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Abstract Change detection in Land Use and Land Cover

(LULC) using Support Vector Machines (SVM) to map-

ping a geographic area is a way that has been studded and

improved because of its advantages as low costs in terms of

computing, field research and staff team. To use SVM, it is

needed firstly to define the most efficient function to be

used (linear, polynomial, and radial base function—RBF)

and secondly to establish the most appropriate input

parameters of them, based on the study area, which was the

main challenge of using SVM algorithm. The main goal of

this work was to test the performance of polynomial

function and RBF, and to identify which input parameters

combination are the best to use SVM algorithm for Funil

Hydroelectric Reservoir (FHR) sub-watershed LULC

mapping, using TM/Landsat-5 time-series images. After

several tests and based on the obtained results, the RBF

was identified as the best SVM’s function, which was used

to classify the time-series images. The referred SVM

function has the following parameters to be defined: the

error tolerance (n or C), the pyramid depths (P), the radial

basis function parameter (c), and the threshold. The most

effective combination of input parameters to RBF was

C = 100; P = 2, c = 0.1, threshold = 0.05. LULC

change detection analyses demonstrates that the obtained

SVM parameterization made the algorithm able to differ-

entiate large and continuous classes, lengthy and thin areas,

as borders, and not continuous small areas located inside

wide classes, through the usage of effective, but small,

training sample. The parameterization proposed for this

work to FHR sub-watershed area resulted in great statistics

classification with the overall’s accuracy among 86 and

98 % over the time-series, the producer’s accuracy of

90 %, the user’s accuracy higher than 86 %, and the Kappa

statistics ranged from 86 to 91 %.

Keywords SVM parameters � Change detection �
TM/Landsat-5 � Automatic classification

Introduction

For planning and management the natural resources in a

sustainable way, detailed knowledge about Land Use and

Land Cover (LULC) and its changes detection is consid-

ered as a key parameter to evaluate the environment pro-

gress over time (Verburg et al. 2011; Usman et al. 2015). In

this context, LULC encompass two separate terminologies

which are often used interchangeably: land cover means

the observed biophysical cover of the Earth’s surface, and

land use is the human use of land resources (Dimyati et al.

1994; Briassoulis 1999). The LULC thematic mapping

from remote sensing data is commonly based on image

classification techniques and the choice of an appropriate

method is considered crucial for reliable mapping (Lu and

Weng 2007).

Classifying remote sensing images into thematic map

still a challenge mainly due to selected image data, com-

plexity of the landscape, image processing and classifica-

tion approaches (Lu and Weng 2007). A numerous

classification algorithms have been developed since the

first TM/Landsat-5 image was acquired in 1972 (Lu and

Weng 2007; Tewkesbury et al. 2015) and among the most
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popular algorithms available we can highlight the maxi-

mum likelihood classifier—MLC (Huang et al. 2002). This

classifier, MLC, is a parametric method that assumes a

normal distribution for the data set, what can be invalid for

some cases, as to classes consisting of several subclasses or

to classes with different spectral features (Kavzoglu and

Reis 2008). To overcome the referred kind of limitation,

non-parametric classification techniques have been intro-

duced, such as the Support Vector Machines (SVM). SVMs

are based on the statistical learning theory proposed by

Vapnik (1995).

SVMs are particularly suitable for remote sensing field

because this method has the ability to handle successfully

with small training datasets, producing higher classification

accuracy than the traditional methods. SVMs minimize

classification error on unseen data without prior assump-

tions made on the probability distribution of the data

(Mantero et al. 2005). The main challenge in using the

SVM method to classify satellite images is to select the

most appropriate kernel function type (Radial Basis

Function—RBF, Linear, Polynomial or Sigmoid) and its

parameters, which influences SVM performance. The RBF

and the polynomial kernel are commonly used in the lit-

erature for the remotely sensed images classification (Pal

and Mather 2005). The SVMs need user-defined parame-

ters and each parameter has different impact on kernels

function performance. Hence, the classification accuracy of

SVMs is based upon the choice of the parameters and

kernels (Ustuner et al. 2015).

In order to produce a better LULC mapping, the main

goal of this work was to assess which combination of

SVM’s function and parameterization produce the most

efficient classification, and consequently, represents the

best combination to map LULC in the Funil Hydrelectric

Reservoir (FHR) sub-watershed. The analysis ranged from

1995 to 2010 allowing assessing the change detection to

provide useful information to explain the water quality in

the reservoir.

Materials and methods

Study area

The FHR is part of the Funil Hydropower system, located

in the middle reaches of Paraı́ba do Sul River, at the

frontier between São Paulo and Rio de Janeiro states,

Brazil (Fig. 1). The FHR has 6.2 billion m3, and 40 km2 of

flooded area in its maximum volume, employed for electric

power production, generating average power about

216 MW, since 1969). Moreover, at upstream there is a

large industrial complex from the region called ‘‘Vale do

Fig. 1 Funil reservoir sub-watershed location. TM/Landsat-5 surface reflectance image, R3G2B1 color composite. Date: 08/01/2010. Path/row:

218/76
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Paraı́ba’’, at east of São Paulo Metropolitan Region

(Branco et al. 2002).

Funil sub-watershed delimitation

The FHR sub-watershed delimitation was conducted using

a 90 m digital elevation model (DEM) produced by Shuttle

Radar Topography Mission—SRTM (RABUS et al. 2003)

data, available from Consortium for Spatial Information

(CGIAR-CSI 2008 - http://srtm.csi.cgiar.org/SELECTION/

inputCoord.asp). To process this data, the ArcHydro Tool

available on ArcGIS-x was used.

Sub-watershed delimitation was based on filling DEM’s

sinks to rectify the original data, and also used to define

flow directions and accumulation which were used to

estimate the drainage. The estimated drainage localization

(streams) was defined based on slope and altitude charac-

teristics. In addition to these data, relief characteristics

(water divisor) and dam spot (bath point) were also com-

puted to define two sub-watersheds: one for Funil reservoir

and another at the reservoir immediately upstream (Walsh

et al. 2015). Therefore, the FHR’ sub-watershed was clip-

ped from the images (Fig. 2; Table 1).

Satellite images preprocessing

The TM/Landsat-5 images used in this work were

acquired from the United States Geological Survey—

USGS (http://earthexplorer.usgs.gov/). Images from

1995 to 2010, set in regular intervals of 5 years, were

selected to apply SVM algorithm for LULC classifica-

tion (see Table 2 for LULC class definition). TM/

Landsat-5 was chosen because of its long and contin-

uous time series of data with high quality and adequate

spectral and spatial resolutions for the purposes of this

work.

To ensure the high-quality of the surface information

analyses it is necessary to apply atmospheric correction and

normalization procedures to the images (Hadjimitsis and

Clayton 2009). These procedures were made to minimize

the effects on the signal by atmospheric scattering and

absorption as well as differences attributed to the geometry

acquisition and illumination conditions. Thus, it is essential

to differentiate these interferences from the real radio-

metric signal from the targets. Therefore, radiometric cal-

ibration based on sensor parameters and atmospheric

correction of the images can be used to obtain the surface

reflectance (Schroeder et al. 2006). The atmospheric cor-

rection was conducted using Fast Line-of-sight Atmo-

spheric Analysis of Hypercubes (FLAASH) application;

while the radiometric normalization process was made by

the Iteratively Reweighted Multivariate Alteration Detec-

tion—IR-MAD (Canty et al. 2004).

FLAASH is an algorithm that uses the atmospheric

compounds to establish regional models in proposing to

compensate atmospheric effects in satellite spectral images

by using MODerate spectral resolution atmospheric

TRANsmittance version 4—MODTRAN4 (Adler-Golden

et al. 1999). This algorithm was applied to convert the 1995

image to surface reflectance. This image was chosen as

reference because it is the oldest in the image data set;

therefore it has the closest characteristics from those

originally defined for the sensor before its launching. In

addition to sensor configuration parameters FLAASH set

was: rural area model to estimate aerosol contribution,

tropical as atmospheric model, and Kaufman over water as

multispectral settings.

IR-MAD is an algorithm used to compute the radio-

metric normalization procedure, which has as main

objective to find the pseudo invariant object in a bi-

temporal images comparison. This procedure uses

canonical components through sequences of MAD (Mul-

tivariate Alteration Detection) transformations until it

reaches the stop criterion (Canty et al. 2004; Canty and

Nielsen 2008; Canty 2009). IR-MAD was performed with

surface reflectance image as a base data (1995 image),

and relates it with an at-sensor reflectance data (2000,

2005 and 2020 images). The stop criteria were set as 30

interactions or no significant change in canonical

correlations.

To conduct IR-MAD application, it is necessary to have

a previous registration of all images to ensure that all of

Fig. 2 FHR sub-watershed delimitation flowchart

Table 1 TM/Landsat-5 images characteristics

Image date Path/row Solar zenith angle Solar azimuth angle

08/26/1995 218/076 56.019 57.195

08/21/2000 218/076 50.241 49.712

08/03/2005 218/076 53.031 43.287

08/01/2010 218/076 53.072 42.244
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them have a correspondence in their pixels localization,

which will be essential for the change detection analyses.

The maximum mean square error premised to ensure spa-

tial correspondence among the image pixels for this reg-

istration process was 5 %. Finally, the time-series images

radiometric normalization was processed based on 1995’

surface reflectance image (FLAASH output), and statistical

parameters (qui-square—IR-MAD output), generating

surface reflectance images for all years as a result. Figure 3

presents a flowchart of the steps of the preprocessing used

in this work.

Supervised classification

The SVM main framework is the structural risk mini-

mization (SRM) which can be achieved by two pathways:

(1) by fixing the empirical risk to obtain the smallest

confidence interval to reduce the errors; (2) by finding an

optimal hyperplane which maximizes the separation among

the closest data of different classes. The data which must to

be considered the class boundary corresponds to the sup-

port vector, and could incorporate some error tolerance (n
or C), like a soft margin for the information class (Huang

Table 2 Information classes used in the SVM classification, corresponding to the land cover identified in study area with their respective

descriptions (adapted from UNEP/FAO 1994)

Information classes Description

Natural and Semi-Natural Vegetation

(NSNV)

Natural vegetated areas are defined as areas where the vegetative cover is in balance with the abiotic

and biotic forces of its biotope. Semi-natural vegetation is defined as vegetation not planted by

humans but influenced by human actions. These anthropogenic actions may result from grazing;

possibly overgrazing the natural phytocenoses, or else from practices such as selective logging in a

natural forest whereby the floristic composition has been changed. Previously cultivated areas which

have been abandoned and where vegetation is regenerating are also included in this class

Terrestrial Primarily Non-Vegetated

Areas (TPNVA)

The cover is influenced by the edaphic substratum (including bare soils)

Artificial Waterbodies (AW) This class applies to areas those are covered by water due to the construction of artefacts such as

reservoirs, canals, artificial lakes, etc. Thus without these artefacts, the area would not be covered by

water

Cultivated and Managed Terrestrial

Areas (CMTA)

This class refers to areas where the natural vegetation has been removed or modified and replaced by

other types of vegetative cover of anthropogenic origin. This vegetation is artificial and requires

human activities to maintain it in the long term. Between human activities, or before starting

cropping, the surface can be temporarily without vegetative cover

Artificial Surfaces and Associated

Areas (ASAA)

This class describes areas that have an artificially covered by human activities such as construction

(cities, towns, transportation), extraction (open mines and quarries) or waste disposal

Fig. 3 Image preprocessing

flowchart
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et al. 2002; Canty 2009; Kavzoglu and Colkesen 2009;

Mountrakis et al. 2011).

SVM works considering each pixel as vector in a mul-

tidimensional system, where each class have a pixel as

support vector to establish the class boundary. To perform

the classification, it is necessary a training stage to allow

the machine to learn the process by using examples which

indicate the correspondence between a training sample and

a class. The class has an unknown probability distribution

which is compared to a training sample and, based on this

comparison, the support vectors of each classes are defined.

After the algorithm training stage, the machine is able to

classify a non-training sample using the support vectors

parameters The training data are useful to define the sup-

port vector for each classes’ boundaries, making statistical

data unnecessary in this supervised classification (Huang

et al. 2002; Canty 2009; Kavzoglu and Colkesen 2009;

Mountrakis et al. 2011).

SVM was originally projected to perform separation

between two linear classes and was adapted to work for

multi-classes with nonlinear separation by the use of the

kernelization method (Canty 2009; Mountrakis et al.

2011). For non-linear classes, there are four SVM’s

functions available: linear, quadratic, polynomial and

radial basis function. According to Kavzoglu and Colke-

sen (2009) the last two functions are more efficient,

presenting better performances than the others. However,

it is still necessary to select one of them and the most

suitable parameters for the chosen function to ensure a

good performance of the algorithm. Because of that, we

evaluated the best function and parameterization to be

used on FHR sub-watershed.

Using the sample configuration described below, two

tests were performed: (1) the first to decide what function

must be used; and (2) the second to define the parameters to

be used in the previously selected function. The 2010

surface reflectance image was chosen to perform the tests,

because this is the image where the information classes are

more fragmented. This fragmentation is ideal to evaluate

the capability of the algorithm by observing if the algo-

rithm could identify all of fragments. The information

classes were based on the land cover classification system

proposed by Food and Agriculture Organization—

FAO(UNEP/FAO 1994; see Table 2).

To perform the tests, the information classes present in

the study area were identified and one representative

sample (area) of each one was taken in order to contain

‘‘pure’’ pixels. The training samples quantity, size, and

localization were based on the premise stated by Moun-

trakis et al. (2011), who suggest that SVM algorithm is less

sensitive to sample size and could be able to obtain suc-

cessful results using few samples.

The first test was based on Huang et al. (2002) findings

which affirmed that the best results for SVM could be

obtained by using the polynomial and radial basis kernel

functions. These types of functions improve the results by

defining complex decision boundaries among the infor-

mation classes. It occurs because of the data transformation

from non-linear to linear boundaries, which is useful to

multi-dimensional spatial analysis (Huang et al. 2002).

Additionally, these authors also presented the accuracy of

the processing according to polynomial order (p) and

Radial Basis Function (RBF) parameter (c); and affirmed

that the selection of parameters affects the final results.

To select the best parameters to be used in the RBF, a

second evaluation was performed. For this type of kernel

function, besides c value, defined in the first test, the

available parameters are: the soft margin penalization (C),

corresponding to the tolerance to classification errors; the

pyramid depths (P), that speed up the classification; and

threshold value, which limits the perceptual of data that

will be inserted in each information classes. The results of

this second evaluation defined the parameters to be applied

in all surface reflectance images in the multi-temporal

series to obtain the LULC classification of study area using

the SVM.

Land cover classification evaluation and change

detection analysis

Accuracy and Kappa statistic were used to evaluate the

SVM performance to land cover classification by a

comparison between the classified data and regions of

interest, obtained by visual analysis for each image in

time-series. In the first test, one area was selected for

each individual class. For the second one, it was selected

a data set for each class, aiming to generate a robust

output data.

Accuracy indicates the classification quality by relating

the reference and the classified data in terms of the global

value or in terms of its categories using the confusion

matrix. Therefore, the classification result was evaluated by

comparing the representativeness of the training pixels to

the ones in each category (Lillesand and Kieffer 1999).

While the global error is estimated by the overall accuracy;

the categories errors are estimated by the producer’s and

the user’s accuracies (Congalton 1991).

Producer’s accuracy measures omissions errors, relating

actual correctly classified pixels in a category with the

amount of pixels classified in the same category on training
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step. User’s accuracy indicates the probability of some

classified pixels really correspond to the same category in

the reference data (regions of interest), relating the actual

correct classification pixels in a category with the same

class amount of pixels classified on the actual classification

(Congalton 1991).

Results and discussion

The results of the first test to find the best parameters

combination function to classify the study area with the

lowest error as possible are show in Fig. 4. The use of RBF

function with c values varying from 0.1, 0.3 and 0.5

showed no changes for accuracy (Fig. 4a). The use of

polynomial kernel function with orders of 3, 6 and 9

showed that the best order was 6 (Fig. 4b).

Since there is no significant difference between these

two functions, the lowest computational effort was chosen

as the decision criteria to select the function to be used.

Thus, the RBF kernel was selected to be performed in this

work with c = 0.1. The Table 3 shows the overall accu-

racy for the tested functions and its parameters.

The best parameters values for the chosen function

(RBF) were defined in the second evaluation. Besides the c
value, the parameters available to change for this type of

function were: margin penalization (C), pyramid depths

(P), and threshold value. Combinations among these

parameters in pairs were conducted and the best results, in

terms of overall accuracy and Kappa statistic, were chosen

to perform SVM classifications (Table 4).

The obtained results show that Kappa and overall

accuracy are weakly influenced by variables C and the

threshold. The C variable’s influence is probably related to

a less restrictive classification with the increase of its value,

allowing a larger distance between the optimal hyperplane

and the misclassified data. The threshold’s influence is

presumably related to the largest percent of acceptance for

the classes when its value decreases, resulting in a more

restrictive classification for this value incensement. Based

Fig. 4 Overall accuracy (%) resultant of tests between RBF function with c values 0.1, 0.3 and 0.5 (a), and polynomial kernel function with

orders 3, 6 and 9 (b)

Table 3 Kappa and overall accuracy values obtained for both kernel

functions according to their tests values

Radial basis kernel function

c Kappa Overall accuracy (%)

0.1 0.9589 97.6735

0.3 0.9589 97.6735

0.5 0.9589 97.6735

Polynomial kernel function

p Kappa Overall accuracy

(%)

3 0.9592 97.6886

6 0.9605 97.7639

9 0.9605 97.7639

Table 4 Kappa and accuracy values obtained in RBF parameters

tests to define the values that will be used to apply SVM algorithm

c C P Threshold Kappa Accuracy (%)

0.1 120 0 0.05 0.9727 98.0874

120 0 0.00 0.9727 98.0874

100 0 0.05 0.9727 98.0838

100 0 0.00 0.9727 98.0838

120 2 0.05 0.9844 98.9071

100 2 0.00 0.9873 99.1075

100 2 0.05 0.9873 99.1075

120 2 0.00 0.9878 99.1403
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on these analyses, the variables values selected were the

second higher Kappa and overall accuracy (bold line in

Table 4). The selection for the second higher values was

due to the fact that it is more restrictive than the highest

one and the results were similar.

The results obtained indicated that the best BRF c value

was 0.1, because of the lack of significant improvement in

the accuracy with changes in its value for the same func-

tion. Therefore, there was no relevant improvement in the

Kappa and overall accuracy in a comparison between this

RBF configuration and the best polynomial function

parameter (Kappa difference = 0.0016 and accuracy dif-

ference = 0.0904 %). Therefore, the RBF with a c
value = 0.1 was chosen due to the lowest computational

cost. The others parameters defined for the RBF were:

C = 100, because it was the most restrictive value with

highest accuracy; Threshold = 0.05 (acceptance = 95 %),

because it improved Kappa and overall accuracy values,

since it is more restrictive; and P = 2, to improve the

computational performance.

Once defined the SVM parameters, the classification

was performed and a confusion matrix was generated for

each image classification. The overall accuracy (Table 5)

showed a good performance of SVM classification, which

was equal to 98 % for 1995, 2005 and 2010 images and

equal to 86 % for 2000 image. These results indicate that

the training sample had premised low errors in all classi-

fication categories relative to the image’s pixels amount.

Producer’s accuracy demonstrates that the SVM had a

good performance to NSNV, CMTA and ASAA categories

for all images, maintaining more than 90 % of accuracy for

all images classification in the referred categories

(Table 6).

The poorest performance was observed in the AW cat-

egory for the 2000 year image with a 34.48 % of accuracy,

and for TPNVA category in the 2010 image with a 76.96 %

of accuracy. However, for the other images the same cat-

egories had satisfactory performances, with accuracy val-

ues higher than 80 % for AW and 90 % for TPNVA.

The poorest performance for AW category in the 2000

image classification is probably related to the low water

level period in the entire system, river and reservoir, which

made it difficult to collect samples from this category

without any spectral interference of river-margin vegeta-

tion, margin soil, and areas with riverbed exposition,

especially within the river’s channel. The classifications

errors for TPNVA category in the 2010 image could be

attributed to the presence of underbrush vegetation in

contact to areas between TPNVA and NSNV, making it

difficult to collect samples without spectral influences of

the vegetation. For user’s accuracy, all results were satis-

factory, showing for most of the classes more than 90 % of

accuracy, the same was observed for the overall classifi-

cation (Table 6).

The two, local and by category accuracies, corroborate

to the overall accuracy results indicating the high consis-

tence of SVM parameterization proposed. The comple-

mentary analysis of these classification results is the Kappa

statistics that can variates from 1, representing total

agreement, to 0 or negative numbers, meaning non agree-

ment (Lillesand and Kieffer 1999). Kappa statistics results

confirmed the high agreement between the training and

actual classifications, indicating that some other random

classification may obtain close results with this work

classification. Kappa values were 0.81 for the 2000 image,

0.96 for the 1995 and 2010 images, and 0.97 for the 2005

image (Table 5).

For LULC mapping analysis, globally, it could be

observed that the SVM parameterization made the algo-

rithm sensible for variations not only large periods, as 1995

to 2010 (Table 7), also for small change, as year-by-year

analysis (Tables 8 and 9).

As a SVM application result, the LULC changes

between the time-series images can be accessed in Table 8.

Through these results, it is possible to observe small

Table 5 Kappa and overall accuracy values obtained for SVM

classification per year

Year Overall accuracy Kappa

1995 0.98 0.96

2000 0.86 0.81

2005 0.98 0.97

2010 0.98 0.96

Table 6 Product and user’s

accuracy of SVM classification

based on confusion matrix

Year Producer’s accuracy (%) User’s accuracy (%)

NSNV TPNVA AW CMTA ASAA NSNV TPNVA AW CMTA ASAA

1995 99.40 91.32 98.99 93.15 96.30 99.64 91.92 98.43 96.06 96.18

2000 91.93 95.47 34.48 99.44 96.84 93.26 76.85 99.49 85.96 96.81

2005 96.62 99.2 82.96 97.05 99.79 97.81 98.34 92.42 97.02 99.87

2010 99.98 76.96 99.08 93.67 95.89 99.93 86.66 97.77 96.89 97.51
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changes in LULC, around 3 % or lower (1995–2000:

CMTA class = 2 %; 1995–2010: NSNTV = 1.42 and

CMTA = 3.70 %, for example).

Observing the Fig. 5, is it possible to see that the

obtained parameterization enables the SVM algorithm to

differentiate the large and continuous classes, as well as

lengthy and thin areas, as borders, and not continuous small

areas located inside wide classes.

The conserved TPNVA area was around 58 %, 21.48 %

of this area was converted into NSNTV, probably because

of the regeneration in the borders. Around 20 % of this area

was converted into CMTA. Water cover (AW), was the

class with the lowest change, keeping 93.79 % of its

original area; 5.42 % were changed to CMTA, probably

because of the water level reduction in the river channel,

exposing fertile areas which could be used for agricultural

and livestock activities.

Agricultural and livestock class (CMTA) had main-

tained 89.31 % of its original area, and was mostly chan-

ged to natural areas (NSNTV—9.08 %). The anthropic

areas (ASAA), kept only 29.39 % of its original area,

becoming the lowest maintenance rate among all classes.

The major change in ASAA class occurred in the conver-

sion to CMTA, 57.11 %, indicating the reduction of

exposed soil in rural areas, and 12.29 % of ASAA class

were converted into water area (AW), probably because of

the reservoir water level growth, recovering the margin

area which was characterized by exposed soil. In general,

all percentage lower than 1 % probably is associated to

classification error real but unrepresentative land cover

changes.

Conclusion

The tested SVM’s parameters ensured the optimal param-

eterization of algorithm and allowed mapping the main

changes in FHR, including the very small ones. Results

demonstrated that the degree of polynomial function

modifies the accuracy, and RBF showed best results when

compared to polynomial function. Input parameters of RBF

were also tested and shown that the highest regularization

parameter (C = 120) did not retrieve the higher accuracy.

For this study area, the higher accuracy was obtained using

a lower C-value (=100), lower basis function parameter

(c = 0.1), to reduce the computational cost, and the

pyramid depths (=2) to improve the performance of

algorithm.

The change detection analyses demonstrates that the

obtained SVM parameterization allows a great differenti-

ation between the trained classes, supporting the premise of

low sensitivity to sample size and high sensitivity to rep-

resentative training sample selection. In addition to dif-

ferentiation between the large and continuous classes, the

parameterization obtained in this work made the algorithm

able to differentiate lengthy and thin areas, as borders, and

not continuous small areas located inside wide classes.

Table 7 LULC change from first to last year (1995–2010)

Class 1995 (%)

NSNTV TPNVA AW CMTA ASAA

2010 (%) NSNTV 88.07 21.48 0.08 9.08 0.83

TPNVA 2.03 58.46 0.01 0.71 0.38

AW 0.02 0.01 93.79 0.55 12.29

CMTA 9.89 20.02 5.42 89.31 57.11

ASAA 0.01 0.03 0.70 0.36 29.39

Image difference 1.42 225.50 11.89 3.70 254.99

The words and values in bold represent the difference amount obtained

between both images (1995 and 2010—the total period of analyse)

Table 9 LULC change year by

year
Comparison period LULC change (%)

NSNV (%) TPNVA (%) AW (%) CMTA (%) ASAA (%)

1995–2000 -5 22 -6 2 -9

2000–2005 -7 -12 -1 6 -3

2005–2010 16 -26 22 -7 -51

Table 8 LULC classification areas for each class

Year LULC (km2)

NSNV TPNVA AW CMTA ASAA

1995 328.68 49.44 28.20 433.16 12.80

2000 312.26 60.13 26.55 441.74 11.60

2005 291.52 52.95 26.32 470.20 11.28

2010 338.80 39.24 32.09 436.64 5.51
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Fig. 5 LULC classification maps per year
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The LULC mapping performed using the obtained SVM

function and parameterization, for this multi-temporal

series was efficient and provided trustful and real results,

ensuring high values of accuracy, both overall (minimum

90 %), producer’s (90 %) and user’s (86 %), and Kappa

statistics (86 % and 91 % over the time), allowing high

level of confidence to LULC mapping obtained.

References

Adler-Golden SM, Matthew MW, Bernstein LS, Levine RY, Berk A,

Richtsmeier SC, Acharya PK, Anderson GP, Felde G, Gardner J,

Hoke M, Jeong LS, Pukall B, Ratkowski A, Burke HH (1999)

Atmospheric correction for shortwave spectral imagery based on

MODTRAN4. SPIE Proc Imaging Spectrom 3753:61–69

Branco CWC, Rocha M-I, Pinto GFS, Gômara GA, Filipo R (2002)
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