raster calculator tool in spatial

analyst tools in ArcGIS 10.1. Figure 11 shows all the

constraint map.

Cellular automata setup on GIS platform

In this study a strong coupling approach was adopted to

implement a CA model within a GIS environment. There are

several reasons for using this approach, which are the

following:

1. The main reason was that data were initially processed

and stored in ArcGIS and then later converted into

raster grid files, the simulated outputs of the model

were also stored as raster grid files in ArcGIS. This

feature was especially advantageous during the model

calibration process when simulation results were

compared and fitted with data illustrating actual Land

Cover.

2. The spatial visualization capability was a very useful

feature. As all input data and output results were stored

and processed within the same GIS environment, so

the results could be easily visualized spatially using the

data display and visualization capabilities of ArcGIS.

3. The design of a friendly graphic user interface made it

possible to modify and calibrate the model quickly.

4. The accuracy assessment calibration of the model was

also carried out in ArcGIS by comparing the model’s

simulation outcomes with actual urban scenarios.

The digital space in the CA consists of a rectangular grid

of square cells (100 m 9 100 m). This is the same size as

the minimum area mapped in urban areas in the land use

datasets. All the data sets including the driving and con-

straints factors were also processed as regular spatial grids

at a spatial scale of 100 m. These data sets are used to feed

the model to simulate the urban growth in the River

Shannon Basin area.

Each cell was characterized by a vector of suitability

parameters, one suitability for each land use taking part in

the dynamics. The first suitability vector defines the

weighted linear sum of a series of physical, environmental

and institutional factors, characterizing each cell. The

suitability parameters were normalized to values in the

range of 0–1 (inclusive) using the fuzzy set memberships

approach, and represent the inherent capacity of a cell to

support a particular activity or land use. The second suit-

ability vector was associated with the accessibility factors

for each cell, again one for each land use type; these factors

represent the importance of access to transportation net-

works, closest town and existing urban areas, for various

land uses for each cell, again one for each land use type.

Finally, for the third suitability vector each cell was asso-

ciated with a set of codes representing its zoning status for

various land uses, and for various periods. Due to the

combined effect of suitability parameters, accessibilities,

neighbourhood effect, and zoning, every cell is essentially

unique in its qualities with respect to possible land uses.

The suitability map was kept constant during the simula-

tion process.

The model used five cell states, which were wetlands,

water bodies, urban areas, agricultural areas and forest, the

urban areas growth was the main focus in this study.

Therefore, the classes that were considered as passive
Fig. 11 Constraint map for Shannon Basin
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functions were: water bodies, wetlands, forest and agri-

cultural. That was, functions that participate in the land use

dynamics, but the dynamics were not driven by an

exogenous demand for land; they appear or disappear in

response to land being taken or abandoned by the active

functions. The active function class was the urban area

which was forced by demands for land generated exoge-

nously to the cellular automaton in response to the growth

of the urban area, it included Road and rail networks and

associated land, Airports, Mineral extraction sites, Dump,

Green urban areas, Sport and leisure facilities, continuous

urban fabric, discontinuous urban fabric, sea port, Indus-

trial and commercial and construction site.

During the modelling, the water bodies and wetlands

growth were kept fixed features, these features were

assumed to be converted to another land use type but does

not grow in the future. The main reason behind this

assumption was that during the change detection pattern

analyses, the reduction of wetlands and water bodies over

the years was noticed, therefore, these two features could

not be assumed growing in the future, however, they still

had an effect on the dynamics of the active land uses, since

in the neighbourhood effect they may represent an attrac-

tive or repulsive effect.

With the concern that distortions may exist in a rect-

angular neighbourhood-type configuration (Li and Yeh

2002), a circular neighbourhood was applied in this study.

In the Cellular Automaton model, the neighbourhood space

was defined as a circular region around the central cell with

a radius of eight cells. The neighbourhood radius repre-

sented 0.8 km; this distance delimits an area that can be

defined as the influence area for urban land uses. That is

similar to what residents of a town commonly identify to be

their neighbourhood (Verburg et al. 2004a), and thus

should be sufficient to allow spatial processes to be cap-

tured in the CA transition rules.

In the urban CA the neighbourhood space effect was

calculated for each of the five function states (passive and

active) for each cell. Essentially, this effect defines the

state to which the cell could be converted or remains in

their original state. The effect represents the attraction

(positive) and repulsion (negative) effects of the various

land uses and land covers within the neighbourhood of 172

cells in relation to the central cell. In general, cells that are

more distant in the neighbourhood will have a smaller

effect in the evaluated central cell. However, a positive

weight of a cell on itself (zero-distance weight) represents

an inertia effect due to the implicit and monetary costs of

changing from one land use to another. (Barredo et al.

2003).

A vector of transition potential rules (one potential for

each function) was calculated for each cell from transi-

tional potential, dynamic constraints, elasticity of change

and growth cells expectation, and the deterministic value

was then given a stochastic perturbation using a modified

extreme value distribution, such that most values are

changed very little but a few are changed significantly:

t
Pk;x;y¼ðtTK;x;y ÞðtCK;x;y Þ tEK;x;yð Þ tGK;x;yð Þ: ð2Þ

• tPK,x,y is the Cellular automata transition rule of the cell

(x,y) for land use K at time t.

• tTK,x,y is transitional potential of the cell (x,y) for land

use K at time t.

• tEK,x,y is the change conversion probability value of the

cell (x,y) for land use K at time t.

• tCK,x,y is the dynamic constraint value of cell (x,y) for

land use k at time t, which is basically the constraint

land uses number that certain land use class is not

allowed to change during the iteration processes.

• tGK,x,y is the growth cells estimated for (x,y) for land

use K at time t.

Thus, the transition rule works to change each cell to the

state for which it had the highest potential, subject to the

related constrains. In every iteration, all cells were ranked

by their highest potential and cell transitions begin with the

highest ranked cell. At each iteration, each cell was sub-

jected to this transition algorithm. However, most of the

resulting transitions were from a state to itself, as a result

the cell remained on its current state. When a transition to

another state occurred, the actual transition to the second

state occurred after one iteration (1 year) delay; during this

interval the cell is assigned the state construction site.

It is important to mention the flexible way in which

various factors that may impact the urban development in

the Shannon River Basin area could be introduced into the

CA model through the transition rules. The total impacts of

the accelerating or constraining factors on the model’s

behaviour are explained as follows: if there is one accel-

erating/driving factor within the neighbourhood of the cell

in question, the speed of urban development of that cell

will be upgraded one step higher in the ‘‘speed’’ fuzzy set,

however, if there is one constraining factor within the

neighbourhood of the cell in question, the speed of urban

development of the cell will be downgraded one step lower

in the ‘‘speed’’ fuzzy set. If there is more than one such

factor, the speed will be upgraded or downgraded two steps

up or down. The existence of one accelerator and one

constraint will cancel the effect of both factors; hence, the

speed of development will stay unchanged.

The flexibility of the model enables it to function not

only as an analytical tool to understand the forces driving

the process of urban development but also as a planning

tool to experiment with various planning proposals and
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generate different ‘‘what if’’ scenarios in the planning

practice (Liu 2008).

In order to input the transition rules into the CA model,

the Fuzzy Set Memberships (Liu and Phinn 2003) were

used for all the driving factors maps, which means the

values were converted from binary values to real numbers

(0–1). The Fuzzy Set Memberships operation used in this

study was monotonically decreasing to represent the decay

effect, i.e. the closer the distance the better, so the closer

the cell to any of the driving factors, the higher probability

for it to change into urban land. Weighted raster values

were given to each driving factor fuzzy map. This mech-

anism is intended to determine the influence of a factor

towards a specific purpose of making a map of transitional

potential units. The values of the weights were determined

by simple priority values, which has been calibrated in the

baseline period simulation by trial and error method

(Table 5).

All driving-forces, after accumulated using weighted

raster, were combined together with the protected area

constraint map to have on transitional potential map.

Determination of Conversion Probability was generated by

overlaying two land use maps (2000 to 2006 and 2006 to

2012) using ArcGIS overlaying tool, and the conversion

rate value of a certain land use changing to another land

use was obtained (Table 6). Although the overlay method

may not capture the phenomena that might occur, the two

periods conversion values were obtained and compared to

reach optimum conversion probability values. The growth

of water bodies and wetlands were not considered in this

study, but conversion probability was calculated for bother

classes when overlaying.

Determination of Growth Cell was obtained using the

simply trend analysis based on series of land use maps. The

only dynamic constraint used in this study was with urban

area not converting into water, wetlands and forest.

For each land use function, a vector of transition

potential was calculated by combining the transitional

potential, dynamic constraints, elasticity of change and

growth cells expectation mentioned above. All the above

steps were done using LanduseSim software (Pratomoat-

mojo 2016; Ratriaga and Sardjito 2016; Pratomoatmojo

2012), which is implemented using a CA model; the gen-

eral model framework is illustrated in Fig. 12.

The fuzzy constrained CA model developed in this study

was configured temporally when applying it to simulate the

process of urban growth inRiver ShannonBasin area. For the

validation of the model, the starting date was set to 2000, and

the ending date to 2006. Each temporal advance of themodel

represents one year in the urban growth context. Data illus-

trating the urban extent within the simulation period at every

6-year interval were used to calibrate the model temporally.

Themain reason for choosing the 6-year intervalwas the land

cover maps used in the validation process were obtained

from the Irish EPA, and they were available in 6-year

intervals, 2000, 2006 and 2012.

Model calibration and validation

A land use simulation for the River Shannon Basin area

had been produced for the period 2000–2012 using the

urban CA model. The simulation began using the historical

datasets for the year 2000, in order to calibrate the simu-

lation results using the reference datasets for the year 2006.

Afterward, the model was simulated for the year 2012 and

comparison with the actual land cover was also made for

validation purposes.

The validation of the model was carried out over the

period 2000–2012 using the land use datasets. The present

simulations make no use of suitabilities or zoning, since

these data are not yet available. The preliminary results are

a useful demonstration of the extent to which the urban CA

can produce realistic simulations using the available data.

Based on the configuration comprising a cell size of

100 m and a circular neighbourhood with a radius of eight

cells, the model of urban development of River Shannon

Basin area was first implemented with the primary transi-

tion rules that had the first weighting parameter assumption

for the driving factors, the zoning protected areas con-

strains, the conversion probability values and the growth

cells estimation obtained from the overlaying of the land

cover maps. Subsequently, the secondary transition rules

were introduced into the model after changing the

weighting parameters and conversion probability to cali-

brate the model and evaluate its simulation accuracies

using the previous stat of urban development from 2000 to

2006 and from 2000 to 2012 as references for comparison.

The transition rules were introduced in the model based on

the sequence of physical constraints, socio-economic fac-

tors, and institutional controls.

Table 5 Raster weighted values used for the urban area land use

class

Fuzzy driving factors Weighted raster values

Distance to minor roads 0.12

Distance to major roads 0.12

Distance to town/cities 0.2

Distance to existing urban area 0.2

Distance to high population area 0.15

Distance to medium population area 0.11

Distance to small population area 0.1
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The weighting parameters were calibrated in order to

minimise the differences between the simulated land use

map for 2006 and the actual land use map for that year.

From a practical point of view, the calibration of the model

was based on an interactive procedure in which each state

(active and passive) was calibrated against each of the land

uses classes. The weighting parameters were thus assigned

for each driving factor through interactive windows

incorporated in the software prototype and then assigned to

each land use. The weighting assignment was done by

verifying visually the spatial effects of the weights in the

CA model. Once all the functions have been calibrated, the

model is re-run several times in order to verify if the land

use transitions work in a logical way. Another important

factor for the calibration of the model was the conversion

probability values. The values were obtained by overlaying

the land cover maps for the periods 2000 to 2006, but after

simulation the model several times, it was noticed that

some of the land use conversion trends were not captured

by the model, therefore the overlaying values from 2006 to

2012 land cover were also considered and an optimum

conversion probability values were use. Comparison

matrices were also used for producing a fine-tuned version

of the simulation which gave accurate and realistic results.

By varying the parameters of the transition rules within

each iteration of the model and changing the balance

between the rules, various simulation results were pro-

duced, and their accuracies against the land cover of the

River Shannon Basin area at every 6-year interval were

computed using the modified error matrix approach. Fig-

ure 13 shows the various simulation accuracies of the

model under all transition rules over time.

The assessment of error in CA modelling is important

for understanding the results of simulation. The actual land

cover map was overlaid with the simulation map to identify

the accuracy for the five land use classes; the values

Table 6 Transition probability

matrix calculated using land-use

maps 2000–2006 and

2006–2012

Land Cover Classes Water bodies Wetlands Urban area Agricultural Forest

Water bodies 0 0.19 0.01 0.64 0.16

Wetlands 0.03 0 0.00 0.39 0.57

Urban area 0.01 0.02 0 0.87 0.11

Agricultural 0.03 0.36 0.02 0 0.58

Forest 0.01 0.45 0.00 0.54 0

Fig. 12 General model framework (Pratomoatmojo 2016)
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represent percentage between the simulated and actual

number of cells at the resolution of 100 m. A visual

comparison of the model’s simulated results with actual

land cover of the River Shannon Basin from 2006 to 2012

showed that, in general, results produced by the model

matched well with the actual urban extent over these time

periods. The model was well able to capture the spatial

patterns of urban area, especially for the year 2006. The

calibration of the model over time enables the model to

simulate with high accuracy the changes in land use: the

overall accuracy for 2006 was of 89.01 % and for 2012 of

87.09 %.

The results accuracy of the model is considered signif-

icant given that the model only incorporated limited factors

that contribute to the actual urban development of River

Shannon Basin area. Other factors such as the accessibility

to nodes of employment and other services, and facilities

such as schools, shops, etc., that may also have affected the

process of the River Shannon Basin area’s urban devel-

opment had not been introduced into the model due to

difficulties in data collection.

However, the producer’s and user’s accuracies (Table 7)

for the error terms definitions of each category show that

large discrepancies exist between the simulated results and

the land cover in the forest category, resulting in lower

accuracies from both the producer’s and user’s perspec-

tives. For instance, the producer’s and user’s accuracies for

the forest category in 2006 were only 68.32 %. This means

Fig. 13 The model’s simulation accuracies under all transition rules over time (2006–2012)

Table 7 Definitions of terms used in an error matrix and their computations

Terms Description Computations

Producer’s

accuracy

Probability of reference cells being correctly categorised in the

classification data. This measures the omission error

Number of cells on the major diagonal divided by

the column total of each category

User‘s

accuracy

Probability that cells in the classification data actually belongs to the same

category as in the reference data. This measures the commission error

Number of cells on the major diagonal divided by

the row total of each category

Omission

error

Cells that are excluded (omitted) from the categories that they belong to in

the reference data

Total of the off-diagonal column cells divided by

the column total of each category

Commission

error

Cells that are included (committed) in the categories that they do not

belong to in the reference data

Total of the off-diagonal row cells divided by the

row total of each category

Overall

accuracy

A measurement of the overall proportion of correctly categorised cells in

relation to the total number of cells under assessment

Total number of cells along the major diagonal of

the matrix divided by the total number of cells
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that 31.68 % of the actual forest areas were omitted from

being selected for development, and 32.68 % of the sim-

ulated forest areas were committed to the category by the

model incorrectly. In addition, for the same forest category,

the producer’s and user‘s accuracy in 2012 were also low.

This is also reflected in the model’s results showing a lower

percentage of 68.32 % of forest areas in 2006 and 65.68 %

in 2012 compared to all other classes which are above

70 %. This is largely due to the fact that the forest areas

only consist of approximately 12 % of the total area of the

River Shannon Basin area; therefore, even a small amount

of mismatched cells between the actual urban extent and

the simulated results would result in a high percentage of

discrepancy between the two data sets, and hence, lower

the producer’s and user’s accuracies in this category.

For the fully urban area, because 1.36 % of the River

Shannon Basin area had already been fully urbanised at the

start of the model in 2000, and these fully urban areas

remain as urban during the whole simulation process, the

actual composition of fully urban areas has only increased

to 1.55 % in 2006 and to 1.59 % in 2012. However, all

urban cells including those that did not change states dur-

ing the simulation process were counted when computing

the simulation accuracies of the model for the fully urban

category. This reduces the impact of the mismatched cells

on both the producer’s and user’s accuracies for the fully

urban category. The producer‘s and user‘s accuracy for the

urban areas in 2006 was 81.76 %. This means that 18.24 %

of the actual urban areas were omitted from being selected

for development, and 18.24 % of the simulated urban areas

were committed to the category by the model incorrectly.

In addition, for the same urban area category, the pro-

ducer’s and user‘s accuracy in 2012 were 70.50 %.

The total number of cell in each grid was around 40,000

cell. In 2006, in the urban area simulation class, 4462 cells

were incorrectly assigned as agricultural areas. On the

other hand, 604 cells were incorrectly assigned to forest

and 60 cells were incorrectly assigned by the simulation to

water bodies. Also 83 cells were incorrectly assigned to

wetlands during the simulation. In 2012, 116 cells were

incorrectly assigned as waters bodies and wetlands rather

than urban areas. On the other hand, 7665 cells were

incorrectly assigned to Agricultural and 740 cells were

incorrectly assigned by the simulation to forest instead of

urban areas.

Table 8 Land cover transition matrix of River Shannon Basin area

Land cover classes km2 Percent

Change 2012–2020

Water bodies -1.71 -0.39

Wetlands -208.45 -11.51

Urban area 28.53 9.75

Agricultural 110.99 0.82

Forest 70.64 3.11

Change 2012–2050

Water bodies -1.71 -0.39

Wetlands -208.45 -11.51

Urban area 28.53 9.75

Agricultural 110.99 0.82

Forest 70.64 3.11

Change 2012–2080

Water bodies -1.71 -0.39

Wetlands -208.45 -11.51

Urban area 28.53 9.75

Agricultural 110.99 0.82

Forest 70.64 3.11

Fig. 14–16 Cellular automata (CA) predicted land cover for 2020, 2050 and 2080
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Due to the transition rules of CA model, such rules can

in effect evenly locate new urban cells mainly in the city

core and around the edge of initial urban areas. As a result,

some of simulated urban cells in the city core were located

where no changes from non-urban to urban land uses took

place. While some real developed cells were underesti-

mated by models. The errors found in simulation results

also reveal that some errors were caused by issues not

related to the model, such as the complexity of urban

growth. Urban expansion process usually has some

unpredictable features because of the complexity of nature.

Results and discussions

The combination of the different parameters and the cali-

brated model were used to produce a series of maps

showing the future scenarios for the River Shannon Basin

area for the years 2020, 2050 and 2080 in order to use them

later in water balance simulations.

The results of land cover conversions of the Shannon

River Basin area in 2020 were compared to land cover in

2012, the comparison of change detection was carried out

using GIS, producing matrices of land cover changes. The

statistics generated in the matrices is ‘‘from-to’’ informa-

tion for the study area, they revealed few insights into the

question of where land cover changes will be occurring.

The results for the Shannon Basin area (Table 8) indi-

cate an increase of urban area from 1.59 % in 2012 to

1.75 % in 2020, which is a total of 28.53 km2 of land will

be converted into urban areas in 2020. That means the

overall change percentage from 2012 to 2020 will be

9.75 %. The majority of the urban area will come from the

conversion of agricultural to urban areas; also, the small

portion of the increase will be from converting wetlands

and forest to urban area. That increase will depend on the

economy growth of Ireland up to 2020. Rapid development

requires more built-up land and industrial workers, which

will also lead to relatively high urbanization speed. The

incredible pressure of rapid urbanization on non-urban land

will be reflected by the high loss of agricultural and forest

land. Figure 14 shows the urban expansion will be mainly

around Limerick city, Ennis, Mullingar, Athlone, Tralee,

Cratloe, Clareabbey, Tullamore, Longford, and Rosecom-

mon rural (Fig. 14).

Also, there will be an increase in forest land from

12.37 % in 2012 to 12.75 % in 2020, which is 70.64 km2

with an overall change percentage of 3.11 %. The analysis

showed that forest cover will increase at the expense of

wetlands and agricultural areas mainly. Moreover, there

will be a gradual increase in agricultural areas from

73.79 % in 2012 to 74.40 % in 2020, which is a total of

110.99 km2 of land will be converted into urban

agricultural areas in 2020. That means the overall change

percentage from 2012 to 2020 will be 0.82 %. The agri-

cultural areas will increase at the expense of wetlands and

forest cover mainly.

Due to the increase of urban areas, forest and agricul-

tural covers, there will be a reduction in wetlands and water

bodies in 2020, with a decrease of 208.45 km2 and

1.71 km2 of wetlands and water bodies respectively. The

wetlands will decrease from 9.85 % in 2012 to 8.72 % in

2020, with an overall change of -11.51 %. While the

water bodies will decrease from 2.39 % in 2012 to 2.38 %

in 2020 with an overall change of -0.39 %. Figure 14 and

Table 8 show River Shannon Basin area predicated map

and percentages in 2020.

The results of land cover conversions of the Shannon

River Basin area in 2050 were compared to land cover in

2012, the comparison of change detection was carried out

using GIS, producing matrices of land cover changes. The

results for the Shannon Basin area indicate an increase of

urban area from 1.59 % in 2012 to 2.34 % in 2050, which

is a total 136.38 km2 of land will be converted into urban

areas in 2050 (Table 8). That means the overall change

percentage from 2012 to 2050 will be 46.59 %. The

majority of the urban area will come from the conversion

of agricultural to urban areas; also, the small portion of the

increase will be from converting wetlands and forest to

urban area. That increase will depend on the economy

growth of Ireland up to 2050. Rapid development requires

more built-up land and industrial workers, which will also

lead to relatively high urbanization speed. The incredible

pressure of rapid urbanization on non-urban land will be

reflected by the high loss of agricultural and forest land.

Figure 15 shows the urban expansion will be mainly

around Limerick city, Ballyvarra, Ballycummin, Patrick-

swell (in County Limerick), Mullingar, Athlone (County

Westmeath), Tralee (County Kerry), Ennis Cratloe,

Clareabbey, Ballyglass, Clenagh, Drumline, Newmarket,

Urlan (in County Clare) Tullamore (County offaly), long-

ford (County longford) and Rosecommon rural (County

Rosecommon) and Nenagh (County Tipperary).

Also, there will be an increase in forest land from

12.37 % in 2012 to 14.18 % in 2050, which is 332.94 km2

with an overall change percentage of 14.66 %. The anal-

ysis showed that forest cover will increase at the expense of

wetlands and agricultural areas mainly and small portion of

water bodies. Moreover, there will be a gradual increase in

agricultural areas from 73.79 % in 2012 to 76.81 % in

2050, which is a total of 553.59 km2 of land will be con-

verted into urban agricultural areas in 2050. That means the

overall change percentage from 2012 to 2050 will be

4.08 %. The agricultural areas will increase at the expense

of wetlands and forest cover mainly and small portion of

water bodies.
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Due to the increase of urban areas, forest and agricul-

tural covers, there will be a reduction in wetlands and water

bodies in 2050, with a decrease of 941.21 km2 and

81.7 km2 of wetlands and water bodies respectively. The

wetlands will decrease from 9.85 % in 2012 to 4.73 % in

2050, with an overall change of -51.99 %. While the

water bodies will decrease from 2.39 % in 2012 to 1.95 %

in 2050 with an overall change of -18.58 %. Figure 15

and Table 8 show River Shannon Basin area predicated

map and percentages in 2050.

The results of land cover conversions of the Shannon

River Basin area in 2080 were compared to land cover in

2012, the comparison of change detection was carried out

using GIS, producing matrices of land cover changes. The

results for the Shannon Basin area indicate an increase of

urban area from 1.59 % in 2012 to 2.92 % in 2080, which

is a total 244.05 km2 of land will be converted into urban

areas in 2080. That means the overall change percentage

from 2012 to 2080 will be 83.37 %. The majority of the

urban area will come from the conversion of agricultural to

urban areas; also, the small portion of the increase will be

from converting wetlands and forest to urban area. That

increase will depend on the economy growth of Ireland up

to 2080. Rapid development requires more built-up land

and industrial workers, which will also lead to relatively

high urbanization speed. The incredible pressure of rapid

urbanization on non-urban land will be reflected by the

high loss of agricultural and forest land. Figure 16 shows

the urban expansion will be mainly around Limerick city,

Ballyvarra, Ballycummin, Patrickswell, Newcastle urban,

Ranthkeale urban, Croom, Ballysimon, Ballynanty (Co.

Limerick), Mullingar, Athlone (County Westmeath) Tralee

(County Kerry), Ennis, Cratloe, Clareabbey, Ballyglass,

Clenagh, Drumline, Newmarket, Urlan, Templemaley,

Kilnamona (in County Clare) Tullamore (County Offaly),

Longford (County Longford), Rosecommon Rural (County

Rosecommon) and Nenagh (County Tipperary).

Also, there will be an increase in forest land from

12.37 % in 2012 to 14.62 % in 2080, which is 414.13 km2

with an overall change percentage of 18.23 %. The anal-

ysis showed that forest cover will increase at the expense of

wetlands and agricultural areas mainly and small portion of

water bodies. Moreover, there will be a gradual increase in

agricultural areas from 73.79 % in 2012 to 76.28 % in

2050, which is a total of 456.42 km2 of land will be con-

verted into urban agricultural areas in 2080. That means the

overall change percentage from 2012 to 2080 will be

3.37 %. The agricultural areas will increase at the expense

of wetlands and forest cover mainly and small portion of

water bodies.

Due to the increase of urban areas, forest and agricul-

tural covers, there will be a reduction in wetlands and water

bodies in 2080, with a decrease of 1024.49 km2 and

90.11 km2 of wetlands and water bodies respectively. The

wetlands will decrease from 9.85 % in 2012 to 4.28 % in

2080, with an overall change of -56.59 %. While the

water bodies will decrease from 2.39 % in 2012 to 1.90 %

in 2080 with an overall change of -20.50 %. Figure 16

and Table 8 show River Shannon Basin area predicated

map and percentages in 2080.

Conclusions and limitations

This paper presented a simulation model of urban devel-

opment and land use change using the CA approach

incorporating fuzzy set theories and spatial information

technology. Through the development of the model, the

study contributes to the integration of CA modelling and

GIS for urban development research.

It has been confirmed in this study that the weakness of

CA model was the assumption of spatial and temporal

invariance for transition rules and the inability of CA to

deal with stochastic behaviour (Couclelis 1985). The

transition rules could not include conflict-resolving rules in

the model (Jiao and Boerboom 2006). It was confirmed, as

previously demonstrated by (Twumasi 2008) that CA

examines the synchronous dynamics of urban environment,

in essence all cells update simultaneously at each iterative

step, which means the cells were simply changed to the

function to which they have the highest potential in terms

of the factors modelled. But real cities are chaotic in their

behaviour, therefore other factors may contribute to

deciding on the final locations of cells and simply changing

cells to the highest potential may not be sufficient. Unlike

many natural processes to which CA algorithms had been

applied, land uses do not mutate autonomously. The pre-

diction results for the Shannon Basin area indicate an

increase of urban area from 1.59 % in 2012 to 1.75 % in

2020, which is a total of 28.53 km2 of land will be con-

verted into urban areas in 2020. That means the overall

change percentage from 2012 to 2020 will be 9.75 %. The

results for the Shannon Basin area indicate an increase of

urban area from 1.59 % in 2012 to 2.34 % in 2050, which

is a total 136.38 km2 of land will be converted into urban

areas in 2050.

The results for the Shannon Basin area indicate an

increase of urban area from 1.59 % in 2012 to 2.92 % in

2080, which is a total 244.05 km2 of land will be converted

into urban areas in 2080. That means the overall change

percentage from 2012 to 2080 will be 83.37 %. The

majority of the urban area will come from the conversion

of agricultural to urban areas; also, the small portion of the

increase will be from converting wetlands and forest to

urban area. The urban expansion will be mainly around

Limerick city, Ennis, Mullingar, Athlone and Tipperary.
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As a novel land use modelling technique, the integrated

CA-GIS enriched the theories and methods of CA by

addressing the complex boundaries of land use extent.

However, limitations of this method also existed because

the CA method was relatively complex in its theory and

calculation mechanisms. This method needed an under-

standing of the mechanisms of land use dynamics in

addition to the mathematical and computer technologies.

This paper presented as a novel application to the inte-

grated CA-GIS model using a complicated land use

dynamic system for Shannon catchment.

Acknowledgments This research was funded by Trinity College, 651

Dublin through Postgraduate Ussher Fellowship Award.

References
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